1
|
Kioko M, Mwangi S, Pance A, Ochola-Oyier LI, Kariuki S, Newton C, Bejon P, Rayner JC, Abdi AI. The mRNA content of plasma extracellular vesicles provides a window into molecular processes in the brain during cerebral malaria. SCIENCE ADVANCES 2024; 10:eadl2256. [PMID: 39151016 PMCID: PMC11328904 DOI: 10.1126/sciadv.adl2256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
The impact of cerebral malaria on the transcriptional profiles of cerebral tissues is difficult to study using noninvasive approaches. We isolated plasma extracellular vesicles (EVs) from patients with cerebral malaria and community controls and sequenced their mRNA content. Deconvolution analysis revealed that EVs from cerebral malaria are enriched in transcripts of brain origin. We ordered the patients with cerebral malaria based on their EV-transcriptional profiles from cross-sectionally collected samples and inferred disease trajectory while using healthy community controls as a starting point. We found that neuronal transcripts in plasma EVs decreased with disease trajectory, whereas transcripts from glial, endothelial, and immune cells increased. Disease trajectory correlated positively with severity indicators like death and was associated with increased VEGFA-VEGFR and glutamatergic signaling, as well as platelet and neutrophil activation. These data suggest that brain tissue responses in cerebral malaria can be studied noninvasively using EVs circulating in peripheral blood.
Collapse
Affiliation(s)
- Mwikali Kioko
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Open University, Milton Keynes, UK
| | - Shaban Mwangi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alena Pance
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
- School of Life and Medical Science, University of Hertfordshire, Hatfield, UK
| | - Lynette Isabella Ochola-Oyier
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Symon Kariuki
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Charles Newton
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Philip Bejon
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Abdirahman I Abdi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| |
Collapse
|
2
|
Nicolai L, Pekayvaz K, Massberg S. Platelets: Orchestrators of immunity in host defense and beyond. Immunity 2024; 57:957-972. [PMID: 38749398 DOI: 10.1016/j.immuni.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
3
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
4
|
An update on cerebral malaria for therapeutic intervention. Mol Biol Rep 2022; 49:10579-10591. [PMID: 35670928 DOI: 10.1007/s11033-022-07625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral malaria is often pronounced as a major life-threatening neurological complication of Plasmodium falciparum infection. The complex pathogenic landscape of the parasite and the associated neurological complications are still not elucidated properly. The growing concerns of drugresistant parasite strains along with the failure of anti-malarial drugs to subdue post-recovery neuro-cognitive dysfunctions in cerebral malaria patients have called for a demand to explore novel biomarkers and therapeutic avenues. Due course of the brain infection journey of the parasite, events such as sequestration of infected RBCs, cytoadherence, inflammation, endothelial activation, and blood-brain barrier disruption are considered critical. METHODS In this review, we briefly summarize the diverse pathogenesis of the brain-invading parasite associated with loss of the blood-brain barrier integrity. In addition, we also discuss proteomics, transcriptomics, and bioinformatics strategies to identify an array of new biomarkers and drug candidates. CONCLUSION A proper understanding of the parasite biology and mechanism of barrier disruption coupled with emerging state-of-art therapeutic approaches could be helpful to tackle cerebral malaria.
