1
|
Todor SB, Ichim C, Boicean A, Mihaila RG. Cardiovascular Risk in Philadelphia-Negative Myeloproliferative Neoplasms: Mechanisms and Implications-A Narrative Review. Curr Issues Mol Biol 2024; 46:8407-8423. [PMID: 39194713 DOI: 10.3390/cimb46080496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs), encompassing disorders like polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are characterized by clonal hematopoiesis without the Philadelphia chromosome. The JAK2 V617F mutation is prevalent in PV, ET, and PMF, while mutations in MPL and CALR also play significant roles. These conditions predispose patients to thrombotic events, with PMF exhibiting the lowest survival among MPNs. Chronic inflammation, driven by cytokine release from aberrant leukocytes and platelets, amplifies cardiovascular risk through various mechanisms, including atherosclerosis and vascular remodeling. Additionally, MPN-related complications like pulmonary hypertension and cardiac fibrosis contribute to cardiovascular morbidity and mortality. This review consolidates recent research on MPNs' cardiovascular implications, emphasizing thrombotic risk, chronic inflammation, and vascular stiffness. Understanding these associations is crucial for developing targeted therapies and improving outcomes in MPN patients.
Collapse
Affiliation(s)
- Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | | |
Collapse
|
2
|
Guijarro-Hernández A, Vizmanos JL. Transcriptomic comparison of bone marrow CD34 + cells and peripheral blood neutrophils from ET patients with JAK2 or CALR mutations. BMC Genom Data 2023; 24:40. [PMID: 37550636 PMCID: PMC10408115 DOI: 10.1186/s12863-023-01142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Essential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest. For this reason, in this study, we have compared the transcriptomic profile of undifferentiated CD34 + cells and mature myeloid cells from ET patients (CALR and JAK2-mutated) and healthy donors deposited in publicly available databases. The study of the similarities and differences between these samples might help to better understand the molecular mechanisms behind the disease according to the degree of maturation of the malignant clone and the type of mutation and ultimately help identify new therapeutic targets for these patients. RESULTS The results show that most of the altered hallmarks in neutrophils were also found in CD34 + cells. However, only a few genes showed a similar aberrant expression pattern in both types of cells. We have identified a signature of six genes common to patients with CALR and JAK2 mutations (BPI, CRISP3, LTF, MMP8, and PTGS1 upregulated, and PBXIP1 downregulated), a different signature of seven genes for patients with CALR mutations (BMP6, CEACAM8, ITK, LCN2, and PRG2 upregulated, and MAN1A1 and MME downregulated) and a signature of 13 genes for patients with JAK2 mutations (ARG1, CAST, CD177, CLEC5A, DAPP1, EPS15, IL18RAP, OLFM4, OLR1, RIOK3, SELP, and THBS1 upregulated, and IGHM downregulated). CONCLUSIONS Our results highlight transcriptomic similarities and differences in ET patients according to the degree of maturation of the malignant clone and the type of mutation. The genes and processes altered in both CD34 + cells and mature neutrophils may reveal altered sustained processes that could be studied as future therapeutic targets for ET patients.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Moliterno AR, Kaizer H, Reeves BN. JAK2 V617F allele burden in polycythemia vera: burden of proof. Blood 2023; 141:1934-1942. [PMID: 36745865 PMCID: PMC10163319 DOI: 10.1182/blood.2022017697] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Polycythemia vera (PV) is a hematopoietic stem cell neoplasm defined by activating somatic mutations in the JAK2 gene and characterized clinically by overproduction of red blood cells, platelets, and neutrophils; a significant burden of disease-specific symptoms; high rates of vascular events; and evolution to a myelofibrosis phase or acute leukemia. The JAK2V617F variant allele frequency (VAF) is a key determinant of outcomes in PV, including thrombosis and myelofibrotic progression. Here, we critically review the dynamic role of JAK2V617F mutation burden in the pathogenesis and natural history of PV, the suitability of JAK2V617F VAF as a diagnostic and prognostic biomarker, and the utility of JAK2V617F VAF reduction in PV treatment.
Collapse
Affiliation(s)
- Alison R. Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hannah Kaizer
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brandi N. Reeves
- Division of Hematology, Department of Medicine, Blood Research Center, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
4
|
Jin N, Xia Y, Gao Q. Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review). Int J Oncol 2023; 62:28. [PMID: 36601757 PMCID: PMC9851129 DOI: 10.3892/ijo.2023.5476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP‑ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.
