1
|
R P, Rakshit S, Shanmugam G, George M, Sarkar K. Wiskott Aldrich syndrome protein (WASp)-deficient Th1 cells promote R-loop-driven transcriptional insufficiency and transcription-coupled nucleotide excision repair factor (TC-NER)-driven genome-instability in the pathogenesis of T cell acute lymphoblastic leukemia. Clin Immunol 2024; 263:110204. [PMID: 38582251 DOI: 10.1016/j.clim.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND T-ALL is an aggressive hematological tumor that develops as the result of a multi-step oncogenic process which causes expansion of hematopoietic progenitors that are primed for T cell development to undergo malignant transformation and growth. Even though first-line therapy has a significant response rate, 40% of adult patients and 20% of pediatric patients will relapse. Therefore, there is an unmet need for treatment for relapsed/refractory T-ALL to develop potential targeted therapies. METHODS Pediatric T-ALL patient derived T cells were grown under either nonskewingTh0 or Th1-skewing conditions to further process for ChIP-qPCR, RDIP-qPCR and other RT-PCR assays. Endogenous WASp was knocked out using CRISPR-Cas9 and was confirmed using flow cytometry and western blotting. LC-MS/MS was performed to find out proteomic dataset of WASp-interactors generated from Th1-skewed, human primary Th-cells. DNA-damage was assessed by immunofluorescence confocal-imaging and single-cell gel electrophoresis (comet assay). Overexpression of RNaseH1 was also done to restore normal Th1-transcription in WASp-deficient Th1-skewed cells. RESULTS We discovered that nuclear-WASp is required for suppressing R-loop production (RNA/DNA-hybrids) at Th1-network genes by ribonucleaseH2 (RNH2) and topoisomerase1. Nuclear-WASp is associated with the factors involved in preventing and dissolving R-loops in Th1 cells. In nuclear- WASp-reduced malignant Th1-cells, R-loops accumulate in vivo and are processed into DNA-breaks by transcription-coupled-nucleotide-excision repair (TC-NER). Several epigenetic modifications were also found to be involved at Th1 gene locus which are responsible for active/repressive marks of particular genes. By demonstrating WASp as a physiologic regulator of programmed versus unprogrammed R-loops, we suggest that the transcriptional role of WASp in vivo extends also to prevent transcription-linked DNA damage during malignancy and through modification of epigenetic dysregulations. CONCLUSION Our findings present a provocative possibility of resetting R-loops as a therapeutic intervention to correct both immune deficiency and malignancy in T-cell acute lymphoblastic leukemia patients and a novel role of WASp in the epigenetic regulation of T helper cell differentiation in T-ALL patients, anticipating WASp's requirement for the suppression of T-ALL progression.
Collapse
Affiliation(s)
- Pradeep R
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Roy S, Shanmugam G, Rakshit S, Pradeep R, George M, Sarkar K. Exploring the immunomodulatory potential of Brahmi (Bacopa monnieri) in the treatment of invasive ductal carcinoma. Med Oncol 2024; 41:115. [PMID: 38622289 DOI: 10.1007/s12032-024-02365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - R Pradeep
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Jiang C, Zhang C, Dai M, Wang F, Xu S, Han D, Wang Y, Cao Y, Liang Y, Zhang Z, Yan L, Shen Y, He K, Shen Y, Liu J. Interplay between SUMO1-related SUMOylation and phosphorylation of p65 promotes hepatocellular carcinoma progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119595. [PMID: 37730133 DOI: 10.1016/j.bbamcr.2023.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The nuclear factor kappaB (NF-κB) subunit p65, plays an important role in the progression of hepatocellular carcinoma (HCC). Phosphorylation of p65 is considered as an important mechanism for the positive regulation of NF-κB activity. According to our previous data, p65 can be SUMOylated by small ubiquitin-related modifier 1 (SUMO1) protein, and SUMO1 promotes p65 nuclear import and HCC progression. However, the effect of SUMO1-related p65 SUMOylation on NF-κB transcriptional activity and the relationship between phosphorylation and SUMOylation of p65 remain obscure. Here, we found that phosphorylated p65 level was increased in cancer tissues of HCC patients, and similar phenomenon was found for SUMO1 expression but not for SUMO2/3. Further clinical data showed a positive correlation between SUMO1 and phosphorylated p65. We also verified that overexpression of SUMO1 upregulated phosphorylated p65 levels. Next, we verified SUMO1-related p65 SUMOylation with in vitro SUMOylation assay, constructed mutants of p65 SUMOylation and phosphorylation, and found that SUMO1-related p65 SUMOylation promoted p65 nuclear import and increased NF-κB activity. Both SUMO1-related p65 SUMOylation and p65 phosphorylation (especially at S276 site) increased the viability and invasion of hepatoma cells, and decreased the apoptosis of hepatoma cells. At last, we found that the phosphorylation of p65 promoted the level of SUMO1-related p65 SUMOylation, and SUMO1-related p65 SUMOylation upregulated phosphorylated p65 (at S276 site). Our study contributes to the exploration of the oncogenic mechanism of p65, which is the important protein in HCC.