Collapse
|
5
|
Wunderlich F, Delic D, Gerovska D, Araúzo-Bravo MJ. Vaccination Accelerates Liver-Intrinsic Expression of Megakaryocyte-Related Genes in Response to Blood-Stage Malaria. Vaccines (Basel) 2022; 10:vaccines10020287. [PMID: 35214745 PMCID: PMC8880532 DOI: 10.3390/vaccines10020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Erythropoiesis and megakaryo-/thrombopoiesis occur in the bone marrow proceeding from common, even bipotent, progenitor cells. Recently, we have shown that protective vaccination accelerates extramedullary hepatic erythroblastosis in response to blood-stage malaria of Plasmodium chabaudi. Here, we investigated whether protective vaccination also accelerates extramedullary hepatic megakaryo-/thrombopoiesis. Female Balb/c mice were twice vaccinated with a non-infectious vaccine before infecting with 106 P. chabaudi-parasitized erythrocytes. Using gene expression microarrays and quantitative real-time PCR, transcripts of genes known to be expressed in the bone marrow by cells of the megakaryo-/thrombocytic lineage were compared in livers of vaccination-protected and unprotected mice on days 0, 1, 4, 8, and 11 p.i. Livers of vaccination-protected mice responded with expression of megakaryo-/thrombocytic genes faster to P. chabaudi than those of unvaccinated mice, evidenced at early patency on day 4 p.i., when livers exhibited significantly higher levels of malaria-induced transcripts of the genes Selp and Pdgfb (p-values < 0.0001), Gp5 (p-value < 0.001), and Fli1, Runx1, Myb, Mpl, Gp1ba, Gp1bb, Gp6, Gp9, Pf4, and Clec1b (p-values < 0.01). Together with additionally analyzed genes known to be related to megakaryopoiesis, our data suggest that protective vaccination accelerates liver-intrinsic megakaryo-/thrombopoiesis in response to blood-stage malaria that presumably contributes to vaccination-induced survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Heidelberg, Germany
- Correspondence: (D.D.); (M.J.A.-B.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Correspondence: (D.D.); (M.J.A.-B.)
| |
Collapse
|
6
|
Jain V, Thomas T, Basak S, Sharma RK, Singh N. Sequential dysregulated plasma levels of angiopoietins (ANG-2 and ratios of ANG-2/ANG-1) are associated with malaria severity and mortality among hospital admitted cases in South Bastar Region of Chhattisgarh, Central India. Pathog Glob Health 2022; 116:47-58. [PMID: 34308785 PMCID: PMC8812749 DOI: 10.1080/20477724.2021.1953685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria (CM) is one of the most severe forms of P. falciparum infection, with an associated high case-fatality rate. Angiopoietins (ANG-1 and ANG-2) are important biomarkers of endothelial activation and dysfunction. This study was carried out in Maharani Hospital and associated Medical College, Jagdalpur, CG, Central India from 2010 to 2014. Based on the treatment recovery patterns, cases (n = 65) were classified as mild malaria with rapid recovery (MM-RR), n= 14; non-cerebral severe malaria with moderately fast recovery (NCSM-MFR), n= 9; CM survivors with slow recovery (CMS-SR), n= 36 and deteriorated CM non-survivors (Det-CMNS), n= 6. Plasma levels (pg/ml) of ANG-1 and ANG-2 were measured by ELISA in all the samples at the time of hospital admission and 48 hours of treatment. Levels were also measured in available samples at the third time point (time of discharge for survivors or 72 hours post-treatment in fatal cases). Data analysis was done by appropriate statistical tests using Stata 11.0 and SPSS 25.0 software. At the time of admission, ANG-2 and ratios of ANG-2/ANG-1 significantly distinguished Det-CMNS cases from MM-RR and NCSM-MFR cases with good AUC scores (0.8-0.9). Further, Det-CMNS cases could also be distinguished from MM-RR, NCSM-MFR, and CMS-SR cases by ANG-2 (AUC scores 0.9) and ratios of ANG-2/ANG-1 (AUC: 0.8-0.9) at 48 hours of treatment. Paired analysis of sequential measurement of angiopoietins revealed that compared to admission levels, the ratios of ANG-2/ANG-1 significantly declined 48 hours after treatment in MM-RR (p= 0.041), NCSM-MFR (p= 0.050), and CMS-SR (p= 0.0002) cases but not in cases of Det-CMNS (p= 0.916). In conclusion, plasma levels of ANG-2 and ratios of ANG-2/ANG-1 may serve as good biomarkers to distinguish the malaria severity at the time of hospital admission and recovery patterns upon treatment in Central India.
