1
|
Chen T, Ren Q, Ma F. New insights into constitutive neutrophil death. Cell Death Discov 2025; 11:6. [PMID: 39800780 PMCID: PMC11725587 DOI: 10.1038/s41420-025-02287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Neutrophils undergo rapid aging and death known as constitutive or spontaneous death. Constitutive neutrophil death (CND) contributes to neutrophil homeostasis and inflammation resolution. CND has long been considered to be apoptotic until our findings reveal that it was a heterogeneous combination of diverse death. Furthermore, dead neutrophils retain functional roles via multiple manners. This review provides an overview of current research on the mechanism and modulation of CND. More noteworthy, we also summarize the after-death events of neutrophils. The fate of neutrophils can be changed under pathological conditions, so the involvement of CND in diseases and CND-related therapeutic strategies are also addressed.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Zhuo H, Zhang S, Wang H, Deng J, Zhang X. Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss. Colloids Surf B Biointerfaces 2024; 248:114466. [PMID: 39729702 DOI: 10.1016/j.colsurfb.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVES Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed. METHODS Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos. The swelling and degradation rates of GelMA@MP196/exos were evaluated. Cell proliferation, antibacterial ability and cellular uptake and intracellular internalization of exos were assessed in the study. Efferocytosis and M2 polarization of macrophages was estimated and the effects of GelMA@MP196/exos were proved in vivo. RESULTS GelMA@MP196/exos upregulated the expression of genes and proteins related to neutrophil apoptosis and promoted neutrophil apoptosis, macrophage M2 polarization, and efferocytosis. Furthermore, GelMA@MP196/exos exhibited significant antibacterial activity against Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis. GelMA@MP196/exos alleviated periodontitis and reduced alveolar bone loss in vivo in rat models. CONCLUSIONS GelMA@MP196/exos can serve as a potential strategy for the treatment of periodontitis. CLINICAL SIGNIFICANCE The main aim of periodontal therapy is to remove dental plaque and eliminate inflammation. However, some patients with low plaque scores and insufficient neutrophil clearance, resulting in poor responsiveness to periodontal therapy. Under the circumstances, local Application of drug that regulate the immune microenvironment had significance in controlling the progression of inflammation.
Collapse
Affiliation(s)
- Haiwei Zhuo
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Shuting Zhang
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Hongbo Wang
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Jiayin Deng
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| | - Xi Zhang
- Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
3
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| |
Collapse
|
4
|
López-Arredondo A, Cruz-Cardenas JA, Cázares-Preciado JA, Timmins NE, Brunck ME. Neutrophils, an emerging new therapeutic platform. Curr Opin Biotechnol 2024; 87:103106. [PMID: 38490109 DOI: 10.1016/j.copbio.2024.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Neutrophils possess unique characteristics that render them indispensable to health, and patients with irregular neutrophil counts or functions suffer from increased morbidity and mortality. As neutrophils are short-lived postmitotic cells, genetic aberrations cannot be corrected directly in neutrophils and must be targeted in their progenitors. Neutrophils are increasingly being contemplated for a range of therapeutic applications, including restoration or modulation of immune function and targeting of solid tumors. This review addresses the state-of-the-art in neutrophil transfusions and their possible applications for infectious disease prevention and treatment. It offers a landscape of the most recent gene therapy approaches to address neutrophil-related genetic diseases. We also discuss how ongoing research could broaden the applicability of neutrophil-based therapies to solid cancer treatments and beyond.
Collapse
Affiliation(s)
- Alejandra López-Arredondo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - José A Cruz-Cardenas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - Jorge A Cázares-Preciado
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico
| | - Nicholas E Timmins
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Marion Eg Brunck
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico; The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnologico, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
5
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Chu G, Guan M, Jin J, Luo Y, Luo Z, Shi T, Liu T, Zhang C, Wang Y. Mechanochemically Reprogrammed Interface Orchestrates Neutrophil Bactericidal Activity and Apoptosis for Preventing Implant-Associated Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311855. [PMID: 38164817 DOI: 10.1002/adma.202311855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The onset of implant-associated infection (IAI) triggers a cascade of immune responses, which are initially dominated by neutrophils. Bacterial aggregate formation and hypoxic microenvironment, which occur shortly after implantation, may be two major risk factors that impair neutrophil function and lead to IAI. Here, the implant surface with phytic acid-Zn2+ coordinated TiO2 nanopillar arrays (PA-Zn@TiNPs) and oxygen self-supporting CaO2 nanoparticles, named as CPZTs, is mechanochemically reprogrammed. The engineered CPZTs interface integrates multiple properties to inhibit the formation of nascent biofilm, encompassing antibacterial adhesion, mechanobactericidal effect, and chemobiocidal effect. Meanwhile, continuous oxygenation fuels the neutrophils with reactive oxygen species (ROS) for efficient bacterial elimination on the implant surface and inside the neutrophils. Furthermore, this surface modulation strategy accelerates neutrophil apoptosis and promotes M2 macrophage-mediated osteogenesis both in vitro and in a rat model of IAI. In conclusion, targeting neutrophils for immunomodulation is a practical and effective strategy to prevent IAI and promote bone-implant integration.
Collapse
Affiliation(s)
- Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yao Luo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Liu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
7
|
Aymonnier K, Bosetta E, Leborgne NGF, Ullmer A, Le Gall M, De Chiara A, Salnot V, Many S, Scapini P, Wicks I, Chatfield S, Martin KR, Witko-Sarsat V. G-CSF reshapes the cytosolic PCNA scaffold and modulates glycolysis in neutrophils. J Leukoc Biol 2024; 115:205-221. [PMID: 37824822 DOI: 10.1093/jleuko/qiad122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.
Collapse
Affiliation(s)
- Karen Aymonnier
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Enzo Bosetta
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Nathan G F Leborgne
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Audrey Ullmer
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Morgane Le Gall
- Proteom'IC facility, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du Faubourg Saint Jacques, Paris F-75014, France
| | - Alessia De Chiara
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Virginie Salnot
- Proteom'IC facility, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du Faubourg Saint Jacques, Paris F-75014, France
| | - Souganya Many
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Patrizia Scapini
- Department of General Pathology, University of Verona, Verona 37134, Italy
| | - Ian Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
- Department of Rheumatology, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Simon Chatfield
- Department of Rheumatology, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Véronique Witko-Sarsat
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| |
Collapse
|
8
|
Hansen AH, Mortensen JH, Rønnow SR, Karsdal MA, Leeming DJ, Sand JMB. A Serological Neoepitope Biomarker of Neutrophil Elastase-Degraded Calprotectin, Associated with Neutrophil Activity, Identifies Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease More Effectively Than Total Calprotectin. J Clin Med 2023; 12:7589. [PMID: 38137658 PMCID: PMC10743791 DOI: 10.3390/jcm12247589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophil activation can release neutrophil extracellular traps (NETs) in acute inflammation. NETs result in the release of human neutrophil elastase (HNE) and calprotectin, where the former can degrade the latter and generate protein fragments associated with neutrophil activity. We investigated this in chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) using the novel neoepitope biomarker CPa9-HNE, quantifying a specific HNE-mediated fragment of calprotectin in serum. CPa9-HNE was compared to total calprotectin. Initially, CPa9-HNE was measured in healthy (n = 39), COPD (n = 67), and IPF (n = 16) serum using a neoepitope-specific competitive enzyme-linked immunosorbent assay. Then, a head-to-head comparison of CPa9-HNE and total calprotectin, a non-neoepitope, was conducted in healthy (n = 19), COPD (n = 25), and IPF (n = 19) participants. CPa9-HNE levels were significantly increased in COPD (p < 0.0001) and IPF subjects (p = 0.0001) when compared to healthy participants. Additionally, CPa9-HNE distinguished IPF (p < 0.0001) and COPD (p < 0.0001) from healthy participants more effectively than total calprotectin for IPF (p = 0.0051) and COPD (p = 0.0069). Here, CPa9-HNE also distinguished IPF from COPD (p = 0.045) participants, which was not observed for total calprotectin (p = 0.98). Neutrophil activity was significantly higher, as assessed via serum CPa9-HNE, for COPD and IPF compared to healthy participants. Additionally, CPa9-HNE exceeded the ability of non-neoepitope calprotectin serum measurements to separate healthy from lung disease and even COPD from IPF participants, indicating that neutrophil activity is essential for both COPD and IPF.
