1
|
Chen J, Liu S, Ruan Z, Wang K, Xi X, Mao J. Thrombotic events associated with immune checkpoint inhibitors and novel antithrombotic strategies to mitigate bleeding risk. Blood Rev 2024; 67:101220. [PMID: 38876840 DOI: 10.1016/j.blre.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Although immunotherapy is expanding treatment options for cancer patients, the prognosis of advanced cancer remains poor, and these patients must contend with both cancers and cancer-related thrombotic events. In particular, immune checkpoint inhibitors are associated with an increased risk of atherosclerotic thrombotic events. Given the fundamental role of platelets in atherothrombosis, co-administration of antiplatelet agents is always indicated. Platelets are also involved in all steps of cancer progression. Classical antithrombotic drugs can cause inevitable hemorrhagic side effects due to blocking integrin β3 bidirectional signaling, which regulates simultaneously thrombosis and hemostasis. Meanwhile, many promising new targets are emerging with minimal bleeding risk and desirable anti-tumor effects. This review will focus on the issue of thrombosis during immune checkpoint inhibitor treatment and the role of platelet activation in cancer progression as well as explore the mechanisms by which novel antiplatelet therapies may exert both antithrombotic and antitumor effects without excessive bleeding risk.
Collapse
Affiliation(s)
- Jiayi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianhua Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Lee NT, Savvidou I, Selan C, Calvello I, Vuong A, Wright DK, Brkljaca R, Willcox A, Chia JSJ, Wang X, Peter K, Robson SC, Medcalf RL, Nandurkar HH, Sashindranath M. Development of endothelial-targeted CD39 as a therapy for ischemic stroke. J Thromb Haemost 2024; 22:2331-2344. [PMID: 38754782 DOI: 10.1016/j.jtha.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ischemic stroke is characterized by a necrotic lesion in the brain surrounded by an area of dying cells termed the penumbra. Salvaging the penumbra either with thrombolysis or mechanical retrieval is the cornerstone of stroke management. At-risk neuronal cells release extracellular adenosine triphosphate, triggering microglial activation and causing a thromboinflammatory response, culminating in endothelial activation and vascular disruption. This is further aggravated by ischemia-reperfusion injury that follows all reperfusion therapies. The ecto-enzyme CD39 regulates extracellular adenosine triphosphate by hydrolyzing it to adenosine, which has antithrombotic and anti-inflammatory properties and reverses ischemia-reperfusion injury. OBJECTIVES The objective off the study was to determine the efficacy of our therapeutic, anti-VCAM-CD39 in ischaemic stroke. METHODS We developed anti-VCAM-CD39 that targets the antithrombotic and anti-inflammatory properties of recombinant CD39 to the activated endothelium of the penumbra by binding to vascular cell adhesion molecule (VCAM)-1. Mice were subjected to 30 minutes of middle cerebral artery occlusion and analyzed at 24 hours. Anti-VCAM-CD39 or control agents (saline, nontargeted CD39, or anti-VCAM-inactive CD39) were given at 3 hours after middle cerebral artery occlusion. RESULTS Anti-VCAM-CD39 treatment reduced neurologic deficit; magnetic resonance imaging confirmed significantly smaller infarcts together with an increase in cerebrovascular perfusion. Anti-VCAM-CD39 also restored blood-brain barrier integrity and reduced microglial activation. Coadministration of anti-VCAM-CD39 with thrombolytics (tissue plasminogen activator [tPA]) further reduced infarct volumes and attenuated blood-brain barrier permeability with no associated increase in intracranial hemorrhage. CONCLUSION Anti-VCAM-CD39, uniquely targeted to endothelial cells, could be a new stroke therapy even when administered 3 hours postischemia and may further synergize with thrombolytic therapy to improve stroke outcomes.
Collapse
Affiliation(s)
- Natasha Ting Lee
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ioanna Savvidou
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ilaria Calvello
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Amy Vuong
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robert Brkljaca
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Abbey Willcox
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Joanne S J Chia
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Alfred Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Song Y, Bienvenu LA, Bongcaron V, Prijaya SA, Maluenda AC, Walsh APG, McFayden JD, Pietersz GA, Peter K, Wang X. Platelet-targeted thromboprophylaxis with a human serum albumin fusion drug: Preventing thrombosis and reducing cardiac ischemia/reperfusion injurywithout bleeding complications. Theranostics 2024; 14:3267-3281. [PMID: 38855181 PMCID: PMC11155409 DOI: 10.7150/thno.97517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
Background: Myocardial infarction (MI) as a consequence of atherosclerosis-associated acute thrombosis is a leading cause of death and disability globally. Antiplatelet and anticoagulant drugs are standard therapies in preventing and treating MI. However, all clinically used drugs are associated with bleeding complications, which ultimately limits their use in patients with a high risk of bleeding. We have developed a new recombinant drug, targ-HSA-TAP, that combines targeting and specific inhibition of activated platelets as well as anticoagulation. This drug is designed and tested for a prolonged circulating half-life, enabling unique thromboprophylaxis without bleeding complications. Methods: Targ-HSA-TAP combines a single-chain antibody (scFv) that targets activated glycoprotein IIb/IIIa on activated platelets, human serum albumin (HSA) for prolonged circulation, and tick anticoagulant peptide (TAP) for coagulation FX inhibition. A non-binding scFv is employed as a non-targeting control (non-targ-HSA-TAP). Its efficacy was investigated in vivo using murine models of acute thrombosis and cardiac ischemia-reperfusion (I/R) injury. Results: Our experiments confirmed the targeting specificity of targ-HSA-TAP to activated platelets and demonstrated effective prevention of platelet aggregation and thrombus formation, as well as FXa inhibition in vitro. Thromboprophylactic administration of targ-HSA-TAP subcutaneously in mice prevented occlusion of the carotid artery after ferric chloride injury as compared to non-targ-HSA-TAP and PBS-control treated mice. By comparing the therapeutic outcomes between targ-TAP and targ-HSA-TAP, we demonstrate the significant improvements brought by the HSA fusion in extending the drug's half-life and enhancing its therapeutic window for up to 16 h post-administration. Importantly, tail bleeding time was not prolonged with targ-HSA-TAP in contrast to the clinically used anticoagulant enoxaparin. Furthermore, in a murine model of cardiac I/R injury, mice administered targ-HSA-TAP 10 h before injury demonstrated preserved cardiac function, with significantly higher ejection fraction and fractional shortening, as compared to the non-targ-HSA-TAP and PBS control groups. Advanced strain analysis revealed reduced myocardial deformation and histology confirmed a reduced infarct size in targ-HSA-TAP treated mice compared to control groups. Conclusion: The inclusion of HSA represents a significant advancement in the design of targeted therapeutic agents for thromboprophylaxis. Our activated platelet-targeted targ-HSA-TAP is a highly effective antithrombotic drug with both anticoagulant and antiplatelet effects while retaining normal hemostasis. The long half-life of targ-HSA-TAP provides the unique opportunity to use this antithrombotic drug for more effective, long-lasting and safer anti-thrombotic prophylaxis. In cases where MI occurs, this prophylactic strategy reduces thrombus burden and effectively reduces cardiac I/R injury.
Collapse
Affiliation(s)
- Yuyang Song
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Laura A. Bienvenu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
| | - Viktoria Bongcaron
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Shania A. Prijaya
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ana C. Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Aidan P. G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - James D. McFayden
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A. Pietersz
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Wang L, Liu Y, Tian R, Zuo W, Qian H, Wang L, Yang X, Liu Z, Zhang S. What do we know about platelets in myocardial ischemia-reperfusion injury and why is it important? Thromb Res 2023; 229:114-126. [PMID: 37437517 DOI: 10.1016/j.thromres.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), the joint result of ischemic injury and reperfusion injury, is associated with poor outcomes in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Accumulating evidence demonstrates that activated platelets directly contribute to the pathogenesis of MIRI through participating in the formation of microthrombi, interaction with leukocytes, secretion of active substances, constriction of microvasculature, and activation of spinal afferent nerves. The molecular mechanisms underlying the above detrimental effects of activated platelets include the homotypic and heterotypic interactions through surface receptors, transduction of intracellular signals, and secretion of active substances. Revealing the roles of platelet activation in MIRI and the associated mechanisms would provide potential targets/strategies for the clinical evaluation and treatment of MIRI. Further studies are needed to characterize the temporal (ischemia phase vs. reperfusion phase) and spatial (systemic vs. local) distributions of platelet activation in MIRI by multi-omics strategies. To improve the likelihood of translating novel cardioprotective interventions into clinical practice, basic researches maximally replicating the complexity of clinical scenarios would be necessary.
