1
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
2
|
Li L, Stegner D. Immunothrombosis versus thrombo-inflammation: platelets in cerebrovascular complications. Res Pract Thromb Haemost 2024; 8:102344. [PMID: 38433977 PMCID: PMC10907225 DOI: 10.1016/j.rpth.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
A State-of-the Art lecture titled "Thrombo-Neuroinflammatory Disease" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. First, we would like to advocate for discrimination between immunothrombosis and thrombo-inflammation, as immunothrombosis describes an overshooting inflammatory reaction that results in detrimental thrombotic activity. In contrast, thrombo-inflammation describes the interplay of platelets and coagulation with the immunovascular system, resulting in the recruitment of immune cells and loss of barrier function (hence, hallmarks of inflammation). Both processes can be observed in the brain, with cerebral venous thrombosis being a prime example of immunothrombosis, while infarct progression in response to ischemic stroke is a paradigmatic example of thrombo-inflammation. Here, we review the pathomechanisms underlying cerebral venous thrombosis and ischemic stroke from a platelet-centric perspective and discuss translational implications. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Lexiao Li
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - David Stegner
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| |
Collapse
|
3
|
Swinkels M, Hordijk S, Bürgisser PE, Slotman JA, Carter T, Leebeek FWG, Jansen AJG, Voorberg J, Bierings R. Quantitative super-resolution imaging of platelet degranulation reveals differential release of von Willebrand factor and von Willebrand factor propeptide from alpha-granules. J Thromb Haemost 2023; 21:1967-1980. [PMID: 37061132 DOI: 10.1016/j.jtha.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Von Willebrand factor (VWF) and VWF propeptide (VWFpp) are stored in eccentric nanodomains within platelet alpha-granules. VWF and VWFpp can undergo differential secretion following Weibel-Palade body exocytosis in endothelial cells; however, it is unclear if the same process occurs during platelet alpha-granule exocytosis. Using a high-throughput 3-dimensional super-resolution imaging workflow for quantification of individual platelet alpha-granule cargo, we studied alpha-granule cargo release in response to different physiological stimuli. OBJECTIVES To investigate how VWF and VWFpp are released from alpha-granules in response to physiological stimuli. METHODS Platelets were activated with protease-activated receptor 1 (PAR-1) activating peptide (PAR-1 ap) or collagen-related peptide (CRP-XL). Alpha-tubulin, VWF, VWFpp, secreted protein acidic and cysteine rich (SPARC), and fibrinogen were imaged using 3-dimensional structured illumination microscopy, followed by semiautomated analysis in FIJI. Uptake of anti-VWF nanobody during degranulation was used to identify alpha-granules that partially released content. RESULTS VWFpp overlapped with VWF in eccentric alpha-granule subdomains in resting platelets and showed a higher degree of overlap with VWF than SPARC or fibrinogen. Activation of PAR-1 (0.6-20 μM PAR-1 ap) or glycoprotein VI (GPVI) (0.25-1 μg/mL CRP-XL) signaling pathways caused a dose-dependent increase in alpha-granule exocytosis. More than 80% of alpha-granules remained positive for VWF, even at the highest agonist concentrations. In contrast, the residual fraction of alpha-granules containing VWFpp decreased in a dose-dependent manner to 23%, whereas SPARC and fibrinogen were detected in 60% to 70% of alpha-granules when stimulated with 20 μM PAR-1 ap. Similar results were obtained using CRP-XL. Using an extracellular anti-VWF nanobody, we identified VWF in postexocytotic alpha-granules. CONCLUSION We provide evidence for differential secretion of VWF and VWFpp from individual alpha-granules.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. https://twitter.com/MauriceSwinkels
| | - Sophie Hordijk
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. https://twitter.com/sophiehordijk
| | - Petra E Bürgisser
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan A Slotman
- Optical Imaging Center, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Frank W G Leebeek
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Voorberg
- Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Experimental Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruben Bierings
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Lin S, Liu X, Sun A, Liang H, Li Z, Ye S, Ma H, Fan W, Shen C, Jin M, He Q. Qilong capsule alleviates ponatinib-induced ischemic stroke in a zebrafish model by regulating coagulation, inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116397. [PMID: 37086871 DOI: 10.1016/j.jep.2023.116397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
ETHOPHARMACOLOGICAL RELEVANCE Qilong capsule (QLC) is a compound traditional Chinese medicine commonly used to treat ischemic stroke (IS). QLC is made of eight kinds of medicinal materials. It has two kinds of monarch medicine and six kinds of minister medicine. However, the pharmacodynamic mechanism of QLC is still unknown. AIM OF THE STUDY The aim of this paper was to evaluate the pharmacology mechanism of QLC against ischemic stroke through coagulation, inflammation and apoptosis. MATERIALS AND METHODS We used an existing zebrafish model to explore the protective mechanism of QLC on IS. We treated normally-developing zebrafish larvae with QLC and ponatinib 2 days post fertilization (dpf), and used the area of cerebral vascular thrombosis, red blood cell staining intensity, and brain cell apoptosis to quantitate QLC efficacy against IS. Evaluation of brain inflammation in zebrafish by observing macrophage aggregation and migration. In addition, we also explored the effect of QLC on zebrafish angiogenesis. Quantitative polymerase chain reaction (qPCR) was used to detect changes in the expression of genes involved in coagulation, inflammation, vascular endothelium, and apoptosis. RESULTS We found that QLC reduced the area affected by ponatinib-induced cerebral vascular embolism, erythrocyte staining intensity, and the number of apoptotic brain cells. For inflammation, QLC can improve the aggregation and migration of macrophages. QLC can significantly promote the formation of blood vessels in zebrafish. qPCR showed that QLC inhibited the expression of genes related to coagulation, inflammation, and apoptosis. CONCLUSION Qilong capsule had a significant protective efficacy in ponatinib-induced IS.
Collapse
Affiliation(s)
- Shenghua Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Aonan Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huiliang Liang
- Shandong Jining Huaneng Pharmaceutical Factory, Jining, China
| | - Zhen Li
- Shandong Jining Huaneng Pharmaceutical Factory, Jining, China
| | - Suyan Ye
- Shandong Jining Huaneng Pharmaceutical Factory, Jining, China
| | - Honglin Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Fan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), China.
| |
Collapse
|
5
|
Endothelial VWF is critical for the pathogenesis of vaso-occlusive episode in a mouse model of sickle cell disease. Proc Natl Acad Sci U S A 2022; 119:e2207592119. [PMID: 35969769 PMCID: PMC9407592 DOI: 10.1073/pnas.2207592119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vaso-occlusive episode (VOE) is a common and critical complication of sickle cell disease (SCD). Its pathogenesis is incompletely understood. von Willebrand factor (VWF), a multimeric plasma hemostatic protein synthesized and secreted by endothelial cells and platelets, is increased during a VOE. However, whether and how VWF contributes to the pathogenesis of VOE is not fully understood. In this study, we found increased VWF levels during tumor necrosis factor (TNF)-induced VOE in a humanized mouse model of SCD. Deletion of endothelial VWF decreased hemolysis, vascular occlusion, and organ damage caused by TNF-induced VOE in SCD mice. Moreover, administering ADAMTS13, the VWF-cleaving plasma protease, reduced plasma VWF levels, decreased inflammation and vaso-occlusion, and alleviated organ damage during VOE. These data suggest that promoting VWF cleavage via ADAMTS13 may be an effective treatment for reducing hemolysis, inflammation, and vaso-occlusion during VOE.
Collapse
|
6
|
Zhang L, Ma J, Yang F, Li S, Ma W, Chang X, Yang L. Neuroprotective Effects of Quercetin on Ischemic Stroke: A Literature Review. Front Pharmacol 2022; 13:854249. [PMID: 35662707 PMCID: PMC9158527 DOI: 10.3389/fphar.2022.854249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is characterized by high recurrence and disability; however, its therapies are very limited. As one of the effective methods of treating acute attacks of IS, intravenous thrombolysis has a clear time window. Quercetin, a flavonoid widely found in vegetables and fruits, inhibits immune cells from secreting inflammatory cytokines, thereby reducing platelet aggregation and limiting inflammatory thrombosis. In pre-clinical studies, it has been shown to exhibit neuroprotective effects in patients with ischemic brain injury. However, its specific mechanism of action remains unknown. Therefore, this review aims to use published data to elucidate the potential value of quercetin in patients with ischemic brain injury. This article also reviews the plant sources, pharmacological effects, and metabolic processes of quercetin in vivo, thus focusing on its mechanism in inhibiting immune cell activation and inflammatory thrombosis as well as promoting neuroprotection against ischemic brain injury.
Collapse
Affiliation(s)
- Leilei Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jingying Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Sishi Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wangran Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Chang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Lin Yang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
7
|
De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI. Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 2022; 53:1487-1499. [PMID: 35360931 DOI: 10.1161/strokeaha.122.038733] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.).,Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (A.I.C.)
| |
Collapse
|
8
|
Robador JR, Feinauer MJ, Schneider SW, Mayer FT, Gorzelanny C, Sacharow A, Liu X, Berghoff A, Brehm MA, Hirsch D, Stadler J, Vidal-Y-Si S, Wladykowski E, Asong M, Nowak K, Seiz-Rosenhagen M, Umansky V, Mess C, Pantel K, Winkler F, Bauer AT. Involvement of platelet-derived VWF in metastatic growth of melanoma in the brain. Neurooncol Adv 2022; 3:vdab175. [PMID: 34993481 PMCID: PMC8717898 DOI: 10.1093/noajnl/vdab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The prognosis of patients with brain metastases (BM) is poor despite advances in our understanding of the underlying pathophysiology. The high incidence of thrombotic complications defines tumor progression and the high mortality rate. We, therefore, postulated that von Willebrand factor (VWF) promotes BM via its ability to induce platelet aggregation and thrombosis. Methods We measured the abundance of VWF in the blood and intravascular platelet aggregates of patients with BM, and determined the specific contribution of endothelial and platelet-derived VWF using in vitro models and microfluidics. The relevance for the brain metastatic cascade in vivo was demonstrated in ret transgenic mice, which spontaneously develop BM, and by the intracardiac injection of melanoma cells. Results Higher levels of plasma VWF in patients with BM were associated with enhanced intraluminal VWF fiber formation and platelet aggregation in the metastatic tissue and peritumoral regions. Platelet activation triggered the formation of VWF multimers, promoting platelet aggregation and activation, in turn enhancing tumor invasiveness. The absence of VWF in platelets, or the blocking of platelet activation, abolished platelet aggregation, and reduced tumor cell transmigration. Anticoagulation and platelet inhibition consistently reduced the number of BM in preclinical animal models. Conclusions Our data indicate that platelet-derived VWF is involved in cerebral clot formation and in metastatic growth of melanoma in the brain. Targeting platelet activation with low-molecular-weight heparins represents a promising therapeutic approach to prevent melanoma BM.