Collapse
|
9
|
Skerniskyte J, Mulet C, André AC, Anderson MC, Injarabian L, Buck A, Prade VM, Sansonetti PJ, Reibel-Foisset S, Walch AK, Lebel M, Lykkesfeldt J, Marteyn BS. Ascorbate deficiency increases progression of shigellosis in guinea pigs and mice infection models. Gut Microbes 2023; 15:2271597. [PMID: 37876025 PMCID: PMC10730169 DOI: 10.1080/19490976.2023.2271597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.
Collapse
Affiliation(s)
- Jurate Skerniskyte
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
| | - Céline Mulet
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Antonin C. André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Mark C. Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Louise Injarabian
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Verena M. Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
- Collège de France, Paris, France
| | | | - Axel K. Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec, Canada
| | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University Copenhagen, Copenhagen, Denmark
| | - Benoit S. Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
- Unité de Pathogenèse des Infections Vasculaires, Institut Pasteur, INSERM U1225, Paris, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
10
|
Siggins RW, McTernan PM, Simon L, Souza-Smith FM, Molina PE. Mitochondrial Dysfunction: At the Nexus between Alcohol-Associated Immunometabolic Dysregulation and Tissue Injury. Int J Mol Sci 2023; 24:8650. [PMID: 37239997 PMCID: PMC10218577 DOI: 10.3390/ijms24108650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Alcohol misuse, directly or indirectly as a result of its metabolism, negatively impacts most tissues, including four with critical roles in energy metabolism regulation: the liver, pancreas, adipose, and skeletal muscle. Mitochondria have long been studied for their biosynthetic roles, such as ATP synthesis and initiation of apoptosis. However, current research has provided evidence that mitochondria participate in myriad cellular processes, including immune activation, nutrient sensing in pancreatic β-cells, and skeletal muscle stem and progenitor cell differentiation. The literature indicates that alcohol impairs mitochondrial respiratory capacity, promoting reactive oxygen species (ROS) generation and disrupting mitochondrial dynamics, leading to dysfunctional mitochondria accumulation. As discussed in this review, mitochondrial dyshomeostasis emerges at a nexus between alcohol-disrupted cellular energy metabolism and tissue injury. Here, we highlight this link and focus on alcohol-mediated disruption of immunometabolism, which refers to two distinct, yet interrelated processes. Extrinsic immunometabolism involves processes whereby immune cells and their products influence cellular and/or tissue metabolism. Intrinsic immunometabolism describes immune cell fuel utilization and bioenergetics that affect intracellular processes. Alcohol-induced mitochondrial dysregulation negatively impacts immunometabolism in immune cells, contributing to tissue injury. This review will present the current state of literature, describing alcohol-mediated metabolic and immunometabolic dysregulation from a mitochondrial perspective.
Collapse
Affiliation(s)
- Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
12
|
Loh W, Vermeren S. Anti-Inflammatory Neutrophil Functions in the Resolution of Inflammation and Tissue Repair. Cells 2022; 11:cells11244076. [PMID: 36552840 PMCID: PMC9776979 DOI: 10.3390/cells11244076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic products ties with their role in host defence from bacterial and fungal infections. Neutrophilic inflammation is tightly regulated to limit the amount of 'bystander injury' caused. Neutrophils were in the past regarded as short-lived, indiscriminate killers of invading microorganisms. However, this view has changed quite dramatically in recent years. Amongst other insights, neutrophils are now recognised to also have important anti-inflammatory functions that are critical for the resolution of inflammation and return to homeostasis. This minireview focusses on anti-inflammatory neutrophil functions, placing a particular focus on recent findings linked to neutrophil cell death, several types of which may be anti-inflammatory (apoptosis, secondary necrosis, and neutrophil extracellular traps). These are discussed together with features that may further promote the clearance of dead cells by efferocytosis and reprogramming of macrophages to promote resolution and repair.
Collapse
Affiliation(s)
- Waywen Loh
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
13
|
Koenderman L, Tesselaar K, Vrisekoop N. Human neutrophil kinetics: a call to revisit old evidence. Trends Immunol 2022; 43:868-876. [PMID: 36243621 DOI: 10.1016/j.it.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
The half-life of human neutrophils is still controversial, with estimates ranging from 7-9 h to 3.75 days. This debate should be settled to understand neutrophil production in the bone marrow (BM) and the potential and limitations of emergency neutropoiesis following infection or trauma. Furthermore, cellular lifespan greatly influences the potential effect(s) neutrophils have on the adaptive immune response. We posit that blood neutrophils are in exchange with different tissues, but particularly the BM, as it contains the largest pool of mature neutrophils. Furthermore, we propose that the oldest neutrophils are the first to die following a so-called conveyor belt model. These guiding principles shed new light on our interpretation of existing neutrophil lifespan data and offer recommendations for future research.
Collapse
Affiliation(s)
- Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center Utrecht, The Netherlands.
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, The Netherlands; Department of Immunology, University Medical Center Utrecht, The Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine, University Medical Center Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
14
|
Kolman JP, Pagerols Raluy L, Müller I, Nikolaev VO, Trochimiuk M, Appl B, Wadehn H, Dücker CM, Stoll FD, Boettcher M, Reinshagen K, Trah J. NET Release of Long-Term Surviving Neutrophils. Front Immunol 2022; 13:815412. [PMID: 35242132 PMCID: PMC8887621 DOI: 10.3389/fimmu.2022.815412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs)—as double-edged swords of innate immunity—are involved in numerous processes such as infection, inflammation and tissue repair. Research on neutrophil granulocytes is limited because of their short lifetime of only a few hours. Several attempts have been made to prolong the half-life of neutrophils using cytokines and bacterial products and have shown promising results. These long-term surviving neutrophils are reported to maintain phagocytic activity and cytokine release; however, little is known regarding their capability to release NETs. Methods We analysed the prolongation of neutrophil survival in vitro under various culture conditions using granulocyte colony-stimulating factor (G-CSF), lipopolysaccharide (LPS) or tumour necrosis factor alpha (TNF-α) by flow cytometry and a viability assay. Additionally, we assessed NET formation following stimulation with phorbol 12-myristate 13-acetate (PMA) by immunofluorescence staining, myeloperoxidase (MPO)-DNA sandwich-ELISA and fluorometric assays for cell-free DNA (cfDNA), neutrophil elastase (NE) and myeloperoxidase (MPO). Results Untreated neutrophils could form NETs after stimulation with PMA for up to 24 h. Incubation with LPS extended their ability to form NETs for up to 48 h. At 48 h, NET release of neutrophils cultured with LPS was significantly higher compared to that of untreated cells; however, no significantly different enzymatic activity of NE and MPO was observed. Similarly, incubation with G-CSF resulted in significantly higher NET release at 48 h compared to untreated cells. Furthermore, NETs showed significantly higher enzymatic activity of NE and MPO after incubation with G-CSF. Lastly, incubation with TNF-α had no influence on NET release compared to untreated cells although survival counts were altered by TNF-α. Conclusions G-CSF, LPS or TNF-α each at low concentrations lead to prolonged survival of cultured neutrophils, resulting in considerable differences in NET formation and composition. These results provide new information for the use of neutrophils in long-term experiments for NET formation and provide novel insights for neutrophil behaviour under inflammatory conditions.