Collapse
Affiliation(s)
- Ning Jin
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Xia
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qinglei Gao
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
5
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022; 23:ijms23063206. [PMID: 35328626 PMCID: PMC8954909 DOI: 10.3390/ijms23063206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K. Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15338; Fax: +49-391-67-15852
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Marković D, Maslovarić I, Djikić D, Čokić VP. Neutrophil Death in Myeloproliferative Neoplasms: Shedding More Light on Neutrophils as a Pathogenic Link to Chronic Inflammation. Int J Mol Sci 2022; 23:1490. [PMID: 35163413 PMCID: PMC8836089 DOI: 10.3390/ijms23031490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are an essential component of the innate immune response, but their prolonged activation can lead to chronic inflammation. Consequently, neutrophil homeostasis is tightly regulated through balance between granulopoiesis and clearance of dying cells. The bone marrow is both a site of neutrophil production and the place they return to and die. Myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by the mutations in three types of molecular markers, with emphasis on Janus kinase 2 gene mutation (JAK2V617F). The MPN bone marrow stem cell niche is a site of chronic inflammation, with commonly increased cells of myeloid lineage, including neutrophils. The MPN neutrophils are characterized by the upregulation of JAK target genes. Additionally, MPN neutrophils display malignant nature, they are in a state of activation, and with deregulated apoptotic machinery. In other words, neutrophils deserve to be placed in the midst of major events in MPN. Our crucial interest in this review is better understanding of how neutrophils die in MPN mirrored by defects in apoptosis and to what possible extent they can contribute to MPN pathophysiology. We tend to expect that reduced neutrophil apoptosis will establish a pathogenic link to chronic inflammation in MPN.
Collapse
Affiliation(s)
- Dragana Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Irina Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Dragoslava Djikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| | - Vladan P. Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| |
Collapse
|
7
|
Kiem D, Wagner S, Magnes T, Egle A, Greil R, Melchardt T. The Role of Neutrophilic Granulocytes in Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22179555. [PMID: 34502471 PMCID: PMC8431305 DOI: 10.3390/ijms22179555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Philadelphia chromosome negative myeloproliferative neoplasms (MPN) are composed of polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The clinical picture is determined by constitutional symptoms and complications, including arterial and venous thromboembolic or hemorrhagic events. MPNs are characterized by mutations in JAK2, MPL, or CALR, with additional mutations leading to an expansion of myeloid cell lineages and, in PMF, to marrow fibrosis and cytopenias. Chronic inflammation impacting the initiation and expansion of disease in a major way has been described. Neutrophilic granulocytes play a major role in the pathogenesis of thromboembolic events via the secretion of inflammatory markers, as well as via interaction with thrombocytes and the endothelium. In this review, we discuss the molecular biology underlying myeloproliferative neoplasms and point out the central role of leukocytosis and, specifically, neutrophilic granulocytes in this group of disorders.
Collapse
Affiliation(s)
- Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Sandro Wagner
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Teresa Magnes
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alexander Egle
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Thomas Melchardt
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-57255-25801
| |
Collapse
|
8
|
Tillmann S, Olschok K, Schröder SK, Bütow M, Baumeister J, Kalmer M, Preußger V, Weinbergerova B, Kricheldorf K, Mayer J, Kubesova B, Racil Z, Wessiepe M, Eschweiler J, Isfort S, Brümmendorf TH, Becker W, Schemionek M, Weiskirchen R, Koschmieder S, Chatain N. The Unfolded Protein Response Is a Major Driver of LCN2 Expression in BCR-ABL- and JAK2V617F-Positive MPN. Cancers (Basel) 2021; 13:cancers13164210. [PMID: 34439364 PMCID: PMC8391615 DOI: 10.3390/cancers13164210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Lipocalin 2 (LCN2), a proinflammatory mediator, is involved in the pathogenesis of myeloproliferative neoplasms (MPN). Here, we investigated the molecular mechanisms of LCN2 overexpression in MPN. LCN2 mRNA expression was 20-fold upregulated in peripheral blood (PB) mononuclear cells of chronic myeloid leukemia (CML) and myelofibrosis (MF) patients vs. healthy controls. In addition, LCN2 serum levels were significantly increased in polycythemia vera (PV) and MF and positively correlated with JAK2V617F and mutated CALR allele burden and neutrophil counts. Mechanistically, we identified endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) as a main driver of LCN2 expression in BCR-ABL- and JAK2V617F-positive 32D cells. The UPR inducer thapsigargin increased LCN2 expression >100-fold, and this was not affected by kinase inhibition of BCR-ABL or JAK2V617F. Interestingly, inhibition of the UPR regulators inositol-requiring enzyme 1 (IRE1) and c-Jun N-terminal kinase (JNK) significantly reduced thapsigargin-induced LCN2 RNA and protein expression, and luciferase promoter assays identified nuclear factor kappa B (NF-κB) and CCAAT binding protein (C/EBP) as critical regulators of mLCN2 transcription. In conclusion, the IRE1-JNK-NF-κB-C/EBP axis is a major driver of LCN2 expression in MPN, and targeting UPR and LCN2 may represent a promising novel therapeutic approach in MPN.
Collapse
Affiliation(s)
- Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Sarah K. Schröder
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Marlena Bütow
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Vera Preußger
- Institute of Pharmacology and Toxicology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (V.P.); (W.B.)
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
| | - Kim Kricheldorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
| | - Blanka Kubesova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
| | - Zdenek Racil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
- Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic
| | - Martina Wessiepe
- Institute of Transfusion Medicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Jörg Eschweiler
- Department of Orthopedic Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (V.P.); (W.B.)