Collapse
Affiliation(s)
- Lun Wang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yifan Liu
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Xinglin Yang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
6
|
Purinergic signaling: a potential therapeutic target for ischemic stroke. Purinergic Signal 2023; 19:173-183. [PMID: 36370253 PMCID: PMC9984595 DOI: 10.1007/s11302-022-09905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
Pathogenesis of ischemic stroke is mainly characterized by thrombosis and neuroinflammation. Purinergic signaling pathway constitutes adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (ADO). ATP is hydrolyzed to ADP and then to AMP by extracellular nucleotidase CD39; AMP is subsequently converted to adenosine by CD73. All these nucleotides and nucleosides act on purinergic receptors protecting against thrombosis and inhibit inflammation. In addition, many physical methods have been found to play a neuroprotective role through purinergic signaling. This review mainly introduces the role and potential mechanism of purinergic signalings in the treatment of ischemic stroke, so as to provide reference for seeking new treatment methods for stroke.
Collapse
|
7
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
8
|
Sloos PH, Vulliamy P, van 't Veer C, Gupta AS, Neal MD, Brohi K, Juffermans NP, Kleinveld DJB. Platelet dysfunction after trauma: From mechanisms to targeted treatment. Transfusion 2022; 62 Suppl 1:S281-S300. [PMID: 35748694 PMCID: PMC9546174 DOI: 10.1111/trf.16971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Pieter H. Sloos
- Department of Intensive Care Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anirban Sen Gupta
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Matthew D. Neal
- Pittsburgh Trauma and Transfusion Medicine Research Center and Division of Trauma and Acute Care SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineOLVG HospitalAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Intensive Care MedicineErasmus MCRotterdamThe Netherlands
| |
Collapse
|
9
|
Yegutkin GG, Boison D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol Rev 2022; 74:797-822. [PMID: 35738682 DOI: 10.1124/pharmrev.121.000528] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
10
|
Fernando H, McFadyen JD, Wang X, Shaw J, Stub D, Peter K. P2Y12 Antagonists in Cardiovascular Disease—Finding the Best Balance Between Preventing Ischemic Events and Causing Bleeding. Front Cardiovasc Med 2022; 9:854813. [PMID: 35647068 PMCID: PMC9133423 DOI: 10.3389/fcvm.2022.854813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Dual antiplatelet therapy comprising of aspirin and oral P2Y12 receptor antagonists are an established cornerstone of therapy in acute coronary syndromes and percutaneous coronary intervention. As a result, the platelet P2Y12 receptor remains a key therapeutic target in cardiovascular medicine since pharmacological antagonists were first developed in the 1990’s. With a greater understanding of platelet biology and the role played by the P2Y12 receptor in the amplification of platelet activation and thrombus formation, there has been progressive refinement in the development of P2Y12 receptor antagonists with greater potency and consistency of antiplatelet effect. However, challenges remain in the utilization of these agents particularly in balancing the need for greater protection from ischemic events whilst minimizing the bleeding risk and present a real opportunity for the institution of individualized medicine. Future drug developments will provide clinicians with greater avenues to achieve this.
Collapse
Affiliation(s)
- Himawan Fernando
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - James D. McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Thrombosis and Hemostasis Unit, Department of Clinical Hematology, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - James Shaw
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Dion Stub
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
- *Correspondence: Karlheinz Peter,
| |
Collapse
|
11
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Atypical Roles of the Chemokine Receptor ACKR3/CXCR7 in Platelet Pathophysiology. Cells 2022; 11:cells11020213. [PMID: 35053329 PMCID: PMC8773869 DOI: 10.3390/cells11020213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1α are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1α themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis, i.e., megakaryopoiesis, thrombotic and thrombo-inflammatory actions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coronary syndrome (ACS) patients, and is also associated with improved functional recovery and prognosis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardiac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1α exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet-associated cardiovascular disorders, particularly in coronary artery disease (CAD) patients post-MI.
Collapse
|
13
|
Jourdi G, Lordkipanidzé M, Philippe A, Bachelot-Loza C, Gaussem P. Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms222313079. [PMID: 34884884 PMCID: PMC8658271 DOI: 10.3390/ijms222313079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, antiplatelet agents, mainly aspirin and P2Y12 receptor antagonists, have significantly reduced morbidity and mortality associated with arterial thrombosis. Their pharmacological characteristics, including pharmacokinetic/pharmacodynamics profiles, have been extensively studied, and a significant number of clinical trials assessing their efficacy and safety in various clinical settings have established antithrombotic efficacy. Notwithstanding, antiplatelet agents carry an inherent risk of bleeding. Given that bleeding is associated with adverse cardiovascular outcomes and mortality, there is an unmet clinical need to develop novel antiplatelet therapies that inhibit thrombosis while maintaining hemostasis. In this review, we present the currently available antiplatelet agents, with a particular focus on their targets, pharmacological characteristics, and patterns of use. We will further discuss the novel antiplatelet therapies in the pipeline, with the goal of improved clinical outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: (G.J.); (P.G.)
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélien Philippe
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Christilla Bachelot-Loza
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
| | - Pascale Gaussem
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Correspondence: (G.J.); (P.G.)
| |
Collapse
|
14
|
A Recombinant Fusion Construct between Human Serum Albumin and NTPDase CD39 Allows Anti-Inflammatory and Anti-Thrombotic Coating of Medical Devices. Pharmaceutics 2021; 13:pharmaceutics13091504. [PMID: 34575580 PMCID: PMC8466136 DOI: 10.3390/pharmaceutics13091504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Medical devices directly exposed to blood are commonly used to treat cardiovascular diseases. However, these devices are associated with inflammatory reactions leading to delayed healing, rejection of foreign material or device-associated thrombus formation. We developed a novel recombinant fusion protein as a new biocompatible coating strategy for medical devices with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP, major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory complications often associated with medical devices directly exposed to blood.
Collapse
|
15
|
Thrombo-Inflammation: A Focus on NTPDase1/CD39. Cells 2021; 10:cells10092223. [PMID: 34571872 PMCID: PMC8469976 DOI: 10.3390/cells10092223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.
Collapse
|
16
|
Zia A, Wu Y, Nguyen T, Wang X, Peter K, Ta HT. The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis. Cardiovasc Res 2021; 116:2055-2068. [PMID: 32077918 DOI: 10.1093/cvr/cvaa047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
As nanotechnologies advance into clinical medicine, novel methods for applying nanomedicine to cardiovascular diseases are emerging. Extensive research has been undertaken to unlock the complex pathogenesis of atherosclerosis. However, this complexity presents challenges to develop effective imaging and therapeutic modalities for early diagnosis and acute intervention. The choice of ligand-receptor system vastly influences the effectiveness of nanomedicine. This review collates current ligand-receptor systems used in targeting functionalized nanoparticles for diagnosis and treatment of atherosclerosis. Our focus is on the binding affinity and selectivity of ligand-receptor systems, as well as the relative abundance of targets throughout the development and progression of atherosclerosis. Antibody-based targeting systems are currently the most commonly researched due to their high binding affinities when compared with other ligands, such as antibody fragments, peptides, and other small molecules. However, antibodies tend to be immunogenic due to their size. Engineering antibody fragments can address this issue but will compromise their binding affinity. Peptides are promising ligands due to their synthetic flexibility and low production costs. Alongside the aforementioned binding affinity of ligands, the choice of target and its abundance throughout distinct stages of atherosclerosis and thrombosis is relevant to the intended purpose of the nanomedicine. Further studies to investigate the components of atherosclerotic plaques are required as their cellular and molecular profile shifts over time.