Collapse
Affiliation(s)
- Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China; Clinical college, Anhui Medical University, Hefei, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yajie Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, China
| | - Lina Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Kewu He
- The Third Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Chandnani N, Mandal A, Gupta I, Mukherjee O, Rakshit S, Shanmugam G, George M, Sarkar K. Association of Wiskott-Aldrich syndrome protein (WASp) in epigenetic regulation of B cell differentiation in non-small-cell lung cancer (NSCLC). Med Oncol 2023; 41:28. [PMID: 38146020 DOI: 10.1007/s12032-023-02264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer which is the deadliest type of cancer for both men and women. Previous studies already showed that cell-intrinsic loss of WASp causes B cell tolerance and WASp deficiency in T helper (TH) cells is linked to negative effects on cytokine gene transcription necessary for TH1 differentiation. In the current study, we investigated the molecular mechanisms involved in WASp-mediated epigenetic regulation of B cell differentiation during NSCLC. Our ChIP-qPCR data suggest the less percentage enrichment of the B cell differentiating factors (Ikaros, Pax5, PU.1, BATF) and WASp across the WAS gene in the B cells of NSCLC patients in comparison with normal healthy donors and overexpression of WASp showed the reverse effects. WASp-depleted B cells while co-culturing with respective PBMCs isolated from normal healthy donors and NSCLC patients, we observed upregulation of TH2-, TH17-, and Treg-specific cytokines (IL4, ILI7A, IL10) & transcription factors (GATA3, RORC, FOXP3) and downregulation of TH1-specific cytokine (IFNγ) & transcription factor (TBX21). Our study showed that the overexpression of WASp resulted into upregulation of B cell differentiating factors, tumor suppressor protein (p53), histone methylation marker (H3K4me3) with concomitant downregulation of tumor-promoting factors (Notch 1, β-Catenin, DNAPKcs) and histone deacetylation marker (HDAC2) and increase in percentage cytotoxicity of NSCLC-specific cells (A549). Successful overexpression of WASp not only helps in epigenetic regulation of B cell differentiation but also supports tumor suppression in NSCLC. Thus, WASp can be targeted for therapeutic intervention of NSCLC.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ayush Mandal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Oishi Mukherjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Chandnani N, Choudhari VS, Talukdar R, Rakshit S, Shanmugam G, Guchait S, Gupta I, George M, Sarkar K. Depletion of enhancer zeste homolog 2 (EZH2) directs transcription factors associated with T cell differentiation through epigenetic regulation of Yin Yang 1(YY1) in combating non-small cell lung cancer (NSCLC). Med Oncol 2023; 40:185. [PMID: 37212947 DOI: 10.1007/s12032-023-02053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the leading cause of death in all countries alike. In the current study, we have found out that Histone H3Lys4trimethylation is abnormal on YY1 in CD4+T Helper (TH) cells of NSCLC patients which is evident by Histone H3Lys27 trimethylation mediated via EZH2. We investigated the status of Yin Yang 1 (YY1) and the involvement of certain transcription factors that lead to tumorigenesis after depleting endogenous EZH2 in vitro by CRISPR/Cas9 in the CD4+TH1-or-TH2-polarized cells isolated initially as CD4+TH0 cells from the PBMC of the control subjects and patients suffering from NSCLC. After depletion of endogenous EZH2, RT-qPCR based mRNA expression analysis showed that there was an increase in the expression of TH1 specific genes and a decrease in the expression of TH2 specific genes in NSCLC patients CD4+TH cells. We can conclude that this group of NSCLC patients may have the tendency at least in vitro to elucidate adaptive/protective immunity through the depletion of endogenous EZH2 along with the reduction in the expression of YY1. Moreover, depletion of EZH2 not only suppressed the CD4+CD25+FOXP3+Regulatory T cells (Treg) but also it aided the generation of CD8+Cytotoxic T Lymphocytes (CTL) which were involved in killing of the NSCLC cells. Thus the transcription factors involved in EZH2 mediated T cell differentiation linked to malignancies offers us an appealing avenue of targeted therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Vedika Shrirang Choudhari
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rajat Talukdar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Shiuli Guchait
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, 603203, Tamil Nadu, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Vieira RC, Pinho LG, Westerberg LS. Understanding immunoactinopathies: A decade of research on WAS gene defects. Pediatr Allergy Immunol 2023; 34:e13951. [PMID: 37102395 DOI: 10.1111/pai.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.