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Ralf Weiskirchen
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
- Correspondence: ; Tel.: +49-241-8037798
| |
Collapse
|
9
|
Abstract
Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
10
|
Guijarro-Hernández A, Vizmanos JL. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13050984. [PMID: 33652860 PMCID: PMC7956519 DOI: 10.3390/cancers13050984] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing evidence that Ph-negative myeloproliferative neoplasms are disorders in which multiple signaling pathways are significantly disturbed. The heterogeneous phenotypes observed among patients have highlighted the importance of having a comprehensive knowledge of the molecular mechanisms behind these diseases. This review aims to show a broad overview of the signaling involved in myeloproliferative neoplasms (MPNs) and other processes that can modify them, which could be helpful to better understand these diseases and develop more effective targeted treatments. Abstract Ph-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
11
|
Ramanathan G, Fleischman AG. The Microenvironment in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2020; 35:205-216. [PMID: 33641864 DOI: 10.1016/j.hoc.2020.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic inflammation is a hallmark of myeloproliferative neoplasms (MPNs), with elevated levels of proinflammatory cytokines being commonly found in all 3 subtypes. Systemic inflammation is responsible for the constitutional symptoms, thrombosis risk, premature atherosclerosis, and disease evolution in MPN. Although the neoplastic clone and their differentiated progeny drive the inflammatory process, they also induce ancillary cytokine secretion from nonmalignant cells. Here, the authors describe the inflammatory milieu in MPN based on soluble factors and cellular mediators. They also discuss the prognostic value of cytokine measurements in patients with MPN and potential therapeutic strategies that target the cellular players in inflammation.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Sprague Hall B100, Irvine, CA 92617, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Sprague Hall B100, Irvine, CA 92617, USA; Department of Biological Chemistry, Irvine Chao Family Comprehensive Cancer Center, University of California, 839 Health Sciences Road, Sprague Hall 126, Irvine, CA 92617, USA.
| |
Collapse
|
12
|
Role of Inflammatory Factors during Disease Pathogenesis and Stem Cell Transplantation in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082250. [PMID: 32806517 PMCID: PMC7463735 DOI: 10.3390/cancers12082250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hematopoiesis is a highly regulated and complex process involving hematopoietic stem cells (HSCs), cell surface adhesion molecules, and cytokines as well as cells of the hematopoietic niche in the bone marrow (BM). Myeloproliferative neoplasms (MPNs) are characterized by clonal expansion of HSCs involving one or more blood cell lineages. Philadelphia-negative MPNs (Ph-neg MPNs) comprise polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). In nearly all patients with Ph-neg MPN, mutations in the genes encoding janus kinase 2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL) can be detected and, together with additional mutations in epigenetic modifier genes, these genetic aberrations contribute to the clonal expansion of the cells. In addition to these intracellular changes in the malignant clone, inflammatory processes involving both the clonal and the non-clonal cells contribute to the signs and symptoms of the patients, as well as to progression of the disease to myelofibrosis (MF) or acute leukemia, and to thrombotic complications. This contribution has been corroborated in preclinical studies including mouse models and patient-derived iPS cells, and in clinical trials, using anti-inflammatory drugs such as JAK inhibitors and steroids, or immunomodulatory drugs such as IMiDs and interferon-alpha (IFNa), all of which change the (im)balance of circulating inflammatory factors (e.g., TNFa, IL-1b, and TGFβ) in MPN. Currently, allogeneic hematopoietic (stem) cell transplantation (allo-HCT) remains the only curative treatment for Ph-neg MPN and is the treatment of choice in intermediate-2 and high-risk MF. HCT can reverse inflammatory changes induced by MPN as well as fibrosis in a large proportion of patients, but it also induces itself profound changes in inflammatory cells and cytokines in the patient, which may help to eradicate the disease but also in part cause significant morbidity (e.g., by graft-versus-host disease). In this review, we focus on the contribution of aberrant inflammation to disease pathogenesis in Ph-neg MPN as well as the current understanding of its alterations after allogeneic HCT.
Collapse
|
13
|
Chapeau EA, Mandon E, Gill J, Romanet V, Ebel N, Powajbo V, Andraos-Rey R, Qian Z, Kininis M, Zumstein-Mecker S, Ito M, Hynes NE, Tiedt R, Hofmann F, Eshkind L, Bockamp E, Kinzel B, Mueller M, Murakami M, Baffert F, Radimerski T. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. PLoS One 2019; 14:e0221635. [PMID: 31600213 PMCID: PMC6786561 DOI: 10.1371/journal.pone.0221635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.