Collapse
Affiliation(s)
- Adil Zia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Tuan Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC 3000, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC 3000, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
Role of Purinergic Signalling in Endothelial Dysfunction and Thrombo-Inflammation in Ischaemic Stroke and Cerebral Small Vessel Disease. Biomolecules 2021; 11:biom11070994. [PMID: 34356618 PMCID: PMC8301873 DOI: 10.3390/biom11070994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood–brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
Collapse
|
18
|
Orian JM, D'Souza CS, Kocovski P, Krippner G, Hale MW, Wang X, Peter K. Platelets in Multiple Sclerosis: Early and Central Mediators of Inflammation and Neurodegeneration and Attractive Targets for Molecular Imaging and Site-Directed Therapy. Front Immunol 2021; 12:620963. [PMID: 33679764 PMCID: PMC7933211 DOI: 10.3389/fimmu.2021.620963] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Platelets are clearly central to thrombosis and hemostasis. In addition, more recently, evidence has emerged for non-hemostatic roles of platelets including inflammatory and immune reactions/responses. Platelets express immunologically relevant ligands and receptors, demonstrate adhesive interactions with endothelial cells, monocytes and neutrophils, and toll-like receptor (TLR) mediated responses. These properties make platelets central to innate and adaptive immunity and potential candidate key mediators of autoimmune disorders. Multiple sclerosis (MS) is the most common chronic autoimmune central nervous system (CNS) disease. An association between platelets and MS was first indicated by the increased adhesion of platelets to endothelial cells. This was followed by reports identifying structural and functional changes of platelets, their chronic activation in the peripheral blood of MS patients, platelet presence in MS lesions and the more recent revelation that these structural and functional abnormalities are associated with all MS forms and stages. Investigations based on the murine experimental autoimmune encephalomyelitis (EAE) MS model first revealed a contribution to EAE pathogenesis by exacerbation of CNS inflammation and an early role for platelets in EAE development via platelet-neuron and platelet-astrocyte associations, through sialated gangliosides in lipid rafts. Our own studies refined and extended these findings by identifying the critical timing of platelet accumulation in pre-clinical EAE and establishing an initiating and central rather than merely exacerbating role for platelets in disease development. Furthermore, we demonstrated platelet-neuron associations in EAE, coincident with behavioral changes, but preceding the earliest detectable autoreactive T cell accumulation. In combination, these findings establish a new paradigm by asserting that platelets play a neurodegenerative as well as a neuroinflammatory role in MS and therefore, that these two pathological processes are causally linked. This review will discuss the implications of these findings for our understanding of MS, for future applications for imaging toward early detection of MS, and for novel strategies for platelet-targeted treatment of MS.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Guy Krippner
- Medicinal Chemistry, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Sun H, Qu W, Chen G, Sun X, Zhang D, Shao S. Efficacy and safety of traditional Chinese patent medicine on carotid artery atherosclerosis in adults: A network meta-analysis protocol. Medicine (Baltimore) 2021; 100:e24406. [PMID: 33546084 PMCID: PMC7837874 DOI: 10.1097/md.0000000000024406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS), the predominant pathological basis of ischemic cardiovascular and cerebrovascular diseases, remains a common and severe clinical problem. The experiments in vitro and in vivo indicate that Traditional Chinese patent medicine (TCPM) shows beneficial efficacy against AS through a variety of mechanisms. However, the existing therapeutic TCPM for the treatment of AS are diverse, and it is still significant to evaluate the pros and cons of a certain TCPM. Therefore, the study aims to compare the efficacy and outcomes of different anti-atherosclerotic TCPM in adults with the hope of providing references for clinical decision making. METHODS Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure Database, Wanfang Database, Chinese BioMedical Literature Database, and China Science and Technology Journal Database will be searched. Randomized controlled trials (RCTs) of TCPM for aortic AS in adults will be included in this study if they meet the Population/Intervention/Comparison/Outcomes/Study Design (PICOS) criteria. Two reviewers will independently perform citations screening, data extraction and risk of bias assessment. STATA 15.0 and WinBUGS 1.4.3 will be employed to conduct statistical analyses under the Bayesian framework. RESULTS The efficacy and safety of various TCPM strategies on aortic AS in adults will be compared. CONCLUSION The study will expand the range of options for anti-atherosclerotic therapeutic strategies and encourages further clinical research in traditional Chinese medicine. INPLASY REGISTRATION NUMBER INPLASY2020120036.
Collapse
Affiliation(s)
| | - Wei Qu
- Tai’an Medical District of 960 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army
| | - Guangjia Chen
- Tai’an City Cancer Prevention and Treatment Hospital, Tai’an, Shandong, China
| | | | | | | |
Collapse
|
20
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
21
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
22
|
Zwart B, Parker WAE, Storey RF. New Antithrombotic Drugs in Acute Coronary Syndrome. J Clin Med 2020; 9:E2059. [PMID: 32629976 PMCID: PMC7408919 DOI: 10.3390/jcm9072059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, much progress has been made in the field of antithrombotic drugs in acute coronary syndrome (ACS) treatment, as reflected by the introduction of the more potent P2Y12-inhibitors prasugrel and ticagrelor, and novel forms of concomitant anticoagulation, such as fondaparinux and bivalirudin. However, despite substantial improvements in contemporary ACS treatment, there remains residual ischemic risk in this group and hence the need for even more effective antithrombotic drugs, while balancing antithrombotic efficacy against bleeding risk. This review discusses recently introduced and currently developed antiplatelet and anticoagulant drugs in ACS treatment.
Collapse
Affiliation(s)
- Bastiaan Zwart
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - William A. E. Parker
- Cardiovascular Research Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (W.A.E.P.); (R.F.S.)
- South Yorkshire Cardiothoracic Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Robert F. Storey
- Cardiovascular Research Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (W.A.E.P.); (R.F.S.)
- South Yorkshire Cardiothoracic Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| |
Collapse
|
23
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
24
|
Targeting CD39 Toward Activated Platelets Reduces Systemic Inflammation and Improves Survival in Sepsis: A Preclinical Pilot Study. Crit Care Med 2020; 47:e420-e427. [PMID: 30730441 DOI: 10.1097/ccm.0000000000003682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Sepsis is associated with a systemic inflammatory reaction, which can result in a life-endangering organ dysfunction. Pro-inflammatory responses during sepsis are characterized by increased activation of leukocytes and platelets, formation of platelet-neutrophil aggregates, and cytokine production. Sequestration of platelet-neutrophil aggregates in the microvasculature contributes to tissue damage during sepsis. At present no effective therapeutic strategy to ameliorate these events is available. In this preclinical pilot study, a novel anti-inflammatory approach was evaluated, which targets nucleoside triphosphate hydrolase activity toward activated platelets via a recombinant fusion protein combining a single-chain antibody against activated glycoprotein IIb/IIIa and the extracellular domain of CD39 (targ-CD39). DESIGN Experimental animal study and cell culture study. SETTING University-based experimental laboratory. SUBJECTS Human dermal microvascular endothelial cells 1, human platelets and neutrophils, and C57BL/6NCrl mice. INTERVENTIONS Platelet-leukocyte-endothelium interactions were evaluated under inflammatory conditions in vitro and in a murine lipopolysaccharide-induced sepsis model in vivo. The outcome of polymicrobial sepsis was evaluated in a murine cecal ligation and puncture model. To evaluate the anti-inflammatory potential of activated platelet targeted nucleoside triphosphate hydrolase activity, we employed a potato apyrase in vitro and in vivo, as well as targ-CD39 and as a control, nontarg-CD39 in vivo. MEASUREMENTS AND MAIN RESULTS Under conditions of sepsis, agents with nucleoside triphosphate hydrolase activity decreased platelet-leukocyte-endothelium interaction, transcription of pro-inflammatory cytokines, microvascular platelet-neutrophil aggregate sequestration, activation marker expression on platelets and neutrophils contained in these aggregates, leukocyte extravasation, and organ damage. Targ-CD39 had the strongest effect on these variables and retained hemostasis in contrast to nontarg-CD39 and potato apyrase. Most importantly, targ-CD39 improved survival in the cecal ligation and puncture model to a stronger extent then nontarg-CD39 and potato apyrase. CONCLUSIONS Targeting nucleoside triphosphate hydrolase activity (CD39) toward activated platelets is a promising new treatment concept to decrease systemic inflammation and mortality of sepsis. This innovative therapeutic approach warrants further development toward clinical application.
