1
|
Kongtim P, Vittayawacharin P, Zou J, Srour S, Shaffer B, Shapiro RM, Varma A, McGuirk J, Dholaria BR, McCurdy SR, DeZern AE, Bejanyan N, Bashey A, Furst S, Castagna L, Mariotti J, Ruggeri A, Bailen R, Teshima T, Xiao-Jun H, Bonfim C, Aung F, Cao K, Carpenter PA, Hamadani M, Askar M, Fernandez-Vina M, Girnita A, Ciurea SO. ASTCT Consensus Recommendations on Testing and Treatment of Patients with Donor-specific Anti-HLA Antibodies. Transplant Cell Ther 2024; 30:1139-1154. [PMID: 39260570 DOI: 10.1016/j.jtct.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Donor-specific anti-HLA antibodies (DSA) are an important cause of engraftment failure and may negatively impact survival outcomes of patients receiving allogeneic hematopoietic stem cell transplantation (HSCT) using an HLA-mismatched allograft. The incidence of DSA varies across studies, depending on individual factors, detection or identification methods and thresholds considered clinically relevant. Although DSA testing by multiplex bead arrays remains semiquantitative, it has been widely adopted as a standard test in most transplant centers. Additional testing to determine risk of allograft rejection may include assays with HLA antigens in natural conformation, such as flow cytometric crossmatch, and/or antibody binding assays, such as C1q testing. Patients with low level of DSA (<2,000 mean fluorescence intensity; MFI) may not require treatment, while others with very high level of DSA (>20,000 MFI) may be at very high-risk for engraftment failure despite current therapies. By contrast, in patients with moderate or high level of DSA, desensitization therapy can successfully mitigate DSA levels and improve donor cell engraftment rate, with comparable outcomes to patients without DSA. Treatment is largely empirical and multimodal, involving the removal, neutralization, and blocking of antibodies, as well as inhibition of antibody production to prevent activation of the complement cascade. Desensitization protocols are based on accumulated multicenter experience, while prospective multicenter studies remain lacking. Most patients require a full intensity protocol that includes plasma exchange, while protocols relying only on rituximab and intravenous immunoglobulin may be sufficient for patients with lower DSA levels and negative C1q and/or flow cytometric crossmatch. Monitoring DSA levels before and after HSCT could guide preemptive treatment when high levels persist after stem cell infusion. This paper aims to standardize current evidence-based practice and formulate future directions to improve upon current knowledge and advance treatment for this relatively rare, but potentially serious complication in allogeneic HSCT recipients.
Collapse
Affiliation(s)
- Piyanuch Kongtim
- Hematopoietic Stem Cell Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Jun Zou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Shaffer
- Adult BMT Service, Department of Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roman M Shapiro
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ankur Varma
- Section of Bone Marrow Transplant and Cell Therapy, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - Joseph McGuirk
- Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Shannon R McCurdy
- Division of Hematology and Oncology and Abramson Cancer Center, Hospital of the University of Pennsylvania, Philadephia, PA, USA
| | - Amy E DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nelli Bejanyan
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, FL, USA
| | - Asad Bashey
- BMT, Acute Leukemia and Cellular Immunotherapy Program at Northside Hospital, Blood and Marrow Transplant Group of Georgia, Atlanta, GA, USA
| | - Sabine Furst
- Programme de Transplantation et d'Immunothérapie Cellulaire, Département d'Hématologie, Institut Paoli Calmettes, Marseille, France
| | - Luca Castagna
- BMT Unit, Ospedale Villa Sofia Cervello, Palermo, Italy
| | - Jacopo Mariotti
- Department of Oncology/Hematology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Annalisa Ruggeri
- Hematology and BMT unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rebeca Bailen
- Hematology and Hemotherapy Department, Gregorio Marañon University Hospital, Gregorio Marañon Health Research Institute, Madrid, Spain
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Huang Xiao-Jun
- Peking University Institute of Hematology, Beijing, China
| | - Carmen Bonfim
- Pele Pequeno Principe Research institute/Faculdades Pequeno Principe, Curitiba, Brazil
| | - Fleur Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kai Cao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Medhat Askar
- College of Medicine, Qatar University, Doha; Qatar and National Marrow Donor Program, Minneapolis, MN
| | | | - Alin Girnita
- HLA Laboratory, Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Petersdorf EW. HLA structure and function in hematopoietic-cell transplantation. Best Pract Res Clin Haematol 2024; 37:101564. [PMID: 39396254 DOI: 10.1016/j.beha.2024.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
The degree of HLA compatibility between a patient and donor has formed the basis of donor selection since the development of allogeneic hematopoietic cell transplantation over 50 years ago and has advanced understanding of the basic immunobiology of HLA. New evidence supports a role for germline variation in the patient and the donor that do not require HLA matching for their effects to have clinical consequences. The discovery of novel non-coding polymorphisms, structural features of HLA molecules, and expression provide new models for donor selection and inspire the development of tools for clinical translation. Pairwise effects of HLA ligand/donor NK receptors may play an important role in transplant outcomes and showcase the value of understanding the role played by each constituent of the NK pathway in modulating donor responses to target antigens.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
3
|
Tammi S, Koskela S, Hyvärinen K, Partanen J, Ritari J. Accurate multi-population imputation of MICA, MICB, HLA-E, HLA-F and HLA-G alleles from genome SNP data. PLoS Comput Biol 2024; 20:e1011718. [PMID: 39283896 PMCID: PMC11426482 DOI: 10.1371/journal.pcbi.1011718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 08/31/2024] [Indexed: 09/27/2024] Open
Abstract
In addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes. The best imputation model for MICA, MICB, HLA-E, -F and -G achieved a mean accuracy of 99.3% (min, max: 98.6, 99.9). Furthermore, validation of the 1000 Genomes exome short-read sequencing-based allele calling against a clinical-grade reference data showed an average accuracy of 99.8%, testifying for the quality of the 1000 Genomes data as an imputation reference. We also fitted the models for Infinium Global Screening Array (GSA, Illumina, Inc.) and Axiom Precision Medicine Research Array (PMRA, Thermo Fisher Scientific Inc.) SNP content, with mean accuracies of 99.1% (97.2, 100) and 98.9% (97.4, 100), respectively.
Collapse
Affiliation(s)
- Silja Tammi
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Satu Koskela
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- Finnish Red Cross Blood Service, Blood Service Biobank, Vantaa, Finland
| | | | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- Finnish Red Cross Blood Service, Blood Service Biobank, Vantaa, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| |
Collapse
|
4
|
Singh RB, Cho W, Liu C, Naderi A, Surico PL, Kahale F, Dohlman TH, Chauhan SK, Dana R. Immunopathological mechanisms and clinical manifestations of ocular graft-versus-host disease following hematopoietic stem cell transplantation. Bone Marrow Transplant 2024; 59:1049-1056. [PMID: 38822141 DOI: 10.1038/s41409-024-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Graft-versus-host disease is among the most common clinical complications following allogeneic hematopoietic stem cell transplantation. It causes inflammation-mediated destruction and dysfunction of various organ systems including ocular tissues in 60-90% of the patients and is termed ocular GVHD (oGVHD). In oGVHD, donor-derived T-cells recognize host antigens as foreign, resulting in immune dysregulation, inflammation and fibrosis of lacrimal glands, meibomian glands, cornea, and conjunctiva. The clinical presentation in oGVHD patients range from mild dry eye symptoms to catastrophic inflammation mediated pathological changes which can cause corneal perforation and blindness. In this review article, we provide detailed insights into the impact of mucosal barrier disruption, the afferent and efferent phases of immunological response involving activation of antigen presenting cells and T cells, respectively. We evaluate the evidence outlining the effector phase of the disease leading to cellular destruction and eventually fibrosis in patients with oGVHD. Finally, we discuss the well-established criteria for the diagnosis of oGVHD.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Wonkyung Cho
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Catherine Liu
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pier Luigi Surico
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Francesca Kahale
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Cox ST, Patterson W, Duggleby R, Jones OJR, Madrigal JA, Querol S, Salvador FR, Mata MJH, Volt F, Gluckman É, Szydlo R, Danby RD, Hernandez D. Impact of donor NKG2D and MICA gene polymorphism on clinical outcomes of adult and paediatric allogeneic cord blood transplantation for malignant diseases. Eur J Haematol 2024; 113:32-43. [PMID: 38511389 DOI: 10.1111/ejh.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES NKG2D is an activating receptor expressed by natural killer (NK) and CD8+ T cells and activation intensity varies by NKG2D expression level or nature of its ligand. An NKG2D gene polymorphism determines high (HNK1) or low (LNK1) expression. MICA is the most polymorphic NKG2D ligand and stronger effector cell activation associates with methionine rather than valine at residue 129. We investigated correlation between cord blood (CB) NKG2D and MICA genotypes and haematopoietic stem cell (HSC) transplant outcome. METHODS We retrospectively studied 267 CB HSC recipients (178 adult and 87 paediatric) who underwent transplant for malignant disease between 2007 and 2018, analysing CB graft DNA for NKG2D and MICA polymorphisms using Sanger sequencing. Multivariate analysis was used to correlate these results with transplant outcomes. RESULTS In adult patients, LNK1 homozygous CB significantly improved 60-day neutrophil engraftment (hazard ratio (HR) 0.6; 95% confidence interval (CI) 0.4-0.9; p = .003). In paediatrics, HNK1 homozygous CB improved 60-day engraftment (HR 0.4; 95% CI 0.2-0.7; p = .003), as did MICA-129 methionine+ CB grafts (HR 1.7 95% CI 1.1-2.6; p = .02). CONCLUSION CB NKG2D and MICA genotypes potentially improve CB HSC engraftment. However, results contrast between adult and paediatric recipients and may reflect transplant procedure disparities between cohorts.
Collapse
Affiliation(s)
- Steven T Cox
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Warren Patterson
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - Richard Duggleby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Owen J R Jones
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | | | | | | | | | - Fernanda Volt
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Éliane Gluckman
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Richard Szydlo
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Robert D Danby
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
- Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Diana Hernandez
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
6
|
Amann EM, Gowdavally S, Tsamadou C, Platzbecker U, Sala E, Wagner-Drouet E, Valerius T, Kröger N, Wulf G, Einsele H, Thurner L, Schaefer-Eckart K, Freitag S, Casper J, Dürholt M, Kaufmann M, Hertenstein B, Klein S, Ringhoffer M, Frank S, Saal T, Schmid-Möglich A, Neuchel C, Schrezenmeier H, Mytilineos J, Fürst D. The impact of MICB mismatches in unrelated haematopoietic stem cell transplantation. HLA 2024; 103:e15584. [PMID: 38932717 DOI: 10.1111/tan.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
MICA polymorphisms have been associated with increased incidence of acute GvHD and adverse outcome in allogeneic haematopoietic stem cell transplantation (HSCT). MICB is another expressed member of MHC class I-related chain genes and its impact on HSCT outcome is yet to be fully defined. We typed a large cohort of patients and donors for MICB polymorphisms and investigated the impact of MICB matching on outcome after unrelated HSCT. 69.2% of the patients were 10/10 human leukocyte antigen (HLA) matched and 30.8% were 9/10 HLA matched. MICB typing was performed using a short amplicon-based NGS typing assay on the Illumina MiSeq platform. Differences in proteins were considered as mismatches. MICA polymorphisms were identified as possible confounder and were therefore included as parameter in the multivariate analyses. Due to the strong linkage disequilibrium with the classical HLA-genes, sub-stratification for HLA matching status was necessary, and no effect of MICB mismatches was seen in the 10/10 HLA matched group when compared to the MICB matched cases. However, in the 9/10 HLA matched group, MICB mismatched cases showed significantly worse disease free survival (DFS), GvHD and relapse free survival (GRFS) compared to the MICB matched cases (DFS: HR 1.24, p = 0.011; GRFS: HR 1.26, p = 0.002). MICA mismatches had no impact on any outcome parameter. According to our findings, effects previously attributed to MICA differences may have been confounded by MICB polymorphisms. We show that MICB differences contribute a small but relevant effect in 9/10 HLA-matched transplantations, which in turn highlights the possible usefulness of MICB typing in donor selection among similarly suitable 9/10 matched donors, especially when HLA-B mismatches have to be accepted.