Collapse
Affiliation(s)
- Vidhan Jain
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Trilok Thomas
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Sanjay Basak
- Former District Malaria Officer, Maharani Hospital and Associated Medical College Jagdalpur, Chhattisgarh, India
| | - Ravendra Kumar Sharma
- Department of Statistics, ICMR-National Institute of Medical Statistics, ICMR Campus, New Delhi, India
| | - Neeru Singh
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| |
Collapse
|
7
|
Platelet α-granules contribute to organ-specific pathologies in a mouse model of severe malaria. Blood Adv 2021; 4:1-8. [PMID: 31891656 DOI: 10.1182/bloodadvances.2019000773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Key PointsNbeal2 deficiency leads to significantly reduced lung and brain pathology and enhanced survival in a mouse model of malaria. Both antibody-dependent and antibody-independent platelet depletion in mice recapitulate the findings observed in Nbeal2−/− mice.
Collapse
|
8
|
Jongruamklang P, Rebetz J, Kapur R, Persson KEM, Olsson ML, Semple JW, Storry JR. Platelets inhibit erythrocyte invasion by Plasmodium falciparum at physiological platelet:erythrocyte ratios. Transfus Med 2021; 32:168-174. [PMID: 33987889 DOI: 10.1111/tme.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/05/2020] [Accepted: 12/27/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the effect of platelet:erythrocyte (P:E) ratios on Plasmodium falciparum erythrocyte invasion. BACKGROUND Recent reports have shown that platelets are directly involved in the immune response towards P. falciparum during erythrocyte invasion. However, the literature both supports and conflicts with a role for platelets in limiting invasion. Also, the effect of platelet numbers on invasion (parasitemia) has not been thoroughly investigated. METHODS/MATERIALS The P. falciparum strains FCR3S1.2 and W2mef were cultured with group O erythrocytes. The cultures were synchronised and supplemented with pooled platelets at P:E ratios ranging from 1:100 to 1:2. Parasitemia was measured at 40 h by flow cytometry and by microscopy of blood smears. RESULTS A linear relationship was observed between reduced invasion and increased platelet numbers at P:E ratios ranging from 1:100 to 1:20. However, this effect was reversed at lower ratios (1:10-1:2). Microscopic evaluation revealed aggregation and attachment of platelets to erythrocytes, but not specifically to parasitised erythrocytes. CONCLUSION We have shown that under physiological P:E ratios (approx. 1:10-1:40), platelets inhibited P. falciparum invasion in a dose-dependent manner. At ratios of 1:10 and below, platelets did not further increase the inhibitory effect and, although the trend was reversed, inhibition was still maintained.
Collapse
Affiliation(s)
- Philaiphon Jongruamklang
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Johan Rebetz
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kristina E M Persson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden.,Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Martin L Olsson
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - John W Semple
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Jill R Storry
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
9
|
Santos MLS, Coimbra RS, Sousa TN, Guimarães LFF, Gomes MS, Amaral LR, Pereira DB, Fontes CJF, Hawwari I, Franklin BS, Carvalho LH. The Interface Between Inflammatory Mediators and MicroRNAs in Plasmodium vivax Severe Thrombocytopenia. Front Cell Infect Microbiol 2021; 11:631333. [PMID: 33791239 PMCID: PMC8005714 DOI: 10.3389/fcimb.2021.631333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 11/27/2022] Open
Abstract
Severe thrombocytopenia can be a determinant factor in the morbidity of Plasmodium vivax, the most widespread human malaria parasite. Although immune mechanisms may drive P. vivax-induced severe thrombocytopenia (PvST), the current data on the cytokine landscape in PvST is scarce and often conflicting. Here, we hypothesized that the analysis of the bidirectional circuit of inflammatory mediators and their regulatory miRNAs would lead to a better understanding of the mechanisms underlying PvST. For that, we combined Luminex proteomics, NanoString miRNA quantification, and machine learning to evaluate an extensive array of plasma mediators in uncomplicated P. vivax patients with different degrees of thrombocytopenia. Unsupervised clustering analysis identified a set of PvST-linked inflammatory (CXCL10, CCL4, and IL-18) and regulatory (IL-10, IL-1Ra, HGF) mediators. Among the mediators associated with PvST, IL-6 and IL-8 were critical to discriminate P. vivax subgroups, while CCL2 and IFN-γ from healthy controls. Supervised machine learning spotlighted IL-10 in P. vivax-mediated thrombocytopenia and provided evidence for a potential signaling route involving IL-8 and HGF. Finally, we identified a set of miRNAs capable of modulating these signaling pathways. In conclusion, the results place IL-10 and IL-8/HGF in the center of PvST and propose investigating these signaling pathways across the spectrum of malaria infections.