Collapse
Affiliation(s)
- Jose R Robador
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Manuel J Feinauer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Frank T Mayer
- Department of Dermatology and Venereology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Artur Sacharow
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Xiaobo Liu
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Anna Berghoff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria A Brehm
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Daniela Hirsch
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Julia Stadler
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Sabine Vidal-Y-Si
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Ewa Wladykowski
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Marisse Asong
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kai Nowak
- Department of Surgery, RoMed Kliniken Klinkum Rosenheim, Rosenheim, Germany
| | | | - Viktor Umansky
- Department of Dermatology and Venereology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf , Hamburg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2. Over the past year, COVID-19 has posed a significant threat to global health. Although the infection is associated with mild symptoms in many patients, a significant proportion of patients develop a prothrombotic state due to a combination of alterations in coagulation and immune cell function. The purpose of this review is to discuss the pathophysiological characteristics of COVID-19 that contribute to the immunothrombosis. RECENT FINDINGS Endotheliopathy during COVID-19 results in increased multimeric von Willebrand factor release and the potential for increased platelet adhesion to the endothelium. In addition, decreased anticoagulant proteins on the surface of endothelial cells further alters the hemostatic balance. Soluble coagulation markers are also markedly dysregulated, including plasminogen activator inhibitor-1 and tissue factor, leading to COVID-19 induced coagulopathy. Platelet hyperreactivity results in increased platelet-neutrophil and -monocyte aggregates further exacerbating the coagulopathy observed during COVID-19. Finally, the COVID-19-induced cytokine storm primes neutrophils to release neutrophil extracellular traps, which trap platelets and prothrombotic proteins contributing to pulmonary thrombotic complications. SUMMARY Immunothrombosis significantly contributes to the pathophysiology of COVID-19. Understanding the mechanisms behind COVID-19-induced coagulopathy will lead to future therapies for patients.
Collapse
Affiliation(s)
- Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| |
Collapse
|
10
|
Kalinin RE, Suchkov IA, Mzhavanadze ND, Zhurina O, Klimentova EA, Povarov V. Von Willebrand factor in patients with peripheral artery disease who undergo invasive treatment. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2021; 29:389-396. [DOI: 10.17816/pavlovj79099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
AIM: To evaluate the level and activity of von Willebrand factor (vWF) in patients with peripheral artery disease (PAD) who underwent endovascular or open bypass grafting.
MATERIAL AND METHODS: The study included 115 patients with chronic lower limb ischemia due to PAD, stage IIb-IV according to A.V. PokrovskyFontaine. Fifty-five participants underwent endovascular treatment, while sixty underwent open bypass procedures using synthetic grafts. Peripheral blood samples were collected from all patients at baseline and three months after invasive treatment to determine the vWF antigen and activity. All patients were monitored every three months for a year to detect the development of unfavorable outcomes including disease progression, restenosis, graft thrombosis, oncology, myocardial infarction (MI), limb loss, stroke, and lethal outcomes.
RESULTS: The highest values of vWF antigen in patients who underwent endovascular treatment were detected in patients with multilevel lesions1.25 g/mL (vs 0.2 g/mL, 95% confidence interval (CI) 0.723.21 mcg/mL p = 0.019); with a similar trend observed after a 3month follow-up. Baseline vWF antigen was higher in endovascular group patients who developed myocardial infarction (MI) within a year following the procedures as compared to those without MI: 1.15 mcg/mL (95% CI 1.051.175 mcg/mL) and 0.9 mcg/mL (95% CI 0.781.01 mcg/mL), respectively (p = 0.015). Moreover, vWF antigen was increased at the 3-month follow-up in patients with lethal outcomes1.06 mcg/mL (95% CI 0.961.18 mcg/mL, р = 0.031). vWF activity in endovascular group patients with developed MI was four times higher than those without MI (р = 0.022); a similar trend was detected in the development of lethal outcomes (р = 0.009). Those who underwent open bypass grafting presented with high activity of vWF with maximum values detected in participants with proximal iliofemoral lesions (1200%, 95% CI 640%1200%) and stage IV disease (770%, 95% CI 320%1200%, p 0.05). ROC analysis revealed that vWF activity at least 6.2 times higher in patients who underwent endovascular treatment associated with the development of lethal outcomes within one year after invasive treatments; sensitivity and specificity of the method were 83.3% and 75.5%, accordingly.
CONCLUSION: Patients with PAD presented with increased vWF antigen and activity with maximum values detected in patients with multilevel lesions and critical lower limb ischemia. Increased vWF antigen and activity was associated with development of MI and lethal outcomes within one year following endovascular procedures on lower extremity arteries.
Collapse
|
11
|
Swinkels M, Atiq F, Bürgisser PE, Slotman JA, Houtsmuller AB, de Heus C, Klumperman J, Leebeek FWG, Voorberg J, Jansen AJG, Bierings R. Quantitative 3D microscopy highlights altered von Willebrand factor α-granule storage in patients with von Willebrand disease with distinct pathogenic mechanisms. Res Pract Thromb Haemost 2021; 5:e12595. [PMID: 34532631 PMCID: PMC8440947 DOI: 10.1002/rth2.12595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Platelets play a key role in hemostasis through plug formation and secretion of their granule contents at sites of endothelial injury. Defects in von Willebrand factor (VWF), a platelet α-granule protein, are implicated in von Willebrand disease (VWD), and may lead to defective platelet adhesion and/or aggregation. Studying VWF quantity and subcellular localization may help us better understand the pathophysiology of VWD. OBJECTIVE Quantitative analysis of the platelet α-granule compartment and VWF storage in healthy individuals and VWD patients. PATIENTS/METHODS Structured illumination microscopy (SIM) was used to study VWF content and organization in platelets of healthy individuals and patients with VWD in combination with established techniques. RESULTS SIM capably quantified clear morphological and granular changes in platelets stimulated with proteinase-activated receptor 1 (PAR-1) activating peptide and revealed a large intra- and interdonor variability in VWF-positive object numbers within healthy resting platelets, similar to variation in secreted protein acidic and rich in cysteine (SPARC). We subsequently characterized VWD platelets to identify changes in the α-granule compartment of patients with different VWF defects, and were able to stratify two patients with type 3 VWD rising from different pathological mechanisms. We further analyzed VWF storage in α-granules of a patient with homozygous p.C1190R using electron microscopy and found discrepant VWF levels and different degrees of multimerization in platelets of patients with heterozygous p.C1190 in comparison to VWF in plasma. CONCLUSIONS Our findings highlight the utility of quantitative imaging approaches in assessing platelet granule content, which may help to better understand VWF storage in α-granules and to gain new insights in the etiology of VWD.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Ferdows Atiq
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Petra E. Bürgisser
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Johan A. Slotman
- Department of PathologyOptical Imaging CenterErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Adriaan B. Houtsmuller
- Department of PathologyOptical Imaging CenterErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Cilia de Heus
- Department of Cell BiologyUniversity Medical CenterUtrechtThe Netherlands
| | - Judith Klumperman
- Department of Cell BiologyUniversity Medical CenterUtrechtThe Netherlands
| | - Frank W. G. Leebeek
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jan Voorberg
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Experimental Vascular MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Arend Jan Gerard Jansen
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Ruben Bierings
- Department of HematologyErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
12
|
Platelets as drivers of ischemia/reperfusion injury after stroke. Blood Adv 2021; 5:1576-1584. [PMID: 33687431 DOI: 10.1182/bloodadvances.2020002888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide and, despite reperfusion either via thrombolysis or thrombectomy, stroke patients often suffer from lifelong disabilities. These persistent neurological deficits may be improved by treating the ischemia/reperfusion (I/R) injury that occurs following ischemic stroke. There are currently no approved therapies to treat I/R injury, and thus it is imperative to find new targets to decrease the burden of ischemic stroke and related diseases. Platelets, cell fragments from megakaryocytes, are primarily known for their role in hemostasis. More recently, investigators have studied the nonhemostatic role of platelets in inflammatory pathologies, such as I/R injury after ischemic stroke. In this review, we seek to provide an overview of how I/R can lead to platelet activation and how activated platelets, in turn, can exacerbate I/R injury after stroke. We will also discuss potential mechanisms by which platelets may ameliorate I/R injury.