Collapse
Affiliation(s)
- Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sowmya Gowdavally
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Uwe Platzbecker
- Department of Hematology/Oncology, University of Leipzig, Leipzig, Germany
| | - Elisa Sala
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Eva Wagner-Drouet
- Department of Medicine III, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University, Kiel, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Gerald Wulf
- Department of Hematology/Oncology, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Lorenz Thurner
- Department Internal Medicine I, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | - Sebastian Freitag
- Department of Medicine III, Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Jochen Casper
- Department of Oncology and Hematology, Klinikum Oldenburg, University Clinic, Oldenburg, Germany
| | - Mareike Dürholt
- Hematology/Oncology, Evangelic Clinic Essen-Werden, Essen, Germany
| | - Martin Kaufmann
- 2nd Department of Internal Medicine, Oncology and Hematology, Robert Bosch Hospital Stuttgart, Stuttgart, Germany
| | | | - Stefan Klein
- Universitätsmedizin Mannheim, Med. Klinik III, Mannheim, Germany
| | - Mark Ringhoffer
- Medizinische Klinik III, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Sandra Frank
- DRST - German Registry for Stem Cell Transplantation, Ulm, Germany
| | - Teresa Saal
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Amelie Schmid-Möglich
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- DRST - German Registry for Stem Cell Transplantation, Ulm, Germany
- ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, Ulm, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
7
|
Konuma T, Hamatani-Asakura M, Monna-Oiwa M, Kato S, Isobe M, Yokoyama K, Nannya Y, Takahashi S. Donor NKG2D rs1049174 polymorphism predicts hematopoietic recovery and event-free survival after single-unit cord blood transplantation in adults. Bone Marrow Transplant 2024; 59:566-568. [PMID: 38267584 DOI: 10.1038/s41409-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Cornillon J, Crocchiolo R, Dubois V, Guidicelli G, Jorge-Cordeiro D, Meunier MC, Michiels S, Timmermans A, Villemonteix J, Yakoub-Agha I, Ahmad I. [Unrelated donor selection for allogeneic hematopoietic stem cell transplantation: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2024; 111:S1-S13. [PMID: 37690877 DOI: 10.1016/j.bulcan.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023]
Abstract
The selection of a donor is an essential element in allogeneic hematopoietic stem cell transplantation. In the absence of an HLA-matched related donor, the selection of an unrelated donor is considered, and is currently the most common type of allogenic donor used in practice. Many criteria are considered for the selection when multiple donors are available, particularly in case of partial match. The aim of this workshop is to assist in the selection of an unrelated donor, in keeping with recent data from the literature.
Collapse
Affiliation(s)
- Jérôme Cornillon
- Centre hospitalo-universitaire de Saint-Étienne 42, département d'hématologie et de thérapie cellulaire, Saint-Étienne, France.
| | | | | | | | - Debora Jorge-Cordeiro
- Université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Saint-Louis, laboratoire d'immunologie, Paris, France
| | - Marie-Christine Meunier
- Hôpital Maisonneuve-Rosemont, Optilab-CHUM, laboratoire de diagnostic moléculaire et cytogénétique, Montréal, Québec, Canada
| | - Sandra Michiels
- Hôpital universitaire de Bruxelles, institut Jules-Bordet, unité de transplantation-hématologie, Bruxelles, Belgique
| | - Aurélie Timmermans
- Hôpital universitaire de Bruxelles, institut Jules-Bordet, unité de transplantation-hématologie, Bruxelles, Belgique
| | - Juliette Villemonteix
- Université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Saint-Louis, laboratoire d'immunologie, Paris, France
| | - Ibrahim Yakoub-Agha
- CHU de Lille, Inserm U1286, Infinite, université de Lille, 59000 Lille, France
| | - Imran Ahmad
- Université de Montréal, hôpital Maisonneuve-Rosemont, institut universitaire d'hématologie-oncologie & de thérapie cellulaire, Montréal, Québec, Canada
| |
Collapse
|
9
|
Schinstock CA, Agrawal A, Valenzuela NM. The Significance of Major Histocompatibility Complex Class I Chain-related Molecule A in Solid Organ and Hematopoietic Stem Cell Transplantation: A Comprehensive Overview. Transplantation 2024; 108:115-126. [PMID: 37218026 DOI: 10.1097/tp.0000000000004643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Improving long-term allograft survival and minimizing recipient morbidity is of key importance in all of transplantation. Improved matching of classical HLA molecules and avoiding HLA donor-specific antibody has been a major focus; however, emerging data suggest the relevance of nonclassical HLA molecules, major histocompatibility complex class I chain-related gene A (MICA) and B, in transplant outcomes. The purpose of this review is to discuss the structure, function, polymorphisms, and genetics of the MICA molecule and relates this to clinical outcomes in solid organ and hematopoietic stem cell transplantation. The tools available for genotyping and antibody detection will be reviewed combined with a discussion of their shortcomings. Although data supporting the relevance of MICA molecules have accumulated, key knowledge gaps exist and should be addressed before widespread implementation of MICA testing for recipients pre- or posttransplantation.
Collapse
Affiliation(s)
- Carrie A Schinstock
- Von Liebig Center for Transplant and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Amogh Agrawal
- Von Liebig Center for Transplant and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Nicole M Valenzuela
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, Los Angeles, CA
| |
Collapse
|
10
|
Carapito R, Bahram S. [MICA, a novel histocompatibility antigen in kidney transplantation]. Med Sci (Paris) 2024; 40:102-103. [PMID: 38299912 DOI: 10.1051/medsci/2023183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Affiliation(s)
- Raphael Carapito
- Laboratoire d'immunorhumatologie moléculaire, Inserm UMRS 1109, plateforme GENOMAX, Faculté de médecine, Fédération hospitalo-universitaire OMICARE, Fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France - Laboratoire d'excellence (LabEx) TRANSPLANTEX, Faculté de médecine, université de Strasbourg, Strasbourg, France - Laboratoire d'immunologie, Plateau technique de biologie, Pôle de biologie, Nouvel hôpital civil, Strasbourg, France - Institut thématique interdisciplinaire (ITI) de médecine de précision de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'immunorhumatologie moléculaire, Inserm UMRS 1109, plateforme GENOMAX, Faculté de médecine, Fédération hospitalo-universitaire OMICARE, Fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France - Laboratoire d'excellence (LabEx) TRANSPLANTEX, Faculté de médecine, université de Strasbourg, Strasbourg, France - Laboratoire d'immunologie, Plateau technique de biologie, Pôle de biologie, Nouvel hôpital civil, Strasbourg, France - Institut thématique interdisciplinaire (ITI) de médecine de précision de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Klussmeier A, Putke K, Klasberg S, Kohler M, Sauter J, Schefzyk D, Schöfl G, Massalski C, Schäfer G, Schmidt AH, Roers A, Lange V. High population frequencies of MICA copy number variations originate from independent recombination events. Front Immunol 2023; 14:1297589. [PMID: 38035108 PMCID: PMC10684724 DOI: 10.3389/fimmu.2023.1297589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
MICA is a stress-induced ligand of the NKG2D receptor that stimulates NK and T cell responses and was identified as a key determinant of anti-tumor immunity. The MICA gene is located inside the MHC complex and is in strong linkage disequilibrium with HLA-B. While an HLA-B*48-linked MICA deletion-haplotype was previously described in Asian populations, little is known about other MICA copy number variations. Here, we report the genotyping of more than two million individuals revealing high frequencies of MICA duplications (1%) and MICA deletions (0.4%). Their prevalence differs between ethnic groups and can rise to 2.8% (Croatia) and 9.2% (Mexico), respectively. Targeted sequencing of more than 70 samples indicates that these copy number variations originate from independent nonallelic homologous recombination events between segmental duplications upstream of MICA and MICB. Overall, our data warrant further investigation of disease associations and consideration of MICA copy number data in oncological study protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
12
|
Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Hsu KC, Strong RK, Gooley T, Stevenson P. Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation. Blood Adv 2023; 7:2888-2896. [PMID: 36763517 PMCID: PMC10300293 DOI: 10.1182/bloodadvances.2022008922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
The recurrence of malignancy after hematopoietic cell transplantation (HCT) is the primary cause of transplantation failure. The NKG2D axis is a powerful pathway for antitumor responses, but its role in the control of malignancy after HCT is not well-defined. We tested the hypothesis that gene variation of the NKG2D receptor and its ligands MICA and MICB affect relapse and survival in 1629 patients who received a haploidentical HCT for the treatment of a malignant blood disorder. Patients and donors were characterized for MICA residue 129, the exon 5 short tandem repeat (STR), and MICB residues 52, 57, 98, and 189. Donors were additionally defined for the presence of NKG2D residue 72. Mortality was higher in patients with MICB-52Asn relative to those with 52Asp (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.24-2.71; P = .002) and lower in those with MICA-STR mismatch than in those with STR match (HR, 0.66; 95% CI, 0.54-0.79; P = .00002). Relapse was lower with NKG2D-72Thr donors than with 72Ala donors (relapse HR, 0.57; 95% CI, 0.35-0.91; P = .02). The protective effects of patient MICB-52Asp with donor MICA-STR mismatch and NKG2D-72Thr were enhanced when all 3 features were present. The NKG2D ligand/receptor pathway is a transplantation determinant. The immunobiology of relapse is defined by the concerted effects of MICA, MICB, and NKG2D germ line variation. Consideration of NKG2D ligand/receptor pairings may improve survival for future patients.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Meilun He