Collapse
Affiliation(s)
| | - Roney S. Coimbra
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Tais N. Sousa
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Matheus S. Gomes
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | - Laurence R. Amaral
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | - Dhelio B. Pereira
- Dep. Pesquisa Clínica e Medicina Translacional, Centro de Pesquisas em Medicina Tropical, Porto Velho, Brazil
| | - Cor J. F. Fontes
- Departamento de Clínica Médica, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Ibrahim Hawwari
- Medical Faculty, Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Bernardo S. Franklin
- Medical Faculty, Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Luzia H. Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Li JL, Zarbock A, Hidalgo A. Platelets as autonomous drones for hemostatic and immune surveillance. J Exp Med 2020; 214:2193-2204. [PMID: 28720569 PMCID: PMC5551582 DOI: 10.1084/jem.20170879] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Platelets participate in many important physiological processes, including hemostasis and immunity. However, despite their broad participation in these evolutionarily critical roles, the anucleate platelet is uniquely mammalian. In contrast with the large nucleated equivalents in lower vertebrates, we find that the design template for the evolutionary specialization of platelets shares remarkable similarities with human-engineered unmanned aerial vehicles in terms of overall autonomy, maneuverability, and expendability. Here, we review evidence illustrating how platelets are uniquely suited for surveillance and the manner in which they consequently provide various types of support to other cell types.
Collapse
Affiliation(s)
- Jackson LiangYao Li
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Münster, Germany
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximillians-University, Munich, Germany
| |
Collapse
|
13
|
de Azevedo-Quintanilha IG, Vieira-de-Abreu A, Ferreira AC, Reis PA, Silva TI, Nascimento DDO, Campbell RA, Estato V, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 influences cerebral edema, leukocyte accumulation and neurologic outcomes in experimental severe malaria. PLoS One 2019; 14:e0224610. [PMID: 31869339 PMCID: PMC6927624 DOI: 10.1371/journal.pone.0224610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDβ2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDβ2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia A. Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiany I. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle de O. Nascimento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert A. Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew S. Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guy A. Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Hugo C. Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Villaverde C, Namazzi R, Shabani E, Park GS, Datta D, Hanisch B, Opoka RO, John CC. Retinopathy-Positive Cerebral Malaria Is Associated With Greater Inflammation, Blood-Brain Barrier Breakdown, and Neuronal Damage Than Retinopathy-Negative Cerebral Malaria. J Pediatric Infect Dis Soc 2019; 9:580-586. [PMID: 31808816 PMCID: PMC7653550 DOI: 10.1093/jpids/piz082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our prior study findings suggest that Plasmodium falciparum is the cause of disease in both malaria retinopathy-positive (RP) and most retinopathy-negative (RN) cerebral malaria (CM), and that absence of retinopathy and decreased disease severity in RN CM may be due to shorter duration of illness, lower parasite biomass, and decreased var gene expression in RN compared to RP CM. In the present study, we assessed the pathophysiology of RP and RN CM. METHODS We compared markers of systemic and central nervous system inflammation, oxidative stress, neuronal injury, systemic endothelial activation, angiogenesis, and platelet activation in Ugandan children with RP (n = 167) or RN (n = 87) CM. RESULTS RP children had higher plasma C-reactive protein (P = .013), ferritin and erythropoietin (both P < .001) levels, an elevated cerebrospinal fluid (CSF):plasma albumin ratio (P < .001), and higher CSF tau protein levels (P = .049) than RN children. Levels of plasma and CSF proinflammatory and anti-inflammatory cytokines and oxidative stress markers did not differ between RP and RN children. RN children had higher plasma levels of endothelin 1 (P = .003), platelet-derived growth factor (P = .012), and platelet factor 4 (P = .034). CONCLUSIONS RP and RN CM may represent different phases of CM. RN CM may be driven by early vasospasm and platelet activation, whereas the more advanced RP CM is associated with greater inflammation, increased erythropoietic drive, blood-brain barrier breakdown, and neuronal injury, each of which may contribute to greater disease severity.