Collapse
|
13
|
VWF, Platelets and the Antiphospholipid Syndrome. Int J Mol Sci 2021; 22:ijms22084200. [PMID: 33919627 PMCID: PMC8074042 DOI: 10.3390/ijms22084200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
The antiphospholipid syndrome (APS) is characterized by thrombosis and/or pregnancy morbidity with the persistent presence of antiphospholipid antibodies (aPLs). Laboratory criteria for the classification of APS include the detection of lupus anticoagulant (LAC), anti-cardiolipin (aCL) antibodies and anti-β2glycoprotein I (aβ2GPI) antibodies. Clinical criteria for the classification of thrombotic APS include venous and arterial thrombosis, along with microvascular thrombosis. Several aPLs, including LAC, aβ2GPI and anti-phosphatidylserine/prothrombin antibodies (aPS/PT) have been associated with arterial thrombosis. The Von Willebrand Factor (VWF) plays an important role in arterial thrombosis by mediating platelet adhesion and aggregation. Studies have shown that aPLs antibodies present in APS patients are able to increase the risk of arterial thrombosis by upregulating the plasma levels of active VWF and by promoting platelet activation. Inflammatory reactions induced by APS may also provide a suitable condition for arterial thrombosis, mostly ischemic stroke and myocardial infarction. The presence of other cardiovascular risk factors can enhance the effect of aPLs and increase the risk for thrombosis even more. These factors should therefore be taken into account when investigating APS-related arterial thrombosis. Nevertheless, the exact mechanism by which aPLs can cause thrombosis remains to be elucidated.
Collapse
|
14
|
Gao M, Ge Z, Deng R, Bao B, Yao W, Cao Y, Shan M, Cheng F, Yan H, Chen P, Zhang L. Evaluation of VEGF mediated pro-angiogenic and hemostatic effects and chemical marker investigation for Typhae Pollen and its processed product. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113591. [PMID: 33212176 DOI: 10.1016/j.jep.2020.113591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Typhae Pollen (TP) is a well-known Traditional Chinese Medicine (TCM) to remove blood stasis. Carbonized Typhae Pollen (CTP), a processed product of TP after being stir-fried, has been widely applied to clinical practice with its capability of hemostasis. However, the underlying mechanism of TP and CTP are still not fully elucidated and discrimination against TP and CTP remains a challenge. AIM OF STUDY The aim of this study is to investigate whether TP could remove blood stasis by promoting angiogenesis and the process of carbonizing it could enhance hemostatic effect. Meanwhile, some chemical markers for quality control of CTP had better to be found. MATERIAL AND METHODS The changes of constituents between TP and CTP were analyzed by UPLC-QTOF-MS/MS. We investigated pro-angiogenic and hemostatic effects of TP and CTP in two zebrafish models: VRI-induced ISV insufficiency model and Ator-induced cerebral hemorrhage model. Subsequently, quantitative real-time PCR (qRT-PCR) was applied to investigate the mechanism of pharmacological effects. Finally, chemometric method was applied to find chemical markers. RESULTS A total of 19 compounds were identified in qualitative analysis. The loss rate of each compound was calculated and compared. Two compounds (huaicarbon A/B) could only be detected in CTP and the content of flavonoid glycosides in CTP was significantly decreased compared with TP. The average content of the three identified flavonoid aglycones (quercetin, isorhamnetin and kaempferol) was increased about 30 percent in CTP. TP promoted pro-angiogenesis by up-regulating the expression of VEGFA, flt1 and kdr. After heating process, the pro-angiogenic activity was reduced and hemostatic activity was enhanced in CTP. Then qRT-PCR analysis found that CTP could significantly up-regulate the expression of VEGFA and vWF. In the discovery of markers, 6 chemical markers for discrimination of TP and CTP were obtained by chemometric method. CONCLUSION Our research indicated that the pro-angiogenic activity of TP was involved in VEGF signaling pathway. After processing, hemostatic activity of CTP has been enhanced by up-regulating the expression of VEGFA and vWF. A chemical marker database was established to provide a scientific evidence for quality control, mechanism and the clinical application of TP and CTP.
Collapse
Affiliation(s)
- Mingliang Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiping Ge
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Rui Deng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Denorme F, Martinod K, Vandenbulcke A, Denis CV, Lenting PJ, Deckmyn H, Vanhoorelbeke K, Meyer SFD. The von Willebrand Factor A1 domain mediates thromboinflammation, aggravating ischemic stroke outcome in mice. Haematologica 2021; 106:819-828. [PMID: 32107335 PMCID: PMC7927893 DOI: 10.3324/haematol.2019.241042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/25/2020] [Indexed: 01/30/2023] Open
Abstract
von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Cécile V. Denis
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Peter J. Lenting
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
16
|
Campos J, Brill A. von Willebrand Factor: A Loyal Ally of Venous Thrombosis in Obesity. Arterioscler Thromb Vasc Biol 2020; 40:2809-2811. [PMID: 33232208 DOI: 10.1161/atvbaha.120.315380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joana Campos
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (J.C., A.B.)
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (J.C., A.B.).,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia (A.B.)
| |
Collapse
|
17
|
Intravital Assessment of Blood Platelet Function. A Review of the Methodological Approaches with Examples of Studies of Selected Aspects of Blood Platelet Function. Int J Mol Sci 2020; 21:ijms21218334. [PMID: 33172065 PMCID: PMC7664321 DOI: 10.3390/ijms21218334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Platelet biology owes to intravital studies not only a better understanding of platelets’ role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.
Collapse
|
18
|
Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology. Int J Mol Sci 2020; 21:ijms21207804. [PMID: 33096906 PMCID: PMC7589699 DOI: 10.3390/ijms21207804] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
The von Willebrand factor (vWF) is a plasma protein that mediates platelet adhesion and leukocyte recruitment to vascular injury sites and carries coagulation factor VIII, a building block of the intrinsic pathway of coagulation. The presence of ultra-large multimers of vWF in the bloodstream is associated with spontaneous thrombosis, whereas its deficiency leads to bleeding. In cardiovascular pathology, the progression of the heart valve disease results in vWF deficiency and cryptogenic gastrointestinal bleeding. The association between higher plasma levels of vWF and thrombotic complications of coronary artery disease was described. Of note, it is not the plasma levels that are crucial for vWF hemostatic activity, but vWF activation, triggered by a rise in shear rates. vWF becomes highly reactive with platelets upon unfolding into a stretched conformation, at shear rates above the critical value (more than 5000 s−1), which might occur at sites of arterial stenosis and injury. The activation of vWF and its counterbalance by ADAMTS-13, the vWF-cleaving protease, might contribute to complications of cardiovascular diseases. In this review, we discuss vWF involvement in complications of cardiovascular diseases and possible diagnostic and treatment approaches.
Collapse
|
19
|
Patmore S, Dhami SPS, O'Sullivan JM. Von Willebrand factor and cancer; metastasis and coagulopathies. J Thromb Haemost 2020; 18:2444-2456. [PMID: 32573945 DOI: 10.1111/jth.14976] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Von Willebrand factor (VWF) is a multimeric procoagulant plasma glycoprotein that mediates platelet adhesion along the endothelium. In addition to its role maintaining normal hemostasis, more recently novel biological functions for VWF have been described, including inflammation, angiogenesis, and metastasis. Significantly increased plasma VWF levels have been reported across a variety of cancer patient cohorts. Given that VWF is established as a risk factor for venous thrombosis, this is of direct clinical importance. Moreover, elevated VWF has also been observed localized within the tumor microenvironment, correlating with advanced disease stage and poorer clinical outcome. Critically, evidence suggests that elevated VWF levels in cancer patients may not only contribute to cancer associated coagulopathies but may also mediate cancer progression and metastasis. Studies have shown that VWF can promote pro-inflammatory signaling, regulate angiogenesis and vascular permeability, which may facilitate tumor cell growth and extravasation across the vessel wall. Endothelial secreted VWF multimers contribute to the adhesion and transendothelial migration of tumor cells key for tumor dissemination. In support of this, VWF inhibition attenuated metastasis in vivo. Perhaps most intriguingly, specific tumor cells have been reported to acquire de novo VWF expression which increases tumor-platelet heteroaggregates and confers enhanced metastatic activity. Current knowledge on the roles of VWF in cancer and in particular its contribution to metastasis and cancer associated coagulopathies is summarized in this review.
Collapse
Affiliation(s)
- Sean Patmore
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sukhraj Pal S Dhami
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
20
|
Abstract
Platelets are increasingly being recognized for playing roles beyond thrombosis and hemostasis. Today we know that they mediate inflammation by direct interactions with innate immune cells or secretion of cytokines/chemokines. Here we review their interactions with neutrophils and monocytes/macrophages in infection and sepsis, stroke, myocardial infarction and venous thromboembolism. We discuss new roles for platelet surface receptors like GPVI or GPIb and also look at platelet contributions to the formation of neutrophil extracellular traps (NETs) as well as to deep vein thrombosis during infection, e.g. in COVID-19 patients.
Collapse
Affiliation(s)
- Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Carsten Deppermann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Kraisin S, Martinod K, Desender L, Pareyn I, Verhenne S, Deckmyn H, Vanhoorelbeke K, Van den Steen PE, De Meyer SF. von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage pathogenesis in mice. J Thromb Haemost 2020; 18:2377-2390. [PMID: 32485089 DOI: 10.1111/jth.14932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cerebral malaria (CM) is the most severe complication of malaria. Endothelial activation, cytokine release, and vascular obstruction are essential hallmarks of CM. Clinical studies have suggested a link between von Willebrand factor (VWF) and malaria pathology. OBJECTIVES To investigate the contribution of VWF in the pathogenesis of experimental cerebral malaria (ECM). METHODS Both Vwf+/+ and Vwf-/- mice were infected with Plasmodium berghei ANKA (PbANKA) to induce ECM. Alterations of plasma VWF and ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), platelet count, neurological features, and accumulation of platelets and leukocytes in the brain were examined following infection. RESULTS Plasma VWF levels significantly increased upon PbANKA infection in Vwf+/+ animals. While ADAMTS13 activity was not affected, high molecular weight VWF multimers disappeared at the end-stage ECM, possibly due to an ongoing hypercoagulability. Although the number of reticulocytes, a preferential target for the parasites, was increased in Vwf-/- mice compared to Vwf+/+ mice early after infection, parasitemia levels did not markedly differ between the two groups. Interestingly, Vwf-/- mice manifested overall clinical ECM features similar to those observed in Vwf+/+ animals. At day 8.5 post-infection, however, clinical ECM features in Vwf-/- mice were slightly more beneficial than in Vwf+/+ animals. Despite these minor differences, overall survival was not different between Vwf-/- and Vwf+/+ mice. Similarly, PbANKA-induced thrombocytopenia, leukocyte, and platelet accumulations in the brain were not altered by the absence of VWF. CONCLUSIONS Our study suggests that increased VWF concentration is a hallmark of ECM. However, VWF does not have a major influence in modulating late-stage ECM pathogenesis.