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Stephen R. Spellman
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Katharine C. Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Phil Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
13
|
Siemaszko J, Ussowicz M, Rybka B, Ryczan-Krawczyk R, Kałwak K, Bogunia-Kubik K. The impact of NKG2A and NKG2D receptors and HLA-E and MICA ligands polymorphisms on post-transplant complications after paediatric allogeneic HSCT: a single-centre experience. Front Genet 2023; 14:1186123. [PMID: 37351346 PMCID: PMC10282657 DOI: 10.3389/fgene.2023.1186123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Natural Killer cells are the first subpopulation of lymphocytes that reconstitute after allogeneic haematopoietic stem cell transplantation (HSCT). Their activity is regulated by various receptor-ligand interactions, including stimulation of the activating NKG2D receptor by the MICA molecule, and inhibitory NKG2A receptor interacting with the HLA-E. In this study the research effort focused on the effect of selected NKG2A and NKG2D receptors and their ligands (HLA-E and MICA molecules) polymorphisms that may affect the pathomechanisms of post-transplant complications after HSCT in children. Methods: One hundred donor-recipient pairs from a single paediatric transplantation centre were investigated. Altogether six single nucleotide substitutions (NKG2A rs7301582; NKG2D rs1049174, rs1154831; HLA-E rs1264457; MICA rs1051792, rs1063635) were genotyped, and the influence of polymorphisms was analysed on acute and chronic graft-versus-host disease (GvHD), cytomegalovirus (CMV) infection incidence, disease relapse and survival. Results: The distribution of the evaluated polymorphisms did not differ between patients and their donors. The results showed a significant influence of HLA-E rs1264457 polymorphism in patients' HLA-E*01:01 allele, which was associated with increased risk of CMV infection (p = 0.050), especially in children positive for CMV IgG before transplantation (p = 0.001). Furthermore, the effect of HLA-E*01:01 allele on CMV infections was more evident in children above the age of 7 years (p = 0.031). Strong tendencies (0.05 < p < 0.10) towards association with the risk of acute GvHD were also observed for the NKG2A or MICA polymorphisms of the recipients. In addition, NKG2D rs1154831 AA and MICA rs1063635 GG might play a protective role as they were not present in any recipient who died after transplantation. Conclusion: In summary, there is emerging evidence that genotyping results of NKG2 receptors and their ligands, may have prognostic value for the outcome of paediatric allogeneic HSCT, but more extensive studies performed on larger groups of donors and transplant recipients are required to confirm these observations.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Ussowicz
- Department and Clinic of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Blanka Rybka
- Department and Clinic of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Renata Ryczan-Krawczyk
- Department and Clinic of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kałwak
- Department and Clinic of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
14
|
Suzuki S, Morishima S, Murata M, Tanaka M, Shigenari A, Ito S, Kanga U, Kulski JK, Morishima Y, Shiina T. Sequence Variations Within HLA-G and HLA-F Genomic Segments at the Human Leukocyte Antigen Telomeric End Associated With Acute Graft-Versus-Host Disease in Unrelated Bone Marrow Transplantation. Front Immunol 2022; 13:938206. [PMID: 35935961 PMCID: PMC9351719 DOI: 10.3389/fimmu.2022.938206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is defined as a syndrome of an immunological response of graft to the host that occurs early after allogeneic hematopoietic stem cell transplantation (HCT). This disease is frequently observed even in HCT matched for human leukocyte antigen (HLA) alleles at multiple gene loci. Although the HLA region represents complex and diverse genomic characteristics, detailed association analysis is required for the identification of uncharacterized variants that are strongly associated with aGVHD. We genotyped three loci, OR2H2, HLA-F-AS1, and HLA-G, that are located in the 460 kb of HLA telomeric region and statistically analyzed the genotypes including HLA-DPB1 with clinical and transplantation outcomes using 338 unrelated bone marrow transplantation (UR-BMT) patient–donor pairs who were matched for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 (HLA-10/10). Multivariate analyses demonstrated that HLA-F-AS1 and HLA-DPB1 mismatches were associated with grade II–IV aGVHD (hazard ratio (HR), 1.76; 95% CI, 1.07–2.88; p = 0.026; and HR, 1.59; CI, 1.02–2.49; p = 0.042, respectively). There was no confounding between HLA-F-AS1 and HLA-DPB1 (p = 0.512), suggesting that the HLA-F-AS1 mismatch has a strong effect on aGVHD independently of HLA-DPB1. Moreover, a stratified analysis suggested possible associations of HLA-F-AS1, HLA-DPB1, and/or HLA-G mismatches with grade II–IV aGVHD and the more severe grade III–IV aGVHD. These findings provide new insights into understanding the molecular mechanism of aGVHD caused by HLA-matched UR-BMT.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Sayaka Ito
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Uma Kanga
- Clinical Immunogenetics Laboratory, Centre for Excellence in Molecular Medicine, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, The University of Western Australia Medical School, Crawley, WA, Australia
| | - Yasuo Morishima
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Hematology and Oncology, Nakagami Hospital, Okinawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Takashi Shiina,
| |
Collapse
|
15
|
Tchacrome I, Zhu Q, Saleh MA, Zou Y. Diseases association with the polymorphic major histocompatibility complex class I related chain a: MICA gene. Transpl Immunol 2022; 75:101665. [PMID: 35809815 DOI: 10.1016/j.trim.2022.101665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
The Major Histocompatibility Complex class I chain-related molecule A (MICA) genes encode a highly polymorphic glycoprotein among the cell surface antigens that trigger an immune response after allograft transplantation. It is encoded by the MICA gene, a member of the glycosylated MIC genes. Discovered in 1994, the MICA gene is located within the MHC class I region. Moreover, its biological function is achieved through the interaction with the NKG2D receptor. Unlike the classical HLA molecules, MICA protein is not associated with β2- microglobulin nor binds peptides. MICA gene expression may result in a cytotoxic response and IFN-γ secretion through the up-regulation by heat shock proteins in response to infection (Human Cytomegalovirus HCMV), mediated by NKG2D-expressing cells. Anti-MICA antibodies were identified as significant risk factors for antibody mediated rejection after being detected in sera of patients with graft rejection. In addition, soluble MICA proteins (sMICA) has been detected in the serum of transplant recipients with cancers. Furthermore, the association of MICA polymorphisms with infectious diseases, various autoimmune diseases, cancer, and allograft rejection or graft-versus-host disease (GVHD) has been studied. Moreover, numerous advanced disease studies centered on MICA polymorphism are independent of HLA association. In this review, we discussed the up-to-date data about MICA and the association of MICA polymorphism with infections, autoimmune diseases, graft-versus-host disease, and cancer.
Collapse
Affiliation(s)
- Imane Tchacrome
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Quan Zhu
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Mohammad Abu Saleh
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
16
|
Carapito R, Aouadi I, Verniquet M, Untrau M, Pichot A, Beaudrey T, Bassand X, Meyer S, Faucher L, Posson J, Morlon A, Kotova I, Delbos F, Walencik A, Aarnink A, Kennel A, Suberbielle C, Taupin JL, Matern BM, Spierings E, Congy-Jolivet N, Essaydi A, Perrin P, Blancher A, Charron D, Cereb N, Maumy-Bertrand M, Bertrand F, Garrigue V, Pernin V, Weekers L, Naesens M, Kamar N, Legendre C, Glotz D, Caillard S, Ladrière M, Giral M, Anglicheau D, Süsal C, Bahram S. The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation. Nat Med 2022; 28:989-998. [PMID: 35288692 PMCID: PMC9117142 DOI: 10.1038/s41591-022-01725-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
The identity of histocompatibility loci, besides human leukocyte antigen (HLA), remains elusive. The major histocompatibility complex (MHC) class I MICA gene is a candidate histocompatibility locus. Here, we investigate its role in a French multicenter cohort of 1,356 kidney transplants. MICA mismatches were associated with decreased graft survival (hazard ratio (HR), 2.12; 95% confidence interval (CI): 1.45–3.11; P < 0.001). Both before and after transplantation anti-MICA donor-specific antibodies (DSA) were strongly associated with increased antibody-mediated rejection (ABMR) (HR, 3.79; 95% CI: 1.94–7.39; P < 0.001; HR, 9.92; 95% CI: 7.43–13.20; P < 0.001, respectively). This effect was synergetic with that of anti-HLA DSA before and after transplantation (HR, 25.68; 95% CI: 3.31–199.41; P = 0.002; HR, 82.67; 95% CI: 33.67–202.97; P < 0.001, respectively). De novo-developed anti-MICA DSA were the most harmful because they were also associated with reduced graft survival (HR, 1.29; 95% CI: 1.05–1.58; P = 0.014). Finally, the damaging effect of anti-MICA DSA on graft survival was confirmed in an independent cohort of 168 patients with ABMR (HR, 1.71; 95% CI: 1.02–2.86; P = 0.041). In conclusion, assessment of MICA matching and immunization for the identification of patients at high risk for transplant rejection and loss is warranted. Analysis of a multicenter cohort of kidney transplants shows that mismatches in the MICA locus and the presence of anti-MICA donor-specific antibodies are associated with reduced graft survival and increased rejection.
Collapse
Affiliation(s)
- Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. .,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.