Collapse
Affiliation(s)
- Chandler Villaverde
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Estela Shabani
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA,Department of Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | - Gregory S Park
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | - Benjamin Hanisch
- Department of Pediatrics, Children’s National Medical Center, Washington, District of Columbia, USA
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chandy C John
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA,Department of Pediatrics, Indiana University, Indianapolis, Indiana, USA,Correspondence: C. C. John, MD, Ryan White Center for Pediatric Infectious Disease and Global Health, 1044 W Walnut St, R4 402D, Indianapolis, IN 46202. ()
| |
Collapse
|
15
|
Guo L, Rondina MT. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases. Front Immunol 2019; 10:2204. [PMID: 31572400 PMCID: PMC6753373 DOI: 10.3389/fimmu.2019.02204] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are anucleate cells produced by megakaryocytes. In recent years, a robust body of literature supports the evolving role of platelets as key sentinel and effector cells in infectious diseases, especially critical in bridging hemostatic, inflammatory, and immune continuums. Upon intravascular pathogen invasion, platelets can directly sense viral, parasitic, and bacterial infections through pattern recognition receptors and integrin receptors or pathogen: immunoglobulin complexes through Fc and complement receptors—although our understanding of these interactions remains incomplete. Constantly scanning for areas of injury or inflammation as they circulate in the vasculature, platelets also indirectly respond to pathogen invasion through interactions with leukocytes and the endothelium. Following antigen recognition, platelets often become activated. Through a diverse repertoire of mechanisms, activated platelets can directly sequester or kill pathogens, or facilitate pathogen clearance by activating macrophages and neutrophils, promoting neutrophil extracellular traps (NETs) formation, forming platelet aggregates and microthrombi. At times, however, platelet activation may also be injurious to the host, exacerbating inflammation and promoting endothelial damage and thrombosis. There are many gaps in our understandings of the role of platelets in infectious diseases. However, with the emergence of advanced technologies, our knowledge is increasing. In the current review, we mainly discuss these evolving roles of platelets under four different infectious pathogen infections, of which are dengue, malaria, Esterichia coli (E. coli) and staphylococcus aureus S. aureus, highlighting the complex interplay of these processes with hemostatic and thrombotic pathways.
Collapse
Affiliation(s)
- Li Guo
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, UT, United States
| |
Collapse
|
16
|
|
17
|
Chen L, Xu S, Wu T, Shao Y, Luo L, Zhou L, Ou S, Tang H, Huang W, Guo K, Xu J. Abnormal platelet amyloid-β precursor protein metabolism in SAMP8 mice: Evidence for peripheral marker in Alzheimer's disease. J Cell Physiol 2019; 234:23528-23536. [PMID: 31183859 DOI: 10.1002/jcp.28921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Senescence-accelerated mouse strains have proved to be an accelerated-aging model, which mimics numerous features with Alzheimer's disease (AD). Three, six, and nine-month senescence-accelerated resistant 1 and senescence-accelerated prone 8 (SAMP8) mice were used in the current study, to unravel potential mechanisms for dementia and explore new diagnostic approaches for AD. The amyloid-β (Aβ40) and Aβ42 levels were elevated in hippocampi and platelets from SAMP8, along with a reduced α-secretase expression and an enhanced β-secretase expression extent with age, compared to control mice. Furthermore, hippocampal Aβ40 and Aβ42 of SAMP8 were positively correlated with platelet of these mice with aging progression. In addition, β-γ-secretase-modulated proteolytic proceeding of amyloid precursor protein in platelet might work through the PI3K/Akt/GSK3β pathway. These results indicate that platelet could be a potential early marker in the periphery to study the age-correlative aggregation of the amyloid-β peptide in patients with AD, while still requiring the considerable study.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Shicheng Xu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tong Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yijia Shao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Luo
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingqi Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Tang
- Department of Anatomy, Guangdong Jiangmen Chinese Traditional Medicine College, Jiangmen, China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Sierro F, Grau GER. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol 2019; 10:830. [PMID: 31057552 PMCID: PMC6478768 DOI: 10.3389/fimmu.2019.00830] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Complications from malaria parasite infections still cost the lives of close to half a million people every year. The most severe is cerebral malaria (CM). Employing murine models of CM, autopsy results, in vitro experiments, neuroimaging and microscopic techniques, decades of research activity have investigated the development of CM immunopathology in the hope of identifying steps that could be therapeutically targeted. Yet important questions remain. This review summarizes recent findings, primarily mechanistic insights on the essential cellular and molecular players involved gained within the murine experimental cerebral malaria model. It also highlights recent developments in (a) cell-cell communication events mediated through extracellular vesicles (EVs), (b) mounting evidence for innate immune memory, leading to “trained“ increased or tolerised responses, and (c) modulation of immune cell function through metabolism, that could shed light on why some patients develop this life-threatening condition whilst many do not.