Collapse
Affiliation(s)
- Sirima Kraisin
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Linda Desender
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Inge Pareyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Sebastien Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
22
|
Gavin RL, Koo CZ, Tomlinson MG. Tspan18 is a novel regulator of thrombo-inflammation. Med Microbiol Immunol 2020; 209:553-564. [PMID: 32447449 PMCID: PMC7395042 DOI: 10.1007/s00430-020-00678-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
The interplay between thrombosis and inflammation, termed thrombo-inflammation, causes acute organ damage in diseases such as ischaemic stroke and venous thrombosis. We have recently identified tetraspanin Tspan18 as a novel regulator of thrombo-inflammation. The tetraspanins are a family of 33 membrane proteins in humans that regulate the trafficking, clustering, and membrane diffusion of specific partner proteins. Tspan18 partners with the store-operated Ca2+ entry channel Orai1 on endothelial cells. Orai1 appears to be expressed in all cells and is critical in health and disease. Orai1 mutations cause human immunodeficiency, resulting in chronic and often lethal infections, while Orai1-knockout mice die at around the time of birth. Orai1 is a promising drug target in autoimmune and inflammatory diseases, and Orai1 inhibitors are in clinical trials. The focus of this review is our work on Tspan18 and Orai1 in Tspan18-knockout mice and Tspan18-knockdown primary human endothelial cells. Orai1 trafficking to the cell surface is partially impaired in the absence of Tspan18, resulting in impaired Ca2+ signaling and impaired release of the thrombo-inflammatory mediator von Willebrand factor following endothelial stimulation. As a consequence, Tspan18-knockout mice are protected in ischemia-reperfusion and deep vein thrombosis models. We provide new evidence that Tspan18 is relatively highly expressed in endothelial cells, through the analysis of publicly available single-cell transcriptomic data. We also present new data, showing that Tspan18 is required for normal Ca2+ signaling in platelets, but the functional consequences are subtle and restricted to mildly defective platelet aggregation and spreading induced by the platelet collagen receptor GPVI. Finally, we generate structural models of human Tspan18 and Orai1 and hypothesize that Tspan18 regulates Orai1 Ca2+ channel function at the cell surface by promoting its clustering.
Collapse
Affiliation(s)
- Rebecca L Gavin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
23
|
Platelet α-granules are required for occlusive high-shear-rate thrombosis. Blood Adv 2020; 4:3258-3267. [PMID: 32697818 DOI: 10.1182/bloodadvances.2020002117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
von Willebrand factor (VWF) is essential for the induction of arterial thrombosis. In this study, we investigated the critical role of platelet VWF in occlusive thrombosis formation at high shear in mice that do not express platelet VWF (Nbeal2-/-). Using in silico modeling, in vitro high-shear microfluidics, and an in vivo Folts model of arterial thrombosis we reproduced the platelet dynamics that occur under pathological flow in a stenosed vessel. Computational fluid dynamics (CFDs) simulated local hemodynamics in a stenosis based on arterial geometries. The model predicted shear rates, time course of platelet adhesion, and time to occlusion. These predictions were validated in vitro and in vivo. Occlusive thrombosis developed in wild-type control mice that had normal levels of plasma VWF and platelet VWF in vitro and in vivo. Occlusive thrombosis did not form in the Nbeal2-/- mice that had normal plasma VWF and an absence of platelet VWF. Occlusive thrombosis was corrected in Nbeal2-/- microfluidic assays by the addition of exogenous normal platelets with VWF. Combining model and experimental data, we demonstrated the necessary requirement of platelet VWF in α-granules in forming an occlusive thrombus under high shear. These results could inspire new pharmacological targets specific to pathological conditions and prevent arterial thrombosis.
Collapse
|
24
|
Kovacevic KD, Jilma B, Zhu S, Gilbert JC, Winter MP, Toma A, Hengstenberg C, Lang I, Kubica J, Siller-Matula JM. von Willebrand Factor Predicts Mortality in ACS Patients Treated with Potent P2Y12 Antagonists and is Inhibited by Aptamer BT200 Ex Vivo. Thromb Haemost 2020; 120:1282-1290. [PMID: 32679592 DOI: 10.1055/s-0040-1713888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND von Willebrand factor (VWF) is crucial for arterial thrombosis and its plasma levels are increased in acute coronary syndromes (ACSs). The effects of conventional platelet inhibitors are compromised by elevated VWF under high shear rates. BT200 is a third-generation aptamer that binds and inhibits the A1 domain of human VWF. This article aims to study whether VWF is a predictor of mortality in ACS patients under potent P2Y12 blocker therapy and to examine the effects of a VWF inhibiting aptamer BT200 and its concentrations required to inhibit VWF in plasma samples of patients with ACS. METHODS VWF activity was measured in 320 patients with ACS, and concentration effect curves of BT200 were established in plasma pools containing different VWF concentrations. RESULTS Median VWF activity in patients was 170% (interquartile range % confidence interval [CI]: 85-255) and 44% of patients had elevated (> 180%) VWF activity. Plasma levels of VWF activity predicted 1-year (hazard ratio [HR]: 2.68; 95% CI: 1.14-6.31; p < 0.024) and long-term (HR: 2.59; 95% CI: 1.10-6.09) mortality despite treatment with potent platelet inhibitors (dual-antiplatelet therapy with aspirin and prasugrel or ticagrelor). Although half-maximal concentrations were 0.1 to 0.2 µg/mL irrespective of baseline VWF levels, increasing concentrations (0.42-2.13 µg/mL) of BT200 were needed to lower VWF activity to < 20% of normal in plasma pools containing increasing VWF activity (p < 0.001). CONCLUSION VWF is a predictor of all-cause mortality in ACS patients under contemporary potent P2Y12 inhibitor therapy. BT200 effectively inhibited VWF activity in a target concentration-dependent manner.
Collapse
Affiliation(s)
- Katarina D Kovacevic
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shuhao Zhu
- Guardian Therapeutics, Lexington, Massachusetts, United States
| | - James C Gilbert
- Guardian Therapeutics, Lexington, Massachusetts, United States
| | - Max-Paul Winter
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Aurel Toma
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Toruń, Poland
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Zhu S, Gilbert JC, Hatala P, Harvey W, Liang Z, Gao S, Kang D, Jilma B. The development and characterization of a long acting anti-thrombotic von Willebrand factor (VWF) aptamer. J Thromb Haemost 2020; 18:1113-1123. [PMID: 32011054 PMCID: PMC7317574 DOI: 10.1111/jth.14755] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thrombus formation involves coagulation proteins and platelets. The latter, referred to as platelet-mediated thrombogenesis, is predominant in arterial circulation. Platelet thrombogenesis follows vascular injury when extracellular von Willebrand factor (VWF) binds via its A3 domain to exposed collagen, and the free VWF A1 domain binds to platelet glycoprotein Ib (GPIb). OBJECTIVES To characterize the antiplatelet/antithrombotic activity of the pegylated VWF antagonist aptamer BT200 and identify the aptamer VWF binding site. METHODS BT100 is an optimized aptamer synthesized by solid-phase chemistry and pegylated (BT200) by standard conjugation chemistry. The affinity of BT200 for purified human VWF was evaluated as was VWF inhibition in monkey and human plasma. Efficacy of BT200 was assessed in the monkey FeCl3 femoral artery thrombosis model. RESULTS BT200 bound human VWF at an EC50 of 5.0 nmol/L and inhibited VWF A1 domain activity in monkey and human plasma with mean IC50 values of 183 and 70 nmol/L. BT200 administration to cynomolgus monkeys caused a time-dependent and dose-dependent effect on VWF A1 domain activity and inhibited platelet function as measured by collagen adenosine diphosphate closure time in the platelet function analyzer. BT200 demonstrated a bioavailability of ≥77% and exhibited a half-life of >100 hours after subcutaneous injection. The treatment effectively prevented arterial occlusion in an FeCl3 -induced thrombosis model in monkeys. CONCLUSIONS BT200 has shown promising inhibition of human VWF in vitro and prevented arterial occlusion in non-human primates. These data including a long half-life after subcutaneous injections provide a strong rationale for ongoing clinical development of BT200.