Collapse
Affiliation(s)
- Jan Philipp Kolman
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Wadehn
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Maria Dücker
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian David Stoll
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Trah
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Bellais S, Nehlich M, Ania M, Duquenoy A, Mazier W, van den Engh G, Baijer J, Treichel NS, Clavel T, Belotserkovsky I, Thomas V. Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions. MICROBIOME 2022; 10:24. [PMID: 35115054 PMCID: PMC8812257 DOI: 10.1186/s40168-021-01206-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND There is a growing interest in using gut commensal bacteria as "next generation" probiotics. However, this approach is still hampered by the fact that there are few or no strains available for specific species that are difficult to cultivate. Our objective was to adapt flow cytometry and cell sorting to be able to detect, separate, isolate, and cultivate new strains of commensal species from fecal material. We focused on the extremely oxygen sensitive (EOS) species Faecalibacterium prausnitzii and the under-represented, health-associated keystone species Christensenella minuta as proof-of-concept. RESULTS A BD Influx® cell sorter was equipped with a glovebox that covered the sorting area. This box was flushed with nitrogen to deplete oxygen in the enclosure. Anaerobic conditions were maintained during the whole process, resulting in only minor viability loss during sorting and culture of unstained F. prausnitzii strains ATCC 27766, ATCC 27768, and DSM 17677. We then generated polyclonal antibodies against target species by immunizing rabbits with heat-inactivated bacteria. Two polyclonal antibodies were directed against F. prausnitzii type strains that belong to different phylogroups, whereas one was directed against C. minuta strain DSM 22607. The specificity of the antibodies was demonstrated by sorting and sequencing the stained bacterial fractions from fecal material. In addition, staining solutions including LIVE/DEAD™ BacLight™ Bacterial Viability staining and polyclonal antibodies did not severely impact bacterial viability while allowing discrimination between groups of strains. Finally, we combined these staining strategies as well as additional criteria based on bacterial shape for C. minuta and were able to detect, isolate, and cultivate new F. prausnitzii and C. minuta strains from healthy volunteer's fecal samples. CONCLUSIONS Targeted cell-sorting under anaerobic conditions is a promising tool for the study of fecal microbiota. It gives the opportunity to quickly analyze microbial populations, and can be used to sort EOS and/or under-represented strains of interest using specific antibodies, thus opening new avenues for culture experiments. Video abstract.
Collapse
Affiliation(s)
| | | | - Maryne Ania
- BIOASTER, 28 rue du Docteur Roux, 75015, Paris, France
| | | | | | | | - Jan Baijer
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France
| | - Nicole Simone Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | | | | |
Collapse
|
16
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
17
|
Hu C, Chang E, Yu R, Wu Z, Li Q, Xie Q, Wang H, Yin S. De novo lipogenesis prolongs the lifespan and supports the immunosuppressive phenotype of neutrophils in HCC metastasis. Genes Dis 2022; 9:1163-1165. [PMID: 35873017 PMCID: PMC9293710 DOI: 10.1016/j.gendis.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Chaojie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - E. Chang
- Department of Geriatrics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Rucui Yu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Zhiwei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Qing Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Shi Yin
- Department of Geriatrics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
- Corresponding author. Department of Geriatrics, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China.
| |
Collapse
|
18
|
Liu W, Wu D, Li S, Xu J, Li P, Jiang A, Zhang Y, Liu Z, Jiang L, Gao X, Yang Z, Wei Z. Glycolysis and Reactive Oxygen Species Production Participate in T-2 Toxin-Stimulated Chicken Heterophil Extracellular Traps. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12862-12869. [PMID: 34694797 DOI: 10.1021/acs.jafc.1c05371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
T-2 toxin (T-2) is a kind of trichothecene toxin produced from Fusarium fungi, which is an environmental pollutant that endangers poultry and human health. Heterophil extracellular traps (HETs) are not only a form of chicken immune defense against pathogen infection but also involved in pathophysiological mechanisms of several diseases. However, the immunotoxicity of T-2 on HET formation in vitro has not yet been reported. In this study, heterophils were exposed to T-2 at doses of 20, 40, and 80 ng/mL for 90 min. Observation of the structure of HETs by immunofluorescence staining and the mechanism of HET formation was analyzed by inhibitors and PicoGreen. These results showed that T-2-triggered HET formation consisted of DNA, elastase, and citH3. Furthermore, T-2 increased reactive oxygen species (ROS) generation, and the formation of T-2-triggered HETs was also decreased by the inhibitors of glycolysis, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, p38 and extracellular signal-regulated kinase (ERK)1/2 signaling pathways, suggesting that T-2-induced HETs are associated with glycolysis, ROS production, ERK1/2 and p38 signaling pathways, and NADPH oxidase. Taken together, this study elucidates the mechanism of T-2-triggered HET formation, and it may provide new insight into understanding the immunotoxicity of T-2 to early innate immunity in chickens.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Di Wu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Shuangqiu Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Jingnan Xu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Peixuan Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Aimin Jiang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yong Zhang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ziyi Liu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Liqiang Jiang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xinxin Gao
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Zhengtao Yang
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| |
Collapse
|
19
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Fan Y, Teng Y, Loison F, Pang A, Kasorn A, Shao X, Zhang C, Ren Q, Yu H, Zheng Y, Cancelas JA, Manis J, Chai L, Park SY, Zhao L, Xu Y, Feng S, Silberstein LE, Ma F, Luo HR. Targeting multiple cell death pathways extends the shelf life and preserves the function of human and mouse neutrophils for transfusion. Sci Transl Med 2021; 13:13/604/eabb1069. [PMID: 34321317 DOI: 10.1126/scitranslmed.abb1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Clinical outcomes from granulocyte transfusion (GTX) are disadvantaged by the short shelf life and compromised function of donor neutrophils. Spontaneous neutrophil death is heterogeneous and mediated by multiple pathways. Leveraging mechanistic knowledge and pharmacological screening, we identified a combined treatment, caspases-lysosomal membrane permeabilization-oxidant-necroptosis inhibition plus granulocyte colony-stimulating factor (CLON-G), which altered neutrophil fate by simultaneously targeting multiple cell death pathways. CLON-G prolonged human and mouse neutrophil half-life in vitro from less than 1 day to greater than 5 days. CLON-G-treated aged neutrophils had equivalent morphology and function to fresh neutrophils, with no impairment to critical effector functions including phagocytosis, bacterial killing, chemotaxis, and reactive oxygen species production. Transfusion with stored CLON-G-treated 3-day-old neutrophils enhanced host defenses, alleviated infection-induced tissue damage, and prolonged survival as effectively as transfusion with fresh neutrophils in a clinically relevant murine GTX model of neutropenia-related bacterial pneumonia and systemic candidiasis. Last, CLON-G treatment prolonged the shelf life and preserved the function of apheresis-collected human GTX products both ex vivo and in vivo in immunodeficient mice. Thus, CLON-G treatment represents an effective and applicable clinical procedure for the storage and application of neutrophils in transfusion medicine, providing a therapeutic strategy for improving GTX efficacy.
Collapse
Affiliation(s)
- Yuping Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yan Teng
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Fabien Loison
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Anongnard Kasorn
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Xinqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Cunling Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Yi Zheng
- Experimental Hematology and Cancer Biology Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Experimental Hematology and Cancer Biology Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Hoxworth Blood Center, Cincinnati, OH 45267, USA
| | - John Manis
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Li Chai
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Shin-Young Park
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Li Zhao
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Leslie E Silberstein
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| | - Hongbo R Luo
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School; Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital; and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The Neutrophil. Immunity 2021; 54:1377-1391. [PMID: 34260886 DOI: 10.1016/j.immuni.2021.06.006] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Neutrophils are immune cells with unusual biological features that furnish potent antimicrobial properties. These cells phagocytose and subsequently kill prokaryotic and eukaryotic organisms very efficiently. Importantly, it is not only their ability to attack microbes within a constrained intracellular compartment that endows neutrophils with antimicrobial function. They can unleash their effectors into the extracellular space, where, even post-mortem, their killing machinery can endure and remain functional. The antimicrobial activity of neutrophils must not be misconstrued as being microbe specific and should be viewed more generally as biotoxic. Outside of fighting infections, neutrophils can harness their noxious machinery in other contexts, like cancer. Inappropriate or dysregulated neutrophil activation damages the host and contributes to autoimmune and inflammatory disease. Here we review a number of topics related to neutrophil biology based on contemporary findings.
Collapse
Affiliation(s)
- Garth Lawrence Burn
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessandro Foti
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerben Marsman
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Dhiren Ferise Patel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
22
|
Injarabian L, Skerniskyte J, Giai Gianetto Q, Witko-Sarsat V, Marteyn BS. Reducing neutrophil exposure to oxygen allows their basal state maintenance. Immunol Cell Biol 2021; 99:782-789. [PMID: 33811670 PMCID: PMC8453921 DOI: 10.1111/imcb.12458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
Neutrophils are the most abundant circulating white blood cells and are the central players of the innate immune response. During their lifecycle, neutrophils mainly evolve under low oxygen conditions (0.1–4% O2), to which they are well adapted. Neutrophils are atypical cells since they are highly glycolytic and susceptible to oxygen exposure, which induces their activation and death through mechanisms that remain currently elusive. Nevertheless, nearly all studies conducted on neutrophils are carried out under atmospheric oxygen (21%), corresponding to hyperoxia. Here, we investigated the impact of hyperoxia during neutrophil purification and culture on neutrophil viability, activation and cytosolic protein content. We demonstrate that neutrophil hyper‐activation (CD62L shedding) is induced during culture under hyperoxic conditions (24 h), compared with neutrophils cultured under anoxic conditions. Spontaneous neutrophil extracellular trap (NET) formation is observed when neutrophils face hyperoxia during purification or culture. In addition, we show that maintaining neutrophils in autologous plasma is the preferred strategy to maintain their basal state. Our results show that manipulating neutrophils under hyperoxic conditions leads to the loss of 57 cytosolic proteins during purification, while it does not lead to an immediate impact on neutrophil activation (CD11bhigh, CD54high, CD62Lneg) or viability (DAPI+). We identified two clusters of proteins belonging to cholesterol metabolism and to the complement and coagulation cascade pathways, which are highly susceptible to neutrophil oxygen exposure during neutrophil purification. In conclusion, protecting neutrophil from oxygen during their purification and culture is recommended to avoid activation and to prevent the alteration of cytosolic protein composition.