| | - Ismail Aouadi
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Martin Verniquet
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Meiggie Untrau
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Thomas Beaudrey
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Nephrology-Transplantation Department, University Hospital, Strasbourg, France
| | - Xavier Bassand
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Nephrology-Transplantation Department, University Hospital, Strasbourg, France
| | - Sébastien Meyer
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Loic Faucher
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,CHU Nantes, Université de Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Juliane Posson
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 970, Paris, France.,Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Aurore Morlon
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,BIOMICA SAS, Strasbourg, France
| | - Irina Kotova
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,BIOMICA SAS, Strasbourg, France
| | - Florent Delbos
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Etablissement Français du Sang (EFS) Centre Pays de la Loire, Laboratoire HLA, Nantes, France
| | - Alexandre Walencik
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Etablissement Français du Sang (EFS) Centre Pays de la Loire, Laboratoire HLA, Nantes, France
| | - Alice Aarnink
- Laboratory of Histocompatibility, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Anne Kennel
- Laboratory of Histocompatibility, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Caroline Suberbielle
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, Laboratoire d'Immunologie et d'Histocompatibilité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 976, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Taupin
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, Laboratoire d'Immunologie et d'Histocompatibilité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 976, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Benedict M Matern
- Center of Translational Immunology, HLA and Tissue Typing, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Spierings
- Center of Translational Immunology, HLA and Tissue Typing, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicolas Congy-Jolivet
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire d'Immunogénétique Moléculaire (LIMT, EA 3034), Faculté de Médecine Purpan, Université Toulouse III (Université Paul Sabatier, UPS), Toulouse, France.,Laboratoire d'Immunologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Arnaud Essaydi
- Etablissement Français du Sang (EFS) Grand-Est, Laboratoire HLA, Strasbourg, France
| | - Peggy Perrin
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Nephrology-Transplantation Department, University Hospital, Strasbourg, France
| | - Antoine Blancher
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire d'Immunogénétique Moléculaire (LIMT, EA 3034), Faculté de Médecine Purpan, Université Toulouse III (Université Paul Sabatier, UPS), Toulouse, France.,Laboratoire d'Immunologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Dominique Charron
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, Laboratoire d'Immunologie et d'Histocompatibilité, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 976, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis Université de Paris, Hôpital Saint-Louis, Paris, France
| | | | - Myriam Maumy-Bertrand
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS) UMR 7501, Laboratoire d'Excellence (LabEx) Institut de Recherche en Mathématiques, Interactions et Applications (IRMIA), Université de Strasbourg, Strasbourg, France
| | - Frédéric Bertrand
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS) UMR 7501, Laboratoire d'Excellence (LabEx) Institut de Recherche en Mathématiques, Interactions et Applications (IRMIA), Université de Strasbourg, Strasbourg, France
| | - Valérie Garrigue
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service de Néphrologie-Transplantation-Dialyse Péritonéale, Centre Hospitalier Universitaire Lapeyronie, Montpellier, France
| | - Vincent Pernin
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service de Néphrologie-Transplantation-Dialyse Péritonéale, Centre Hospitalier Universitaire Lapeyronie, Montpellier, France
| | - Laurent Weekers
- Division of Nephrology, University of Liege Hospital (ULiege CHU), Liege, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nassim Kamar
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Departments of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Rangueil, INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christophe Legendre
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service de Transplantation Rénale Adulte, Hôpital Necker, Assistance Publique - Hôpitaux de Paris, Université de Paris, Paris, France
| | - Denis Glotz
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 970, Paris, France.,Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sophie Caillard
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.,Nephrology-Transplantation Department, University Hospital, Strasbourg, France
| | - Marc Ladrière
- Department of Renal Transplantation, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Magali Giral
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,CHU Nantes, Université de Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dany Anglicheau
- Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service de Transplantation Rénale Adulte, Hôpital Necker, Assistance Publique - Hôpitaux de Paris, Université de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1151, Paris, France
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Excellence (LabEx) TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Franco (Strasbourg)-Japanese (Nagano) Nextgen HLA Laboratory, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. .,Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Dhakal B, Chhabra S, Savani BN, Hamadani M. Promise and pitfalls of allogeneic chimeric antigen receptor therapy in plasma cell and lymphoid malignancies. Br J Haematol 2021; 197:28-40. [PMID: 34671973 DOI: 10.1111/bjh.17904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy in haematological malignancies. However, the currently approved products are generated from autologous T cells that require orchestration of several logistically complex steps, which include patient eligibility, apheresis capability, complex manufacturing processes and shipping logistics. Use of third-party donor-derived (allogeneic) effector cells that allows the generation of 'off-the-shelf" CAR T cells (allo-CAR) could circumvent many of the problems associated with autologous CAR T-cell therapy. Several allogeneic products are entering clinical trials, and though early, the results look promising. The recognised potential benefits of allo-CAR do not come without significant challenges, that must be overcome for their widespread use. Alloreactivity, i.e. graft-versus-host disease (GVHD), and rejection of donor T cells is one of the major barriers, while other potential barriers include immunogenicity, unknown in vivo persistence, and CAR T-cell yield. In the present review, we provide a comprehensive review of the challenges associated with autologous CAR, the benefits and potential challenges associated with allo-CAR. Finally, we review the available platforms for allo-CAR for B-cell and plasma cell malignancies.
Collapse
Affiliation(s)
- Binod Dhakal
- Blood & Marrow Transplantation and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saurabh Chhabra
- Blood & Marrow Transplantation and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bipin N Savani
- Division of Hematology and Oncology, Vanderbilt University, Nashville, TN, USA
| | - Mehdi Hamadani
- Blood & Marrow Transplantation and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Machuldova A, Houdova L, Kratochvilova K, Leba M, Jindra P, Ostasov P, Maceckova D, Klieber R, Gmucova H, Sramek J, Holubova M. Single-Nucleotide Polymorphisms in MICA and MICB Genes Could Play a Role in the Outcome in AML Patients after HSCT. J Clin Med 2021; 10:jcm10204636. [PMID: 34682758 PMCID: PMC8537017 DOI: 10.3390/jcm10204636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
NKG2D and its ligands, MICA and MICB, are known as the key regulators of NK cells. NK cells are the first reconstituted cells after the allogeneic hematopoietic stem cell transplantation (HSCT); therefore, it is crucial to understand their role in HSCT outcome. In the presented study, we investigated the single amino acid changes across the exons 2–4 of MICA and MICB genes, and point mutations within the NKG2D gene, which defines the type of NKG2D haploblock (HNK/LNK) in the donors (n = 124), as well as in patients with acute myeloid leukemia (n = 78). In our cohort, we found that graft from a donor with at least one MICA allele containing glycine at position 14 (MICA-14Gly) is significantly associated with deterioration of a patient’s overall survival (OS) (p < 0.05). We also observed a negative effect of MICB-58 (Lys → Glu) polymorphism on relapse-free survival (RFS), although it was not statistically significant in multivariate analysis (p = 0.069). To our knowledge, this is the first work describing the role of MICA-14 and MICB-58 polymorphisms on HSCT outcome.
Collapse
Affiliation(s)
- Alena Machuldova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 66 Pilsen, Czech Republic;
- Correspondence: (A.M.); (M.H.)
| | - Lucie Houdova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (L.H.); (K.K.); (M.L.)
| | - Katerina Kratochvilova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (L.H.); (K.K.); (M.L.)
| | - Martin Leba
- NTIS, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (L.H.); (K.K.); (M.L.)
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
| | - Pavel Ostasov
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
| | - Diana Maceckova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
| | - Robin Klieber
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
| | - Hana Gmucova
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
| | - Jiri Sramek
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 66 Pilsen, Czech Republic;
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
| | - Monika Holubova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (P.O.); (D.M.); (R.K.)
- Department of Haematology and Oncology, University Hospital Pilsen, 304 60 Pilsen, Czech Republic; (P.J.); (H.G.)
- Correspondence: (A.M.); (M.H.)
| |
Collapse
|
19
|
Neuchel C, Fürst D, Tsamadou C, Schrezenmeier H, Mytilineos J. Extended loci histocompatibility matching in HSCT-Going beyond classical HLA. Int J Immunogenet 2021; 48:299-316. [PMID: 34109752 DOI: 10.1111/iji.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Unrelated haematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in a variety of haematologic malignancies. The continuous refinement of treatment protocols and supportive care paired with ongoing achievements in the technological field of histocompatibility testing enabled this transformation. Without a doubt, HLA matching is still the foremost criterion for donor selection in unrelated HSCT. However, HSCT-related treatment complications still occur frequently, often resulting in patients suffering severely or even dying as a consequence of such complications. Current literature indicates that other immune system modulating factors may play a role in the setting of HSCT. In this review, we discuss the current clinical evidence of a possible influence of nonclassical HLA antigens HLA-E, HLA-F, and HLA-G as well as the HLA-like molecules MICA and MICB, in HSCT.
Collapse
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Ulm, Germany
| |
Collapse
|
20
|
Recipient and donor genetic variants associated with mortality after allogeneic hematopoietic cell transplantation. Blood Adv 2021; 4:3224-3233. [PMID: 32687560 DOI: 10.1182/bloodadvances.2020001927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
Many studies have suggested that genetic variants in donors and recipients are associated with survival-related outcomes after allogeneic hematopoietic cell transplantation (HCT), but these results have not been confirmed. Therefore, the utility of testing genetic variants in donors and recipients for risk stratification or understanding mechanisms leading to mortality after HCT has not been established. We tested 122 recipient and donor candidate variants for association with nonrelapse mortality (NRM) and relapse mortality (RM) in a cohort of 2560 HCT recipients of European ancestry with related or unrelated donors. Associations discovered in this cohort were tested for replication in a separate cohort of 1710 HCT recipients. We found that the donor rs1051792 A allele in MICA was associated with a lower risk of NRM. Donor and recipient rs1051792 genotypes were highly correlated, making it statistically impossible to determine whether the donor or recipient genotype accounted for the association. Risks of grade 3 to 4 graft-versus-host disease (GVHD) and NRM in patients with grades 3 to 4 GVHD were lower with donor MICA-129Met but not with MICA-129Val, implicating MICA-129Met in the donor as an explanation for the decreased risk of NRM after HCT. Our analysis of candidate variants did not show any other association with NRM or RM. A genome-wide association study did not identify any other variants associated with NRM or RM.
Collapse
|
21
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|
22
|
Machuldova A, Holubova M, Caputo VS, Cedikova M, Jindra P, Houdova L, Pitule P. Role of Polymorphisms of NKG2D Receptor and Its Ligands in Acute Myeloid Leukemia and Human Stem Cell Transplantation. Front Immunol 2021; 12:651751. [PMID: 33868289 PMCID: PMC8044845 DOI: 10.3389/fimmu.2021.651751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Natural killer cells possess key regulatory function in various malignant diseases, including acute myeloid leukemia. NK cell activity is driven by signals received through ligands binding activating or inhibitory receptors. Their activity towards elimination of transformed or virally infected cells can be mediated through MICA, MICB and ULBP ligands binding the activating receptor NKG2D. Given the efficiency of NK cells, potential target cells developed multiple protecting mechanisms to overcome NK cells killing on various levels of biogenesis of NKG2D ligands. Targeted cells can degrade ligand transcripts via microRNAs or modify them at protein level to prevent their presence at cell surface via shedding, with added benefit of shed ligands to desensitize NKG2D receptor and avert the threat of destruction via NK cells. NK cells and their activity are also indispensable during hematopoietic stem cell transplantation, crucial treatment option for patients with malignant disease, including acute myeloid leukemia. Function of both NKG2D and its ligands is strongly affected by polymorphisms and particular allelic variants, as different alleles can play variable roles in ligand-receptor interaction, influencing NK cell function and HSCT outcome differently. For example, role of amino acid exchange at position 129 in MICA or at position 98 in MICB, as well as the role of other polymorphisms leading to different shedding of ligands, was described. Finally, match or mismatch between patient and donor in NKG2D ligands affect HSCT outcome. Having the information beyond standard HLA typing prior HSCT could be instrumental to find the best donor for the patient and to optimize effects of treatment by more precise patient-donor match. Here, we review recent research on the NKG2D/NKG2D ligand biology, their regulation, description of their polymorphisms across the populations of patients with AML and the influence of particular polymorphisms on HSCT outcome.
Collapse
Affiliation(s)
- Alena Machuldova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Monika Holubova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Valentina S Caputo
- Hugh & Josseline Langmuir Center for Myeloma Research, Center for Hematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.,Cancer Biology and Therapy Laboratory, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Miroslava Cedikova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Lucie Houdova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
23
|
Little AM, Akbarzad-Yousefi A, Anand A, Diaz Burlinson N, Dunn PPJ, Evseeva I, Latham K, Poulton K, Railton D, Vivers S, Wright PA. BSHI guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation. Int J Immunogenet 2021; 48:75-109. [PMID: 33565720 DOI: 10.1111/iji.12527] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023]
Abstract
A review of the British Society for Histocompatibility and Immunogenetics (BSHI) Guideline 'HLA matching and donor selection for haematopoietic progenitor cell transplantation' published in 2016 was undertaken by a BSHI appointed writing committee. Literature searches were performed and the data extracted were presented as recommendations according to the GRADE nomenclature.