Collapse
Affiliation(s)
- Shuhao Zhu
- Guardian Therapeutics IncLexingtonMassachusettsUSA
| | | | | | | | - Zicai Liang
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Shan Gao
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Daiwu Kang
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Bernd Jilma
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
26
|
Constantinescu-Bercu A, Grassi L, Frontini M, Salles-Crawley II, Woollard K, Crawley JTB. Activated α IIbβ 3 on platelets mediates flow-dependent NETosis via SLC44A2. eLife 2020; 9:e53353. [PMID: 32314961 PMCID: PMC7253179 DOI: 10.7554/elife.53353] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Platelet-neutrophil interactions are important for innate immunity, but also contribute to the pathogenesis of deep vein thrombosis, myocardial infarction and stroke. Here we report that, under flow, von Willebrand factor/glycoprotein Ibα-dependent platelet 'priming' induces integrin αIIbβ3 activation that, in turn, mediates neutrophil and T-cell binding. Binding of platelet αIIbβ3 to SLC44A2 on neutrophils leads to mechanosensitive-dependent production of highly prothrombotic neutrophil extracellular traps. A polymorphism in SLC44A2 (rs2288904-A) present in 22% of the population causes an R154Q substitution in an extracellular loop of SLC44A2 that is protective against venous thrombosis results in severely impaired binding to both activated αIIbβ3 and VWF-primed platelets. This was confirmed using neutrophils homozygous for the SLC44A2 R154Q polymorphism. Taken together, these data reveal a previously unreported mode of platelet-neutrophil crosstalk, mechanosensitive NET production, and provide mechanistic insight into the protective effect of the SLC44A2 rs2288904-A polymorphism in venous thrombosis.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Institute for Health Research BioResource, Rare Diseases, Cambridge University HospitalsCambridgeUnited Kingdom
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Kevin Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - James TB Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Yin SJ, Luo YQ, Zhao CP, Chen H, Zhong ZF, Wang S, Wang YT, Yang FQ. Antithrombotic effect and action mechanism of Salvia miltiorrhiza and Panax notoginseng herbal pair on the zebrafish. Chin Med 2020; 15:35. [PMID: 32322295 PMCID: PMC7164150 DOI: 10.1186/s13020-020-00316-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Salvia miltiorrhiza (Danshen, DS) and Panax notoginseng (Sanqi, SQ) are famous traditional Chinese herbs, and their herbal pair (DS–SQ) has been popular used as anti-thrombotic medicines. However, there is still a lack of sufficient scientific evidence to illustrate the optimum combination ratio of these two herbs as well as its action mechanisms. The purpose of this study is to investigate the anti-thrombotic effects of DS–SQ on zebrafish and explore its possible action mechanism. Methods Firstly, the chemical components in DS–SQ extract were analyzed by LC–ESI–MS/MS. Then, a phenylhydrazine (PHZ)-induced zebrafish thrombosis model was developed for evaluating the anti-thrombotic effects of DS–SQ extracts with different combination ratios and their nine pure compounds. Followed, Real-time quantitative PCR (RT-qPCR) assays were performed to investigate the potential antithrombotic mechanisms of DS–SQ. Results Thirty-three components were tentatively identified by LC–MS analysis. DS–SQ at the ratio of 10:1 presented the best anti-thrombotic effect, and rosmarinic acid, lithospermic acid and salvianolic acid B of DS showed good anti-thrombotic activity on zebrafish thrombosis model. The RT-qPCR assays indicated that DS–SQ (10:1) could cure the PHZ-induced thrombosis by downregulating the expression of PKCα, PKCβ, fga, fgb, fgg and vWF in zebrafish. Conclusions DS–SQ with the combination ratio of 10:1 showed optimum anti-thrombotic effect on PHZ-induced zebrafish thrombosis model, which provided a reference for reasonable clinical applications of DS–SQ herbal pair.
Collapse
|
28
|
Abstract
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, Building 708, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.
| |
Collapse
|
29
|
Denorme F, Vanhoorelbeke K, De Meyer SF. von Willebrand Factor and Platelet Glycoprotein Ib: A Thromboinflammatory Axis in Stroke. Front Immunol 2019; 10:2884. [PMID: 31921147 PMCID: PMC6928043 DOI: 10.3389/fimmu.2019.02884] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/25/2019] [Indexed: 01/23/2023] Open
Abstract
von Willebrand factor (VWF) and platelets are key mediators of normal hemostasis. At sites of vascular injury, VWF recruits platelets via binding to the platelet receptor glycoprotein Ibα (GPIbα). Over the past decades, it has become clear that many hemostatic factors, including VWF and platelets, are also involved in inflammatory processes, forming intriguing links between hemostasis, thrombosis, and inflammation. The so-called “thrombo-inflammatory” nature of the VWF-platelet axis becomes increasingly recognized in different cardiovascular pathologies, making it a potential therapeutic target to interfere with both thrombosis and inflammation. In this review, we discuss the current evidence for the thrombo-inflammatory activity of VWF with a focus on the VWF-GPIbα axis and discuss its implications in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven, Kortrijk, Belgium
| | | | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
30
|
Stegner D, Klaus V, Nieswandt B. Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Front Immunol 2019; 10:2505. [PMID: 31736950 PMCID: PMC6838001 DOI: 10.3389/fimmu.2019.02505] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed "reperfusion injury." Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Klaus
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Noy PJ, Gavin RL, Colombo D, Haining EJ, Reyat JS, Payne H, Thielmann I, Lokman AB, Neag G, Yang J, Lloyd T, Harrison N, Heath VL, Gardiner C, Whitworth KM, Robinson J, Koo CZ, Di Maio A, Harrison P, Lee SP, Michelangeli F, Kalia N, Rainger GE, Nieswandt B, Brill A, Watson SP, Tomlinson MG. Tspan18 is a novel regulator of the Ca 2+ channel Orai1 and von Willebrand factor release in endothelial cells. Haematologica 2019; 104:1892-1905. [PMID: 30573509 PMCID: PMC6717597 DOI: 10.3324/haematol.2018.194241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ca2+ entry via Orai1 store-operated Ca2+ channels in the plasma membrane is critical to cell function, and Orai1 loss causes severe immunodeficiency and developmental defects. The tetraspanins are a superfamily of transmembrane proteins that interact with specific 'partner proteins' and regulate their trafficking and clustering. The aim of this study was to functionally characterize tetraspanin Tspan18. We show that Tspan18 is expressed by endothelial cells at several-fold higher levels than most other cell types analyzed. Tspan18-knockdown primary human umbilical vein endothelial cells have 55-70% decreased Ca2+ mobilization upon stimulation with the inflammatory mediators thrombin or histamine, similar to Orai1-knockdown. Tspan18 interacts with Orai1, and Orai1 cell surface localization is reduced by 70% in Tspan18-knockdown endothelial cells. Tspan18 overexpression in lymphocyte model cell lines induces 20-fold activation of Ca2+ -responsive nuclear factor of activated T cell (NFAT) signaling, in an Orai1-dependent manner. Tspan18-knockout mice are viable. They lose on average 6-fold more blood in a tail-bleed assay. This is due to Tspan18 deficiency in non-hematopoietic cells, as assessed using chimeric mice. Tspan18-knockout mice have 60% reduced thrombus size in a deep vein thrombosis model, and 50% reduced platelet deposition in the microcirculation following myocardial ischemia-reperfusion injury. Histamine- or thrombin-induced von Willebrand factor release from endothelial cells is reduced by 90% following Tspan18-knockdown, and histamine-induced increase of plasma von Willebrand factor is reduced by 45% in Tspan18-knockout mice. These findings identify Tspan18 as a novel regulator of endothelial cell Orai1/Ca2+ signaling and von Willebrand factor release in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Peter J Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca L Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Dario Colombo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jasmeet S Reyat
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Holly Payne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ina Thielmann
- University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | - Adam B Lokman
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Tammy Lloyd
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria L Heath
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chris Gardiner
- Department of Haematology, University College London, London, UK
| | - Katharine M Whitworth
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Joseph Robinson
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Chek Z Koo
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alessandro Di Maio
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Paul Harrison
- Scar Free Foundation for Burns Research, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Steven P Lee
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | | | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
| |
Collapse
|
32
|
Kraisin S, Verhenne S, Pham TT, Martinod K, Tersteeg C, Vandeputte N, Deckmyn H, Vanhoorelbeke K, Van den Steen PE, De Meyer SF. von Willebrand factor in experimental malaria-associated acute respiratory distress syndrome. J Thromb Haemost 2019; 17:1372-1383. [PMID: 31099973 PMCID: PMC9906160 DOI: 10.1111/jth.14485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a lethal complication of severe malaria, characterized by marked pulmonary inflammation. Patient studies have suggested a link between von Willebrand factor (VWF) and malaria severity. OBJECTIVES To investigate the role of VWF in the pathogenesis of experimental MA-ARDS. METHODS Plasmodium berghei NK65-E (PbNK65) parasites were injected in Vwf+/+ and Vwf-/- mice. Pathological parameters were assessed following infection. RESULTS In accordance with patients with severe malaria, plasma VWF levels were increased and ADAMTS13 activity levels were reduced in experimental MA-ARDS. ADAMTS13- and plasmin-independent reductions of high molecular weight VWF multimers were observed at the end stage of disease. Thrombocytopenia was VWF-independent because it was observed in both Vwf+/+ and Vwf-/- mice. Interestingly, Vwf-/- mice had a shorter survival time compared with Vwf+/+ controls following PbNK65 infection. Lung edema could not explain this shortened survival because alveolar protein levels in Vwf-/- mice were approximately two times lower than in Vwf+/+ controls. Parasite load, on the other hand, was significantly increased in Vwf-/- mice compared with Vwf+/+ mice in both peripheral blood and lung tissue. In addition, anemia was only observed in PbNK65-infected Vwf-/- mice. Of note, Vwf-/- mice presented with two times more reticulocytes, a preferential target of the parasites. CONCLUSIONS This study suggests that parasite load together with malarial anemia, rather than alveolar leakage, might contribute to shortened survival in PbNK65-infected Vwf-/- mice. VWF deficiency is associated with early reticulocytosis following PbNK65 infection, which potentially explains the increase in parasite load.
