1
|
Spector B, Santana J, Pufall M, Price D. DFF-ChIP: a method to detect and quantify complex interactions between RNA polymerase II, transcription factors, and chromatin. Nucleic Acids Res 2024; 52:e88. [PMID: 39248105 PMCID: PMC11472042 DOI: 10.1093/nar/gkae760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, we introduced a chromatin immunoprecipitation (ChIP) technique utilizing the human DNA Fragmentation Factor (DFF) to digest the DNA prior to immunoprecipitation (DFF-ChIP) that provides the precise location of transcription complexes and their interactions with neighboring nucleosomes. Here we expand the technique to new targets and provide useful information concerning purification of DFF, digestion conditions, and the impact of crosslinking. DFF-ChIP analysis was performed individually for subunits of Mediator, DSIF, and NELF that that do not interact with DNA directly, but rather interact with RNA polymerase II (Pol II). We found that Mediator was associated almost exclusively with preinitiation complexes (PICs). DSIF and NELF were associated with engaged Pol II and, in addition, potential intermediates between PICs and early initiation complexes. DFF-ChIP was then used to analyze the occupancy of a tight binding transcription factor, CTCF, and a much weaker binding factor, glucocorticoid receptor (GR), with and without crosslinking. These results were compared to those from standard ChIP-Seq that employs sonication and to CUT&RUN which utilizes MNase to fragment the genomic DNA. Our findings indicate that DFF-ChIP reveals details of occupancy that are not available using other methods including information revealing pertinent protein:protein interactions.
Collapse
Affiliation(s)
- Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Abdoul-Azize S, Hami R, Riou G, Derambure C, Charbonnier C, Vannier JP, Guzman ML, Schneider P, Boyer O. Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling. Nat Commun 2024; 15:4557. [PMID: 38811530 PMCID: PMC11136999 DOI: 10.1038/s41467-024-48818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Glucocorticoid (GC) resistance in childhood relapsed B-cell acute lymphoblastic leukemia (B-ALL) represents an important challenge. Despite decades of clinical use, the mechanisms underlying resistance remain poorly understood. Here, we report that in B-ALL, GC paradoxically induce their own resistance by activating a phospholipase C (PLC)-mediated cell survival pathway through the chemokine receptor, CXCR4. We identify PLC as aberrantly activated in GC-resistant B-ALL and its inhibition is able to induce cell death by compromising several transcriptional programs. Mechanistically, dexamethasone (Dex) provokes CXCR4 signaling, resulting in the activation of PLC-dependent Ca2+ and protein kinase C signaling pathways, which curtail anticancer activity. Treatment with a CXCR4 antagonist or a PLC inhibitor improves survival of Dex-treated NSG mice in vivo. CXCR4/PLC axis inhibition significantly reverses Dex resistance in B-ALL cell lines (in vitro and in vivo) and cells from Dex resistant ALL patients. Our study identifies how activation of the PLC signalosome in B-ALL by Dex limits the upfront efficacy of this chemotherapeutic agent.
Collapse
Affiliation(s)
| | - Rihab Hami
- Univ Brest, Inserm, UMR 1101, F-29200, Brest, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
| | | | | | | | - Monica L Guzman
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pascale Schneider
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Pediatric Immuno-Hemato-Oncology, F-76000, Rouen, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
3
|
Li X, Wu T, Chen W, Zhang J, Jiang Y, Deng J, Long W, Qin X, Zhou Y. Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway. Biomed Rep 2024; 20:43. [PMID: 38357243 PMCID: PMC10865295 DOI: 10.3892/br.2024.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common malignant tumor types of the circulatory system. Dexamethasone (DEX) acts on the glucocorticoid (GC) receptor (GR) and is a first-line chemotherapy drug for ALL. However, long-term or high-dose applications of the drug can not only cause adverse reactions, such as osteoporosis and high blood pressure, but can also cause downregulation of GR and lead to drug resistance. In the present study, reverse transcription-quantitative PCR, western blotting and LysoTracker Red staining were used to observe the effects of DEX and andrographolide (AND; a botanical with antitumorigenic properties) combined treatment. It was found that AND enhanced the sensitivity of CEM-C1 cells, a GC-resistant cell line, to DEX, and synergistically upregulated GR both at the transcriptional and post-transcriptional level with DEX. The combination of AND with DEX synergistically alkalized lysosomal lumen and downregulated the expression of autophagy-related genes Beclin1 and microtubule-associated 1 protein light chain 3 (LC3), thereby inhibiting autophagy. Knocking down LC3 expression enhanced GR expression, suggesting that GR was regulated by autophagy. Furthermore, compared with the monotherapy group (AND or DEX in isolation), AND interacted with DEX to activate the autophagy-dependent PI3K/AKT/mTOR signaling pathway by enhancing the phosphorylation of PI3K, AKT and mTOR, thereby decreasing GR degradation and increasing the sensitivity of cells to GCs. In conclusion, the present study demonstrated that AND exhibited a synergistic anti-ALL effect with DEX via upregulation of GR, which was orchestrated by the autophagy-related PI3K/AKT/mTOR signaling pathway. The results of the present study therefore provided novel research avenues and strategies for the treatment of ALL.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Tong Wu