Collapse
Affiliation(s)
- Louise Injarabian
- CNRS, IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,CNRS, UPR 9002, F-67000, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Jurate Skerniskyte
- CNRS, UPR 9002, F-67000, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Quentin Giai Gianetto
- Bioinformatics and Biostatistics HUB, Computational Biology Department, USR CNRS, Institut Pasteur, Paris, France.,Proteomics Platform, Mass Spectrometry for Biology Unit, USR CNRS, Institut Pasteur, Paris, France
| | | | - Benoit S Marteyn
- CNRS, UPR 9002, F-67000, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France.,INSERM U1225, Unité de Pathogenèse des Infections Vasculaires, Institut Pasteur, Paris Cedex 15, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
23
|
Verhoeven J, Baelen J, Agrawal M, Agostinis P. Endothelial cell autophagy in homeostasis and cancer. FEBS Lett 2021; 595:1497-1511. [PMID: 33837545 DOI: 10.1002/1873-3468.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jef Baelen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| |
Collapse
|
24
|
Chen B, Han J, Chen S, Xie R, Yang J, Zhou T, Zhang Q, Xia R. MicroLet-7b Regulates Neutrophil Function and Dampens Neutrophilic Inflammation by Suppressing the Canonical TLR4/NF-κB Pathway. Front Immunol 2021; 12:653344. [PMID: 33868293 PMCID: PMC8044834 DOI: 10.3389/fimmu.2021.653344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a heterogeneous syndrome caused by a dysregulated host response during the process of infection. Neutrophils are involved in the development of sepsis due to their essential role in host defense. COVID-19 is a viral sepsis. Disfunction of neutrophils in sepsis has been described in previous studies, however, little is known about the role of microRNA-let-7b (miR-let-7b), toll-like receptor 4 (TLR4), and nuclear factor kappa B (NF-κB) activity in neutrophils and how they participate in the development of sepsis. In this study, we investigated the regulatory pathway of miR-let-7b/TLR4/NF-κB in neutrophils. We also explored the downstream cytokines released by neutrophils following miR-let-7b treatment and its therapeutic effects in cecal ligation and puncture (CLP)-induced septic mice. Six-to-eight-week-old male C57BL/6 mice underwent CLP following treatment with miR-let-7b agomir. Survival (n=10), changes in liver and lungs histopathology (n=4), circulating neutrophil counts (n=4), the liver-body weight ratio (n=4–7), and the lung wet-to-dry ratio (n=5–6) were recorded. We found that overexpression of miR-let-7b could significantly down-regulate the expression of human-derived neutrophilic TLR4 at a post-transcriptional level, a decreased level of proinflammatory factors including interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and an upregulation of anti-inflammatory factor IL-10 in vitro. After miR-let-7b agomir treatment in vivo, neutrophil recruitment was inhibited and thus the injuries of liver and lungs in CLP-induced septic mice were alleviated (p=0.01 and p=0.04, respectively), less weight loss was reduced, and survival in septic mice was also significantly improved (p=0.013). Our study suggested that miR-let-7b could be a potential target of sepsis.
Collapse
Affiliation(s)
- Binzhen Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Han
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaoheng Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rufeng Xie
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Tongming Zhou
- Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci 2020; 78:1887-1907. [PMID: 33125509 PMCID: PMC7966188 DOI: 10.1007/s00018-020-03684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Various factors of the tissue microenvironment such as the oxygen concentration influence the host-pathogen interaction. During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions.
Collapse
|
26
|
Huang T, Jiang C, Yang M, Xiao H, Huang X, Wu L, Yao M. Salmonella enterica serovar Typhimurium inhibits the innate immune response and promotes apoptosis in a ribosomal/TRP53-dependent manner in swine neutrophils. Vet Res 2020; 51:105. [PMID: 32854785 PMCID: PMC7450969 DOI: 10.1186/s13567-020-00828-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are the first barriers for resisting the invasion, proliferation, and damage caused by Salmonella Typhimurium. However, the mechanisms that control this resistance are not completely understood. In this study, we established an in vitro Salmonella infection model in porcine neutrophils, and analyzed the cellular transcriptome by deep sequencing and flow cytometry. The results showed that ribosomal gene transcription was inhibited, and two of these genes, RPL39 and RPL9, were related to TRP53 activation. Furthermore, several important innate immunity genes were also inhibited. Knock-down of RPL39 and RPL9 by siRNA caused an approximate fourfold up-regulation of TRP53. Knock-down of RPL39 and RPL9 also resulted in a significant down-regulation of IFNG and TNF, indicating an inhibition of the innate immune response. Silencing of RPL39 and RPL9 also resulted in the up-regulation of FAS, RB1, CASP6, and GADD45A, which play roles in cell cycle arrest and apoptosis. Neutrophils were either first treated with RPL39 siRNA, RPL9 siRNA, TRP53 activator, or TRP53 inhibitor, and then infected with Salmonella. Knock-down of RPL39 and RPL9, or treatment with TRP53 activator, can increase the intracellular proliferation of Salmonella in neutrophils. We speculate that much of the Salmonella virulence can be attributed to the enhancement of cell cycle arrest and the inhibition of the innate immune response, which allows the bacteria to successfully proliferate intracellularly.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Caiyun Jiang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Min Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Hong Xiao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Lingbo Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
27
|
Taghavi-Farahabadi M, Mahmoudi M, Rezaei N, Hashemi SM. Wharton's Jelly Mesenchymal Stem Cells Exosomes and Conditioned Media Increased Neutrophil Lifespan and Phagocytosis Capacity. Immunol Invest 2020; 50:1042-1057. [PMID: 32777963 DOI: 10.1080/08820139.2020.1801720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neutrophils are the first cells involved in inflammation and pathogen elimination, but they have a short lifespan. So, strategies for enhancing neutrophil lifespan and activities can be useful in many situations such as patients with immunodeficiencies. Previous researches demonstrated that mesenchymal stem cell (MSC) has anti-apoptotic effects on neutrophils. These multipotent cells have immunomodulatory properties and can be isolated from different tissues. MSCs isolated from Wharton's jelly (WJ-MSCs), a mucosal connective tissue of the umbilical cord, may be better candidates than MSCs obtained from bone marrow or adipose tissue, because WJ-MSCs are younger and protected from damages that are resulted from aging, environmental toxins, and diseases. In addition, they have high proliferative capacity, easier accessibility, and more abundance. It was shown that following in vitro expansion, they are more effective than other sources of MSCs. Cell to cell contact or secretion of soluble factors and exosomes are the main approaches of MSCs in applying their effects. Exosomes and conditioned media (CM) were prepared from WJ-MSCs. Then, neutrophils were isolated and cultured with medium, CM, or exosomes. Then, neutrophil respiratory burst, apoptosis, and phagocytosis capacity were assessed by NBT assay, Annexin V-PI method, and Giemsa staining, respectively. Both treatments improved neutrophil lifespan and phagocytosis. Only MSC-CM could enhance neutrophil respiratory burst. This research demonstrated that MSC-exosomes and CM have protective effects on neutrophil function and lifespan. It can be concluded that MSC mediators can be responsible factors for protective functions of MSCs on neutrophils.