Collapse
Affiliation(s)
- Frederic Sierro
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science, Technology, and Landmark Infrastructure, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Xiong-Hang K, Kemnetz-Ness K, Krieger AC, Haynes CL. Insight into the Effects of Plasmodium chabaudi on Platelets Using Carbon-Fiber Microelectrode Amperometry. ACS Infect Dis 2019; 5:592-597. [PMID: 30712339 DOI: 10.1021/acsinfecdis.8b00334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platelets are anuclear circulating cell bodies within the bloodstream commonly known for their roles in clot formation during vascular injury to prevent blood loss. They also have significant impact in a range of diseases, including malaria. However, the role of platelets in malaria is controversial, with contradicting evidence suggesting either that they assist in destruction of malarial parasites or facilitate a severe form of malaria. Precedent work suggests that the timing of infection is critical in determining whether platelets switch roles from being protective to deleterious. As such, the work herein makes use of the unique mechanistic perspective offered by carbon-fiber microelectrode amperometry (CFMA) to understand how platelet secretion is impacted in malarial infection stages (ascending parasite count versus descending parasite count). Malarial platelet behavior was compared to platelets from noninfected control mice by probing their exocytotic function. Results suggest that mouse malaria caused by the parasite Plasmodium chabaudi, during both ascending and descending infection stages, reduces platelet exocytotic events and delays platelet granule fusion; in addition, platelets are more impacted by the disease early in the infection stages. In all, understanding platelet behavior in the malarial context may present new therapeutic routes to treat or cure malaria.
Collapse
Affiliation(s)
- Kang Xiong-Hang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kaila Kemnetz-Ness
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Anna C. Krieger
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Gramaglia I, Velez J, Chang YS, Caparros-Wanderley W, Combes V, Grau G, Stins MF, van der Heyde HC. Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak. PLoS One 2019; 14:e0213428. [PMID: 30849122 PMCID: PMC6407779 DOI: 10.1371/journal.pone.0213428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Clinical and model studies indicate that low nitric oxide (NO) bioavailability due in part to profound hypoargininemia contributes to cerebral malaria (CM) pathogenesis. Protection against CM pathogenesis may be achieved by altering the diet before infection with Plasmodium falciparum infection (nutraceutical) or by administering adjunctive therapy that decreases CM mortality (adjunctive therapy). This hypothesis was tested by administering citrulline or arginine in experimental CM (eCM). We report that citrulline injected as prophylaxis immediately post infection (PI) protected virtually all mice by ameliorating (i) hypoargininemia, (ii) urea cycle impairment, and (iii) disruption of blood brain barrier. Citrulline prophylaxis inhibited plasma arginase activity. Parasitemia was similar in citrulline- and vehicle control-groups, indicating that protection from pathogenesis was not due to decreased parasitemia. Both citrulline and arginine administered from day 1 PI in the drinking water significantly protected mice from eCM. These observations collectively indicate that increasing dietary citrulline or arginine decreases eCM mortality. Citrulline injected ip on day 4 PI with quinine-injected ip on day 6 PI partially protected mice from eCM; citrulline plus scavenging of superoxide with pegylated superoxide dismutase and pegylated catalase protected all recipients from eCM. These findings indicate that ameliorating hypoargininemia with citrulline plus superoxide scavenging decreases eCM mortality.