Collapse
|
25
|
Tscharre M, Michelson AD, Gremmel T. Novel Antiplatelet Agents in Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2020; 25:191-200. [DOI: 10.1177/1074248419899314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiplatelet therapy reduces atherothrombotic risk and has therefore become a cornerstone in the treatment of cardiovascular disease. Aspirin, adenosine diphosphate P2Y12 receptor antagonists, glycoprotein IIb/IIIa inhibitors, and the thrombin receptor blocker vorapaxar are effective antiplatelet agents but significantly increase the risk of bleeding. Moreover, atherothrombotic events still impair the prognosis of many patients with cardiovascular disease despite established antiplatelet therapy. Over the last years, advances in the understanding of thrombus formation and hemostasis led to the discovery of various new receptors and signaling pathways of platelet activation. As a consequence, many new antiplatelet agents with high antithrombotic efficacy and supposedly only moderate effects on regular hemostasis have been developed and yielded promising results in preclinical and early clinical studies. Although their long journey from animal studies to randomized clinical trials and finally administration in daily clinical routine has just begun, some of the new agents may in the future become meaningful additions to the pharmacological armamentarium in cardiovascular disease.
Collapse
Affiliation(s)
- Maximilian Tscharre
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Gremmel
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis. Nat Commun 2020; 11:398. [PMID: 31964886 PMCID: PMC6972956 DOI: 10.1038/s41467-019-13928-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
A prevailing dogma is that inhibition of vascular thrombosis by antagonizing platelet integrin αIIbβ3 cannot be achieved without compromising hemostasis, thus causing serious bleeding and increased morbidity and mortality. It is speculated that these adverse outcomes result from drug-induced activating conformational changes in αIIbβ3 but direct proof is lacking. Here, we report the structure-guided design of peptide Hr10 and a modified form of the partial agonist drug tirofiban that act as "pure" antagonists of αIIbβ3, i.e., they no longer induce the conformational changes in αIIbβ3. Both agents inhibit human platelet aggregation but preserve clot retraction. Hr10 and modified tirofiban are as effective as partial agonist drugs in inhibiting vascular thrombosis in humanized mice, but neither causes serious bleeding, establishing a causal link between partial agonism and impaired hemostasis. Pure orthosteric inhibitors of αIIbβ3 may thus provide safer alternatives for human therapy, and valuable tools to probe structure-activity relationships in integrins.
Collapse
|
27
|
Li Y, Xin F, Hu J, Jagdale S, Davis TP, Hagemeyer CE, Qiao R. Functionalization of NaGdF4 nanoparticles with a dibromomaleimide-terminated polymer for MR/optical imaging of thrombosis. Polym Chem 2020. [DOI: 10.1039/c9py01568j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thrombosis-targeted molecular imaging probe with magnetic resonance (MR) and optical dual-modality capacity using dibromomaleimide (DBM)-bearing polymer-grafted NaGdF4 nanoparticles.
Collapse
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Shweta Jagdale
- Nanobiotechnology Laboratory
- Australian Centre for Blood Diseases
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Christoph E. Hagemeyer
- Nanobiotechnology Laboratory
- Australian Centre for Blood Diseases
- Monash University
- Melbourne
- Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
28
|
Ziegler M, Hohmann JD, Searle AK, Abraham MK, Nandurkar HH, Wang X, Peter K. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J 2019; 39:111-116. [PMID: 28472483 DOI: 10.1093/eurheartj/ehx218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/11/2017] [Indexed: 01/21/2023] Open
Abstract
Aims CD39 is a cell membrane NTPase with anti-inflammatory and anti-platelet effects. However, its clinical use is limited by its bleeding side effect. With the goal of harnessing its therapeutic potential while avoiding haemostatic problems, we designed a fusion protein consisting of the extracellular domain of CD39 and a single-chain antibody (Targ-CD39) that specifically binds to activated glycoprotein (GP)IIb/IIIa and thus to activated platelets. Through this enrichment at activated platelets, the required systemic dose is below the dose impairing haemostasis. Methods and results Using an ischaemia/reperfusion mouse model (left anterior descending artery ligated for 1 h) we achieved remarkable protection of the reperfused tissue with Targ-CD39 compared with Non-targ-CD39 (mutated, non-binding version of Targ-CD39) and PBS control. Targ-CD39 restored ejection fraction and fractional shortening to a level indistinguishable from pre-injury status, while controls showed functional deterioration. Employing advanced clinically relevant methods of ultrasound analysis, we observed that both radial and longitudinal strain and strain rate showed infarct-typical changes of myocardial deformation in controls, but not in Targ-CD39 treated mice. Histological assessment confirmed strong reduction of infarct size and increase in neovascularization. Furthermore, attenuation of post-ischaemic inflammation was seen in cytokine profiling. Conclusion Overall, we demonstrate that Targ-CD39 holds promise for treatment of myocardial infarction.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Jan David Hohmann
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Amy Kate Searle
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Meike-Kristin Abraham
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Calwerstr. 7/1, 72076 Tübingen, Germany
| | - Harshal H Nandurkar
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia.,Australian Centre for Blood Diseases, Central Clinical School, Alfred Hospital, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
29
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
30
|
Ziegler M, Wang X, Peter K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res 2019; 115:1178-1188. [PMID: 30906948 PMCID: PMC6529900 DOI: 10.1093/cvr/cvz070] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myocardial infarction (AMI) is the single leading cause of mortality and morbidity worldwide. A key component of AMI therapy is the timely reopening of occluded vessels to prevent further ischaemic damage to the myocardium. However, reperfusion of the ischaemic myocardium can itself trigger reperfusion injury causing up to 50% of the overall infarct size. In recent years, considerable research has been devoted to understanding the pathogenesis of ischaemia/reperfusion (I/R) injury and platelets have emerged as a major contributing factor. This review summarizes the role of platelets in the pathogenesis of I/R injury and highlights the potential of platelet-directed therapeutics to minimize cardiac I/R injury. Activated platelets infiltrate specifically into the ischaemic/reperfused myocardium and contribute to I/R injury by the formation of microthrombi, enhanced platelet-leucocyte aggregation, and the release of potent vasoconstrictor and pro-inflammatory molecules. This review demonstrates the benefits of platelet inhibition beyond their well-described anti-thrombotic effect and highlights the direct cardioprotective role of anti-platelet drugs. In particular, the inhibition of COX, the P2Y12 receptor and the GPIIb/IIIa receptor has demonstrated the potential to attenuate I/R injury. Moreover, targeting of drug candidates or regenerative cells to the activated platelets accumulated within the ischaemic/reperfused myocardium shows remarkable potential to protect the myocardium from I/R injury. Overall, activated platelets play a key role in the pathogenesis of I/R injury. Their direct inhibition as well as their use as epitopes for site-directed therapy is a unique and promising therapeutic approach for the prevention of I/R injury and ultimately the preservation of cardiac function.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| |
Collapse
|
31
|
McFadyen JD, Peter K. Novel Antithrombotic Drugs on the Horizon: The Ultimate Promise to Prevent Clotting While Avoiding Bleeding. Circ Res 2019; 121:1133-1135. [PMID: 29074533 DOI: 10.1161/circresaha.117.312012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- James D McFadyen
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Australia (J.D.M., K.P.); and Department of Medicine (J.D.M., K.P.), Department of Immunology (K.P.), Department of Clinical Haematology, Alfred Hospital (J.D.M.), and Heart Centre, Alfred Hospital (K.P.), Monash University, Melbourne, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Australia (J.D.M., K.P.); and Department of Medicine (J.D.M., K.P.), Department of Immunology (K.P.), Department of Clinical Haematology, Alfred Hospital (J.D.M.), and Heart Centre, Alfred Hospital (K.P.), Monash University, Melbourne, Australia.