Collapse
Affiliation(s)
- Rhaissa Calixto Vieira
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lia Goncalves Pinho
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Mahalakshmi Surendran A, Rai A, Rakshit S, George M, Sarkar K. Immunomodulatory Role of Diospyros peregrina Fruit Preparation in Breast Cancer by Utilizing Macrophage Mediated Antigen Presentation and T Helper Cell (Th) Differentiation. Clin Breast Cancer 2023; 23:e95-e102. [PMID: 36641322 DOI: 10.1016/j.clbc.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Diospyros peregrina is dioecious plant native to India and belonging to the family of Ebenaceae, is largely utilized in treatment of various ailments. Little has been known about the antitumor activity of Diospyros peregrina with only 1 previous study on Ehrlich Ascites Carcinoma in mice. Therefore, it prompted us to extensively explore the immunomodulatory effect in various cancer forms. The focal point of this study revolves around breast cancer, which is the second most common cancer in the world. In view of the increasing demands for noninvasive treatments, natural plant-based agents open up promising applications in cancer immunotherapy METHODS: CD4+ lymphocytes were isolated from the peripheral blood mononuclear cells (PBMCs) of breast cancer patients and normal donor blood samples using magnetic-activated cell sorting (MACS) and cultured separately. Utilizing the plastic surface adherence property, the macrophages were isolated from CD4 negative lymphocytes of both breast cancer patients and normal donors. For the presentation of tumor antigens invitro, macrophages were pulsed with breast tumor associated antigen (BTAA) in presence or absence of Diospyros peregrina fruit preparation (DFP). Differentially pulsed and irradiated macrophages were co-cultured with autologous and allogenic lymphocytes. Supernatants hence collected from CD4+ lymphocytes were utilized for cytokine profiling using ELISA and proliferation was assessed by MTT assay. Cytotoxic T lymphocytes (CTLs) generated from CD4 negative lymphocytes culture (2 × 105) was incubated with MCF-7 (2 × 104) to check cytotoxicity using LDH release assay. CD4+ lymphocytes were treated in presence or absence of DFP, were analyzed using immunoblotting and RT-qPCR, to check DFP mediated T helper (Th) cell differentiation through investigation of signatory cytokines and transcription factors. RESULTS It was found that DFP elevated the proliferation of CD4+ T lymphocytes (Th) in response to BTAA. DFP also helped in presenting BTAA pulsed macrophages directing in the cytotoxic T-lymphocyte mediated immune response. Results indicated that DFP preferentially highlighted Th1 commitment with type-1 specific cytokines IFN-g and IL-12 and was indifferent in Th2 manifestation. DFP was not only involved in the upregulation of Tbet mounted type-1 mediated immune response and activation of STAT1 but also it downregulated STAT6 and GATA3, the functional activators and regulators of type-2 immune response. Moreover, it was observed that DFP inhibited the tumor-promoting environment modulated through Tregs by downregulating Foxp3 and STAT5. Further, it was detected that DFP directs Th1 bias and results in attainment of better suppression of breast tumor CONCLUSION: The results collectively pointed out that DFP favored cell-mediated immune response from BTAA antigen presentation on macrophages and also helping in the robust proliferation of an entire spectrum of T helper lymphocytes which furthermore strengthen the underlying immune responses, hence, fencing the body, of the progression of breast cancer.
Collapse
Affiliation(s)
| | - Akanksha Rai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Center, Kattankulathur, Tamil Nadu, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
8
|
WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage. Nat Commun 2022; 13:3743. [PMID: 35768435 PMCID: PMC9243104 DOI: 10.1038/s41467-022-31415-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Perturbation in the replication-stress response (RSR) and DNA-damage response (DDR) causes genomic instability. Genomic instability occurs in Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency disorder, yet the mechanism remains largely uncharacterized. Replication protein A (RPA), a single-strand DNA (ssDNA) binding protein, has key roles in the RSR and DDR. Here we show that human WAS-protein (WASp) modulates RPA functions at perturbed replication forks (RFs). Following genotoxic insult, WASp accumulates at RFs, associates with RPA, and promotes RPA:ssDNA complexation. WASp deficiency in human lymphocytes destabilizes RPA:ssDNA-complexes, impairs accumulation of RPA, ATR, ETAA1, and TOPBP1 at genotoxin-perturbed RFs, decreases CHK1 activation, and provokes global RF dysfunction. las17 (yeast WAS-homolog)-deficient S. cerevisiae also show decreased ScRPA accumulation at perturbed RFs, impaired DNA recombination, and increased frequency of DNA double-strand break (DSB)-induced single-strand annealing (SSA). Consequently, WASp (or Las17)-deficient cells show increased frequency of DSBs upon genotoxic insult. Our study reveals an evolutionarily conserved, essential role of WASp in the DNA stress-resolution pathway, such that WASp deficiency provokes RPA dysfunction-coupled genomic instability. Cancer develops in Wiskott-Aldrich syndrome (WAS). Here the authors identify a role for WAS-protein (WASp) in the DNA stress-resolution pathway by promoting the function of Replication Protein A at replication forks after DNA damage.