Collapse
Affiliation(s)
- Sirima Kraisin
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Sebastien Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Nele Vandeputte
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
33
|
Chen 陈温纯 W, Voos KM, Josephson CD, Li R. Short-Acting Anti-VWF (von Willebrand Factor) Aptamer Improves the Recovery, Survival, and Hemostatic Functions of Refrigerated Platelets. Arterioscler Thromb Vasc Biol 2019; 39:2028-2037. [PMID: 31315441 DOI: 10.1161/atvbaha.119.312439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Refrigeration-induced binding of VWF (von Willebrand factor) to platelets contributes to the rapid clearance of refrigerated platelets. In this study, we investigate whether inhibiting VWF binding by a DNA-based aptamer ameliorates the clearance of refrigerated platelets without significantly impeding hemostatic functions. Approach and Results: Platelets were refrigerated with or without aptamer ARC1779 for 48 hours. VWF binding, the effective lifetime of ARC1779, platelet post-transfusion recovery and survival, and the hemostatic function were measured. ARC1779 treatment during refrigeration inhibited the platelet-VWF interaction. ARC1779-treated refrigerated murine platelets exhibited increased post-transfusion recovery and survival than untreated ones (recovery of ARC1779-treated platelets: 76.7±5.5%; untreated: 63.7±0.8%; P<0.01. Half-life: 31.4±2.36 hours versus 28.1±0.86 hours; P<0.05). A similar increase was observed for refrigerated human platelets (recovery: 49.4±4.4% versus 36.8±2.1%, P<0.01; half-life: 9.2±1.5 hours versus 8.7±0.9 hours, ns). The effective lifetime of ARC1779 in mice was 2 hours. Additionally, ARC1779 improved the long-term (2 hours after transfusion) hemostatic function of refrigerated platelets (tail bleeding time of mice transfused with ARC1779-treated refrigerated platelets: 160±65 seconds; untreated: 373±96 seconds; P<0.01). The addition of an ARC1779 antidote before transfusion improved the immediate (15 minutes after transfusion) hemostatic function (bleeding time of treated platelets: 149±21 seconds; untreated: 320±36 seconds; P<0.01). CONCLUSIONS ARC1779 improves the post-transfusion recovery of refrigerated platelets and preserves the long-term hemostatic function of refrigerated platelets. These results suggest that a short-acting inhibitor of the platelet-VWF interaction may be a potential therapeutic option to improve refrigeration of platelets for transfusion treatment.
Collapse
Affiliation(s)
- Wenchun Chen 陈温纯
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., K.M.V., C.D.J., R.L.), Emory University School of Medicine, Atlanta, GA
| | - Kayleigh M Voos
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., K.M.V., C.D.J., R.L.), Emory University School of Medicine, Atlanta, GA
| | - Cassandra D Josephson
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., K.M.V., C.D.J., R.L.), Emory University School of Medicine, Atlanta, GA.,Department of Pathology (C.D.J), Emory University School of Medicine, Atlanta, GA
| | - Renhao Li
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., K.M.V., C.D.J., R.L.), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
34
|
Wang M, Hao H, Leeper NJ, Zhu L. Thrombotic Regulation From the Endothelial Cell Perspectives. Arterioscler Thromb Vasc Biol 2019; 38:e90-e95. [PMID: 29793992 DOI: 10.1161/atvbaha.118.310367] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.) .,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Huifeng Hao
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.)
| | | | - Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (M.W., H.H., L.Z.)
| | | |
Collapse
|
35
|
Liao WJ, Wu MY, Peng CC, Tung YC, Yang RB. Epidermal growth factor-like repeats of SCUBE1 derived from platelets are critical for thrombus formation. Cardiovasc Res 2019; 116:193-201. [DOI: 10.1093/cvr/cvz036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
SCUBE1 [signal peptide-CUB-epidermal growth factor (EGF) domain-containing protein 1], expressed in endothelial cells (ECs) and platelets, exists in soluble or membrane forms. We previously showed that soluble SCUBE1 is a biomarker for platelet activation and also an active participant of thrombosis. However, whether the adhesive module of its EGF-like repeats is essential and the specific contribution of SCUBE1 synthesized in ECs or platelets to thrombosis in vivo remain unclear.
Methods and results
We generated new mutant (Δ2) mice lacking the entire EGF-like repeats to evaluate the module’s functional importance during thrombogenesis in vivo. The Δ2 platelet-rich plasma showed markedly impaired platelet aggregation induced by agonists including adenosine diphosphate, collagen, the thrombin agonist PAR-4 peptide and the thromboxane A2 analogue U46619. Consistently, genetic ablation of the EGF-like repeats diminished arterial thrombosis and protected Δ2 mice against lethal thromboembolism. On flow chamber assay, whole blood isolated from Δ2 or wild-type (WT) mice pre-treated with blocking antibodies against the EGF-like repeats showed a significant decrease in platelet deposition and thrombus formation on collagen-coated surfaces under arterial shear rates. Moreover, we created animals expressing SCUBE1 only in ECs (S1-EC) or platelets (S1-PLT) by reciprocal bone-marrow transplantation between WT and Δ2 mice. The time of carotid arterial thrombosis induced by ferric chloride was normal in S1-PLT chimeric mice but much prolonged in S1-EC animals.
Conclusions
We demonstrate that platelet-derived SCUBE1 plays a critical role in arterial thrombosis via its adhesive EGF-like repeats in vivo and suggest targeting these adhesive motifs of SCUBE1 for potential anti-thrombotic strategy.
Collapse
Affiliation(s)
- Wei-Ju Liao
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Meng-Ying Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Chen-Chung Peng
- Research Center for Applied Sciences, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 11529, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, 155 Linong Street, Sec. 2, Taipei 11221, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
36
|
Derszniak K, Przyborowski K, Matyjaszczyk K, Moorlag M, de Laat B, Nowakowska M, Chlopicki S. Comparison of Effects of Anti-thrombin Aptamers HD1 and HD22 on Aggregation of Human Platelets, Thrombin Generation, Fibrin Formation, and Thrombus Formation Under Flow Conditions. Front Pharmacol 2019; 10:68. [PMID: 30842734 PMCID: PMC6391317 DOI: 10.3389/fphar.2019.00068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
HD1 and HD22 are two of the most-studied aptamers binding to thrombin exosite I and exosite, respectively. To complete of their pharmacological profiles, the effects of HD1 and HD22 on thrombin-, ristocetin-, and collagen-induced human platelet aggregation, on thrombin generation and fibrin formation in human plasma, as well as on thrombus formation in human whole blood under flow conditions were assessed. The dissociation constants for HD1 and HD22 complexes with thrombin in simulated plasma ionic buffer were also evaluated. HD1 was more potent than HD22 in terms of inhibiting thrombin-induced platelet aggregation in platelet-rich plasma (PRP; 0.05-3 μM) and in washed platelets (WPs; 0.005-3 μM): approximately 8.31% (±6.99% SD) and 89.53% (±11.38% SD) for HD1 (0.5 μM) and HD22 (0.5 μM), respectively. Neither HD1 nor HD22 (3 μM) did influence platelets aggregation induced by collagen. Both of them inhibited ristocetin-induced aggregation in PRP. Surprisingly, HD1 and HD22 aptamers (3 μM) potentiated ristocetin-induced platelet aggregation in WP. HD1 reduced thrombin generation in a concentration-dependent manner [ETP at 3 μM: 1677.53 ± 55.77 (nM⋅min) vs. control 2271.71 ± 423.66 (nM⋅min)], inhibited fibrin formation (lag time at 3 μM: 33.70 min ± 8.01 min vs. control 7.91 min ± 0.91 min) and reduced thrombus formation under flow conditions [AUC30 at 3 μM: 758.30 ± 344.23 (kPa⋅min) vs. control 1553.84 ± 118.03 (kPa⋅min)]. HD22 (3 μM) also delayed thrombin generation but increased the thrombin peak. HD22 (3 μM) shortened the lag time of fibrin generation (5.40 min ± 0.26 min vs. control 7.58 min ± 1.14 min) but did not modify thrombus formation (3, 15 μM). K d values for the HD1 complex with thrombin was higher (257.8 ± 15.0 nM) than the K d for HD22 (97.6 ± 2.2 nM). In conclusion, HD1 but not HD22 represents a potent anti-thrombotic agent, confirming the major role of exosite I in the action of thrombin. HD22 aptamer blocking exosite II displays weaker anti-platelet and anti-coagulant activity, with surprising activating effects on thrombin and fibrin generation most likely induced by HD22-induced allosteric changes in thrombin dynamic structure.
Collapse
Affiliation(s)
- Katarzyna Derszniak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Karolina Matyjaszczyk
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | - Martijn Moorlag
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Synapse Research Institute, Maastricht, Netherlands
| | - Bas de Laat
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Synapse Research Institute, Maastricht, Netherlands
| | | | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
37
|
Abstract
Cerebral ischemic stroke treatment may change significantly now that clots are actually physically removed from the patient using thrombectomy. This allows for an analysis of the content of the clots as well as the correlation of the imaging findings and the clot behavior and morphology. This article illustrates how the interaction of different clots varies in the clinical setting and how analysis of clot composition, as well as the search for new pharmacologic targets, can lead to a better understanding of the pathophysiology and therapy resistance, in turn providing possibilities for a better approach in the treatment.