| |
Collapse
|
32
|
Yadav V, Chi L, Zhao R, Tourdot BE, Yalavarthi S, Jacobs BN, Banka A, Liao H, Koonse S, Anyanwu AC, Visovatti SH, Holinstat MA, Kahlenberg JM, Knight JS, Pinsky DJ, Kanthi Y. Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis. J Clin Invest 2019; 129:2872-2877. [PMID: 30990798 DOI: 10.1172/jci124804] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep vein thrombosis (DVT), caused by alterations in venous homeostasis is the third most common cause of cardiovascular mortality; however, key molecular determinants in venous thrombosis have not been fully elucidated. Several lines of evidence indicate that DVT occurs at the intersection of dysregulated inflammation and coagulation. The enzyme ectonucleoside tri(di)phosphohydrolase (ENTPD1, also known as CD39) is a vascular ecto-apyrase on the surface of leukocytes and the endothelium that inhibits intravascular inflammation and thrombosis by hydrolysis of phosphodiester bonds from nucleotides released by activated cells. Here, we evaluated the contribution of CD39 to venous thrombosis in a restricted-flow model of murine inferior vena cava stenosis. CD39-deficiency conferred a >2-fold increase in venous thrombogenesis, characterized by increased leukocyte engagement, neutrophil extracellular trap formation, fibrin, and local activation of tissue factor in the thrombotic milieu. This was orchestrated by increased phosphorylation of the p65 subunit of NFκB, activation of the NLRP3 inflammasome, and interleukin-1β (IL-1β) release in CD39-deficient mice. Substantiating these findings, an IL-1β-neutralizing antibody attenuated the thrombosis risk in CD39-deficient mice. These data demonstrate that IL-1β is a key accelerant of venous thrombo-inflammation, which can be suppressed by CD39. CD39 inhibits in vivo crosstalk between inflammation and coagulation pathways, and is a critical vascular checkpoint in venous thrombosis.
Collapse
Affiliation(s)
- Vinita Yadav
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Liguo Chi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Raymond Zhao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | | | | | - Benjamin N Jacobs
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alison Banka
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Chemical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Hui Liao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Sharon Koonse
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center
| | - Anuli C Anyanwu
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | - David J Pinsky
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center.,Section of Cardiology, Ann Arbor Veterans Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Wang X, Peter K. Mending the failing heart. Aging (Albany NY) 2019; 11:1605-1606. [PMID: 30886129 PMCID: PMC6461162 DOI: 10.18632/aging.101879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute Melbourne, Victoria 3004, Australia.,Department of Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute Melbourne, Victoria 3004, Australia.,Department of Medicine, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
34
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Yap ML, McFadyen JD, Wang X, Ziegler M, Chen YC, Willcox A, Nowell CJ, Scott AM, Sloan EK, Hogarth PM, Pietersz GA, Peter K. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019; 9:1154-1169. [PMID: 30867822 PMCID: PMC6401411 DOI: 10.7150/thno.29146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Platelets are increasingly recognized as mediators of tumor growth and metastasis. Hypothesizing that activated platelets in the tumor microenvironment provide a targeting epitope for tumor-directed chemotherapy, we developed an antibody-drug conjugate (ADC), comprised of a single-chain antibody (scFv) against the platelet integrin GPIIb/IIIa (scFvGPIIb/IIIa) linked to the potent chemotherapeutic microtubule inhibitor, monomethyl auristatin E (MMAE). Methods: We developed an ADC comprised of three components: 1) A scFv which specifically binds to the high affinity, activated integrin GPIIb/IIIa on activated platelets. 2) A highly potent microtubule inhibitor, monomethyl auristatin E. 3) A drug activation/release mechanism using a linker cleavable by cathepsin B, which we demonstrate to be abundant in the tumor microenvironment. The scFvGPIIb/IIIa-MMAE was first conjugated with Cyanine7 for in vivo imaging. The therapeutic efficacy of the scFvGPIIb/IIIa-MMAE was then tested in a mouse metastasis model of triple negative breast cancer. Results: In vitro studies confirmed that this ADC specifically binds to activated GPIIb/IIIa, and cathepsin B-mediated drug release/activation resulted in tumor cytotoxicity. In vivo fluorescence imaging demonstrated that the newly generated ADC localized to primary tumors and metastases in a mouse xenograft model of triple negative breast cancer, a difficult to treat tumor for which a selective tumor-targeting therapy remains to be clinically established. Importantly, we demonstrated that the scFvGPIIb/IIIa-MMAE displays marked efficacy as an anti-cancer agent, reducing tumor growth and preventing metastatic disease, without any discernible toxic effects. Conclusion: Here, we demonstrate the utility of a novel ADC that targets a potent cytotoxic drug to activated platelets and specifically releases the cytotoxic agent within the confines of the tumor. This unique targeting mechanism, specific to the tumor microenvironment, holds promise as a novel therapeutic approach for the treatment of a broad range of primary tumors and metastatic disease, particularly for tumors that lack specific molecular epitopes for drug targeting.
Collapse
Affiliation(s)
- May Lin Yap
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, Australia
| | - James D McFadyen
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
- Department of Hematology, The Alfred Hospital, Melbourne, 3004, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
| | - Melanie Ziegler
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
| | - Yung-Chih Chen
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
| | - Abbey Willcox
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
- Department of Hematology, The Alfred Hospital, Melbourne, 3004, Australia
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Victoria, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - P Mark Hogarth
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, Australia
- Burnet Institute, Melbourne, 3004, Australia
- Department of Immunology, Monash University, Melbourne, 3800, Australia
| | - Geoffrey A Pietersz
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, 3010, Australia
- Burnet Institute, Melbourne, 3004, Australia
- Department of Immunology, Monash University, Melbourne, 3800, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, 3021, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, 3004, Australia
- Department of Medicine, Monash University, Melbourne, 3800, Australia
- Department of Immunology, Monash University, Melbourne, 3800, Australia
| |
Collapse
|
36
|
Ziegler M, Xu X, Yap ML, Hu H, Zhang J, Peter K. A Self-Assembled Fluorescent Nanoprobe for Imaging and Therapy of Cardiac Ischemia/Reperfusion Injury. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory; Baker Heart and Diabetes Institute; Melbourne VIC 3004 Australia
| | - Xiaoqiu Xu
- Department of Pharmaceutics; College of Pharmacy; Third Military Medical University; 400038 Chongqing China
| | - May Lin Yap
- Atherothrombosis and Vascular Biology Laboratory; Baker Heart and Diabetes Institute; Melbourne VIC 3004 Australia
| | - Houyuan Hu
- Department of Cardiology; Third Military Medical University; 400038 Chongqing China
| | - Jianxiang Zhang
- Department of Pharmaceutics; College of Pharmacy; Third Military Medical University; 400038 Chongqing China
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory; Baker Heart and Diabetes Institute; Melbourne VIC 3004 Australia
| |
Collapse
|
37
|
Hanjaya-Putra D, Haller C, Wang X, Dai E, Lim B, Liu L, Jaminet P, Yao J, Searle A, Bonnard T, Hagemeyer CE, Peter K, Chaikof EL. Platelet-targeted dual pathway antithrombotic inhibits thrombosis with preserved hemostasis. JCI Insight 2018; 3:99329. [PMID: 30089712 PMCID: PMC6129120 DOI: 10.1172/jci.insight.99329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Despite advances in antithrombotic therapy, the risk of recurrent coronary/cerebrovascular ischemia or venous thromboembolism remains high. Dual pathway antithrombotic blockade, using both antiplatelet and anticoagulant therapy, offers the promise of improved thrombotic protection; however, widespread adoption remains tempered by substantial risk of major bleeding. Here, we report a dual pathway therapeutic capable of site-specific targeting to activated platelets and therapeutic enrichment at the site of thrombus growth to allow reduced dosing without compromised antithrombotic efficacy. We engineered a recombinant fusion protein, SCE5-TAP, which consists of a single-chain antibody (SCE5) that targets and blocks the activated GPIIb/IIIa complex, and tick anticoagulant peptide (TAP), a potent direct inhibitor of activated factor X (FXa). SCE5-TAP demonstrated selective platelet targeting and inhibition of thrombosis in murine models of both carotid artery and inferior vena cava thrombosis, without a significant impact on hemostasis. Selective targeting to activated platelets provides an attractive strategy to achieve high antithrombotic efficacy with reduced risk of bleeding complications.