Collapse
Affiliation(s)
- Ann-Margaret Little
- Histocompatibility and Immunogenetics Laboratory, Gartnavel General Hospital, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Arash Akbarzad-Yousefi
- Histocompatibility and Immunogenetics Laboratory, NHS Blood and Transplant, Newcastle-Upon-Tyne, UK
| | - Arthi Anand
- Histocompatibility and Immunogenetics Laboratory, North West London Pathology, Hammersmith Hospital, London, UK
| | | | - Paul P J Dunn
- Transplant Laboratory University Hospitals of Leicester, Leicester General Hospital, Leicester, UK.,Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | | | - Katy Latham
- Cellular and Molecular Therapies, NHS Blood and Transplant, Bristol, UK
| | - Kay Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Dawn Railton
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
24
|
Jekarl DW, Lee GD, Yoo JB, Kim JR, Yu H, Yoo J, Lim J, Kim M, Kim Y. HLA-A, -B, -C, -DRB1 allele and haplotype frequencies of the Korean population and performance characteristics of HLA typing by next-generation sequencing. HLA 2021; 97:188-197. [PMID: 33314756 DOI: 10.1111/tan.14167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Human leukocyte antigen (HLA) identification at the allelic level is important for haematopoietic stem cell transplantation (HSCT). Next-generation sequencing (NGS) resolves ambiguous alleles by determining the phase of the polymorphisms. The aim of this study was to validate the software for HLA-SBT (sequence-based typing), assess Korean allele frequency, and characterise the performance of NGS-HLA typing. METHODS From the 2009 to 2016 registry, 1293 unrelated healthy donors with a complete dataset of previously characterised HLA-A, -B, -C, and -DRB1 loci were selected and assessed for frequency, haplotype inference, and relative linkage disequilibrium. For performance characteristics of NGS-HLA, alleles included in 1293 cases and ambiguous or alleles assigned as new by SBT-HLA software, or unassigned alleles were included. A total of 91 and 41 quality control samples resulted in 1056 alleles (132 samples × 4 loci × 2 diploid) for analysis. The GenDx NGSgo kit was used for NGS-HLA typing using the Illumina MiSeq platform. RESULTS A panel of 132 samples covered 231 alleles, including 53 HLA-A, 80 HLA-B, 43 HLA-C, and 55 HLA-DRB1 by HLA-SBT typing. Comparison of SBT-HLA and NGS-HLA typing showed 99.7% (1053/1056) concordance and discrepant cases were resolved by manual evaluation. Typing by NGS resulted in 67 HLA-A, 112 HLA-B, 71 HLA-C, and 72 HLA-DRB1 alleles. A total of 132 ambiguous, 4 new, and 1 unassigned alleles by HLA-SBT were resolved by NGS-HLA typing. CONCLUSIONS NGS-HLA typing provided robust and conclusive results without ambiguities, and its implementation could support HSCT in clinical settings.
Collapse
Affiliation(s)
- Dong Wook Jekarl
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Gun Dong Lee
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Jae Bin Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Jung Rok Kim
- Department of Laboratory Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haein Yu
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihyang Lim
- Department of Laboratory Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
25
|
Van Antwerp E, Koenig ZA, McCarthy R. Modern Medical Miracle: Matched Unrelated Donor Hematopoietic Stem Cell Transplant After Aplastic Anemia. Cureus 2021; 13:e13050. [PMID: 33680594 PMCID: PMC7925059 DOI: 10.7759/cureus.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aplastic anemia is a hematological disease with deadly complications related to pancytopenia if not treated in a timely manner. First-line treatment consists of immunosuppressive therapy or matched sibling donor (MSD) hematopoietic stem cell transplant. Step up treatment involves a matched unrelated donor (MUD) hematopoietic stem cell transplant (HSCT) alongside immunosuppressant conditioning. However, recent research suggests that there is improved success of MUD HSCT for severe aplastic anemia compared to immunosuppressive therapy. We present a case of an 18-year-old who was diagnosed with severe aplastic anemia who received numerous immunosuppressive therapy regimens prior to obtaining a MUD HSCT. Over a year after bone marrow transplant, the patient is doing well with no signs of rejection. This case creates an argument for the use of upfront MUD HSCT as a curative treatment for acquired aplastic anemia rather than initial treatment with immunosuppressive agents.
Collapse
Affiliation(s)
- Emily Van Antwerp
- Department of Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | | | - Ryan McCarthy
- Internal Medicine, West Virginia University, Martinsburg, USA
| |
Collapse
|
26
|
Caldwell KJ, Gottschalk S, Talleur AC. Allogeneic CAR Cell Therapy-More Than a Pipe Dream. Front Immunol 2021; 11:618427. [PMID: 33488631 PMCID: PMC7821739 DOI: 10.3389/fimmu.2020.618427] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) has shown promise, particularly for the treatment of hematological malignancies. To date, the majority of clinically evaluated CAR cell products have been derived from autologous immune cells. While this strategy can be effective it also imposes several constraints regarding logistics. This includes i) availability of center to perform leukapheresis, ii) necessity for shipment to and from processing centers, and iii) time requirements for product manufacture and clinical release testing. In addition, previous cytotoxic therapies can negatively impact the effector function of autologous immune cells, which may then affect efficacy and/or durability of resultant CAR products. The use of allogeneic CAR cell products generated using cells from healthy donors has the potential to overcome many of these limitations, including through generation of “off the shelf” products. However, allogeneic CAR cell products come with their own challenges, including potential to induce graft-versus-host-disease, as well as risk of immune-mediated rejection by the host. Here we will review promises and challenges of allogeneic CAR immunotherapies, including those being investigated in preclinical models and/or early phase clinical studies.
Collapse
Affiliation(s)
- Kenneth J Caldwell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
27
|
Bogunia-Kubik K, Łacina P. Non-KIR NK cell receptors: Role in transplantation of allogeneic haematopoietic stem cells. Int J Immunogenet 2020; 48:157-171. [PMID: 33352617 DOI: 10.1111/iji.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are of major significance in patients after allogeneic haematopoietic stem cell transplantation (HSCT). They are the first subset of lymphocytes to appear in peripheral blood after transplantation and play an important role in the immune responses against cancer and viral infections. The function of NK cells is controlled by various surface receptors, of which type I integral proteins with immunoglobulin-like domains (killer-cell immunoglobulin-like receptors, KIRs) have been the most extensively studied. The present review focuses on less studied NK cell receptors, such as type II integral proteins with lectin-like domains (CD94/NKG2, NKG2D), natural cytotoxicity receptors (NCRs), immunoglobulin-like transcripts (ILTs) and their ligands. Their potential role in patients with haematological disorders subjected to HSC transplant procedure in the context of post-transplant complications such as viral reactivation and acute graft-versus-host disease (GvHD) will be presented and discussed.
Collapse
Affiliation(s)
- Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
28
|
Partanen J, Hyvärinen K, Bickeböller H, Bogunia-Kubik K, Crossland RE, Ivanova M, Perutelli F, Dressel R. Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:575492. [PMID: 33193367 PMCID: PMC7604383 DOI: 10.3389/fimmu.2020.575492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, CTLA4, HSPE, IL1R1, CCR6, FGFR1OP, and IL10, and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.
Collapse
Affiliation(s)
- Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rachel E Crossland
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Milena Ivanova
- Medical University, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Francesca Perutelli
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Chin CS, Wagner J, Zeng Q, Garrison E, Garg S, Fungtammasan A, Rautiainen M, Aganezov S, Kirsche M, Zarate S, Schatz MC, Xiao C, Rowell WJ, Markello C, Farek J, Sedlazeck FJ, Bansal V, Yoo B, Miller N, Zhou X, Carroll A, Barrio AM, Salit M, Marschall T, Dilthey AT, Zook JM. A diploid assembly-based benchmark for variants in the major histocompatibility complex. Nat Commun 2020; 11:4794. [PMID: 32963235 PMCID: PMC7508831 DOI: 10.1038/s41467-020-18564-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/27/2020] [Indexed: 01/20/2023] Open
Abstract
Most human genomes are characterized by aligning individual reads to the reference genome, but accurate long reads and linked reads now enable us to construct accurate, phased de novo assemblies. We focus on a medically important, highly variable, 5 million base-pair (bp) region where diploid assembly is particularly useful - the Major Histocompatibility Complex (MHC). Here, we develop a human genome benchmark derived from a diploid assembly for the openly-consented Genome in a Bottle sample HG002. We assemble a single contig for each haplotype, align them to the reference, call phased small and structural variants, and define a small variant benchmark for the MHC, covering 94% of the MHC and 22368 variants smaller than 50 bp, 49% more variants than a mapping-based benchmark. This benchmark reliably identifies errors in mapping-based callsets, and enables performance assessment in regions with much denser, complex variation than regions covered by previous benchmarks.
Collapse
Affiliation(s)
- Chen-Shan Chin
- DNAnexus, Inc, 1975 W El Camino Real, Suite 204, Mountain View, CA, 94040, USA
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, MS8312, Gaithersburg, MD, 20899, USA
| | - Qiandong Zeng
- Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Erik Garrison
- University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Shilpa Garg
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Mikko Rautiainen
- Center for Bioinformatics, Saarland University, Saarland Informatics Campus E2.1, 66123, Saarbrücken, Germany
- Max Planck Institute for Informatics, Saarland Informatics Campus E1.4, 66123, Saarbrücken, Germany
- Saarland Graduate School for Computer Science, Saarland Informatics Campus E1.3, 66123, Saarbrücken, Germany
| | - Sergey Aganezov
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Melanie Kirsche
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Chunlin Xiao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | | | - Charles Markello
- University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Jesse Farek
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Byunggil Yoo
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Neil Miller
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Xin Zhou
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Andrew Carroll
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA
| | | | - Marc Salit
- Joint Initiative for Metrology in Biology, Stanford, CA, 94305, USA
| | - Tobias Marschall
- Institute of Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexander T Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, MS8312, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
30
|
Zou Y, Duke JL, Ferriola D, Luo Q, Wasserman J, Mosbruger TL, Luo W, Cai L, Zou K, Tairis N, Damianos G, Pagkrati I, Kukuruga D, Huang Y, Monos DS. Genomic characterization of MICA gene using multiple next generation sequencing platforms: A validation study. HLA 2020; 96:430-444. [PMID: 32681760 PMCID: PMC7589345 DOI: 10.1111/tan.13998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
We have developed a protocol regarding the genomic characterization of the MICA gene by next generation sequencing (NGS). The amplicon includes the full length of the gene and is about 13 kb. A total of 156 samples were included in the study. Ninety‐seven of these samples were previously characterized at MICA by legacy methods (Sanger or sequence specific oligonucleotide) and were used to evaluate the accuracy, precision, specificity, and sensitivity of the assay. An additional 59 DNA samples of unknown ethnicity volunteers from the United States were only genotyped by NGS. Samples were chosen to contain a diverse set of alleles. Our NGS approach included a first round of sequencing on the Illumina MiSeq platform and a second round of sequencing on the MinION platform by Oxford Nanopore Technology (ONT), on selected samples for the purpose of either characterizing new alleles or setting phase among multiple polymorphisms to resolve ambiguities or generate complete sequence for alleles that were only partially reported in the IMGT/HLA database. Complete consensus sequences were generated for every allele sequenced with ONT, extending from the 5′ untranslated region (UTR) to the 3′ UTR of the MICA gene. Thirty‐two MICA sequences were submitted to the IMGT/HLA database including either new alleles or filling up the gaps (exonic, intronic and/or UTRs) of already reported alleles. Some of the challenges associated with the characterization of these samples are discussed.