Collapse
Affiliation(s)
- Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Injarabian L, Scherlinger M, Devin A, Ransac S, Lykkesfeldt J, Marteyn BS. Ascorbate maintains a low plasma oxygen level. Sci Rep 2020; 10:10659. [PMID: 32606354 PMCID: PMC7326906 DOI: 10.1038/s41598-020-67778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
In human blood, oxygen is mainly transported by red blood cells. Accordingly, the dissolved oxygen level in plasma is expected to be limited, although it has not been quantified yet. Here, by developing dedicated methods and tools, we determined that human plasma pO2 = 8.4 mmHg (1.1% O2). Oxygen solubility in plasma was believed to be similar to water. Here we reveal that plasma has an additional ascorbate-dependent oxygen-reduction activity. Plasma experimental oxygenation oxidizes ascorbate (49.5 μM in fresh plasma vs < 2 μM in oxidized plasma) and abolishes this capacity, which is restored by ascorbate supplementation. We confirmed these results in vivo, showing that the plasma pO2 is significantly higher in ascorbate-deficient guinea pigs (Ascorbateplasma < 2 μM), compared to control (Ascorbateplasma > 15 μM). Plasma low oxygen level preserves the integrity of oxidation-sensitive components such as ubiquinol. Circulating leucocytes are well adapted to these conditions, since the abundance of their mitochondrial network is limited. These results shed a new light on the importance of oxygen exposure on leucocyte biological study, in regards with the reducing conditions they encounter in vivo; but also, on the manipulation of blood products to improve their integrity and potentially improve transfusions’ efficacy.
Collapse
Affiliation(s)
- Louise Injarabian
- Université de Strasbourg, CNRS, Architecture Et Réactivité de L'ARN, UPR9002, 67000, Strasbourg, France.,Université de Bordeaux, IBGCUMR 5095, 1 rue Camille Saint Saëns, 33077, Bordeaux Cedex, France
| | - Marc Scherlinger
- UMR-CNRS UMR -5164 Immunoconcept, 146 rue Léon Saignat, 33076, Bordeaux, France
| | - Anne Devin
- Université de Bordeaux, IBGCUMR 5095, 1 rue Camille Saint Saëns, 33077, Bordeaux Cedex, France
| | - Stéphane Ransac
- Université de Bordeaux, IBGCUMR 5095, 1 rue Camille Saint Saëns, 33077, Bordeaux Cedex, France
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University Copenhagen, Copenhagen, Denmark
| | - Benoit S Marteyn
- Université de Strasbourg, CNRS, Architecture Et Réactivité de L'ARN, UPR9002, 67000, Strasbourg, France. .,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, 28 rue du Dr Roux, 75724, Paris Cedex 15, France. .,INSERM Unité 1225, 28 rue du Dr Roux, 75724, Paris Cedex 15, France. .,Institut de Biologie Moléculaire et Cellulaire, 15, rue Descartes, 67000, Strasbourg, France.
| |
Collapse
|
29
|
Lawrence SM, Corriden R, Nizet V. How Neutrophils Meet Their End. Trends Immunol 2020; 41:531-544. [PMID: 32303452 DOI: 10.1016/j.it.2020.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
Neutrophil death can transpire via diverse pathways and is regulated by interactions with commensal and pathogenic microorganisms, environmental exposures, and cell age. At steady state, neutrophil turnover and replenishment are continually maintained via a delicate balance between host-mediated responses and microbial forces. Disruptions in this equilibrium directly impact neutrophil numbers in circulation, cell trafficking, antimicrobial defenses, and host well-being. How neutrophils meet their end is physiologically important and can result in different immunologic consequences. Whereas nonlytic forms of neutrophil death typically elicit anti-inflammatory responses and promote healing, pathways ending with cell membrane rupture may incite deleterious proinflammatory responses, which can exacerbate local tissue injury, lead to chronic inflammation, or precipitate autoimmunity. This review seeks to provide a contemporary analysis of mechanisms of neutrophil death.
Collapse
Affiliation(s)
- Shelley M Lawrence
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA.
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Department of Pharmacology, University of California, San Diego, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
30
|
Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles. Molecules 2020; 25:molecules25040765. [PMID: 32053865 PMCID: PMC7070653 DOI: 10.3390/molecules25040765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 02/08/2023] Open
Abstract
This in vitro study aimed to find the best method of granulocyte isolation for subsequent labeling with multimodal nanoparticles (magnetic and fluorescent properties) to enable detection by optical and magnetic resonance imaging (MRI) techniques. The granulocytes were obtained from venous blood samples from 12 healthy volunteers. To achieve high purity and yield, four different methods of granulocyte isolation were evaluated. The isolated granulocytes were labeled with multimodal superparamagnetic iron oxide nanoparticles (M-SPIONs) coated with dextran, and the iron load was evaluated qualitatively and quantitatively by MRI, near-infrared fluorescence (NIRF) and inductively coupled plasma mass spectrometry (ICP-MS). The best method of granulocyte isolation was Percoll with Ficoll, which showed 95.92% purity and 94% viability. After labeling with M-SPIONs, the granulocytes showed 98.0% purity with a yield of 3.5 × 106 cells/mL and more than 98.6% viability. The iron-loading value in the labeled granulocytes, as obtained by MRI, was 6.40 ± 0.18 pg/cell. Similar values were found with the ICP-MS and NIRF imaging techniques. Therefore, our study shows that it is possible to isolate granulocytes with high purity and yield and labeling with M-SPIONs provides a high internalized iron load and low toxicity to cells. Therefore, these M-SPION-labeled granulocytes could be a promising candidate for future use in inflammation/infection detection by optical and MRI techniques.
Collapse
|
31
|
Autologous plasma versus fetal calf serum as a supplement for the culture of neutrophils. BMC Res Notes 2020; 13:39. [PMID: 31969182 PMCID: PMC6977324 DOI: 10.1186/s13104-020-4902-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Currently, the replacement of fetal calf serum (FCS) by a more suitable alternative is a sought aim in the field of tissue and cell culture research. Autologous plasma (AP) and especially autologous serum (AS) have been shown to be effective substitutes of FCS in culture media for some of the cell types. Nevertheless, there is no comparative data on the most appropriate supplement for cell media in neutrophil studies, it is now unclear whether AP have a relatively equal, superior or inferior performance to FCS in neutrophil cell culture. In the present study, human blood neutrophils were isolated and cultured in FCS- or AP-supplemented medium. After 12, 36 and 60 h of incubation, cell viability, oxidative burst and CD11b expression were determined by flow cytometry. RESULTS Compared to the culture of neutrophils in FCS 10% medium, the culture of neutrophils in a medium with AP 10% could prolong their life span without affecting their function. The findings introduce AP as a better supplement for human neutrophil cell culture than FCS and propose a simple and economical procedure for neutrophil isolation and culture.
Collapse
|
32
|
Injarabian L, Devin A, Ransac S, Marteyn BS. Neutrophil Metabolic Shift during their Lifecycle: Impact on their Survival and Activation. Int J Mol Sci 2019; 21:E287. [PMID: 31906243 PMCID: PMC6981538 DOI: 10.3390/ijms21010287] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune cells, which represent 50% to 70% of the total circulating leukocytes. How PMNs adapt to various microenvironments encountered during their life cycle, from the bone marrow, to the blood plasma fraction, and to inflamed or infected tissues remains largely unexplored. Metabolic shifts have been reported in other immune cells such as macrophages or lymphocytes, in response to local changes in their microenvironment, and in association with a modulation of their pro-inflammatory or anti-inflammatory functions. The potential contribution of metabolic shifts in the modulation of neutrophil activation or survival is anticipated even though it is not yet fully described. If neutrophils are considered to be mainly glycolytic, the relative importance of alternative metabolic pathways, such as the pentose phosphate pathway, glutaminolysis, or the mitochondrial oxidative metabolism, has not been fully considered during activation. This statement may be explained by the lack of knowledge regarding the local availability of key metabolites such as glucose, glutamine, and substrates, such as oxygen from the bone marrow to inflamed tissues. As highlighted in this review, the link between specific metabolic pathways and neutrophil activation has been outlined in many reports. However, the impact of neutrophil activation on metabolic shifts' induction has not yet been explored. Beyond its importance in neutrophil survival capacity in response to available metabolites, metabolic shifts may also contribute to neutrophil population heterogeneity reported in cancer (tumor-associated neutrophil) or auto-immune diseases (Low/High Density Neutrophils). This represents an active field of research. In conclusion, the characterization of neutrophil metabolic shifts is an emerging field that may provide important knowledge on neutrophil physiology and activation modulation. The related question of microenvironmental changes occurring during inflammation, to which neutrophils will respond to, will have to be addressed to fully appreciate the importance of neutrophil metabolic shifts in inflammatory diseases.