Collapse
Affiliation(s)
- Donny Hanjaya-Putra
- Department of Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Carolyn Haller
- Department of Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Xiaowei Wang
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 8008, Australia
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Bock Lim
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 8008, Australia
| | - Liying Liu
- Department of Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | | | - Joy Yao
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 8008, Australia
| | - Amy Searle
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 8008, Australia
| | - Thomas Bonnard
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 8008, Australia
| | | | - Karlheinz Peter
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 8008, Australia
| | - Elliot L. Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Knowles RB, Warner TD. Anti-platelet drugs and their necessary interaction with endothelial mediators and platelet cyclic nucleotides for therapeutic efficacy. Pharmacol Ther 2018; 193:83-90. [PMID: 30081048 PMCID: PMC6325790 DOI: 10.1016/j.pharmthera.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For many millions of patients at secondary risk of coronary thrombosis pharmaceutical protection is supplied by dual anti-platelet therapy. Despite substantial therapeutic developments over the last decade recurrent thrombotic events occur, highlighting the need for further optimisation of therapies. Importantly, but often ignored, anti-platelet drugs interact with cyclic nucleotide systems in platelets and these are the same systems that mediate key endogenous pathways of platelet regulation, notably those dependent upon the vascular endothelium. The aim of this review is to highlight interactions between the anti-platelet drugs, aspirin and P2Y12 receptor antagonists and endogenous pathways of platelet regulation at the level of cyclic nucleotides. These considerations are key to concepts such as anti-platelet drug resistance and individualized anti-platelet therapy which cannot be understood by study of platelets in isolation from the circulatory environment. We also explore novel and emerging therapies that focus on preserving haemostasis and how the concepts outlined in this review could be exploited therapeutically to improve anti-thrombotic efficacy whilst reducing bleeding risk.
Collapse
Affiliation(s)
- Rebecca B Knowles
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
39
|
Wang X, Searle AK, Hohmann JD, Liu AL, Abraham MK, Palasubramaniam J, Lim B, Yao Y, Wallert M, Yu E, Chen YC, Peter K. Dual-Targeted Theranostic Delivery of miRs Arrests Abdominal Aortic Aneurysm Development. Mol Ther 2018. [PMID: 29525742 PMCID: PMC6080135 DOI: 10.1016/j.ymthe.2018.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is an often deadly disease without medical, non-invasive treatment options. The upregulation of vascular cell adhesion molecule-1 (VCAM-1) on aortic endothelium provides an early target epitope for a novel biotechnological theranostic approach. MicroRNA-126 was used as a therapeutic agent, based on its capability to downregulate VCAM-1 expression in endothelial cells and thereby reduces leukocyte adhesion and exerts anti-inflammatory effects. Ultrasound microbubbles were chosen as carriers, allowing both molecular imaging as well as targeted therapy of AAA. Microbubbles were coupled with a VCAM-1-targeted single-chain antibody (scFvmVCAM-1) and a microRNA-126 mimic (M126) constituting theranostic microbubbles (TargMB-M126). TargMB-M126 downregulates VCAM-1 expression in vitro and in an in vivo acute inflammatory murine model. Most importantly, using TargMB-M126 and ultrasound-guided burst delivery of M126, the development of AAA in an angiotensin-II-induced mouse model can be prevented. Overall, we describe a unique biotechnological theranostic approach with the potential for early diagnosis and long-sought-after medical therapy of AAA.
Collapse
Affiliation(s)
- Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC, Australia.
| | - Amy Kate Searle
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Jan David Hohmann
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Ao Leo Liu
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Meike-Kristin Abraham
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Jathushan Palasubramaniam
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Bock Lim
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Yu Yao
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Maria Wallert
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Eefang Yu
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Yung-Chih Chen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Abstract
Antiplatelet drugs, such as aspirin, P2Y12 antagonists, and glycoprotein (GP) IIb/IIIa inhibitors, have proved to be successful in reducing the morbidity and mortality associated with arterial thrombosis. These agents are, therefore, the cornerstone of therapy for patients with acute coronary syndromes. However, these drugs all carry an inherent risk of bleeding, which is associated with adverse cardiovascular outcomes and mortality. Thus, the potential benefits of more potent, conventional antiplatelet drugs are likely be offset by the increased risk of bleeding. Data from experiments in vivo have highlighted potentially important differences between haemostasis and thrombosis, raising the prospect of developing new antiplatelet drugs that are not associated with bleeding. Indeed, in preclinical studies, several novel antiplatelet therapies that seem to inhibit thrombosis while maintaining haemostasis have been identified. These agents include inhibitors of phosphatidylinositol 3-kinase-β (PI3Kβ), protein disulfide-isomerase, activated GPIIb/IIIa, GPIIb/IIIa outside-in signalling, protease-activated receptors, and platelet GPVI-mediated adhesion pathways. In this Review, we discuss how a therapeutic ceiling has been reached with existing antiplatelet drugs, whereby increased potency is offset by elevated bleeding risk. The latest advances in our understanding of thrombus formation have informed the development of new antiplatelet drugs that are potentially safer than currently available therapies.
Collapse
|
41
|
Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117:1249-1257. [DOI: 10.1160/th16-12-0911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
SummaryAnti-platelet drugs reduce arterial thrombosis after plaque rupture and erosion, prevent stent thrombosis and are used to prevent and treat myocardial infarction and ischaemic stroke. Some of them may also be helpful in treating less frequent diseases such as thrombotic thrombocytopenic purpura. The present concise review aims to cover current and future developments of anti-platelet drugs interfering with the interaction of von Willebrand factor (VWF) with glycoprotein (GP) Ibα, and directed against GPVI, GPIIb/IIIa (integrin αIIbβ3), the thrombin receptor PAR-1, and the ADP receptor P2Y12. The high expectations of having novel antiplatelet drugs which selectively inhibit arterial thrombosis without interfering with normal haemostasis could possibly be met in the near future.
Collapse
|
42
|
Huo D, Liu G, Li Y, Wang Y, Guan G, Yang M, Wei K, Yang J, Zeng L, Li G, Zeng W, Zhu C. Construction of Antithrombotic Tissue-Engineered Blood Vessel via Reduced Graphene Oxide Based Dual-Enzyme Biomimetic Cascade. ACS NANO 2017; 11:10964-10973. [PMID: 29035553 DOI: 10.1021/acsnano.7b04836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thrombosis is one of the biggest obstacles in the clinical application of small-diameter tissue-engineered blood vessels (TEBVs). The implantation of an unmodified TEBV will lead to platelet aggregation and further activation of the coagulation cascade, in which the high concentration of adenosine diphosphate (ADP) that is released by platelets plays an important role. Inspired by the phenomenon that endothelial cells continuously generate endogenous antiplatelet substances via enzymatic reactions, we designed a reduced graphene oxide (RGO) based dual-enzyme biomimetic cascade to successively convert ADP into adenosine monophosphate (AMP) and AMP into adenosine. We used RGO as a support and bound apyrase and 5'-nucleotidase (5'-NT) on the surface of RGO through covalent bonds, and then, we modified the surface of the collagen-coated decellularized vascular matrix with the RGO-enzyme complexes, in which RGO functions as a platform with a large open surface area and minimal diffusion barriers for substrates/products to integrate two catalytic systems for cascading reactions. The experimental results demonstrate that the two enzymes can synergistically catalyze procoagulant ADP into anticoagulant AMP and adenosine successively under physiological conditions, thus reducing the concentration of ADP. AMP and adenosine can weaken or even reverse the platelet aggregation induced by ADP, thereby inhibiting thrombosis. Adenosine can also accelerate the endothelialization of TEBVs by regulating cellular energy metabolism and optimizing the microenvironment, thus ensuring the antithrombotic function and patency of TEBVs even after the RGO-enzyme complex loses its activity.