Collapse
Affiliation(s)
- Yizhou Zou
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Jamie L Duke
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deborah Ferriola
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Qizhi Luo
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Jenna Wasserman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Timothy L Mosbruger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Weiguang Luo
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Liang Cai
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Kevin Zou
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ioanna Pagkrati
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Debra Kukuruga
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Dilthey AT, Mentzer AJ, Carapito R, Cutland C, Cereb N, Madhi SA, Rhie A, Koren S, Bahram S, McVean G, Phillippy AM. HLA*LA-HLA typing from linearly projected graph alignments. Bioinformatics 2020; 35:4394-4396. [PMID: 30942877 PMCID: PMC6821427 DOI: 10.1093/bioinformatics/btz235] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/26/2019] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Summary HLA*LA implements a new graph alignment model for human leukocyte antigen (HLA) type inference, based on the projection of linear alignments onto a variation graph. It enables accurate HLA type inference from whole-genome (99% accuracy) and whole-exome (93% accuracy) Illumina data; from long-read Oxford Nanopore and Pacific Biosciences data (98% accuracy for whole-genome and targeted data) and from genome assemblies. Computational requirements for a typical sample vary between 0.7 and 14 CPU hours per sample. Availability and implementation HLA*LA is implemented in C++ and Perl and freely available as a bioconda package or from https://github.com/DiltheyLab/HLA-LA (GPL v3). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander T Dilthey
- Institute of Medical Microbiology, University Hospital of Dusseldorf, Dusseldorf, North Rhine-Westphalia, Germany.,Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Université de Strasbourg, France.,Service d'Immunologie Biologique, Nouvel Hôpital Civil, Strasbourg, France
| | - Clare Cutland
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Université de Strasbourg, France.,Service d'Immunologie Biologique, Nouvel Hôpital Civil, Strasbourg, France
| | - Gil McVean
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
32
|
Carapito R, Aouadi I, Pichot A, Spinnhirny P, Morlon A, Kotova I, Macquin C, Rolli V, Cesbron A, Gagne K, Oudshoorn M, van der Holt B, Labalette M, Spierings E, Picard C, Loiseau P, Tamouza R, Toubert A, Parissiadis A, Dubois V, Paillard C, Maumy-Bertrand M, Bertrand F, von dem Borne PA, Kuball JHE, Michallet M, Lioure B, Peffault de Latour R, Blaise D, Cornelissen JJ, Yakoub-Agha I, Claas F, Moreau P, Charron D, Mohty M, Morishima Y, Socié G, Bahram S. Compatibility at amino acid position 98 of MICB reduces the incidence of graft-versus-host disease in conjunction with the CMV status. Bone Marrow Transplant 2020; 55:1367-1378. [PMID: 32286503 DOI: 10.1038/s41409-020-0886-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 11/10/2022]
Abstract
Graft-versus-host disease (GVHD) and cytomegalovirus (CMV)-related complications are leading causes of mortality after unrelated-donor hematopoietic cell transplantation (UD-HCT). The non-conventional MHC class I gene MICB, alike MICA, encodes a stress-induced polymorphic NKG2D ligand. However, unlike MICA, MICB interacts with the CMV-encoded UL16, which sequestrates MICB intracellularly, leading to immune evasion. Here, we retrospectively analyzed the impact of mismatches in MICB amino acid position 98 (MICB98), a key polymorphic residue involved in UL16 binding, in 943 UD-HCT pairs who were allele-matched at HLA-A, -B, -C, -DRB1, -DQB1 and MICA loci. HLA-DP typing was further available. MICB98 mismatches were significantly associated with an increased incidence of acute (grade II-IV: HR, 1.20; 95% CI, 1.15 to 1.24; P < 0.001; grade III-IV: HR, 2.28; 95% CI, 1.56 to 3.34; P < 0.001) and chronic GVHD (HR, 1.21; 95% CI, 1.10 to 1.33; P < 0.001). MICB98 matching significantly reduced the effect of CMV status on overall mortality from a hazard ratio of 1.77 to 1.16. MICB98 mismatches showed a GVHD-independent association with a higher incidence of CMV infection/reactivation (HR, 1.84; 95% CI, 1.34 to 2.51; P < 0.001). Hence selecting a MICB98-matched donor significantly reduces the GVHD incidence and lowers the impact of CMV status on overall survival.
Collapse
Affiliation(s)
- Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| | - Ismail Aouadi
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Perrine Spinnhirny
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Aurore Morlon
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,BIOMICA SAS, Strasbourg, France
| | - Irina Kotova
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,BIOMICA SAS, Strasbourg, France
| | - Cécile Macquin
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan
| | - Anne Cesbron
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Etablissement Français du Sang (EFS) Centre-Pays de la Loire, Laboratoire HLA, Nantes, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Société Francophone d'Histocompatibilité et d'Immunogénétique (SFHI), Paris, France
| | - Katia Gagne
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Etablissement Français du Sang (EFS) Centre-Pays de la Loire, Laboratoire HLA, Nantes, France.,INSERM 1232, CRCINA, Université Nantes-Angers, Nantes, France
| | - Machteld Oudshoorn
- Europdonor operated by Matchis Foundation, Leiden, The Netherlands.,Department of Immunohematology and Blood transfusion, LUMC, Leiden, The Netherlands
| | - Bronno van der Holt
- HOVON Data Center, Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Myriam Labalette
- Laboratoire d'Immunologie, CHRU de Lille, Lille, France.,LIRIC INSERM U995, Université Lille 2, Lille, France
| | - Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christophe Picard
- CNRS, EFS-PACA, ADES UMR 7268, Aix-Marseille Université, Marseille, France
| | - Pascale Loiseau
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Ryad Tamouza
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Antoine Toubert
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Anne Parissiadis
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Etablissement Français du Sang (EFS) Grand-Est, Laboratoire HLA, Strasbourg, France
| | - Valérie Dubois
- Etablissement Français du Sang (EFS) Rhône-Alpes, Laboratoire HLA, Lyon, France
| | - Catherine Paillard
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie et d'Oncologie pédiatrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Myriam Maumy-Bertrand
- Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx Institut de Recherche en Mathématiques, ses Interactions et Applications, Université de Strasbourg, Strasbourg, France
| | - Frédéric Bertrand
- Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx Institut de Recherche en Mathématiques, ses Interactions et Applications, Université de Strasbourg, Strasbourg, France
| | | | - Jürgen H E Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauricette Michallet
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Centre Hospitalier Lyon Sud, Hématologie 1G, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Bruno Lioure
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie Adulte, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Régis Peffault de Latour
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie - Greffe, Hôpital Saint-Louis, APHP, Paris, France
| | - Didier Blaise
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Institut Paoli Calmettes, Marseille, France
| | - Jan J Cornelissen
- Department of Hematology and ErasmusMC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ibrahim Yakoub-Agha
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,LIRIC INSERM U995, Université Lille 2, Lille, France
| | - Frans Claas
- Department of Immunohematology and Blood transfusion, LUMC, Leiden, The Netherlands
| | - Philippe Moreau
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie Clinique, CHU Hôtel Dieu, Nantes, France
| | - Dominique Charron
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Laboratoire Jean Dausset, INSERM UMR_S 1160, Hôpital Saint-Louis, Paris, France
| | - Mohamad Mohty
- Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Département d'Hématologie, Hôpital Saint Antoine, Paris, France.,Université Pierre & Marie Curie, Paris, France.,Centre de Recherche Saint-Antoine, INSERM UMR_S 938, Paris, France
| | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Japan
| | - Gérard Socié
- Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Société Francophone de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC), Hôpital Edouard Herriot, CHU, Lyon, France.,Service d'Hématologie Adulte, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Labex TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France. .,INSERM Franco-Japanese Nextgen HLA Laboratory, Nagano, Japan. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| |
Collapse
|
33
|
Schmidt AH, Sauter J, Baier DM, Daiss J, Keller A, Klussmeier A, Mengling T, Rall G, Riethmüller T, Schöfl G, Solloch UV, Torosian T, Means D, Kelly H, Jagannathan L, Paul P, Giani AS, Hildebrand S, Schumacher S, Markert J, Füssel M, Hofmann JA, Schäfer T, Pingel J, Lange V, Schetelig J. Immunogenetics in stem cell donor registry work: The DKMS example (Part 2). Int J Immunogenet 2020; 47:139-148. [PMID: 32034894 PMCID: PMC7079094 DOI: 10.1111/iji.12479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
DKMS is a leading stem cell donor registry with more than 9 million donors. Donor registry activities share many touch points with topics from immunogenetics or population genetics. In this two-part review article, we deal with these aspects of donor registry work by using the example of DKMS. In the second part of the review, we focus on donor typing of non-HLA genes, the impact of donor age, gender and CMV serostatus on donation probabilities, the identification of novel HLA, KIR and MIC alleles by high-throughput donor typing, the activities of the Collaborative Biobank and pharmacogenetics in the donor registry context.