Collapse
|
9
|
Miyazawa H, Wada T. Reversion Mosaicism in Primary Immunodeficiency Diseases. Front Immunol 2021; 12:783022. [PMID: 34868061 PMCID: PMC8635092 DOI: 10.3389/fimmu.2021.783022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Reversion mosaicism has been reported in an increasing number of genetic disorders including primary immunodeficiency diseases. Several mechanisms can mediate somatic reversion of inherited mutations. Back mutations restore wild-type sequences, whereas second-site mutations result in compensatory changes. In addition, intragenic recombination, chromosomal deletions, and copy-neutral loss of heterozygosity have been demonstrated in mosaic individuals. Revertant cells that have regained wild-type function may be associated with milder disease phenotypes in some immunodeficient patients with reversion mosaicism. Revertant cells can also be responsible for immune dysregulation. Studies identifying a large variety of genetic changes in the same individual further support a frequent occurrence of reversion mosaicism in primary immunodeficiency diseases. This phenomenon also provides unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. In this paper, we review the recent findings of reversion mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Hanae Miyazawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Han SS, Wen KK, Vyas YM. Deficiency of Wiskott-Aldrich syndrome protein has opposing effect on the pro-oncogenic pathway activation in nonmalignant versus malignant lymphocytes. Oncogene 2020; 40:345-354. [PMID: 33139832 DOI: 10.1038/s41388-020-01533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 01/23/2023]
Abstract
Immunodeficiency is associated with cancer risk. Accordingly, hematolymphoid cancers develop in Wiskott-Aldrich syndrome (WAS), an X-linked primary immunodeficiency disorder (PID) resulting from the deficiency of WAS-protein (WASp) expressed predominantly in the hematolymphoid cell lineages. Despite the correlation between WASp deficiency and hematolymphoid cancers, the molecular mechanism underlying the oncogenic role of WASp is incompletely understood. Employing the WASp-sufficient and WASp-deficient cell-pair model of human T and B lymphocytes, we show that WASp deficiency differentially influences hyperactivation versus inhibition of both CDC42:ERK1/2 and NF-κB:AP-1 pro-oncogenic signaling pathways in nonmalignant versus malignant T and B lymphocytes. Furthermore, WASp deficiency induces a cell-type specific up/down-modulation of the DNA-binding activities of NF-κB, AP-1, and multiple other transcription factors with known roles in oncogenesis. We propose that WASp functions as a putative "tumor-suppressor" protein in normal T and B cells, and "oncoprotein" in a subset of established T and B cell malignancies that are not associated with the NPM-ALK fusion.