Collapse
Affiliation(s)
- Louise Injarabian
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France;
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Anne Devin
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Stéphane Ransac
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Benoit S. Marteyn
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France;
- Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, 75724 Paris, France
| |
Collapse
|
33
|
Hann J, Bueb JL, Tolle F, Bréchard S. Calcium signaling and regulation of neutrophil functions: Still a long way to go. J Leukoc Biol 2019; 107:285-297. [PMID: 31841231 DOI: 10.1002/jlb.3ru0719-241r] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in blood and disruption in their functions often results in an increased risk of serious infections and inflammatory autoimmune diseases. Following recent discoveries in their influence over disease progression, a resurgence of interest for neutrophil biology has taken place. The multitude of signaling pathways activated by the engagement of numerous types of receptors, with which neutrophils are endowed, reflects the functional complexity of these cells. It is therefore not surprising that there remains a huge lack in the understanding of molecular mechanisms underlining neutrophil functions. Moreover, studies on neutrophils are undoubtedly limited by the difficulty to efficiently edit the cell's genome. Over the past 30 years, compelling evidence has clearly highlighted that Ca2+ -signaling is governing the key processes associated with neutrophil functions. The confirmation of the role of an elevation of intracellular Ca2+ concentration has come from studies on NADPH oxidase activation and phagocytosis. In this review, we give an overview and update of our current knowledge on the role of Ca2+ mobilization in the regulation of pro-inflammatory functions of neutrophils. In particular, we stress the importance of Ca2+ in the formation of NETs and cytokine secretion in the light of newest findings. This will allow us to embrace how much further we have to go to understand the complex dynamics of Ca2+ -dependent mechanisms in order to gain more insights into the role of neutrophils in the pathogenesis of inflammatory diseases. The potential for therapeutics to regulate the neutrophil functions, such as Ca2+ influx inhibitors to prevent autoimmune and chronic inflammatory diseases, has been discussed in the last part of the review.
Collapse
Affiliation(s)
- J Hann
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - J-L Bueb
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - F Tolle
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - S Bréchard
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
34
|
Talla U, Bozonet SM, Parker HA, Hampton MB, Vissers MCM. Prolonged exposure to hypoxia induces an autophagy-like cell survival program in human neutrophils. J Leukoc Biol 2019; 106:1367-1379. [PMID: 31412152 DOI: 10.1002/jlb.4a0319-079rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils contribute to low oxygen availability at inflammatory sites through the generation of reactive oxidants. They are also functionally affected by hypoxia, which delays neutrophil apoptosis. However, the eventual fate of neutrophils in hypoxic conditions is unknown and this is important for their effective clearance and the resolution of inflammation. We have monitored the survival and function of normal human neutrophils exposed to hypoxia over a 48 h period. Apoptosis was delayed, and the cells remained intact even at 48 h. However, hypoxia promoted significant changes in neutrophil morphology with the appearance of many new cytoplasmic vesicles, often containing cell material, within 5 hours of exposure to low O2 . This coincided with an increase in LC3B-II expression, indicative of autophagosome formation and an autophagy-like process. In hypoxic conditions, neutrophils preferentially lost myeloperoxidase, a marker of azurophil granules. Short-term (2 h) hypoxic exposure resulted in sustained potential to generate superoxide when O2 was restored, but the capacity for oxidant production was lost with longer periods of hypoxia. Phagocytic ability was unchanged by hypoxia, and bacterial killing by neutrophils in both normoxic and hypoxic conditions was substantially diminished after 24 hours. However, pre-exposure to hypoxia resulted in an enhanced ability to kill bacteria by oxidant-independent mechanisms. Our data provide the first evidence for hypoxia as a driver of neutrophil autophagy that can influence the function and ultimate fate of these cells, including their eventual clearance and the resolution of inflammation.
Collapse
Affiliation(s)
- Usharani Talla
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Stephanie M Bozonet
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Heather A Parker
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
35
|
Shigella-mediated oxygen depletion is essential for intestinal mucosa colonization. Nat Microbiol 2019; 4:2001-2009. [PMID: 31383999 PMCID: PMC6817363 DOI: 10.1038/s41564-019-0525-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/25/2019] [Indexed: 01/11/2023]
Abstract
Pathogenic enterobacteria face various oxygen (O2) levels during intestinal colonization from the O2-deprived lumen to oxygenated tissues. Using Shigella flexneri as a model, we had previously demonstrated that epithelium invasion is promoted by O2 in a Type III secretion system (T3SS)-dependent manner1. However, subsequent pathogen adaptation to tissue oxygenation modulation remained unknown. Assessing single-cell distribution, together with tissue oxygenation, we demonstrate here that the colonic mucosa O2 is actively depleted by Shigella flexneri aerobic respiration, not host neutrophils, during infection, leading to the formation of hypoxic foci of infection. This process is promoted by T3SS inactivation in infected tissues, favoring colonizers over explorers. We identify the molecular mechanisms supporting infectious hypoxia induction, and we demonstrate here how enteropathogens optimize their colonization capacity in relation to their ability to manipulate tissue oxygenation during infection.
Collapse
|
36
|
Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol 2019; 74:105689. [PMID: 31207404 DOI: 10.1016/j.intimp.2019.105689] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neutrophils are short-lived cells of the innate immune system that have an important role in defending against pathogens by producing reactive oxygen species (ROS). Therefore, effective strategies for increasing neutrophil's viability and function may be beneficial, especially in many conditions such as infections and immunodeficiency diseases. Some studies suggest using multipotent mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) for this aim. But, there is no study on using MSC-derived exosomes for improving neutrophil's viability and function. So, we examined the effects of MSC-exosomes and also MSC-CM on neutrophil's function and survival and compared them with each other. METHODS Exosomes and CM were isolated from human adipose tissue MSCs. Exosomes were characterized, and the protein content of them was determined. Neutrophils were isolated from five healthy donors, and the effects of the two independent treatments (exosomes and conditioned media) on neutrophil's apoptosis were measured by Annexin V-PI method, then neutrophil's function was evaluated using NBT and phagocytosis assays. RESULTS It was recognized that exosomes decreased neutrophils apoptosis and increased their phagocytosis capacity. The conditioned media augmented neutrophil's phagocytosis and reactive oxygen species (ROS) production, but it couldn't decrease neutrophil's apoptosis. DISCUSSION Briefly, we concluded that MSC-exosomes augment neutrophil's viability more than their function while MSC-CM increase neutrophil's function more than the survival. This report showed that the use of MSC-exosomes and CM might be useful for increasing immunity by improving neutrophil's function and survival.