Collapse
Affiliation(s)
- Patrick A. Brouwer
- Neuroradiology Department, Neurointervention section, Karolinska University Hospital Stockholm, Sweden
| | - Waleed Brinjikji
- Departments of Radiology and Neurosurgery, Mayo Clinic Rochester MN, USA
- Joint Department of Medical Imaging, Toronto Western Hospital, Toronto ON, Canada
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
38
|
Chang JC. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J 2018; 16:20. [PMID: 30127669 PMCID: PMC6087012 DOI: 10.1186/s12959-018-0174-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
TTP is characterized by microangiopathic hemolytic anemia and thrombocytopenia associated with brain and kidney dysfunction. It occurs due to ADAMTS13 deficiency. TTP-like syndrome occurs in critically ill patients with the similar hematologic changes and additional organ dysfunction syndromes. Vascular microthrombotic disease (VMTD) includes both TTP and TTP-like syndrome because their underlying pathology is the same disseminated intravascular microthrombosis (DIT). Microthrombi are composed of platelet-unusually large von Willebrand factor multimers (ULVWF) complexes. TTP occurs as a result of accumulation of circulating ULVWF secondary to ADAMTS13 deficiency. This protease deficiency triggers microthrombogenesis, leading to "microthrombi" formation in microcirculation. Unlike TTP, TTP-like syndrome occurs in critical illnesses due to complement activation. Terminal C5b-9 complex causes channel formation to endothelial membrane, leading to endotheliopathy, which activates two different molecular pathways (i.e., inflammatory and microthrombotic). Activation of inflammatory pathway triggers inflammation. Activation of microthrombotic pathway promotes platelet activation and excessive endothelial exocytosis of ULVWF from endothelial cells (ECs). Overexpressed and uncleaved ULVWF become anchored to ECs as long elongated strings to recruit activated platelets, and assemble "microthrombi". In TTP, circulating microthrombi typically be lodged in microvasculature of the brain and kidney, but in TTP-like syndrome, microthrombi anchored to ECs of organs such as the lungs and liver as well as the brain and kidneys, leading to multiorgan dysfunction syndrome. TTP occurs as hereditary or autoimmune disease and is the phenotype of ADAMTS13 deficiency-associated VMTD. But TTP-like syndrome is hemostatic disorder occurring in critical illnesses and is the phenotype of endotheliopathy-associated VMTD. Thus, this author's contention is TTP and TTP-like syndrome are two distinctly different disorders with dissimilar underlying pathology and pathogenesis.
Collapse
Affiliation(s)
- Jae C. Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
39
|
Portier I, Vanhoorelbeke K, Verhenne S, Pareyn I, Vandeputte N, Deckmyn H, Goldenberg DS, Samal HB, Singh M, Ivics Z, Izsvák Z, De Meyer SF. High and long-term von Willebrand factor expression after Sleeping Beauty transposon-mediated gene therapy in a mouse model of severe von Willebrand disease. J Thromb Haemost 2018; 16:592-604. [PMID: 29288565 DOI: 10.1111/jth.13938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Essentials von Willebrand disease (VWD) is the most common inherited bleeding disorder. Gene therapy for VWD offers long-term therapy for VWD patients. Transposons efficiently integrate the large von Willebrand factor (VWF) cDNA in mice. Liver-directed transposons support sustained VWF expression with suboptimal multimerization. SUMMARY Background Type 3 von Willebrand disease (VWD) is characterized by complete absence of von Willebrand factor (VWF). Current therapy is limited to treatment with exogenous VWF/FVIII products, which only provide a short-term solution. Gene therapy offers the potential for a long-term treatment for VWD. Objectives To develop an integrative Sleeping Beauty (SB) transposon-mediated VWF gene transfer approach in a preclinical mouse model of severe VWD. Methods We established a robust platform for sustained transgene murine VWF (mVWF) expression in the liver of Vwf-/- mice by combining a liver-specific promoter with a sandwich transposon design and the SB100X transposase via hydrodynamic gene delivery. Results The sandwich SB transposon was suitable to deliver the full-length mVWF cDNA (8.4 kb) and supported supra-physiological expression that remained stable for up to 1.5 years after gene transfer. The sandwich vector stayed episomal (~60 weeks) or integrated in the host genome, respectively, in the absence or presence of the transposase. Transgene integration was confirmed using carbon tetrachloride-induced liver regeneration. Analysis of integration sites by high-throughput analysis revealed random integration of the sandwich vector. Although the SB vector supported long-term expression of supra-physiological VWF levels, the bleeding phenotype was not corrected in all mice. Long-term expression of VWF by hepatocytes resulted in relatively reduced amounts of high-molecular-weight multimers, potentially limiting its hemostatic efficacy. Conclusions Although this integrative platform for VWF gene transfer is an important milestone of VWD gene therapy, cell type-specific targeting is yet to be achieved.
Collapse
Affiliation(s)
- I Portier
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - S Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - I Pareyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - N Vandeputte
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - H Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - D S Goldenberg
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H B Samal
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - M Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Z Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Z Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - S F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
40
|
Abstract
Platelets patrol the vasculature and adhere at sites of vascular damage after trauma to limit blood loss. In recent years, however, it has become clear that platelets also contribute to pathophysiologic processes such as thrombosis, atherosclerosis, stroke, sepsis and many more. An exciting new role for them is in non-classical hemostasis to prevent bleeding in the inflamed vasculature. Recent studies suggest that GPVI, CLEC-2, integrin αIIbβ3 (GPIIb/IIIa), and the content of platelet α- and dense granules are important players in this process. This review summarizes the current knowledge about how platelets prevent vascular integrity during inflammation in the skin, lung, and the ischemic brain and their organ-specific role.
Collapse
Affiliation(s)
- Carsten Deppermann
- a Snyder Institute for Chronic Diseases , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
41
|
Doddapattar P, Dhanesha N, Chorawala MR, Tinsman C, Jain M, Nayak MK, Staber JM, Chauhan AK. Endothelial Cell-Derived Von Willebrand Factor, But Not Platelet-Derived, Promotes Atherosclerosis in Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol 2018; 38:520-528. [PMID: 29348121 DOI: 10.1161/atvbaha.117.309918] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE VWF (von Willebrand factor) is synthesized by endothelial cells and megakaryocytes and is known to contribute to atherosclerosis. In vitro studies suggest that platelet-derived VWF (Plt-VWF) is biochemically and functionally different from endothelial cell-derived VWF (EC-VWF). We determined the role of different pools of VWF in the pathophysiology of atherosclerosis. APPROACH AND RESULTS Using bone marrow transplantation, we generated chimeric Plt-VWF, EC-VWF, and Plt-VWF mice lacking a disintegrin and metalloprotease with thrombospondin type I repeats-13 in platelets and plasma on apolipoprotein E-deficient (Apoe-/-) background. Controls were chimeric Apoe-/- mice transplanted with bone marrow from Apoe-/- mice (wild type) and Vwf-/-Apoe-/- mice transplanted with bone marrow from Vwf-/-Apoe-/- mice (VWF-knock out). Susceptibility to atherosclerosis was evaluated in whole aortae and cross-sections of the aortic sinus in female mice fed a high-fat Western diet for 14 weeks. VWF-knock out, Plt-VWF, and Plt-VWF mice lacking a disintegrin and metalloprotease with thrombospondin type I repeats-13 exhibited reduced plaque size characterized by smaller necrotic cores, reduced neutrophil and monocytes/macrophages content, decreased MMP9 (matrix metalloproteinase), MMP2, and CX3CL1 (chemokine [C-X3-C motif] ligand 1)-positive area, and abundant interstitial collagen (P<0.05 versus wild-type or EC-VWF mice). Atherosclerotic lesion size and composition were comparable between wild-type or EC-VWF mice. Together these findings suggest that EC-VWF, but not Plt-VWF, promotes atherosclerosis exacerbation. Furthermore, intravital microscopy experiments revealed that EC-VWF, but not Plt-VWF, contributes to platelet and leukocyte adhesion under inflammatory conditions at the arterial shear rate. CONCLUSIONS EC-VWF, but not Plt-VWF, contributes to VWF-dependent atherosclerosis by promoting platelet adhesion and vascular inflammation. Plt-VWF even in the absence of a disintegrin and metalloprotease with thrombospondin type I repeats-13, both in platelet and plasma, was not sufficient to promote atherosclerosis.
Collapse
Affiliation(s)
- Prakash Doddapattar
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Nirav Dhanesha
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Mehul R Chorawala
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Chandler Tinsman
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Manish Jain
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Manasa K Nayak
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Janice M Staber
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City
| | - Anil K Chauhan
- From the Department of Internal Medicine (P.D., N.D., M.R.C., M.J., M.K.N., A.K.C.) and Stead Family Department of Pediatrics (C.T., J.M.S.), University of Iowa, Iowa City.
| |
Collapse
|
42
|
Myosin IIa is critical for cAMP-mediated endothelial secretion of von Willebrand factor. Blood 2017; 131:686-698. [PMID: 29208598 DOI: 10.1182/blood-2017-08-802140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
Nonmuscle myosin II has been implicated in regulation of von Willebrand factor (VWF) release from endothelial Weibel-Palade bodies (WPBs), but the specific role of myosin IIa isoform is poorly defined. Here, we report that myosin IIa is expressed both in primary human endothelial cells and intact mouse vessels, essential for cyclic adenosine monophosphate (cAMP)-mediated endothelial VWF secretion. Downregulation of myosin IIa by shRNAs significantly suppressed both forskolin- and epinephrine-induced VWF secretion. Endothelium-specific myosin IIa knockout mice exhibited impaired epinephrine-stimulated VWF release, prolonged bleeding time, and thrombosis. Further study showed that in resting cells, myosin IIa deficiency disrupted the peripheral localization of Rab27-positive WPBs along stress fibers; on stimulation by cAMP agonists, myosin IIa in synergy with zyxin promotes the formation of a functional actin framework, which is derived from preexisting cortical actin filaments, around WPBs, facilitating fusion and subsequent exocytosis. In summary, our findings not only identify new functions of myosin IIa in regulation of WPB positioning and the interaction between preexisting cortical actin filaments and exocytosing vesicles before fusion but also reveal myosin IIa as a physiological regulator of endothelial VWF secretion in stress-induced hemostasis and thrombosis.