Collapse
Affiliation(s)
- Seong-Su Han
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the Stead Family University of Iowa Children's Hospital, Iowa City, IA, 52242, USA
| | - Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the Stead Family University of Iowa Children's Hospital, Iowa City, IA, 52242, USA
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the Stead Family University of Iowa Children's Hospital, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
Pilania RK, Anjani G, Saini AG, Jain R, Suri D, Rawat A. X-Linked Thrombocytopenia and Vanishing White Matter Disease in a Child: Double Tragedy. J Clin Immunol 2020. [PMID: 32865661 DOI: 10.7655/nydxbns20200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rakesh Kumar Pilania
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Romit Jain
- Rainbow children hospital, Hyderabad, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
12
|
Pilania RK, Anjani G, Saini AG, Jain R, Suri D, Rawat A. X-Linked Thrombocytopenia and Vanishing White Matter Disease in a Child: Double Tragedy. J Clin Immunol 2020; 40:1176-1180. [PMID: 32865661 DOI: 10.1007/s10875-020-00858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Rakesh Kumar Pilania
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Romit Jain
- Rainbow children hospital, Hyderabad, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
13
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
14
|
Wen KK, Han SS, Vyas YM. Wiskott-Aldrich syndrome protein senses irradiation-induced DNA damage to coordinate the cell-protective Golgi dispersal response in human T and B lymphocytes. J Allergy Clin Immunol 2019; 145:324-334. [PMID: 31604087 DOI: 10.1016/j.jaci.2019.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency disorder resulting from Wiskott-Aldrich syndrome protein (WASp) deficiency. Lymphocytes from patients with WAS manifest increased DNA damage and lymphopenia from cell death, yet how WASp influences DNA damage-linked cell survival is unknown. A recently described mechanism promoting cell survival after ionizing radiation (IR)-induced DNA damage involves fragmentation and dispersal of the Golgi apparatus, known as the Golgi-dispersal response (GDR), which uses the Golgi phosphoprotein 3 (GOLPH3)-DNA-dependent protein kinase (DNA-PK)-myosin XVIIIA-F-actin signaling pathway. OBJECTIVE We sought to define WASp's role in the DNA damage-induced GDR and its disruption as a contributor to the development of radiosensitivity-linked immunodeficiency in patients with WAS. METHODS In human TH and B-cell culture systems, DNA damage-induced GDR elicited by IR or radiomimetic chemotherapy was monitored in the presence or absence of WASp or GOLPH3 alone or both together. RESULTS WASp deficiency completely prevents the development of IR-induced GDR in human TH and B cells, despite the high DNA damage load. Loss of WASp impedes nuclear translocation of GOLPH3 and its colocalization with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Surprisingly, however, depletion of GOLPH3 alone or depolymerization of F-actin in WASp-sufficient TH cells still allows development of robust GDR, suggesting that WASp, but not GOLPH3, is essential for GDR and cell survival after IR-induced DNA-damage in human lymphocytes. CONCLUSION The study identifies WASp as a novel effector of the nucleus-to-Golgi cell-survival pathway triggered by IR-induced DNA damage in cells of the hematolymphoid lineage and proposes an impaired GDR as a new cause for development of a "radiosensitive" form of immune dysregulation in patients with WAS.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, and the Stead Family University of Iowa Children's Hospital, Iowa City, Iowa.
| |
Collapse
|
15
|
Syomin BV, Ilyin YV. Virus-Like Particles as an Instrument of Vaccine Production. Mol Biol 2019; 53:323-334. [PMID: 32214478 PMCID: PMC7088979 DOI: 10.1134/s0026893319030154] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
Abstract
The paper discusses the techniques which are currently implemented for vaccine production based on virus-like particles (VLPs). The factors which determine the characteristics of VLP monomers assembly are provided in detail. Analysis of the literature demonstrates that the development of the techniques of VLP production and immobilization of target antigens on their surface have led to the development of universal platforms which make it possible for virtually any known antigen to be exposed on the particle surface in a highly concentrated form. As a result, the focus of attention has shifted from the approaches to VLP production to the development of a precise interface between the organism's immune system and the peptides inducing a strong immune response to pathogens or the organism's own pathological cells. Immunome-specified methods for vaccine design and the prospects of immunoprophylaxis are discussed. Certain examples of vaccines against viral diseases and cancers are considered.
Collapse
Affiliation(s)
- B. V. Syomin
- Institute for Statistical Studies and Economics of Knowledge (ISSEK),
National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Y. V. Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
miR-221 alleviates the inflammatory response and cell apoptosis of neuronal cell through targeting TNFAIP2 in spinal cord ischemia-reperfusion. Neuroreport 2019; 29:655-660. [PMID: 29596155 DOI: 10.1097/wnr.0000000000001013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to examine the role of miR-221 in inflammatory response and apoptosis of neuronal cells after spinal cord ischemia/reperfusion (I/R) injury. Blood samples were obtained from 20 I/R patients and that of 20 healthy individuals were used as a control. AGE1.HN and SY-SH-5Y neuronal cell lines subjected to oxygen-glucose deprivation (OGD) stress were used in cell experiments. Real-time PCR and western blot were used to evaluate the expression of miR-221, tumor necrosis factor-α, and TNFAIP2. TUNEL assay analyzed cell apoptosis. I/R patients had lower serum levels of miR-221 than healthy controls. In OGD-AGE1.HN and SY-SH-5Y cells, miR-221 was significantly downregulated and TNFAIP2 mRNA and protein were upregulated; meanwhile, both proinflammatory cytokine tumor necrosis factor-α and anti-inflammation cytokine interleukin-6 were elevated and the percentage of apoptotic cells was increased. This inflammatory response and cell apoptosis induced by OGD stress were attenuated by miR-221 overexpression and enhanced by miR-221 knockdown. TNFAIP2 is a target gene for miR-221 and could be regulated negatively by the miR-221 mimic or the miR-221 inhibitor with or without OGD stress. Accordingly, TNFAIP2 overexpression reversed the inflammatory response and cell apoptosis induced by miR-221 under OGD stress. Downregulation of miR-221 occurs in spinal cord I/R injury and in cell lines subjected to oxygen-glucose deprivation. miR-221 regulates the inflammatory response and apoptosis of neuronal cells through its impact on TNFAIP2.