Collapse
Affiliation(s)
- Alexander H. Schmidt
- DKMSTübingenGermany
- DKMS Life Science LabDresdenGermany
- Clinical Trials UnitDKMSDresdenGermany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Latha Jagannathan
- DKMS‐BMST Foundation IndiaBangaloreIndia
- Bangalore Medical Services TrustBangaloreIndia
| | | | | | | | | | | | | | | | | | | | | | - Johannes Schetelig
- Clinical Trials UnitDKMSDresdenGermany
- Medizinische Klinik IUniversity Hospital Carl Gustav CarusDresdenGermany
| |
Collapse
|
34
|
Klussmeier A, Massalski C, Putke K, Schäfer G, Sauter J, Schefzyk D, Pruschke J, Hofmann J, Fürst D, Carapito R, Bahram S, Schmidt AH, Lange V. High-Throughput MICA/B Genotyping of Over Two Million Samples: Workflow and Allele Frequencies. Front Immunol 2020; 11:314. [PMID: 32153595 PMCID: PMC7047279 DOI: 10.3389/fimmu.2020.00314] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 01/23/2023] Open
Abstract
MICA and MICB are ligands of the NKG2D receptor and thereby influence NK and T cell activity. MICA/B gene polymorphisms, expression levels and the amount of soluble MICA/B in the serum have been linked to autoimmune diseases, infections, and cancer. In hematopoietic stem cell transplantation, MICA matching between donor and patient has been correlated with reduced acute and chronic graft-vs.-host disease and improved survival. Hence, we developed an extremely cost-efficient high-throughput workflow for genotyping MICA/B for newly registered potential stem cell donors. Since mid-2017, we have genotyped over two million samples using NGS amplicon sequencing for MICA/B exons 2–5. In donors of German origin, MICA*008 is the most common MICA allele with a frequency of 42.3%. It is followed by MICA*002 (11.7%) and MICA*009 (8.8%). The three most common MICB alleles are MICB*005 (43.9%), MICB*004 (21.7%), and MICB*002 (18.9%). In general, MICB is less diverse than MICA and only 6 alleles, instead of 15, account for a cumulative allele frequency of 99.5%. In 0.5% of the samples we observed at least one allele of MICA or MICB which has so far not been reported to the IPD/IMGT-HLA database. By providing MICA/B typed voluntary donors, clinicians become empowered to include MICA/B into their donor selection process to further improve unrelated hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | | | | |
Collapse
|
35
|
Fürst D, Neuchel C, Tsamadou C, Schrezenmeier H, Mytilineos J. HLA Matching in Unrelated Stem Cell Transplantation up to Date. Transfus Med Hemother 2019; 46:326-336. [PMID: 31832058 DOI: 10.1159/000502263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/13/2019] [Indexed: 12/27/2022] Open
Abstract
Unrelated hematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in certain disease instances. Factors enabling this transformation were the optimization of treatment protocols and supportive care as well as the availability of a large number of donors worldwide along with the higher quality and reliability of HLA typing. The main criterion for donor selection is HLA compatibility. In this review we discuss the current clinical evidence of HLA matching in unrelated HSCT. In this context, we address methodical aspects of transplantation immunobiology research and discuss the impact of locus and resolution of HLA differences. Furthermore, we address special constellations such as unidirectional mismatches or the presence of nonexpressed alleles as well as HLA alloimmunization and describe the perspective for HLA typing and matching strategies in the future, given the implementation of novel complete or near-complete gene typing approaches using next-generation sequencing short read technology, which are now entering the standard of clinical care.
Collapse
Affiliation(s)
- Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
36
|
Yang S, Sheng X, Xiang D, Wei X, Chen T, Yang Z, Zhang Y. CD150 highTreg cells may attenuate graft versus host disease and intestinal cell apoptosis after hematopoietic stem cell transplantation. Am J Transl Res 2019; 11:1299-1310. [PMID: 30972163 PMCID: PMC6456532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Combined transplantation of regulatory T cells (Treg cells) may significantly attenuate graft versus host disease (GVHD) after hematopoietic stem cell transplantation (HSCT). Recent studies indicated that CD150+Treg cells could secret adenosine to maintain the quiescent status of HSCs. However, whether it is attributable to the attenuation of GVHD after HSCT is still unclear. In vitro studies revealed that CD150+Treg cells induced immune tolerance was comparable to that induced by CD150-Treg cells, but CD150+Treg cells can secret more adenosine, increase P-AMPK expression and regulate energy metabolism to induce the proliferation of HSC proliferation and inhibit their differentiation into dendritic cells. In this study, GVHD animal model was established, and combined transplantation of Treg cells and HSCs was performed. Results showed the survival time was significantly prolonged, the proliferation rate of HSCs increased significantly and the proportion of undifferentiated HSCs elevated significantly after CD150+Treg transplantation as compared to CD150-Treg transplantation. Immunohistochemistry revealed CD150+Treg cells could secret adenosine, activate AMPK expression and inhibit intestinal cell apoptosis and inflammation after HSCT. Taken together, this study indicates CD150+Treg cells can regulate energy metabolism to attenuate GVHD and intestinal cell apoptosis after HSCT.
Collapse
Affiliation(s)
- Sainan Yang
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| | - Xiaomin Sheng
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| | - Dan Xiang
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| | - Xia Wei
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| | - Tingting Chen
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| | - Zailin Yang
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| | - Yong Zhang
- Department of Hematology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital) Chongqing 401120, China
| |
Collapse
|
37
|
Luo Y, Jin M, Tan Y, Zhao Y, Shi J, Zhu Y, Zheng W, Lai X, Yu J, Huang H. Antithymocyte globulin improves GVHD-free and relapse-free survival in unrelated hematopoietic stem cell transplantation. Bone Marrow Transplant 2019; 54:1668-1675. [PMID: 30867556 DOI: 10.1038/s41409-019-0502-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/09/2022]
Abstract
Antithymocyte globulin (ATG) is an important component of conditioning regimens to prevent graft-versus-host disease (GVHD) in unrelated hematopoietic stem cell transplantation (HSCT), but the optimal dose of ATG remains unknown. We prospectively analyzed 205 unrelated HSCTs in patients with malignant hematological disorders. HSCTs were classified as follows: HLA-matched transplant without ATG (n = 53, group A), HLA-mismatched transplant treated with 6.0 mg/kg thymoglobulin (n = 77, group B), and HLA-matched transplant treated with 4.5 mg/kg thymoglobulin (n = 75, group C). For groups A and B, the 5-year moderate/severe chronic GVHD rates were 31.9% and 24.2%, the 5-year GVHD-free and relapse-free survival (GRFS) rates were 28.3 and 47%, and the 2-year immunosuppressive therapy (IST)-free survival rates were 8.6% and 40.2% (p = 0.0016), respectively. Furthermore, group C had lower incidences of grade II-IV acute GVHD (18.7%) and 5-year moderate/severe chronic GVHD (16.6%) than group A did. Group C had higher 5-year GRFS (52.1% vs 28.3%, p = 0.002), 2-year IST-free survival (51.7% vs 8.6%, p = 0.00004), and 5-year overall survival (OS) (68.3% vs 41.5%, p = 0.007) rates than group A did. Thus, ATG was associated with better GVHD prevention, a higher rate of IST-free survival, lower transplant-related mortality (TRM), and superior OS and GRFS in unrelated HSCTs.
Collapse
Affiliation(s)
- Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Mengqi Jin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yamin Tan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
38
|
Kohn DB, Hershfield MS, Puck JM, Aiuti A, Blincoe A, Gaspar HB, Notarangelo LD, Grunebaum E. Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. J Allergy Clin Immunol 2019; 143:852-863. [PMID: 30194989 PMCID: PMC6688493 DOI: 10.1016/j.jaci.2018.08.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022]
Abstract
Inherited defects in adenosine deaminase (ADA) cause a subtype of severe combined immunodeficiency (SCID) known as severe combined immune deficiency caused by adenosine deaminase defects (ADA-SCID). Most affected infants can receive a diagnosis while still asymptomatic by using an SCID newborn screening test, allowing early initiation of therapy. We review the evidence currently available and propose a consensus management strategy. In addition to treatment of the immune deficiency seen in patients with ADA-SCID, patients should be followed for specific noninfectious respiratory, neurological, and biochemical complications associated with ADA deficiency. All patients should initially receive enzyme replacement therapy (ERT), followed by definitive treatment with either of 2 equal first-line options. If an HLA-matched sibling donor or HLA-matched family donor is available, allogeneic hematopoietic stem cell transplantation (HSCT) should be pursued. The excellent safety and efficacy observed in more than 100 patients with ADA-SCID who received gammaretrovirus- or lentivirus-mediated autologous hematopoietic stem cell gene therapy (HSC-GT) since 2000 now positions HSC-GT as an equal alternative. If HLA-matched sibling donor/HLA-matched family donor HSCT or HSC-GT are not available or have failed, ERT can be continued or reinstituted, and HSCT with alternative donors should be considered. The outcomes of novel HSCT, ERT, and HSC-GT strategies should be evaluated prospectively in "real-life" conditions to further inform these management guidelines.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, and the Division of Hematology & Oncology, Department of Pediatrics, David Geffen School of Medicine University of California, Los Angeles, Calif
| | - Michael S Hershfield
- Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, and Università Vita Salute San Raffaele, Milan, Italy
| | - Annaliesse Blincoe
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Eyal Grunebaum
- Division of Immunology and Allergy, and the Department of Pediatrics, Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Askar M, Sayer D, Wang T, Haagenson M, Spellman SR, Lee SJ, Madbouly A, Fleischhauer K, Hsu KC, Verneris MR, Thomas D, Zhang A, Sobecks RM, Majhail NS. Analysis of Single Nucleotide Polymorphisms in the Gamma Block of the Major Histocompatibility Complex in Association with Clinical Outcomes of Hematopoietic Cell Transplantation: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant 2018; 25:664-672. [PMID: 30537553 DOI: 10.1016/j.bbmt.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
HLA haplotype mismatches have been associated with an elevated risk of acute graft-versus-host disease (aGVHD) in patients undergoing HLA-matched unrelated donor (URD) hematopoietic cell transplantation (HCT). The gamma block (GB) is located in the central MHC region between beta and delta blocks (encoding HLA-B and -C and HLA-DQ and -DR antigens, respectively) and contains numerous inflammatory and immune regulatory genes, including Bf, C2, and C4 genes. A single-center study showed that mismatches in SNPs c.2918+98G, c.3316C, and c.4385C in the GB block (C4 SNPs) were associated with higher risk of grade III-IV aGVHD. We investigated the association of GB SNP (GBS) mismatches with outcomes after 10/10 and 9/10 URD HCT (n = 714). The primary outcome was acute GVHD. Overall survival, disease-free survival, transplantation-related mortality, relapse, chronic GVHD, and engraftment were also analyzed. DNA samples were GBS genotyped by identifying 338 SNPs across 20 kb using the Illumina NGS platform. The overall 100-day incidence of aGVHD grade II-IV and II-IV were 41% and 17%, respectively. The overall incidence of matching at all GBSs tested and at the C4 SNPs were 23% and 81%, respectively. Neither being matched across all GB SNPs tested (versus mismatched) nor having a higher number of GBS mismatches was associated with transplantation outcomes. There was no association between C4 SNP mismatches and outcomes except for an unexpected significant association between having 2 C4 SNP mismatches and a higher hazard ratio (HR) for relapse (association seen in 15 patients only; HR, 3.38, 95% confidence interval, 1.75 to 6.53; P = .0003). These data do not support the hypothesis that mismatching at GB is associated with outcomes after HCT.