Collapse
|
43
|
Wang X, Zhao J, Zhang Y, Xue X, Yin J, Liao L, Xu C, Hou Y, Yan S, Liu J. Kinetics of plasma von Willebrand factor in acute myocardial infarction patients: a meta-analysis. Oncotarget 2017; 8:90371-90379. [PMID: 29163836 PMCID: PMC5685757 DOI: 10.18632/oncotarget.20091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have shown a variation in plasma level of von Willebrand factor (vWF) in acute myocardial infarction (AMI) patients but with contentious results. In this study, we performed a meta-analysis to evaluate the kinetics of plasma vWF after AMI. A total of 11 qualified studies were obtained through systematical search in PubMed, Web of science, Cochrane Library database and CNKI, followed by search of reference lists, involving 519 AMI patients and 466 non-AMI controls. The standard mean difference (SMD) and 95% confidence intervals (95% CI) were calculated using random-effects model. Results indicated that the plasma vWF was significantly increased in the first several hours after onset of AMI (SMD = 1.94, 95% CI = 1.39-2.48, P < 0.001) and stayed at high level until 24 h (SMD = 1.17, 95% CI = 0.45-1.89, P = 0.001). Elevated level of vWF appeared to persist for one week and reduced to normal until the fourteenth day after AMI (SMD = 0.44, 95% CI = -0.14-1.02, P = 0.14). Subgroup analysis revealed that the high level of vWF lasted just for 1 day in patients with a symptom duration ≤ 6 h before admission. For patients with a symptom duration > 6 h, elevated vWF was found in all 7 days except day 1. Our findings determined the kinetics of plasma vWF after AMI, and might provide a new insight in monitoring AMI progression.
Collapse
Affiliation(s)
- Xia Wang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Junyu Zhao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Yong Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Xiujuan Xue
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Cuiping Xu
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014 Shandong, China
| |
Collapse
|
44
|
Geys L, Roose E, Vanhoorelbeke K, Bedossa P, Scroyen I, Lijnen HR. Role of ADAMTS13 in diet-induced liver steatosis. Mol Med Rep 2017; 16:1451-1458. [PMID: 29067443 DOI: 10.3892/mmr.2017.6714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/28/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies, predominantly based on increased or decreased plasma levels, have reported conflicting data on a potential functional role of ADAMTS13 in the pathogenesis of liver diseases, including non‑alcoholic steatohepatitis (NASH). The aim of the current study was to evaluate whether ADAMTS13 deficiency affects development of NASH. Therefore, male wild‑type (WT) and Adamts13 deficient (Adamts13‑/‑) mice were kept on a steatosis‑inducing diet devoid of methionine and choline (MCD) or a control diet (MCC) for 4 weeks. Induction of NASH did not affect plasma ADAMTS13 antigen levels of WT mice. MCD as compared with MCC feeding resulted in reduced body and liver weight with no differences between the genotypes. Plasma levels of the liver enzymes AST and ALT were significantly higher for MCD vs. MCC fed Adamts13‑/‑ and WT mice, however were not different between the genotypes. Liver triglyceride levels were also higher after MCD feeding, but were not different between WT and Adamts13‑/‑ mice. Adamts13‑/‑ mice on the two diets exhibited higher insulin sensitivity when compared with WT mice. On the MCC diet, the genotype did not show clear histological abnormalities in the liver, whereas severe steatosis and fibrosis were observed on MCD diet, however were comparable for both genotypes. This was supported by comparably enhanced hepatic expression in the two genotypes on MCD diet of the steatosis marker CD36 and of the fibrosis marker tissue inhibitor of metalloproteinase 1. Thus, the results of the current study do not support a functional role of ADAMTS13 in this murine model of NASH.
Collapse
Affiliation(s)
- Lotte Geys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, B‑3000 Leuven, Belgium
| | - Elien Roose
- Laboratory for Thrombosis Research, Department of Chemistry, University of Leuven Kulak Campus Kortrijk, B‑8500 Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Department of Chemistry, University of Leuven Kulak Campus Kortrijk, B‑8500 Kortrijk, Belgium
| | - Pierre Bedossa
- Department of Pathology, Physiology and Imaging, Université Paris Diderot, 75013 Paris, France
| | - Ilse Scroyen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, B‑3000 Leuven, Belgium
| | - H Roger Lijnen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, B‑3000 Leuven, Belgium
| |
Collapse
|
45
|
Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130:542-553. [PMID: 28572286 DOI: 10.1182/blood-2016-11-754416] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.
Collapse
|
46
|
Vermeersch E, Denorme F, Maes W, De Meyer SF, Vanhoorelbeke K, Edwards J, Shevach EM, Unutmaz D, Fujii H, Deckmyn H, Tersteeg C. The role of platelet and endothelial GARP in thrombosis and hemostasis. PLoS One 2017; 12:e0173329. [PMID: 28278197 PMCID: PMC5344406 DOI: 10.1371/journal.pone.0173329] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glycoprotein-A Repetitions Predominant protein (GARP or LRRC32) is present on among others human platelets and endothelial cells. Evidence for its involvement in thrombus formation was suggested by full knockout of GARP in zebrafish. OBJECTIVES To evaluate the role of GARP in platelet physiology and in thrombus formation using platelet and endothelial conditional GARP knock out mice. METHODS Platelet and endothelial specific GARP knockout mice were generated using the Cre-loxP recombination system. The function of platelets without GARP was measured by flow cytometry, spreading analysis and aggregometry using PAR4-activating peptide and collagen related peptide. Additionally, clot retraction and collagen-induced platelet adhesion and aggregation under flow were analyzed. Finally, in vivo tail bleeding time, occlusion time of the mesenteric and carotid artery after FeCl3-induced thrombosis were determined in platelet and endothelial specific GARP knock out mice. RESULTS Platelet specific GARP knockout mice had normal surface GPIb, GPVI and integrin αIIb glycoprotein expression. Although GARP expression was increased upon platelet activation, platelets without GARP displayed normal agonist induced activation, spreading on fibrinogen and aggregation responses. Furthermore, absence of GARP on platelets did not influence clot retraction and had no impact on thrombus formation on collagen-coated surfaces under flow. In line with this, neither the tail bleeding time nor the occlusion time in the carotid- and mesenteric artery after FeCl3-induced thrombus formation in platelet or endothelial specific GARP knock out mice were affected. CONCLUSIONS Evidence is provided that platelet and endothelial GARP are not important in hemostasis and thrombosis in mice.
Collapse
Affiliation(s)
- Elien Vermeersch
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frederik Denorme
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Wim Maes
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Justin Edwards
- Laboratory of Immunology, National Institute of Allergy and infectious Diseases, Bethesda, MD, United States of America
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institute of Allergy and infectious Diseases, Bethesda, MD, United States of America
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
- * E-mail:
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
47
|
Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules. Nat Commun 2017; 8:14639. [PMID: 28256511 PMCID: PMC5338022 DOI: 10.1038/ncomms14639] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Endothelial exocytosis of Weibel-Palade body (WPB) is one of the first lines of defence against vascular injury. However, the mechanisms that control WPB exocytosis in the final stages (including the docking, priming and fusion of granules) are poorly understood. Here we show that the focal adhesion protein zyxin is crucial in this process. Zyxin downregulation inhibits the secretion of von Willebrand factor (VWF), the most abundant cargo in WPBs, from human primary endothelial cells (ECs) induced by cAMP agonists. Zyxin-deficient mice exhibit impaired epinephrine-stimulated VWF release, prolonged bleeding time and thrombosis, largely due to defective endothelial secretion of VWF. Using live-cell super-resolution microscopy, we visualize previously unappreciated reorganization of pre-existing actin filaments around WPBs before fusion, dependent on zyxin and an interaction with the actin crosslinker α-actinin. Our findings identify zyxin as a physiological regulator of endothelial exocytosis through reorganizing local actin network in the final stage of exocytosis.
Collapse
|
48
|
N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura. Blood 2017; 129:1030-1038. [DOI: 10.1182/blood-2016-09-738856] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
Key Points
Prophylactic administration of NAC was effective in preventing severe TTP signs in mice by reducing the VWF multimer size. In both mice and baboons, NAC was not effective in resolving preexisting TTP signs, as thrombus resolution could not be achieved.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Von Willebrand factor (VWF) is a large multidomain, multimeric glycoprotein that plays an essential role in regulating the balance between blood clotting and bleeding. Aberrant VWF regulation can lead to a spectrum of diseases extending from bleeding disorders [Von Willebrand disease (VWD)] to aberrant thrombotic thrombocytopenic purpura (TTP). Understanding the biology of VWF expression and secretion is essential for developing novel targeted therapies for VWF-related hemostasis disorders. RECENT FINDINGS A number of recent elegant in-vitro and in-vivo studies will be highlighted, including the discovery of intronic splicing in the VWF gene, microRNA-regulated VWF gene expression, and syntaxin binding protein and autophagy mediated VWF secretion. Compared with the already established critical role of VWF in VWD and TTP pathophysiology, additional clinical studies have clarified and reinforced the association of elevated plasma levels of VWF with an increased risk of stroke, myocardial infarction, venous thrombosis, and diabetic thrombotic complications. Moreover, experimental mouse models of ischemic stroke and myocardial infarction have further supported VWF as a potential therapeutic target. SUMMARY VWF biosynthesis, maturation, and secretion is a complex process, which mandates tight regulation. Significant progress has been made in our understandings of VWF expression and secretion and its association with thrombotic diseases, contributing to the development of novel targeting VWF drugs for prevention and treatment of deficient and enhanced hemostasis.
Collapse
Affiliation(s)
- Yaozu Xiang
- aYale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, Connecticut, USA bSchool of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | | |
Collapse
|
50
|
Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Lei X, Chen P, Xu J, Dai X, Li BX, Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 2016; 14:29. [PMID: 27766055 PMCID: PMC5056500 DOI: 10.1186/s12959-016-0100-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Rodrigo Matos Pinto Coelho
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Jianhua Xu
- CCOA Therapeutics Inc, Toronto, ON Canada
| | - Xiangrong Dai
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
- Hong Kong University of Science and technology, Hong Kong, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
- CCOA Therapeutics Inc, Toronto, ON Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|