Collapse
Affiliation(s)
- Da Huo
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Ge Liu
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Yanzhao Li
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Yuxin Wang
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Ge Guan
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Mingcan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Keyu Wei
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Jingyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Lingqin Zeng
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Gang Li
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Wen Zeng
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| | - Chuhong Zhu
- Department of Anatomy, State Key Laboratory of Trauma, Burns, and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University , Chongqing 400038, China
| |
Collapse
|
43
|
Yap ML, Wang X, Pietersz GA, Peter K. Mesoscale Nanoparticles: An Unexpected Means for Selective Therapeutic Targeting of Kidney Diseases! Hypertension 2017; 71:61-63. [PMID: 29133359 DOI: 10.1161/hypertensionaha.117.09944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- May Lin Yap
- From the Department of Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (M.L.Y., X.W., G.A.P., K.P.); Department of Pathology, The University of Melbourne, VIC, Australia (M.L.Y., G.A.P.); Department of Medicine (X.W., K.P.) and Department of Immunology (G.A.P., K.P.), Monash University, Melbourne, VIC, Australia; and Department of Bio-organics and Medicinal Chemistry, Burnet Institute, Melbourne, VIC, Australia (G.A.P.)
| | - Xiaowei Wang
- From the Department of Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (M.L.Y., X.W., G.A.P., K.P.); Department of Pathology, The University of Melbourne, VIC, Australia (M.L.Y., G.A.P.); Department of Medicine (X.W., K.P.) and Department of Immunology (G.A.P., K.P.), Monash University, Melbourne, VIC, Australia; and Department of Bio-organics and Medicinal Chemistry, Burnet Institute, Melbourne, VIC, Australia (G.A.P.)
| | - Geoffrey A Pietersz
- From the Department of Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (M.L.Y., X.W., G.A.P., K.P.); Department of Pathology, The University of Melbourne, VIC, Australia (M.L.Y., G.A.P.); Department of Medicine (X.W., K.P.) and Department of Immunology (G.A.P., K.P.), Monash University, Melbourne, VIC, Australia; and Department of Bio-organics and Medicinal Chemistry, Burnet Institute, Melbourne, VIC, Australia (G.A.P.)
| | - Karlheinz Peter
- From the Department of Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (M.L.Y., X.W., G.A.P., K.P.); Department of Pathology, The University of Melbourne, VIC, Australia (M.L.Y., G.A.P.); Department of Medicine (X.W., K.P.) and Department of Immunology (G.A.P., K.P.), Monash University, Melbourne, VIC, Australia; and Department of Bio-organics and Medicinal Chemistry, Burnet Institute, Melbourne, VIC, Australia (G.A.P.).
| |
Collapse
|
44
|
Samudra AN, Dwyer KM, Selan C, Freddi S, Murray-Segal L, Nikpour M, Hickey MJ, Peter K, Robson SC, Sashindranath M, Cowan PJ, Nandurkar HH. CD39 and CD73 activity are protective in a mouse model of antiphospholipid antibody-induced miscarriages. J Autoimmun 2017; 88:131-138. [PMID: 29103803 DOI: 10.1016/j.jaut.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Antiphospholipid syndrome (APS) is a systemic autoimmune disorder of young adults associated with devastating pregnancy complications (recurrent miscarriages, preeclampsia and low birth weight) and vascular complications including thrombosis. The key components implicated in pathogenesis of APS are the complement cascade and tissue factor (TF) activity causing inflammation and coagulation. Purinergic signalling involving catabolism of ATP to adenosine by cell-surface enzymes CD39 and CD73 has anti-inflammatory and anti-thrombotic effects. We studied whether activities of CD39 and CD73 are important in preventing the development of miscarriages in APS. METHODS We studied frequency of miscarriages and decidual pathology following passive transfer of human aPL-ab to pregnant wildtype mice, and mice deficient in CD39 and CD73, and also transgenic mice exhibiting 2-3X higher CD39 activity. RESULTS aPL-ab infusion in pregnant CD39-or CD73-knockout mice triggers an increase in miscarriages, associated with increased TF expression and complement deposition as well as elevated oxidative stress and pro-inflammatory TNF-α and IL-10 expression within the placental decidua. In contrast, aPL-ab induced miscarriages are prevented in mice over-expressing CD39, with reduced decidual TF expression and C3d deposition, diminished lipid peroxidation (4-hydroxynonenal or 4-HNE positive lipid adducts), and reduced TNF-α expression. CONCLUSION We demonstrate a protective role for CD39 in APS and provide rationale for both the development of endothelial cell-targeted soluble CD39 as a novel therapeutic for APS and analysis of perturbations in the purinergic pathway to explain human disease.
Collapse
Affiliation(s)
- Anushka N Samudra
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia; Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Karen M Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia; Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Susanna Freddi
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
| | | | | | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Central Clinical School, Monash University, Melbourne, Australia
| | - Simon C Robson
- Harvard Medical School, Department of Medicine, Division of Gastroenterology, Boston, USA
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia.
| |
Collapse
|
45
|
Degen H, Borst O, Ziegler M, Mojica Munoz AK, Jamasbi J, Walker B, Göbel S, Fassbender J, Adler K, Brandl R, Münch G, Lorenz R, Siess W, Gawaz M, Ungerer M. ADPase CD39 Fused to Glycoprotein VI-Fc Boosts Local Antithrombotic Effects at Vascular Lesions. J Am Heart Assoc 2017; 6:JAHA.117.005991. [PMID: 28751543 PMCID: PMC5586441 DOI: 10.1161/jaha.117.005991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND GPVI (Glycoprotein VI) is the essential platelet collagen receptor in atherothrombosis. Dimeric GPVI-Fc (Revacept) binds to GPVI binding sites on plaque collagen. As expected, it did not increase bleeding in clinical studies. GPVI-Fc is a potent inhibitor of atherosclerotic plaque-induced platelet aggregation at high shear flow, but its inhibition at low shear flow is limited. We sought to increase the platelet inhibitory potential by fusing GPVI-Fc to the ectonucleotidase CD39 (fusion protein GPVI-CD39), which inhibits local ADP accumulation at vascular plaques, and thus to create a lesion-directed dual antiplatelet therapy that is expected to lack systemic bleeding risks. METHODS AND RESULTS GPVI-CD39 effectively stimulated local ADP degradation and, compared with GPVI-Fc alone, led to significantly increased inhibition of ADP-, collagen-, and human plaque-induced platelet aggregation in Multiplate aggregometry and plaque-induced platelet thrombus formation under arterial flow conditions. GPVI-CD39 did not increase bleeding time in an in vitro assay simulating primary hemostasis. In a mouse model of ferric chloride-induced arterial thrombosis, GPVI-CD39 effectively delayed vascular thrombosis but did not increase tail bleeding time in vivo. CONCLUSIONS GPVI-CD39 is a novel approach to increase local antithrombotic activity at sites of atherosclerotic plaque rupture or injury. It enhances GPVI-Fc-mediated platelet inhibition and presents a potentially effective and safe molecule for the treatment of acute atherothrombotic events, with a favorable risk-benefit ratio.
Collapse
Affiliation(s)
| | - Oliver Borst
- Medical Clinic III, University of Tübingen, Germany
| | | | | | - Janina Jamasbi
- IPEK - Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany
| | | | | | | | | | - Richard Brandl
- St. Mary's Square Institute for Vascular Surgery and Phlebology, Munich, Germany
| | - Götz Münch
- advanceCOR - Procorde, Martinsried, Germany
| | - Reinhard Lorenz
- IPEK - Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany
| | - Wolfgang Siess
- IPEK - Institute for Prevention of Cardiovascular Diseases, University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany
| | | | | |
Collapse
|
46
|
Ta HT, Li Z, Hagemeyer CE, Cowin G, Zhang S, Palasubramaniam J, Alt K, Wang X, Peter K, Whittaker AK. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 2017; 134:31-42. [DOI: 10.1016/j.biomaterials.2017.04.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
|
47
|
Yap ML, McFadyen JD, Wang X, Zia NA, Hohmann JD, Ziegler M, Yao Y, Pham A, Harris M, Donnelly PS, Hogarth PM, Pietersz GA, Lim B, Peter K. Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging. Am J Cancer Res 2017; 7:2565-2574. [PMID: 28819447 PMCID: PMC5558553 DOI: 10.7150/thno.19900] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022] Open
Abstract
Rationale The early detection of primary tumours and metastatic disease is vital for successful therapy and is contingent upon highly specific molecular markers and sensitive, non-invasive imaging techniques. We hypothesized that the accumulation of activated platelets within tumours is a general phenomenon and thus represents a novel means for the molecular imaging of cancer. Here we investigate a unique single chain antibody (scFv), which specifically targets activated platelets, as a novel biotechnological tool for molecular imaging of cancer. Methods The scFvGPIIb/IIIa, which binds specifically to the activated form of the platelet integrin receptor GPIIb/IIIa present on activated platelets, was conjugated to either Cy7, 64Cu or ultrasound-enhancing microbubbles. Using the Cy7 labelled scFvGPIIb/IIIa, fluorescence imaging was performed in mice bearing four different human tumour xenograft models; SKBr3, MDA-MB-231, Ramos and HT-1080 cells. Molecular imaging via PET and ultrasound was performed using the scFvGPIIb/IIIa-64Cu and scFvGPIIb/IIIa-microbubbles, respectively, to further confirm specific targeting of scFvGPIIb/IIIa to activated platelets in the tumour stroma. Results Using scFvGPIIb/IIIa we successfully showed specific targeting of activated platelets within the microenvironment of human tumour xenografts models via three different molecular imaging modalities. The presence of platelets within the tumour microenvironment, and as such their relevance as a molecular target epitope in cancer was further confirmed via immunofluorescence of human tumour sections of various cancer types, thus validating the translational importance of our novel approach to human disease. Conclusion Our study provides proof of concept for imaging and localization of tumours by molecular targeting activated platelets. We illustrate the utility of a unique scFv as a versatile biotechnological tool which can be conjugated to various contrast agents for molecular imaging of cancer using three different imaging modalities. These findings warrant further development of this activated platelet specific scFvGPIIb/IIIa, potentially as a universal marker for cancer diagnosis and ultimately for drug delivery in an innovative theranostic approach.