Collapse
Affiliation(s)
- Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Richter-Dahlfors A, Melican K. A Cinematic View of Tissue Microbiology in the Live Infected Host. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0007-2019. [PMID: 31152520 PMCID: PMC11026076 DOI: 10.1128/microbiolspec.bai-0007-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Tissue microbiology allows for the study of bacterial infection in the most clinically relevant microenvironment, the living host. Advancements in techniques and technology have facilitated the development of novel ways of studying infection. Many of these advancements have come from outside the field of microbiology. In this article, we outline the progression from bacteriology through cellular microbiology to tissue microbiology, highlighting seminal studies along the way. We outline the enormous potential but also some of the challenges of the tissue microbiology approach. We focus on the role of emerging technologies in the continual development of infectious disease research and highlight future possibilities in our ongoing quest to understand host-pathogen interaction.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
38
|
Prudovsky I, Carter D, Kacer D, Palmeri M, Soul T, Kumpel C, Pyburn K, Barrett K, DeMambro V, Alexandrov I, Brandina I, Kramer R, Rappold J. Tranexamic acid suppresses the release of mitochondrial DNA, protects the endothelial monolayer and enhances oxidative phosphorylation. J Cell Physiol 2019; 234:19121-19129. [PMID: 30941770 DOI: 10.1002/jcp.28603] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Damage-associated molecular patterns, including mitochondrial DNA (mtDNA) are released during hemorrhage resulting in the development of endotheliopathy. Tranexamic acid (TXA), an antifibrinolytic drug used in hemorrhaging patients, enhances their survival despite the lack of a comprehensive understanding of its cellular mechanisms of action. The present study is aimed to elucidate these mechanisms, with a focus on mitochondria. We found that TXA inhibits the release of endogenous mtDNA from granulocytes and endothelial cells. Furthermore, TXA attenuates the loss of the endothelial monolayer integrity induced by exogenous mtDNA. Using the Seahorse XF technology, it was demonstrated that TXA strongly stimulates mitochondrial respiration. Studies using Mitotracker dye, cells derived from mito-QC mice, and the ActivSignal IPAD assay, indicate that TXA stimulates biogenesis of mitochondria and inhibits mitophagy. These findings open the potential for improvement of the strategies of TXA applications in trauma patients and the development of more efficient TXA derivatives.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Damien Carter
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine.,Maine Medical Center Department of Trauma, Maine Medical Center, Portland, Maine
| | - Doreen Kacer
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Monica Palmeri
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine.,Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine
| | - Tee Soul
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Chloe Kumpel
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Kathleen Pyburn
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Karyn Barrett
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Victoria DeMambro
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | | | | | - Robert Kramer
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine.,Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine
| | - Joseph Rappold
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine.,Maine Medical Center Department of Trauma, Maine Medical Center, Portland, Maine.,Maine Medical Center Cardiovascular Institute, Maine Medical Center, Portland, Maine
| |
Collapse
|
39
|
Colucci-Guyon E, Batista AS, Oliveira SDS, Blaud M, Bellettini IC, Marteyn BS, Leblanc K, Herbomel P, Duval R. Ultraspecific live imaging of the dynamics of zebrafish neutrophil granules by a histopermeable fluorogenic benzochalcone probe. Chem Sci 2019; 10:3654-3670. [PMID: 30996961 PMCID: PMC6432617 DOI: 10.1039/c8sc05593a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophil granules (NGs) are key components of the innate immune response and mark the development of neutrophilic granulocytes in mammals. However, there has been no specific fluorescent vital stain up to now to monitor their dynamics within a whole live organism. We rationally designed a benzochalcone fluorescent probe (HAB) featuring high tissue permeability and optimal photophysics such as elevated quantum yield, pronounced solvatochromism and target-induced fluorogenesis. Phenotypic screening identified HAB as the first cell- and organelle-specific small-molecule fluorescent tracer of NGs in live zebrafish larvae, with no labeling of other cell types or organelles. HAB staining was independent of the state of neutrophil activation, labeling NGs of both resting and phagocytically active neutrophils with equal specificity. By high-resolution live imaging, we documented the dynamics of HAB-stained NGs during phagocytosis. Upon zymosan injection, labeled NGs were rapidly recruited to the forming phagosomes. Despite being a reversible ligand, HAB could not be displaced by high concentrations of pharmacologically relevant competing chalcones, indicating that this specific labeling was the result of the HAB's precise physicochemical signature rather than a general feature of chalcones. However, one of the competitors was discovered as a promising interstitial fluorescent tracer illuminating zebrafish histology, similarly to BODIPY-ceramide. As a yellow-emitting histopermeable vital stain, HAB functionally and spectrally complements most genetically incorporated fluorescent tags commonly used in live zebrafish biology, holding promise for the study of neutrophil-dependent responses relevant to human physiopathology such as developmental defects, inflammation and infection. Furthermore, HAB intensely labeled isolated live human neutrophils at the level of granulated subcellular structures consistent with human NGs, suggesting that the labeling of NGs by HAB is not restricted to the zebrafish model but also relevant to mammalian systems.
Collapse
Affiliation(s)
- Emma Colucci-Guyon
- Institut Pasteur , Unité Macrophages et Développement de l'Immunité , Paris , 75015 , France .
- CNRS , UMR 3738 , Paris , France
| | - Ariane S Batista
- Nanotechnology Engineering Program , Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - COPPE , Universidade Federal do Rio de Janeiro , Rio de Janeiro , 21941-972 , Brazil
| | | | - Magali Blaud
- LCRB , CNRS , Université Paris 5 , Sorbonne Paris Cité , Paris , 75006 , France
| | - Ismael C Bellettini
- Departamento de Ciências Exatas e Educaçao , Universidade Federal de Santa Catarina , Blumenau , 89036-256 , Brazil
| | - Benoit S Marteyn
- Institut Pasteur , Unité de Pathogénie Microbienne Moléculaire , Paris , 75015 , France
- INSERM , UMR 786 , Paris , France
| | - Karine Leblanc
- BioCIS , CNRS , Université Paris-Sud 11 , Châtenay-Malabry , 92290 , France
| | - Philippe Herbomel
- Institut Pasteur , Unité Macrophages et Développement de l'Immunité , Paris , 75015 , France .
- CNRS , UMR 3738 , Paris , France
| | - Romain Duval
- MERIT , IRD , Université Paris 5 , Sorbonne Paris Cité , Paris , 75006 , France .
| |
Collapse
|
40
|
Quach A, Glowik S, Putty T, Ferrante A. Delayed Blood Processing Leads to Rapid Deterioration in the Measurement of the Neutrophil Respiratory Burst by the Dihydrorhodamine‐123 Reduction Assay. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:389-396. [DOI: 10.1002/cyto.b.21767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Alex Quach
- Department of ImmunopathologySA Pathology at the Women's and Children's Hospital North Adelaide South Australia Australia
- Discipline of Paediatrics, School of Medicine and The Robinson Research InstituteUniversity of Adelaide Adelaide South Australia Australia
| | - Shannon Glowik
- Department of ImmunopathologySA Pathology at the Women's and Children's Hospital North Adelaide South Australia Australia
- School of Pharmacy and Medical SciencesDivision of Health Sciences, University of South Australia Adelaide South Australia Australia
| | - Trishni Putty
- Department of ImmunopathologySA Pathology at the Women's and Children's Hospital North Adelaide South Australia Australia
| | - Antonio Ferrante
- Department of ImmunopathologySA Pathology at the Women's and Children's Hospital North Adelaide South Australia Australia
- Discipline of Paediatrics, School of Medicine and The Robinson Research InstituteUniversity of Adelaide Adelaide South Australia Australia
| |
Collapse
|
41
|
Abstract
Microbial colonizers of humans have evolved to adapt to environmental cues and to sense nutrient availability. Oxygen is a constantly changing environmental parameter in different host tissues and in different types of infection. We describe how Candida albicans, an opportunistic fungal pathogen, can modulate the host response under hypoxia and anoxia. We found that high infiltration of polymorphonuclear leukocytes (PMNs) to the site of infection contributes to a low oxygen milieu in a murine subdermal abscess. A persistent hypoxic environment did not affect viability or metabolism of PMNs. Under oxygen deprivation, however, infection with C. albicans disturbed specific PMN responses. PMNs were not able to efficiently phagocytose, produce ROS, or release extracellular DNA traps. Failure to launch an adequate response was caused by C. albicans cell wall masking of β-glucan upon exposure to low oxygen levels which hindered PAMP sensing by Dectin-1 on the surfaces of PMNs. This in turn contributed to immune evasion and enhanced fungal survival. The cell wall masking effect is prolonged by the accumulation of lactate produced by PMNs under low oxygen conditions. Finally, adaptation to oxygen deprivation increased virulence of C. albicans which we demonstrated using a Caenorhabditis elegans infection model.IMPORTANCE Successful human colonizers have evolved mechanisms to bypass immune surveillance. Infiltration of PMNs to the site of infection led to the generation of a low oxygen niche. Exposure to low oxygen levels induced fungal cell wall masking, which in turn hindered pathogen sensing and antifungal responses by PMNs. The cell wall masking effect was prolonged by increasing lactate amounts produced by neutrophil metabolism under oxygen deprivation. In an invertebrate infection model, C. albicans was able to kill infected C. elegans nematodes within 2 days under low oxygen conditions, whereas the majority of uninfected controls and infected worms under normoxic conditions survived. These results suggest that C. albicans benefited from low oxygen niches to increase virulence. The interplay of C. albicans with innate immune cells under these conditions contributed to the overall outcome of infection. Adaption to low oxygen levels was in addition beneficial for C. albicans by reducing susceptibility to selected antifungal drugs. Hence, immunomodulation of host cells under low oxygen conditions could provide a valuable approach to improve current antifungal therapies.