Collapse
Affiliation(s)
- Emilie A. Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| | - Emeline Mandon
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolas Ebel
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Violetta Powajbo
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Rita Andraos-Rey
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zhiyan Qian
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Miltos Kininis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph Tiedt
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Leonid Eshkind
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kinzel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Mueller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
14
|
Cho CH, Yoon J, Kim DS, Kim SJ, Sung HJ, Lee SR. Association of peripheral blood neutrophil gelatinase-associated lipocalin levels with bone marrow neutrophil gelatinase-associated lipocalin levels and neutrophil count in hematologic malignancy. J Clin Lab Anal 2019; 33:e22920. [PMID: 31090234 PMCID: PMC6642308 DOI: 10.1002/jcla.22920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 01/25/2023] Open
Abstract
Background Although neutrophil gelatinase‐associated lipocalin (NGAL) is a biomarker for acute kidney injury, recently, high NGAL levels have been reported in hematologic malignancies. Given the mechanism underlying NGAL synthesis and secretion in neutrophilic series, it is speculated that NGAL levels are higher in bone marrow (BM) than in peripheral blood (PB). Additionally, PB NGAL levels are thought to be associated with neutrophilic parameters. We aimed to test both hypotheses in hematologic malignancies. Methods Paired BM and PB samples were collected from 41 patients undergoing BM examination for hematologic malignancies. NGAL levels were measured using immunoassays. Data on hematologic parameters were collected from medical records. Single and multiple regression analyses were performed to analyze the relationship. Results PB and BM NGAL (n = 41) levels were significantly different (163.0 ± 258.3 and 413.1 ± 616.2 ng/mL [mean ± standard deviation], respectively; P < 0.05). Simple regression analysis and multicollinearity assessment showed that BM NGAL levels, BM neutrophil%, and neutrophil count were significant predictors of PB NGAL. Two multiple regression models were developed (model 1, PB NGAL = 21.467* neutrophil count ‐ 0.785*BM neutrophil%; model 2, PB NGAL = 21.202*neutrophil count‐ 0.915*BM neutrophil% +0.10*BM NGAL). Akaike's information criterion and adjusted R2 values showed that model 1 had higher predictive accuracy for PB NGAL. In both models, neutrophil count was the only significant predictor. Conclusion BM NGAL was significantly higher than PB NGAL in hematologic malignancy. In addition, PB NGAL could be expressed as a multiple regression model including neutrophil count and BM neutrophil%, being significantly influenced by neutrophil count.
Collapse
Affiliation(s)
- Chi-Hyun Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Jung Yoon
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Deok-Su Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Shin-Jong Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Hwa Jung Sung
- Department of Hematology, College of Medicine, Korea University, Seoul, Korea
| | - Se Ryeon Lee
- Department of Hematology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
15
|
Bjørn ME, Brimnes MK, Gudbrandsdottir S, Andersen CL, Poulsen HE, Henriksen T, Hasselbalch HC, Nielsen CH. Ruxolitinib treatment reduces monocytic superoxide radical formation without affecting hydrogen peroxide formation or systemic oxidative nucleoside damage in myelofibrosis. Leuk Lymphoma 2019; 60:2549-2557. [PMID: 30785365 DOI: 10.1080/10428194.2019.1579323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of excess reactive oxygen species (ROS) with consequent DNA/RNA damage is now recognized as a hallmark of cancer. In JAK2V617F mutated myeloproliferative neoplasms, ROS have been suggested to be important factors in disease initiation and progression. Ruxolitinib is the most widely used drug for myelofibrosis, because it improves symptom-score. However, both the anti-clonal potential and improvement in overall survival are limited. We investigated the impact of ruxolitinib on formation of superoxide radical and hydrogen peroxide by monocytes in sequentially acquired blood samples from patients with myelofibrosis. We also investigated the impact on RNA and DNA damage by measuring urinary excretion of 8-oxo-Guo and 8-oxo-d-Guo. The formation of superoxide by monocytes was reduced significantly during ruxolitinib therapy, but no impact on the formation of hydrogen peroxide by monocytes or the systemic amount of oxidatively damaged RNA or DNA could be demonstrated. We conclude that ruxolitinib holds little anti-oxidative potential.
Collapse
Affiliation(s)
- Mads Emil Bjørn
- Department of Hematology, Region Zealand University, Roskilde Hospital , Roskilde , Denmark.,Institute for Inflammation Research (IIR), Center for Rheumatology and Spine Diseases, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Marie Klinge Brimnes
- Institute for Inflammation Research (IIR), Center for Rheumatology and Spine Diseases, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Sif Gudbrandsdottir
- Institute for Inflammation Research (IIR), Center for Rheumatology and Spine Diseases, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark.,Department of Hematology, Herlev Hospital , Herlev , Denmark
| | | | - Henrik Enghusen Poulsen
- Laboratory of Clinical Pharmacology Q7642, University of Copenhagen, Rigshospitalet , Copenhagen , Denmark.,Department of Clinical Pharmacology, Bispebjerg Hospital, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Trine Henriksen
- Laboratory of Clinical Pharmacology Q7642, University of Copenhagen, Rigshospitalet , Copenhagen , Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Region Zealand University, Roskilde Hospital , Roskilde , Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research (IIR), Center for Rheumatology and Spine Diseases, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
16
|
A germline HLTF mutation in familial MDS induces DNA damage accumulation through impaired PCNA polyubiquitination. Leukemia 2019; 33:1773-1782. [PMID: 30696947 DOI: 10.1038/s41375-019-0385-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
Although several causal genes of familial myelodysplastic syndromes (MDS) have been identified, the genetic landscape and the molecular pathogenesis are not totally understood. To explore novel driver genes and their pathogenetic significance, we performed whole-exome sequence analysis of four individuals from a familial MDS pedigree and 10 candidate single-nucleotide variants (C9orf43, CYP7B1, EFHB, ENTPD7, FAM160B2, HELZ2, HLTF, INPP5J, ITPKB, and RYK) were identified. Knockdown screening revealed that Hltf downregulation enhanced colony-forming capacity of primary murine bone marrow (BM) stem/progenitor cells. γH2AX immunofluorescent staining assay revealed increased DNA damage in a human acute myeloid leukemia (AML) cell line ectopically expressing HLTF E259K, which was not observed in cells expressing wild-type HLTF. Silencing of HLTF in human AML cells also led to DNA damage, indicating that HLTF E259K is a loss-of-function mutation. Molecularly, we found that an E259K mutation reduced the binding capacity of HLTF with ubiquitin-conjugating enzymes, methanesulfonate sensitive 2 and ubiquitin-conjugating enzyme E2N, resulting in impaired polyubiquitination of proliferating cell nuclear antigen (PCNA) in HLTF E259K-transduced cells. In summary, our results indicate that a familial MDS-associated HLTF E259K germline mutation induces accumulation of DNA double-strand breaks, possibly through impaired PCNA polyubiquitination.