Collapse
|
17
|
Ocskó T, Tóth DM, Hoffmann G, Tubak V, Glant TT, Rauch TA. Transcription factor Zbtb38 downregulates the expression of anti-inflammatory IL1r2 in mouse model of rheumatoid arthritis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1040-1047. [PMID: 30343694 DOI: 10.1016/j.bbagrm.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
DNA methylation is a decisive regulator of gene expression. Differentially methylated promoters were described in rheumatoid arthritis (RA), but we do not know how these epimutations can trigger a proinflammatory cytokine milieu. B cell-focused DNA methylome studies identified a group of genes that had undergone disease-associated changes in a murine model of RA. An arthritis-specific epimutation (hypomethylation) was detected in the promoter region of the Zbtb38 gene, which encodes a transcriptional repressor. Gene expression studies revealed that hypomethylation of the Zbtb38 promoter was accompanied by disease-specific repressor expression, and two anti-inflammatory factors interleukin 1 receptor 2 gene (IL1r2) and interleukin-1 receptor antagonist (IL1rn) were among the downregulated genes. We hypothesized that Zbtb38 repressor could induce downregulated expression of these anti-inflammatory genes and that this could significantly contribute to arthritis pathogenesis. Our studies demonstrate that Zbtb38 forms a molecular bridge between an arthritis-associated epimutation (DNA hypomethylation in Zbtb38 promoter) and transcriptional silencing of the IL1r2 gene in B cells. In this way, disease-associated DNA hypomethylation can support autoimmune arthritis by interfering with an anti-inflammatory pathway.
Collapse
Affiliation(s)
- Tímea Ocskó
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 W. Harrison Street, Chicago, IL 60612, United States of America
| | - Dániel M Tóth
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 W. Harrison Street, Chicago, IL 60612, United States of America
| | - Gyula Hoffmann
- Department of Genetics, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Vilmos Tubak
- Hungarian Academy of Sciences, Biological Research Centre, Institute of Biochemistry, Szeged, Hungary
| | - Tibor T Glant
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 W. Harrison Street, Chicago, IL 60612, United States of America
| | - Tibor A Rauch
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, 1735 W. Harrison Street, Chicago, IL 60612, United States of America; Institute of Medical Biology, University of Pécs, Pécs, Hungary; Section of Bioinformatics and Computational Medicine, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
18
|
Lao Y, Yang K, Wang Z, Sun X, Zou Q, Yu X, Cheng J, Tong X, Yeh ETH, Yang J, Yi J. DeSUMOylation of MKK7 kinase by the SUMO2/3 protease SENP3 potentiates lipopolysaccharide-induced inflammatory signaling in macrophages. J Biol Chem 2018; 293:3965-3980. [PMID: 29352108 PMCID: PMC5857993 DOI: 10.1074/jbc.m117.816769] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
Protein SUMOylation has been reported to play a role in innate immune response, but the enzymes, substrates, and consequences of the specific inflammatory signaling events are largely unknown. Reactive oxygen species (ROS) are abundantly produced during macrophage activation and required for Toll-like receptor 4 (TLR4)-mediated inflammatory signaling. Previously, we demonstrated that SENP3 is a redox-sensitive SUMO2/3 protease. To explore any links between reversible SUMOylation and ROS-related inflammatory signaling in macrophage activation, we generated mice with Senp3 conditional knock-out in myeloid cells. In bacterial lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models, we found that SENP3 deficiency markedly compromises the activation of TLR4 inflammatory signaling and the production of proinflammatory cytokines in macrophages exposed to LPS. Moreover, Senp3 conditional knock-out mice were significantly less susceptible to septic shock. Of note, SENP3 deficiency was associated with impairment in JNK phosphorylation. We found that MKK7, which selectively phosphorylates JNK, is a SENP3 substrate and that SENP3-mediated deSUMOylation of MKK7 may favor its binding to JNK. Importantly, ROS-dependent SENP3 accumulation and MKK7 deSUMOylation rapidly occurred after LPS stimulation. In conclusion, our findings indicate that SENP3 potentiates LPS-induced TLR4 signaling via deSUMOylation of MKK7 leading to enhancement in JNK phosphorylation and the downstream events. Therefore this work provides novel mechanistic insights into redox regulation of innate immune responses.