Collapse
Affiliation(s)
- Irene Gramaglia
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
- * E-mail:
| | - Joyce Velez
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
| | | | | | - Valery Combes
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Georges Grau
- La Jolla Infectious Disease Institute, San Diego, CA, United States of America
- Vascular Immunology Unit, University of Sydney, Sydney, Australia
| | - Monique F. Stins
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | | |
Collapse
|
21
|
Palomo J, Quesniaux VFJ, Togbe D, Reverchon F, Ryffel B. Unravelling the roles of innate lymphoid cells in cerebral malaria pathogenesis. Parasite Immunol 2019; 40. [PMID: 29117626 DOI: 10.1111/pim.12502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Cerebral malaria (CM) is one complication of Plasmodium parasite infection that can lead to strong inflammatory immune responses in the central nervous system (CNS), accompanied by lung inflammation and anaemia. Here, we focus on the role of the innate immune response in experimental cerebral malaria (ECM) caused by blood-stage murine Plasmodium berghei ANKA infection. While T cells are important for ECM pathogenesis, the role of innate lymphoid cells (ILCs) is only emerging. The role of ILCs and non-lymphoid cells, such as neutrophils and platelets, contributing to the host immune response and leading to ECM and human cerebral malaria (HCM) is reviewed.
Collapse
Affiliation(s)
- J Palomo
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France.,Division of Rheumatology, Departments of Internal Medicine Specialties and of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - V F J Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France
| | - D Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France.,Artimmune SAS, Orléans, France
| | - F Reverchon
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France
| | - B Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS, University of Orleans, Orleans-Cedex2, France.,IDM, Medical School, University of Cape Town, Cape Town, Republic of South Africa
| |
Collapse
|
22
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
23
|
The Role of Platelets in Antimicrobial Host Defense. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
24
|
Morrell CN, Pariser DN, Hilt ZT, Vega Ocasio D. The Platelet Napoleon Complex-Small Cells, but Big Immune Regulatory Functions. Annu Rev Immunol 2018; 37:125-144. [PMID: 30485751 DOI: 10.1146/annurev-immunol-042718-041607] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.
Collapse
Affiliation(s)
- Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Daphne N Pariser
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Zachary T Hilt
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Denisse Vega Ocasio
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| |
Collapse
|
25
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
26
|
Kho S, Barber BE, Johar E, Andries B, Poespoprodjo JR, Kenangalem E, Piera KA, Ehmann A, Price RN, William T, Woodberry T, Foote S, Minigo G, Yeo TW, Grigg MJ, Anstey NM, McMorran BJ. Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood 2018; 132:1332-1344. [PMID: 30026183 PMCID: PMC6161646 DOI: 10.1182/blood-2018-05-849307] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Platelets are understood to assist host innate immune responses against infection, although direct evidence of this function in any human disease, including malaria, is unknown. Here we characterized platelet-erythrocyte interactions by microscopy and flow cytometry in patients with malaria naturally infected with Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, or Plasmodium knowlesi Blood samples from 376 participants were collected from malaria-endemic areas of Papua, Indonesia, and Sabah, Malaysia. Platelets were observed binding directly with and killing intraerythrocytic parasites of each of the Plasmodium species studied, particularly mature stages, and was greatest in P vivax patients. Platelets preferentially bound to the infected more than to the uninfected erythrocytes in the bloodstream. Analysis of intraerythrocytic parasites indicated the frequent occurrence of platelet-associated parasite killing, characterized by the intraerythrocytic accumulation of platelet factor-4 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling of parasite nuclei (PF4+TUNEL+ parasites). These PF4+TUNEL+ parasites were not associated with measures of systemic platelet activation. Importantly, patient platelet counts, infected erythrocyte-platelet complexes, and platelet-associated parasite killing correlated inversely with patient parasite loads. These relationships, taken together with the frequency of platelet-associated parasite killing observed among the different patients and Plasmodium species, suggest that platelets may control the growth of between 5% and 60% of circulating parasites. Platelet-erythrocyte complexes made up a major proportion of the total platelet pool in patients with malaria and may therefore contribute considerably to malarial thrombocytopenia. Parasite killing was demonstrated to be platelet factor-4-mediated in P knowlesi culture. Collectively, our results indicate that platelets directly contribute to innate control of Plasmodium infection in human malaria.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Edison Johar