Collapse
|
17
|
Tang W, Ma J, Gu R, Lei B, Ding X, Xu G. Light-Induced Lipocalin 2 Facilitates Cellular Apoptosis by Positively Regulating Reactive Oxygen Species/Bim Signaling in Retinal Degeneration. ACTA ACUST UNITED AC 2018; 59:6014-6025. [PMID: 30574656 DOI: 10.1167/iovs.18-25213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jun Ma
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Boya Lei
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
18
|
O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: Causes and consequences. Adv Biol Regul 2018; 71:55-68. [PMID: 30528537 DOI: 10.1016/j.jbior.2018.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are haematopoietic stem cell-derived clonal disorders characterised by proliferation of some or all myeloid lineages, depending on the subtype. MPNs are classically categorized into three disease subgroups; essential thrombocythaemia (ET), polycythaemia vera (PV) and primary myelofibrosis (PMF). The majority (>85%) of patients carry a disease-initiating or driver mutation, the most prevalent occurring in the janus kinase 2 gene (JAK2 V617F), followed by calreticulin (CALR) and myeloproliferative leukaemia virus (MPL) genes. Although these diseases are characterised by shared clinical, pathological and molecular features, one of the most challenging aspects of these disorders is the diverse clinical features which occur in each disease type, with marked variability in risks of disease complications and progression to leukaemia. A remarkable aspect of MPN biology is that the JAK2 V617F mutation, often occurring in the absence of additional mutations, generates a spectrum of phenotypes from asymptomatic ET through to aggressive MF, associated with a poor outcome. The mechanisms promoting MPN heterogeneity remain incompletely understood, but contributing factors are broad and include patient characteristics (gender, age, comorbidities and environmental exposures), additional somatic mutations, target disease-initiating cell, bone marrow microenvironment and germline genetic associations. In this review, we will address these in detail and discuss their role in heterogeneity of MPN disease phenotypes. Tailoring patient management according to the multiple different factors that influence disease phenotype may prove to be the most effective approach to modify the natural history of the disease and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Jennifer O'Sullivan
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom.
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
19
|
Cheng H, Sun G, Cheng T. Hematopoiesis and microenvironment in hematological malignancies. CELL REGENERATION 2018; 7:22-26. [PMID: 30671226 PMCID: PMC6326248 DOI: 10.1016/j.cr.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
Adult hematopoietic stem cells (HSCs) and progenitors (HPCs) reside in the bone marrow, a highly orchestrated architecture. In the bone marrow, the process of how HSCs exert self-renewal and differentiation is tightly regulated by the surrounding microenvironment, or niche. Recent advances in imaging technologies and numerous knockout or knockin mouse models have greatly improved our understanding of the organization of the bone marrow niche. This niche compartment includes a complex network of mesenchymal stem cells (MSC), osteolineage cells, endothelial cells (arterioles and sinusoids), sympathetic nerves, nonmyelinating Schwann cells and megakaryocytes. In addition, different types of mediators, such as cytokines/chemokines, reactive oxygen species (ROS) and exosomes play a pivotal role in regulating the function of hematopoietic cells. Therefore, the niche components and the hematopoietic system make up an ecological environment that maintains the homeostasis and responds to stress, damage or disease conditions. On the other hand, the niche compartment can become a traitor that can do harm to normal hematopoietic cells under pathological conditions. Studies on the diseased bone marrow niche have only recently begun to appear in the extant literature. In this short review, we discuss the most recent advances regarding the behaviors of normal hematopoietic cells and their niche alterations in hematological malignancies.
Collapse
Affiliation(s)
- Hui Cheng
- State Key Laboratory of Experimental Hematology, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
20
|
Ferreira AC, Santos T, Sampaio-Marques B, Novais A, Mesquita SD, Ludovico P, Bernardino L, Correia-Neves M, Sousa N, Palha JA, Sousa JC, Marques F. Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Mol Psychiatry 2018; 23:1031-1039. [PMID: 28485407 DOI: 10.1038/mp.2017.95] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022]
Abstract
In the adult mammalian brain, newborn granule cells are continuously integrated into hippocampal circuits, and the fine-tuning of this process is important for hippocampal function. Thus, the identification of factors that control adult neural stem cells (NSCs) maintenance, differentiation and integration is essential. Here we show that the deletion of the iron trafficking protein lipocalin-2 (LCN2) induces deficits in NSCs proliferation and commitment, with impact on the hippocampal-dependent contextual fear discriminative task. Mice deficient in LCN2 present an increase in the NSCs population, as a consequence of a G0/G1 cell cycle arrest induced by increased endogenous oxidative stress. Of notice, supplementation with the iron-chelating agent deferoxamine rescues NSCs oxidative stress, promotes cell cycle progression and improves contextual fear conditioning. LCN2 is, therefore, a novel key modulator of neurogenesis that, through iron, controls NSCs cell cycle progression and death, self-renewal, proliferation and differentiation and, ultimately, hippocampal function.