Collapse
Affiliation(s)
- Yimin Lao
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Yang
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhaojun Wang
- the Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China, and
| | - Xueqing Sun
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Zou
- the Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China, and
| | - Xiaoyan Yu
- the Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China, and
| | - Jinke Cheng
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemei Tong
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Edward T H Yeh
- the Department of Internal Medicine, University of Missouri, Columbia, Missouri 65211
| | - Jie Yang
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China,
| | - Jing Yi
- From the Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
19
|
Sarkar K, Han SS, Wen KK, Ochs HD, Dupré L, Seidman MM, Vyas YM. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2017; 142:219-234. [PMID: 29248492 DOI: 10.1016/j.jaci.2017.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.
Collapse
Affiliation(s)
- Koustav Sarkar
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, University of Washington, Seattle, Md
| | - Loïc Dupré
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, Md; Université Toulouse III Paul-Sabatier, Toulouse, Md; CNRS, UMR5282, Toulouse, Md; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Md; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Md
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health (NIH), NIH Biomedical Research Center, Baltimore, Md
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md.
| |
Collapse
|
20
|
Adorisio S, Fierabracci A, Muscari I, Liberati AM, Ayroldi E, Migliorati G, Thuy TT, Riccardi C, Delfino DV. SUMO proteins: Guardians of immune system. J Autoimmun 2017; 84:21-28. [PMID: 28919255 DOI: 10.1016/j.jaut.2017.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
|
21
|
Kuznetsov NV, Almuzzaini B, Kritikou JS, Baptista MAP, Oliveira MMS, Keszei M, Snapper SB, Percipalle P, Westerberg LS. Nuclear Wiskott-Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells. Genome Med 2017; 9:91. [PMID: 29078804 PMCID: PMC5660450 DOI: 10.1186/s13073-017-0481-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Wiskott-Aldrich syndrome protein (WASp) family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. METHODS We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq) in thymocytes and spleen CD4+ T cells. RESULTS WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF)12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. CONCLUSIONS These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development.
Collapse
Affiliation(s)
- Nikolai V Kuznetsov
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bader Almuzzaini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences Medical Genomic Research Department, MNGHA, Riyadh, Saudi Arabia
| | - Joanna S Kritikou
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marisa A P Baptista
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,Institute for Virology and Immunobiology, University of Würzburg, 97078, Würzburg, Germany
| | - Mariana M S Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marton Keszei
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Scott B Snapper
- Gastroenterology Division, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
22
|
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family function as nucleation-promoting factors for the ubiquitously expressed Arp2/3 complex, which drives the generation of branched actin filaments. Arp2/3-generated actin regulates diverse cellular processes, including the formation of lamellipodia and filopodia, endocytosis and/or phagocytosis at the plasma membrane, and the generation of cargo-laden vesicles from organelles including the Golgi, endoplasmic reticulum (ER) and the endo-lysosomal network. Recent studies have also identified roles for WASP family members in promoting actin dynamics at the centrosome, influencing nuclear shape and membrane remodeling events leading to the generation of autophagosomes. Interestingly, several WASP family members have also been observed in the nucleus where they directly influence gene expression by serving as molecular platforms for the assembly of epigenetic and transcriptional machinery. In this Cell Science at a Glance article and accompanying poster, we provide an update on the subcellular roles of WHAMM, JMY and WASH (also known as WASHC1), as well as their mechanisms of regulation and emerging functions within the cell.