Collapse
|
48
|
Molloy CP, Yao Y, Kammoun H, Bonnard T, Hoefer T, Alt K, Tovar-Lopez F, Rosengarten G, Ramsland PA, van der Meer AD, van den Berg A, Murphy AJ, Hagemeyer CE, Peter K, Westein E. Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation. J Thromb Haemost 2017; 15:972-982. [PMID: 28267256 DOI: 10.1111/jth.13666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/29/2022]
Abstract
Essentials Vessel stenosis due to large thrombus formation increases local shear 1-2 orders of magnitude. High shear at stenotic sites was exploited to trigger eptifibatide release from nanocapsules. Local delivery of eptifibatide prevented vessel occlusion without increased tail bleeding times. Local nanocapsule delivery of eptifibatide may be safer than systemic antiplatelet therapies. SUMMARY Background Myocardial infarction and stroke remain the leading causes of mortality and morbidity. The major limitation of current antiplatelet therapy is that the effective concentrations are limited because of bleeding complications. Targeted delivery of antiplatelet drug to sites of thrombosis would overcome these limitations. Objectives Here, we have exploited a key biomechanical feature specific to thrombosis, i.e. significantly increased blood shear stress resulting from a reduction in the lumen of the vessel, to achieve site-directed delivery of the clinically used antiplatelet agent eptifibatide by using shear-sensitive phosphatidylcholine (PC)-based nanocapsules. Methods PC-based nanocapsules (2.8 × 1012 ) with high-dose encapsulated eptifibatide were introduced into microfluidic blood perfusion assays and into in vivo models of thrombosis and tail bleeding. Results Shear-triggered nanocapsule delivery of eptifibatide inhibited in vitro thrombus formation selectively under stenotic and high shear flow conditions above a shear rate of 1000 s-1 while leaving thrombus formation under physiologic shear rates unaffected. Thrombosis was effectively prevented in in vivo models of vessel wall damage. Importantly, mice infused with shear-sensitive antiplatelet nanocapsules did not show prolonged bleeding times. Conclusions Targeted delivery of eptifibatide by shear-sensitive nanocapsules offers site-specific antiplatelet potential, and may form a basis for developing more potent and safer antiplatelet drugs.
Collapse
Affiliation(s)
- C P Molloy
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Y Yao
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - H Kammoun
- Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - T Bonnard
- Nano Biotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - T Hoefer
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - K Alt
- Nano Biotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - F Tovar-Lopez
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - G Rosengarten
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - P A Ramsland
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
- Department of Surgery at Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - A D van der Meer
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - A van den Berg
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - C E Hagemeyer
- Nano Biotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - K Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - E Westein
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Abraham MK, Peter K, Michel T, Wendel HP, Krajewski S, Wang X. Nanoliposomes for Safe and Efficient Therapeutic mRNA Delivery: A Step Toward Nanotheranostics in Inflammatory and Cardiovascular Diseases as well as Cancer. Nanotheranostics 2017; 1:154-165. [PMID: 29071184 PMCID: PMC5646717 DOI: 10.7150/ntno.19449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Rationale: Genetic therapy using modified mRNA for specific therapeutic protein expression for disease treatment and vaccination represents a new field of therapeutic and diagnostic medicine. Non-viral vectors transfection using biocompatible nanoliposomes enables safe and efficient delivery of therapeutic mRNA. Objective: Generation of non-toxic, cell-compatible cationic nanoliposomes as nanotheranostic agents to successfully deliver therapeutic mRNA. Methods and results: Cationic nanoliposomes (DC-Cholesterol/DOPE) were generated as transfection vehicles for either eGFP mRNA or the therapeutic anti-inflammatory, CD39 mRNA. We observed no toxicity using these nanoplexes and noted high cell viability after transfection. Nanoplexes for the transfection of eGFP mRNA showed an increase in fluorescence signals on microscopy as compared to the mRNA control after 24 hours in Chinese hamster ovary (CHO) cells (14.29 ± 5.30 vs. 1.49 ± 0.54; mean ± SD respectively; p<0.001) and flow cytometry (57.29 ± 14.59 vs 1.83 ± 0.34; % mean ± SD; p<0.001). Nanoplexes for the transfection of CD39 mRNA showed increased CD39 expression in flow cytometry (45.64 ± 15.3 vs. 3.94 ± 0.45; % mean ± SD; p<0.001) as compared to the mRNA control after 24 hours using CHO cells. We also demonstrated efficient transfection across several cell lines (CHO, HEK293, and A549), as well as long-term protein expression (120 h and 168 h) using these nanoplexes. Conclusions: We have developed and tested non-toxic, safe, and efficient nanoliposome preparations for the delivery of therapeutic mRNA that hold promise for novel therapies in diseases such as inflammatory and cardiovascular diseases, as well as cancer. We have also demonstrated that this approach provides a reliable technology to deliver CD39 mRNA as an anti-inflammatory therapeutic for future nanotheranostics approaches.
Collapse
Affiliation(s)
- Meike-Kristin Abraham
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany.,Atherothrombosis and Vascular Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tatjana Michel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany
| | - Stefanie Krajewski
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tübingen, Germany
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Development of a novel strategy to target CD39 antithrombotic activity to the endothelial-platelet microenvironment in kidney ischemia-reperfusion injury. Purinergic Signal 2017; 13:259-265. [PMID: 28343356 DOI: 10.1007/s11302-017-9558-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
Kidney ischemia-reperfusion injury (IRI) is common during transplantation. IRI is characterised by inflammation and thrombosis and associated with acute and chronic graft dysfunction. P-selectin and its ligand PSGL-1 are cell adhesion molecules that control leukocyte-endothelial and leukocyte-platelet interactions under inflammatory conditions. CD39 is the dominant vascular nucleotidase that facilitates adenosine generation via extracellular ATP/ADP-phosphohydrolysis. Adenosine signalling is protective in renal IRI, but CD39 catalytic activity is lost with exposure to oxidant stress. We designed a P-selectin targeted CD39 molecule (rsol.CD39-PSGL-1) consisting of recombinant soluble CD39 that incorporates 20 residues of PSGL-1 that bind P-selectin. We hypothesised that rsol.CD39-PSGL-1 would maintain endothelial integrity by focusing the ectonucleotidase platelet-inhibitory activity and reducing leukocyte adhesion at the injury site. The rsol.CD39-PSGL-1 displayed ADPase activity and inhibited platelet aggregation ex vivo, as well as bound with high specificity to soluble P-selectin and platelet surface P-selectin. Importantly, mice injected with rsol.CD39-PSGL-1 and subjected to renal IRI showed significantly less kidney damage both biochemically and histologically, compared to those injected with solCD39. Furthermore, the equivalent dose of rsol.CD39-PSGL-1 had no effect on tail template bleeding times. Hence, targeting recombinant CD39 to the injured vessel wall via PSGL-1 binding resulted in substantial preservation of renal function and morphology after IRI without toxicity. These studies indicate potential translational importance to clinical transplantation and nephrology.
Collapse
|