Collapse
Affiliation(s)
- Medhat Askar
- Baylor University Medical Center, Transplant Immunology, Dallas, Texas
| | - David Sayer
- Illumina, Conexio Genomics, Fremantle, Australia
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota.
| | | | - Abeer Madbouly
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital Essen, Essen, Germany
| | | | - Michael R Verneris
- Children's Hospital Colorado, University of Colorado School of Medicine, Pediatrics-Heme/Onc and Bone Marrow Transplantation, Aurora, Colorado
| | - Dawn Thomas
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Aiwen Zhang
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Ronald M Sobecks
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Navneet S Majhail
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| |
Collapse
|
40
|
|
41
|
A Valine Mismatch at Position 129 of MICA Is an Independent Predictor of Cytomegalovirus Infection and Acute Kidney Rejection in Simultaneous Pancreas⁻Kidney Transplantation Recipients. Int J Mol Sci 2018; 19:ijms19092618. [PMID: 30181474 PMCID: PMC6164160 DOI: 10.3390/ijms19092618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
The polymorphic major histocompatibility complex class I chain-related molecule A (MICA) and its soluble form (sMICA) interact with activating receptor natural-killer group 2 member D (NKG2D) on natural-killer (NK) and T cells, thereby modifying immune responses to transplantation and infectious agents (e.g., cytomegalovirus). Two single-nucleotide polymorphisms (SNPs), rs2596538GA in the MICA promoter and rs1051792AG in the coding region (MICA-129Val/Met), influence MICA expression or binding to NKG2D, with MICA-129Met molecules showing higher receptor affinity. To investigate the impact of these SNPs on the occurrence of cytomegalovirus infection or acute rejection (AR) in individuals who underwent simultaneous pancreas⁻kidney transplantation (SPKT), 50 recipient-donor pairs were genotyped, and sMICA levels were measured during the first year post-transplantation. Recipients with a Val-mismatch (recipient Met/Met and donor Val/Met or Val/Val) showed shorter cytomegalovirus infection-free and shorter kidney AR-free survival. Additionally, Val mismatch was an independent predictor of cytomegalovirus infection and kidney AR in the first year post-transplantation. Interestingly, sMICA levels were lower in rs2596538AA and MICA129Met/Met-homozygous recipients. These results provide further evidence that genetic variants of MICA influence sMICA levels, and that Val mismatch at position 129 increases cytomegalovirus infection and kidney AR risk during the first year post-SPKT.
Collapse
|
42
|
Geneugelijk K, Spierings E. Matching donor and recipient based on predicted indirectly recognizable human leucocyte antigen epitopes. Int J Immunogenet 2018; 45:41-53. [PMID: 29464898 DOI: 10.1111/iji.12359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
The predicted indirectly recognizable human leucocyte antigen (HLA) epitopes (PIRCHE) algorithm is a novel in silico algorithm to determine donor-recipient compatibility. The PIRCHE algorithm determines donor-recipient compatibility by counting the number of mismatched HLA-derived epitopes that are involved in indirect T-cell alloimmune responses; these epitopes are designated as PIRCHE. Over the last few years, the PIRCHE algorithm has been investigated in both hematopoietic stem cell transplantation and solid organ transplantation. This review describes the theory of the algorithm, its application in transplantation, and highlights the future perspectives on the clinical application of the PIRCHE algorithm.
Collapse
Affiliation(s)
- K Geneugelijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
43
|
Impact of MICA and NKG2D polymorphisms in HLA-fully matched related and unrelated hematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 53:918-922. [PMID: 29379169 DOI: 10.1038/s41409-017-0083-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
44
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
45
|
Petersdorf EW. Which factors influence the development of GVHD in HLA-matched or mismatched transplants? Best Pract Res Clin Haematol 2017; 30:333-335. [PMID: 29156205 PMCID: PMC5967625 DOI: 10.1016/j.beha.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sheer diversity of HLA alleles makes the probability of finding matched unrelated donors for patients requiring hematopoietic cell transplantation (HCT) a complex situation. New evidence suggests that mismatching at certain HLA loci may provide a greater benefit in terms of graft-versus-leukemia effect than other mismatches when HLA-matched donors are not available. This review summarizes the current understanding of HLA matching requirements for unrelated donor HCT.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Research Center, Division of Clinical Research, 1100 Fairview Ave North, Seattle, WA 98109, USA.
| |
Collapse
|
46
|
Affiliation(s)
- Robert Zeiser
- From the Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany (R.Z.); and the Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis (B.R.B.)
| | - Bruce R Blazar
- From the Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany (R.Z.); and the Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis (B.R.B.)
| |
Collapse
|
47
|
Carapito R, Gottenberg JE, Kotova I, Untrau M, Michel S, Naegely L, Aouadi I, Kwemou M, Paul N, Pichot A, Locke J, Bowman SJ, Griffiths B, Sivils KL, Sibilia J, Inoko H, Micelli-Richard C, Nocturne G, Ota M, Ng WF, Mariette X, Bahram S. A new MHC-linked susceptibility locus for primary Sjögren's syndrome: MICA. Hum Mol Genet 2017; 26:2565-2576. [PMID: 28379387 DOI: 10.1093/hmg/ddx135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/01/2017] [Indexed: 12/27/2022] Open
Abstract
The association of primary Sjögren's syndrome (pSS) with Major Histocompatibility Complex (MHC) alleles is quintessential of MHC-disease associations. Indeed, although disease associations with classical HLA class I and II alleles/haplotypes are amply documented, further dissection is often prevented by the strong linkage disequilibrium across the entire MHC complex. Here we study the association of pSS, not with HLA genes, but with the non-conventional MHC encoded class I gene, MICA (MHC class I chain-related gene A). MICA is selectively expressed within epithelia, and is the major ligand for the activatory receptor, NKG2D, both attributes relevant to pSS' etiology. MICA-pSS association was studied in two independent (French and UK) cohorts representing a total of 959 cases and 1,043 controls. MICA*008 allele was shown to be significantly associated with pSS (pcor=2.61 × 10-35). A multivariate logistic regression showed that this association was independent of all major known MHC-linked risk loci/alleles, as well as other relevant candidate loci that are in linkage disequilibrium with MICA*008 i.e. HLA-B*08:01, rs3131619 (T), MICB*008, TNF308A, HLA-DRB1*03:01 and HLA-DRB1*15:01 (P = 1.84 × 10-04). Furthermore, independently of the MICA*008 allele, higher levels of soluble MICA proteins were detected in sera of pSS patients compared to healthy controls. This study hence defines MICA as a new, MHC-linked, yet HLA-independent, pSS risk locus and opens a new front in our understanding of the still enigmatic pathophysiology of this disease. The fact that the soluble MICA protein is further amplified in MICA*008 carrying individuals, might also be relevant in other auto-immune diseases and cancer.
Collapse
Affiliation(s)
- Raphael Carapito
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France.,Laboratoire Central d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, 67091 Strasbourg, France
| | - Jacques-Eric Gottenberg
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France.,Service de Rhumatologie, Centre National de Référence pour les Maladies Auto-Immunes Systémiques Rares, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg 67200, France
| | | | - Meiggie Untrau
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France
| | - Sandra Michel
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France.,Laboratoire Central d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, 67091 Strasbourg, France
| | - Lydie Naegely
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France
| | - Ismail Aouadi
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France
| | - Marius Kwemou
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France
| | - Nicodème Paul
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France
| | - Angélique Pichot
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France
| | - James Locke
- Musculoskeletal Research Group, Institute of Cellular Medicine & NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE2?4HH, UK
| | - Simon J Bowman
- Queen Elizabeth Hospital Birmingham, Vincent Drive, Edgbaston, Birmingham B15?2TH, UK
| | - Bridget Griffiths
- Department of Rheumatology, Freeman Hospital, Newcastle upon Tyne NE7?7DN, UK
| | - Kathy L Sivils
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jean Sibilia
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France.,Service de Rhumatologie, Centre National de Référence pour les Maladies Auto-Immunes Systémiques Rares, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg 67200, France
| | - Hidetoshi Inoko
- INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Corinne Micelli-Richard
- INSERM UMR_S 1184, Centre for Immunology of Viral Infections and Autoimmune Diseases; Université Paris-Sud, and Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, AP-HP, 94275 Le Kremlin-Bicêtre, France
| | - Gaétane Nocturne
- INSERM UMR_S 1184, Centre for Immunology of Viral Infections and Autoimmune Diseases; Université Paris-Sud, and Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, AP-HP, 94275 Le Kremlin-Bicêtre, France
| | - Masao Ota
- INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Wan-Fai Ng
- Musculoskeletal Research Group, Institute of Cellular Medicine & NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE2?4HH, UK
| | - Xavier Mariette
- INSERM UMR_S 1184, Centre for Immunology of Viral Infections and Autoimmune Diseases; Université Paris-Sud, and Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, AP-HP, 94275 Le Kremlin-Bicêtre, France
| | - Seiamak Bahram
- Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67085 Strasbourg, France.,INSERM Franco-Japanese Nextgen HLA Laboratory, Strasbourg, France and Nagano, Japan.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, 67085 Strasbourg, France.,Laboratoire Central d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
48
|
What compatibility in 2017 for the haematopoietic stem cell transplantation? Transfus Clin Biol 2017; 24:124-130. [PMID: 28709842 DOI: 10.1016/j.tracli.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
The diversification of potential donors to perform stem cell allografts now enables to propose a compatible graft cell source adapted to the different clinical situations. Transplants with a geno-identical sibling donor, otherwise with the most HLA-compatible unrelated donor, remain the first-line solutions. Alternative transplants allow to graft patients having no donors in international registries, owing to the rarity of their HLA typing. They are carried out with fairly incompatible grafts and are therefore limited by the existence in the recipient of preformed anti-HLA antibodies which predispose to their rejection. The simple prevention of acute Graft-versus-host disease in haplo-identical transplants, as well as the availability of donors, explain why they have very often replaced placental stem cell transplants. These latter remain useful for pediatric patients or in the absence of family donors.
Collapse
|
49
|
Rashidi A, Weisdorf D. Association between single nucleotide polymorphisms of tumor necrosis factor gene and grade II-IV acute GvHD: a systematic review and meta-analysis. Bone Marrow Transplant 2017; 52:1423-1427. [PMID: 28692026 DOI: 10.1038/bmt.2017.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/09/2022]
Abstract
Acute GvHD (aGvHD) complicates up to 50% of allogeneic hematopoietic cell transplants and pre-transplant estimation of its risk can guide prophylaxis, monitoring and early intervention strategies. Inspired by the role of tumor necrosis factor alpha (TNFα) in the pathogenesis of aGvHD and the inconsistency of the association studies exploring single nucleotide polymorphisms (SNPs) of the TNF gene, we conducted a systematic review and meta-analysis of the available reports using PubMed and EMBASE. Original human studies reporting on the association between recipient TNF SNPs and grade II-IV aGvHD in a format convertible to effect size and confidence interval were included. One of the two most widely investigated SNPs (rs361525G>A) was marginally associated with increased risk of grade II-IV aGvHD in random-effects meta-analysis of six studies (627 patients in total, risk ratio=1.29, 95% confidence interval=0.99-1.69, P=0.06). If this result is validated in a large cohort with uniform conditioning and GvHD prophylaxis, TNF rs361525G>A may become a useful tool for aGvHD risk estimation before the transplant.
Collapse
Affiliation(s)
- A Rashidi
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - D Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
50
|
Petersdorf EW. Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation. F1000Res 2017; 6:617. [PMID: 28529723 PMCID: PMC5419254 DOI: 10.12688/f1000research.10990.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a significant potentially life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). Since the discovery of the human leukocyte antigen (HLA) system over 50 years ago, significant advances have clarified the nature of HLA variation between transplant recipients and donors as a chief etiology of GVHD. New information on coding and non-coding gene variation and GVHD risk provides clinicians with options to consider selected mismatched donors when matched donors are not available. These advances have increased the availability of unrelated donors for patients in need of a transplant and have lowered the overall morbidity and mortality of HCT.
Collapse
|