Collapse
|
42
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Anderson MC, Chaze T, Coïc YM, Injarabian L, Jonsson F, Lombion N, Selimoglu-Buet D, Souphron J, Ridley C, Vonaesch P, Baron B, Arena ET, Tinevez JY, Nigro G, Nothelfer K, Solary E, Lapierre V, Lazure T, Matondo M, Thornton D, Sansonetti PJ, Baleux F, Marteyn BS. MUB 40 Binds to Lactoferrin and Stands as a Specific Neutrophil Marker. Cell Chem Biol 2018; 25:483-493.e9. [PMID: 29478905 DOI: 10.1016/j.chembiol.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Neutrophils represent the most abundant immune cells recruited to inflamed tissues. A lack of dedicated tools has hampered their detection and study. We show that a synthesized peptide, MUB40, binds to lactoferrin, the most abundant protein stored in neutrophil-specific and tertiary granules. Lactoferrin is specifically produced by neutrophils among other leukocytes, making MUB40 a specific neutrophil marker. Naive mammalian neutrophils (human, guinea pig, mouse, rabbit) were labeled by fluorescent MUB40 conjugates (-Cy5, Dylight405). A peptidase-resistant retro-inverso MUB40 (RI-MUB40) was synthesized and its lactoferrin-binding property validated. Neutrophil lactoferrin secretion during in vitro Shigella infection was assessed with RI-MUB40-Cy5 using live cell microscopy. Systemically administered RI-MUB40-Cy5 accumulated at sites of inflammation in a mouse arthritis inflammation model in vivo and showed usefulness as a potential tool for inflammation detection using non-invasive imaging. Improving neutrophil detection with the universal and specific MUB40 marker will aid the study of broad ranges of inflammatory diseases.
Collapse
Affiliation(s)
- Mark C Anderson
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Thibault Chaze
- Institut Pasteur / CNRS USR 2000 Mass Spectrometry for Biology, Proteomics Platform, CITECH, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Yves-Marie Coïc
- Institut Pasteur, Unité de Chimie des Biomolécules, CNRS UMR 3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Louise Injarabian
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; CNRS, IBGC, Cell Energetic Metabolism, 1 rue Camille Saint Saëns CS 61390, 33077 Bordeaux Cedex, France
| | - Friederike Jonsson
- Institut Pasteur, Département d'Immunologie, 25 rue du Docteur Roux, 75024 Paris Cedex 15, France; INSERM Unité 1222, 25 rue du Dr Roux, 75015 Paris Cedex 15, France
| | - Naelle Lombion
- Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | | | - Judith Souphron
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Ridley
- University of Manchester, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, A.V. Hill Building, Manchester M13 9PT, UK
| | - Pascale Vonaesch
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Bruno Baron
- Institut Pasteur, Plate-Forme de Biophysique Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Ellen T Arena
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jean-Yves Tinevez
- Institut Pasteur, CITECH, Imagopole, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Giulia Nigro
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Katharina Nothelfer
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Eric Solary
- Institut Gustave Roussy Inserm U1009, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Valérie Lapierre
- Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Thierry Lazure
- APHP Hôpital du Kremlin-Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mariette Matondo
- Institut Pasteur / CNRS USR 2000 Mass Spectrometry for Biology, Proteomics Platform, CITECH, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - David Thornton
- Institut Pasteur, Département d'Immunologie, 25 rue du Docteur Roux, 75024 Paris Cedex 15, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Collège de France, Paris, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, CNRS UMR 3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France.
| |
Collapse
|
44
|
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9:115. [PMID: 29371595 PMCID: PMC5833710 DOI: 10.1038/s41419-017-0061-0] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell’s permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Martino M, Recchia AG, Console G, Gentile M, Cimminiello M, Gallo GA, Ferreri A, Naso V, Irrera G, Messina G, Moscato T, Vigna E, Vincelli ID, Morabito F. Can we improve the conditioning regimen before autologous stem cell transplantation in multiple myeloma? Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1387050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | | | - Giuseppe Console
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Massimo Gentile
- Hematology Unit, Department of Hemato-Oncology, Ospedale Annunziata, Cosenza, Italy
| | - Michele Cimminiello
- Hematology and Stem Cell Transplantation Unit, “S. Carlo” Hospital, Potenza, Italy
| | - Giuseppe Alberto Gallo
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Anna Ferreri
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Virginia Naso
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Giuseppe Irrera
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Giuseppe Messina
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Tiziana Moscato
- Stem Cell Transplant Unit, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Ernesto Vigna
- Hematology Unit, Department of Hemato-Oncology, Ospedale Annunziata, Cosenza, Italy
| | - Iolanda Donatella Vincelli
- Hematology, Department of Onco-Hematology and Radiotherapy, Great Metropolitan Hospital BMM, Reggio, Italy
| | | |
Collapse
|
46
|
Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis. Front Cell Infect Microbiol 2017; 7:243. [PMID: 28713772 PMCID: PMC5492487 DOI: 10.3389/fcimb.2017.00243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.
Collapse
Affiliation(s)
- Benoît S Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Institut PasteurParis, France.,Institut National de la Santé et de la Recherche Médicale, U12021202Paris, France.,Institut Gustave RoussyVillejuif, France
| | - Pierre-Régis Burgel
- Université Paris Descartes, Sorbonne Paris CitéParis, France.,Pneumology Department, Hôpital CochinParis, France
| | | | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut CochinParis, France.,Centre National de la Recherche Scientifique-UMR 8104Paris, France.,Center of Excellence, Labex InflamexParis, France
| |
Collapse
|
47
|
Yen K, Travins J, Wang F, David MD, Artin E, Straley K, Padyana A, Gross S, DeLaBarre B, Tobin E, Chen Y, Nagaraja R, Choe S, Jin L, Konteatis Z, Cianchetta G, Saunders JO, Salituro FG, Quivoron C, Opolon P, Bawa O, Saada V, Paci A, Broutin S, Bernard OA, de Botton S, Marteyn BS, Pilichowska M, Xu Y, Fang C, Jiang F, Wei W, Jin S, Silverman L, Liu W, Yang H, Dang L, Dorsch M, Penard-Lacronique V, Biller SA, Su SSM. AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discov 2017; 7:478-493. [DOI: 10.1158/2159-8290.cd-16-1034] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
48
|
Arena ET, Tinevez JY, Nigro G, Sansonetti PJ, Marteyn BS. The infectious hypoxia: occurrence and causes during Shigella infection. Microbes Infect 2016; 19:157-165. [PMID: 27884799 DOI: 10.1016/j.micinf.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Hypoxia is defined as a tissue oxygenation status below physiological needs. During Shigella infection, an infectious hypoxia is induced within foci of infection. In this review, we discuss how Shigella physiology and virulence are modulated and how the main recruited immune cells, the neutrophils, adapt to this environment.
Collapse
Affiliation(s)
- Ellen T Arena
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Citech, Imagopole, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Giulia Nigro
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Collège de France, 11 Place Marcellin Berthelot, F-75231, Paris Cedex 05, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Gustave Roussy Cancer Campus, Laboratoire de Thérapie Cellulaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France.
| |
Collapse
|
49
|
Kumar S, Dikshit M. [What is your diagnosis? (Cutaneous leishmaniasis)]. Front Immunol 1983; 10:2099. [PMID: 31616403 PMCID: PMC6764236 DOI: 10.3389/fimmu.2019.02099] [Citation(s) in RCA: 160] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are the most abundant, short lived, and terminally differentiated leukocytes with distinct tiers of arsenals to counter pathogens. Neutrophils were traditionally considered transcriptionally inactive cells, but recent researches in the field led to a paradigm shift in neutrophil biology and revealed subpopulation heterogeneity, and functions pivotal to immunity and inflammation. Furthermore, recent unfolding of metabolic plasticity in neutrophils has challenged the long-standing concept of their sole dependence on glycolytic pathway. Metabolic adaptations and distinct regulations have been identified which are critical for neutrophil differentiation and functions. The metabolic reprogramming of neutrophils by inflammatory mediators or during pathologies such as sepsis, diabetes, glucose-6-phosphate dehydrogenase deficiency, glycogen storage diseases (GSDs), systemic lupus erythematosus (SLE), rheumatoid arthritis, and cancer are now being explored. In this review, we discuss recent developments in understanding of the metabolic regulation, that may provide clues for better management and newer therapeutic opportunities for neutrophil centric immuno-deficiencies and inflammatory disorders.
Collapse
Affiliation(s)
- Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- *Correspondence: Sachin Kumar
| | - Madhu Dikshit
- Translational Health Science and Technology Institute, Faridabad, India
- Madhu Dikshit ;
| |
Collapse
|