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Benediktus Andries
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Jeanne R Poespoprodjo
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
- Department of Paediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Anna Ehmann
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia; and
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Ministry of Health, Malaysia
| | - Tonia Woodberry
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Simon Foote
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
27
|
Affiliation(s)
- Brendan J. McMorran
- Department of Immunology and Infectious Disease; John Curtin School of Medical Research; Australian National University; Canberra Australia
| |
Collapse
|
28
|
Ghazanfari N, Mueller SN, Heath WR. Cerebral Malaria in Mouse and Man. Front Immunol 2018; 9:2016. [PMID: 30250468 PMCID: PMC6139318 DOI: 10.3389/fimmu.2018.02016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria (CM) is an acute encephalopathy caused by the malaria parasite Plasmodium falciparum, which develops in a small minority of infected patients and is responsible for the majority of deaths in African children. Despite decades of research on CM, the pathogenic mechanisms are still relatively poorly defined. Nevertheless, many studies in recent years, using a combination of animal models, in vitro cell culture work, and human patients, provide significant insight into the pathologic mechanisms leading to CM. In this review, we summarize recent findings from mouse models and human studies on the pathogenesis of CM, understanding of which may enable development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
30
|
|
31
|
Skariah S, Arnaboldi P, Dattwyler RJ, Sultan AA, Gaylets C, Walwyn O, Mulhall H, Wu X, Dargham SR, Mordue DG. Elimination of Babesia microti Is Dependent on Intraerythrocytic Killing and CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:633-642. [PMID: 28607116 DOI: 10.4049/jimmunol.1601193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Babesiosis is a tick-borne zoonosis caused by protozoans of the genus Babesia, apicomplexan parasites that replicate within erythrocytes. However, unlike related Plasmodium species, the pathogenesis of Babesia infection remains poorly understood. The primary etiological agent of babesiosis in the United States is B. microti. In healthy individuals, tick-transmitted infection with Babesia causes no specific clinical manifestations, with many having no symptoms at all. However, even in asymptomatic people, a Babesia carriage state can be established that can last up to a year or more. Current blood bank screening methods do not identify infected donors, and Babesia parasites survive blood-banking procedures and storage. Thus, Babesia can also be transmitted by infected blood, and it is currently the number one cause of reportable transfusion-transmitted infection in the United States. Despite a significant impact on human health, B. microti remains understudied. In this study, we evaluated the course of Babesia infection in three strains of mice, C57BL/6J, BALB/cJ, and C3H-HeJ, and examined the contribution of multiple immune parameters, including TLRs, B cells, CD4+ cells, IFN-γ, and NO, on the level of parasitemia and parasite clearance during acute babesiosis. We found that B. microti reaches high parasitemia levels during the first week of infection in all three mice strains before resolving spontaneously. Our results indicate that resolution of babesiosis requires CD4 T cells and a novel mechanism of parasite killing within infected erythrocytes.
Collapse
Affiliation(s)
- Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Paul Arnaboldi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595.,Biopeptides Corp., East Setauket, NY 11733; and
| | - Raymond J Dattwyler
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595.,Biopeptides Corp., East Setauket, NY 11733; and
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Corey Gaylets
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Odaelys Walwyn
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Hannah Mulhall
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Xia Wu
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Soha R Dargham
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Dana G Mordue
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595;
| |
Collapse
|