Collapse
Affiliation(s)
- Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9151, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA .,Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Riera‐Romo M. COMMD1: A Multifunctional Regulatory Protein. J Cell Biochem 2017; 119:34-51. [DOI: 10.1002/jcb.26151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mario Riera‐Romo
- Department of PharmacologyInstitute of Marine SciencesHavanaCuba
| |
Collapse
|
24
|
Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae. Genetics 2016; 204:1433-1445. [PMID: 27770033 DOI: 10.1534/genetics.116.194134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Gcn4 is expressed during amino acid starvation, and its abundance is controlled by ubiquitin-mediated proteolysis. Cdk8, a kinase component of the RNA polymerase II Mediator complex, phosphorylates Gcn4, which triggers its ubiquitination/proteolysis, and is thought to link Gcn4 degradation with transcription of target genes. In addition to phosphorylation and ubiquitination, we previously showed that Gcn4 becomes sumoylated in a DNA-binding dependent manner, while a nonsumoylatable form of Gcn4 showed increased chromatin occupancy, but only if Cdk8 was present. To further investigate how the association of Gcn4 with chromatin is regulated, here we examine determinants for Gcn4 sumoylation, and how its post-translational modifications are coordinated. Remarkably, artificially targeting Gcn4 that lacks its DNA binding domain to a heterologous DNA site restores sumoylation at its natural modification sites, indicating that DNA binding is sufficient for the modification to occur in vivo Indeed, we find that neither transcription of target genes nor phosphorylation are required for Gcn4 sumoylation, but blocking its sumoylation alters its phosphorylation and ubiquitination patterns, placing Gcn4 sumoylation upstream of these Cdk8-mediated modifications. Strongly supporting a role for sumoylation in limiting its association with chromatin, a hyper-sumoylated form of Gcn4 shows dramatically reduced DNA occupancy and expression of target genes. Importantly, we find that Cdk8 is at least partly responsible for clearing hyper-sumoylated Gcn4 from DNA, further implicating sumoylation as a stimulus for Cdk8-mediated phosphorylation and degradation. These results support a novel function for SUMO in marking the DNA-bound form of a transcription factor, which triggers downstream processes that limit its association with chromatin, thus preventing uncontrolled expression of target genes.
Collapse
|
25
|
The early activation of memory B cells from Wiskott-Aldrich syndrome patients is suppressed by CD19 downregulation. Blood 2016; 128:1723-34. [PMID: 27330000 DOI: 10.1182/blood-2016-03-703579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) pediatric patients exhibit a deficiency in humoral immune memory. However, the mechanism by which Wiskott-Aldrich syndrome protein (WASP) regulates the differentiation and activation of memory B cells remains elusive. Here we examine the early activation events of memory B cells from the peripheral blood mononuclear cells of WAS patients and age-matched healthy controls (HCs) using total internal reflection fluorescence microscopy. In response to stimulation through the B-cell receptor (BCR), memory B cells from HCs showed significantly higher magnitudes of BCR clustering and cell spreading than naive B cells from the same individuals. This was associated with increases in CD19 recruitment to the BCR and the activation of its downstream signaling molecule Btk and decreases in FcγRIIB recruitment and the activation of its downstream molecule Src homology 2-containing inositol 5' phosphatase (SHIP). However, these enhanced signaling activities mediated by CD19 and Btk are blocked in memory B cells from WAS patients, whereas the activation of FcγRIIB and SHIP was increased. Although the expression levels of CD19, Btk, and FcγRIIB did not change between CD27(-) and CD27(+) B cells of HCs, the protein and mRNA levels of CD19 but not Btk and FcγRIIB were significantly reduced in both CD27(-) and CD27(+) B cells of WAS patients, compared with those of HCs. Overall, our study suggests that WASP is required for memory B-cell activation, promoting the activation by positive regulating CD19 transcription and CD19 recruitment to the BCR.
Collapse
|
26
|
Abnormalities of follicular helper T-cell number and function in Wiskott-Aldrich syndrome. Blood 2016; 127:3180-91. [PMID: 27170596 DOI: 10.1182/blood-2015-06-652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific regulator of actin nucleation. Wiskott-Aldrich syndrome (WAS) patients show immunodeficiencies, most of which have been attributed to defective T-cell functions. T follicular helper (Tfh) cells are the major CD4(+) T-cell subset with specialized B-cell helper capabilities. Aberrant Tfh cells activities are involved in immunopathologies such as autoimmunity, immunodeficiencies, and lymphomas. We found that in WAS patients, the number of circulating Tfh cells was significantly reduced due to reduced proliferation and increased apoptosis, and Tfh cells were Th2 and Th17 polarized. The expression of inducible costimulator (ICOS) in circulating Tfh cells was higher in WAS patients than in controls. BCL6 expression was decreased in total CD4(+) T and Tfh cells of WAS patients. Mirroring the results in patients, the frequency of Tfh cells in WAS knockout (KO) mice was decreased, as was the frequency of BCL6(+) Tfh cells, but the frequency of ICOS(+) Tfh cells was increased. Using WAS chimera mice, we found that the number of ICOS(+) Tfh cells was decreased in WAS chimera mice, indicating that the increase in ICOS(+) Tfh cells in WAS KO mice was cell extrinsic. The data from in vivo CD4(+) naive T-cell adoptive transfer mice as well as in vitro coculture of naive B and Tfh cells showed that the defective function of WASp-deficient Tfh cells was T-cell intrinsic. Consistent findings in both WAS patients and WAS KO mice suggested an essential role for WASp in the development and memory response of Tfh cells and that WASp deficiency causes a deficient differentiation defect in Tfh cells by downregulating the transcription level of BCL6.
Collapse
|