Collapse
Affiliation(s)
- A C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - T Santos
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - B Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A Novais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - S D Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - P Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - L Bernardino
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - M Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - J A Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - J C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - F Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
21
|
Karantanos T, Moliterno AR. The roles of JAK2 in DNA damage and repair in the myeloproliferative neoplasms: Opportunities for targeted therapy. Blood Rev 2018; 32:426-432. [PMID: 29627078 DOI: 10.1016/j.blre.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/03/2018] [Accepted: 03/27/2018] [Indexed: 02/09/2023]
Abstract
The JAK2V617F-positive myeloproliferative neoplasms (MPN) serve as an excellent model for the study of genomic instability accumulation during cancer progression. Recent studies highlight the implication of JAK2 activating mutations in the development of DNA damage via reactive oxygen species (ROS) production, replication stress induction and the accumulation of genomic instability via the increased degradation of p53 and acquisition of a "mutagenic" phenotype. The accumulation of genomic instability and acquisition of mutations in critical DNA damage repair (DDR) mediators appears to be implicated in the progression of JAK2V617F-positive MPN. On the other hand, JAK2 signaling normally induces DDR through activation of repair mediators such as Chk1, RAD51 and RECQL5. These opposing effects on DNA integrity in the setting of JAK2V617F have significant clinical implications and have led to the introduction of novel combinational therapies for these diseases. The inhibition of MDM2 with Nutlin-3 improves the efficacy of IFN-α via decreased p53 degradation, the combination of hydroxyurea with Ruxolitinib, and their combination with PARP inhibitors have significant anti-tumor effects. A better understanding of the implication of JAK2 in the development and repair of DNA damage can improve our understanding of the biology of these neoplasms, meliorate the risk stratification of our patients and enrich our therapeutic armamentarium.
Collapse
Affiliation(s)
| | - Alison R Moliterno
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
22
|
Bunaciu RP, MacDonald RJ, Gao F, Johnson LM, Varner JD, Wang X, Nataraj S, Guzman ML, Yen A. Potential for subsets of wt-NPM1 primary AML blasts to respond to retinoic acid treatment. Oncotarget 2017; 9:4134-4149. [PMID: 29423110 PMCID: PMC5790527 DOI: 10.18632/oncotarget.23642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/09/2017] [Indexed: 01/16/2023] Open
Abstract
Acute myeloid leukemia (AML) has high mortality rates, perhaps reflecting a lack of understanding of the molecular diversity in various subtypes and a lack of known actionable targets. There are currently 12 open clinical trials for AML using combination therapeutic modalities including all-trans retinoic acid (RA). Mutant nucleophosmin-1, proposed as a possible marker for RA response, is the criterion for recruiting patients in three active RA phase 3 clinical trials. We tested the ability of RA alone or in combination with either bosutinib (B) or 6-formylindolo(3,2-b) carbazole (F) to induce conversion of 12 de novo AML samples toward a more differentiated phenotype. We assessed levels of expression of cell surface markers associated with differentiation, aldehyde dehydrogenase activity, and glucose uptake activity. Colony formation capacity was reduced with the combined treatment of RA and B or F, and correlated with modulation of a c-Cbl/Lyn/c-Raf-centered signalsome. Combination treatment was in most cases more effective than RA alone. Based on their responses to the treatments, some primary leukemic samples cluster closer to HL-60 cells than to other primary samples, suggesting that they may represent a hitherto undefined AML subtype that is potentially responsive to RA in a combination differentiation therapy.
Collapse
Affiliation(s)
- Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | | | - Feng Gao
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Lynn M Johnson
- Cornell Statistical Unit, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Sarah Nataraj
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Abstract
Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2, CALR, or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC.
Collapse
|
24
|
Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica 2017; 102:7-17. [PMID: 27909216 PMCID: PMC5210228 DOI: 10.3324/haematol.2014.113845] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
The myeloproliferative neoplasms are a heterogeneous group of clonal disorders characterized by the overproduction of mature cells in the peripheral blood, together with an increased risk of thrombosis and progression to acute myeloid leukemia. The majority of patients with Philadelphia-chromosome negative myeloproliferative neoplasms harbor somatic mutations in Janus kinase 2, leading to constitutive activation. Acquired mutations in calreticulin or myeloproliferative leukemia virus oncogene are found in a significant number of patients with essential thrombocythemia or myelofibrosis, and mutations in numerous epigenetic regulators and spliceosome components are also seen. Although the cellular and molecular consequences of many of these mutations remain unclear, it seems likely that they interact with germline and microenvironmental factors to influence disease pathogenesis. This review will focus on the determinants of specific myeloproliferative neoplasm phenotypes as well as on how an improved understanding of molecular mechanisms can inform our understanding of the disease entities themselves.
Collapse
Affiliation(s)
- Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
25
|
Marin Oyarzún CP, Carestia A, Lev PR, Glembotsky AC, Castro Ríos MA, Moiraghi B, Molinas FC, Marta RF, Schattner M, Heller PG. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci Rep 2016; 6:38738. [PMID: 27958278 PMCID: PMC5153854 DOI: 10.1038/srep38738] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying increased thrombotic risk in chronic myeloproliferative neoplasms (MPN) are incompletely understood. We assessed whether neutrophil extracellular traps (NETs), which promote thrombosis, contribute to the procoagulant state in essential thrombocythemia, polycythemia vera and myelofibrosis (MF) patients. Although MPN neutrophils showed increased basal reactive oxygen species (ROS), enhanced NETosis by unstimulated neutrophils was an infrequent finding, whereas PMA-triggered NETosis was impaired, particularly in MF, due to decreased PMA-triggered ROS production. Elevated circulating nucleosomes were a prominent finding and were higher in patients with advanced disease, which may have potential prognostic implication. Histone-MPO complexes, proposed as specific NET biomarker, were seldomly detected, suggesting NETs may not be the main source of nucleosomes in most patients, whereas their correlation with high LDH points to increased cell turn-over as a plausible origin. Lack of association of nucleosomes or NETs with thrombosis or activation markers does not support their use as predictors of thrombosis although prospective studies in a larger cohort may help define their potential contribution to MPN thrombosis. These results do not provide evidence for relevant in vivo NETosis in MPN patients under steady state conditions, although availability of standardized NET biomarkers may contribute to further research in this field.
Collapse
Affiliation(s)
- Cecilia P Marin Oyarzún
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paola R Lev
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Ana C Glembotsky
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | | | - Beatriz Moiraghi
- Department of Hematology, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Felisa C Molinas
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Rosana F Marta
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paula G Heller
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
Rajnics P, Kellner Á, Karádi É, Moizs M, Bödör C, Király P, Marosvári D, Andrikovics H, Egyed M. Increased Lipocalin 2 level may have important role in thrombotic events in patients with polycythemia vera and essential thrombocythemia. Leuk Res 2016; 48:101-6. [DOI: 10.1016/j.leukres.2016.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/25/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
|
27
|
Ahn JS, Li J, Chen E, Kent DG, Park HJ, Green AR. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene 2016; 35:2235-46. [PMID: 26234675 DOI: 10.1038/onc.2015.285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/28/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
The JAK2V617F mutation is found in most patients with a myeloproliferative neoplasm (MPN). This gain-of-function mutation dysregulates cytokine signaling and is associated with increased accumulation of DNA damage, a process likely to drive disease evolution. JAK2V617F inhibits NHE-1 upregulation in response to DNA damage and consequently represses Bcl-xL deamidation and apoptosis, thus giving rise to inappropriate cell survival. However, the mechanism whereby NHE-1 expression is inhibited by JAK2V617F is unknown. In this study, we demonstrate that the accumulation of reactive oxygen species (ROS) in cells expressing JAK2V617F compromises the NHE-1/Bcl-xL deamidation pathway by repressing NHE-1 upregulation in response to DNA damage. In JAK2V617F-positive cells, increased ROS levels results from aberrant PI3K signaling, which decreases nuclear localization of FOXO3A and decreases catalase expression. Furthermore, when compared with autologous control erythroblasts, clonally derived JAK2V617F-positive erythroblasts from MPN patients displayed increased ROS levels and reduced nuclear FOXO3A. However, in hematopoietic stem cells (HSCs), FOXO3A is largely localized within the nuclei despite the presence of JAK2V617F mutation, suggesting that JAK2-FOXO signaling has a different effect on progenitors compared with stem cells. Inactivation of FOXO proteins and elevation of intracellular ROS are characteristics common to many cancers, and hence these findings are likely to be of relevance beyond the MPN field.
Collapse
Affiliation(s)
- J S Ahn
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - J Li
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - E Chen
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - D G Kent
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - H J Park
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - A R Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
28
|
Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C, Sindhu H. Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res 2016; 43:39-43. [DOI: 10.1016/j.leukres.2016.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/10/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022]
|
29
|
El Karoui K, Viau A, Dellis O, Bagattin A, Nguyen C, Baron W, Burtin M, Broueilh M, Heidet L, Mollet G, Druilhe A, Antignac C, Knebelmann B, Friedlander G, Bienaimé F, Gallazzini M, Terzi F. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2. Nat Commun 2016; 7:10330. [PMID: 26787103 PMCID: PMC4735759 DOI: 10.1038/ncomms10330] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
In chronic kidney disease (CKD), proteinuria results in severe tubulointerstitial lesions, which ultimately lead to end-stage renal disease. Here we identify 4-phenylbutyric acid (PBA), a chemical chaperone already used in humans, as a novel therapeutic strategy capable to counteract the toxic effect of proteinuria. Mechanistically, we show that albumin induces tubular unfolded protein response via cytosolic calcium rise, which leads to tubular apoptosis by Lipocalin 2 (LCN2) modulation through ATF4. Consistent with the key role of LCN2 in CKD progression, Lcn2 gene inactivation decreases ER stress-induced apoptosis, tubulointerstitial lesions and mortality in proteinuric mice. More importantly, the inhibition of this pathway by PBA protects kidneys from morphological and functional degradation in proteinuric mice. These results are relevant to human CKD, as LCN2 is increased in proteinuric patients. In conclusion, our study identifies a therapeutic strategy susceptible to improve the benefit of RAS inhibitors in proteinuria-induced CKD progression.
Collapse
Affiliation(s)
- Khalil El Karoui
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France.,Service d'Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Amandine Viau
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Olivier Dellis
- UMR-S 757 INSERM, Université Paris Sud 11, Rue des Adèles, Orsay 91405, France
| | - Alessia Bagattin
- INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Clément Nguyen
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - William Baron
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Martine Burtin
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Mélanie Broueilh
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Laurence Heidet
- INSERM U1163, Université Paris Descartes, Institut Imagine, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Géraldine Mollet
- INSERM U1163, Université Paris Descartes, Institut Imagine, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Anne Druilhe
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Corinne Antignac
- INSERM U1163, Université Paris Descartes, Institut Imagine, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Bertrand Knebelmann
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Gérard Friedlander
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France.,Service d'Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Frank Bienaimé
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France.,Service d'Explorations Fonctionnelles, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| | - Fabiola Terzi
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, 149 Rue de Sèvres, Paris 75015, France
| |
Collapse
|
30
|
Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm. Mediators Inflamm 2015; 2015:606819. [PMID: 26538830 PMCID: PMC4619974 DOI: 10.1155/2015/606819] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022] Open
Abstract
Our understanding of inflammation's role in the pathogenesis of myeloproliferative neoplasm (MPN) is evolving. The impact of chronic inflammation, a characteristic feature of MPN, likely goes far beyond its role as a driver of constitutional symptoms. An inflammatory response to the neoplastic clone may be responsible for some pathologic aspects of MPN. Moreover, JAK2V617F mutated hematopoietic stem and progenitor cells are resistant to inflammation, and this gives the neoplastic clone a selective advantage allowing for its clonal expansion. Because inflammation plays a central role in MPN inflammation is a logical therapeutic target in MPN.
Collapse
|
31
|
Sharma S, Bhonde R. Mesenchymal stromal cells are genetically stable under a hostile in vivo–like scenario as revealed by in vitro micronucleus test. Cytotherapy 2015; 17:1384-95. [DOI: 10.1016/j.jcyt.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
|
32
|
Abstract
PURPOSE OF REVIEW In the present review, we will define the preleukemic state. We aim at increasing awareness and research in the field of preleukemia that will nurture targeted therapy for the earlier steps of leukemia evolution. RECENT FINDINGS Emerging evidence supports the role of hematopoietic stem/progenitor cells carrying recurrent leukemia-related mutations as the cell of origin of both myeloid and lymphoid malignancies. The preleukemic stem cells can maintain at least to some extent their functionality; however, they have increased fitness endowed by the preleukemic mutations that lead to clonal expansion. SUMMARY The latent preleukemic period before overt leukemia presents can take years, and the majority of carriers will never develop leukemia in their lifetime. The preleukemic state is not rare, with greater than 1% of individuals having acquired one or more of the recognized preleukemic lesions. The high frequency of such abnormalities in the population may be the cost of growing old; however, another view could be that in order to survive to old age, the hematopoietic system must adapt to create robust hematopoietic stem/progenitor cells with an increased fitness and clonal expansion. Hence, leukemia does not necessarily start as a disease, but rather as a need, with the normally functioning preleukemic hematopoietic stem cells trying to maintain health for years but in time succumbing to their own acquired virtues.
Collapse
|
33
|
Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood 2015; 126:972-82. [PMID: 26022238 DOI: 10.1182/blood-2014-12-618595] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Myelofibrosis (MF) is characterized by cytopenias, constitutional symptoms, splenomegaly, and marrow histopathological abnormalities (fibrosis, increased microvessel density, and osteosclerosis). The microenvironmental abnormalities are likely a consequence of the elaboration of a variety of inflammatory cytokines generated by malignant megakaryocytes and monocytes. We observed that levels of a specific inflammatory cytokine, lipocalin-2 (LCN2), were elevated in the plasmas of patients with myeloproliferative neoplasms (MF > polycythemia vera or essential thrombocythemia) and that LCN2 was elaborated by MF myeloid cells. LCN2 generates increased reactive oxygen species, leading to increased DNA strand breaks and apoptosis of normal, but not MF, CD34(+) cells. Furthermore, incubation of marrow adherent cells or mesenchymal stem cells with LCN2 increased the generation of osteoblasts and fibroblasts, but not adipocytes. LCN2 priming of mesenchymal stem cells resulted in the upregulation of RUNX2 gene as well as other genes that are capable of further affecting osteoblastogenesis, angiogenesis, and the deposition of matrix proteins. These data indicate that LCN2 is an additional MF inflammatory cytokine that likely contributes to the creation of a cascade of events that results in not only a predominance of the MF clone but also a dysfunctional microenvironment.
Collapse
|
34
|
Leukemia cells make ruthless competitors. Blood 2015; 124:2900-1. [PMID: 25377559 DOI: 10.1182/blood-2014-09-601427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Kagoya et al provide evidence for an important role for factors secreted by leukemia cells in damaging and suppressing normal hematopoiesis.
Collapse
|