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Weihong Chen
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jiannan Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Yanping Jiang
- Department of Clinical Medicine, College of Lingui Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jianzhi Deng
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Wenqing Long
- Department of Clinical Medicine, College of Lingui Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xi Qin
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Yuehan Zhou
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| |
Collapse
|
4
|
Zimmerman JAO, Fang M, Pufall MA. PI3Kδ Inhibition Potentiates Glucocorticoids in B-lymphoblastic Leukemia by Decreasing Receptor Phosphorylation and Enhancing Gene Regulation. Cancers (Basel) 2023; 16:143. [PMID: 38201570 PMCID: PMC10778422 DOI: 10.3390/cancers16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency should improve treatment. We previously showed that inhibition of the lymphoid-restricted PI3Kδ with idelalisib enhances glucocorticoid activity in B-ALL cells. Here, we show that idelalisib enhances glucocorticoid potency in 90% of primary B-ALL specimens and is most pronounced at sub-saturating doses of glucocorticoids near the EC50. Potentiation is associated with enhanced regulation of all glucocorticoid-regulated genes, including genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at PI3Kδ/MAPK1 (ERK2) targets S203 and S226. Ablation of these phospho-acceptor sites enhances sensitivity to glucocorticoids with ablation of S226 in particular reducing synergy. We also show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro. We propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. This mechanism and the response of patient specimens suggest that idelalisib will benefit most patients with B-ALL, but particularly patients with less responsive, including high-risk, disease. This combination is also promising for the development of less toxic glucocorticoid-sparing therapies.
Collapse
Affiliation(s)
- Jessica A. O. Zimmerman
- Division of Pediatric Hematology/Oncology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
| | - Mimi Fang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Miles A. Pufall
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Zimmerman JA, Fang M, Pufall MA. PI3Kδ inhibition potentiates glucocorticoids in B-lymphoblastic leukemia by decreasing receptor phosphorylation and enhancing gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527869. [PMID: 36798391 PMCID: PMC9934697 DOI: 10.1101/2023.02.10.527869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Glucocorticoids, including dexamethasone and prednisone, are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency is a route to improving outcomes. However, systematic toxicities prevent the use of higher dose and more potent glucocorticoids. We therefore took a functional genomic approach to identify targets to enhance glucocorticoid activity specifically in B-ALL cells. Here we show that inhibition of the lymphoid-restricted PI3Kδ, signaling through the RAS/MAPK pathway, enhances both prednisone and dexamethasone activity in almost all ex vivo B-ALL specimens tested. This potentiation is most synergistic at sub-saturating doses of glucocorticoids, approaching the EC50. Potentiation correlates with global enhancement of glucocorticoid-induced gene regulation, including regulation of effector genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at MAPK1/ERK2 targets S203 and S226, and ablation of these phospho-acceptor sites enhances glucocorticoid potency. We further show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro, which impairs DNA binding. We therefore propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. The overall enhancement of GR function suggests that idelalisib will provide benefit to most patients with B-ALL by improving outcomes for patients whose disease is less responsive to glucocorticoid-based therapy, including high-risk disease, and allowing less toxic glucocorticoid-sparing strategies for patients with standard-risk disease.
Collapse
Affiliation(s)
- Jessica A.O. Zimmerman
- Division of Pediatric Hematology/Oncology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Mimi Fang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Miles A. Pufall
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Bergeron BP, Barnett KR, Bhattarai KR, Mobley RJ, Hansen BS, Brown A, Kodali K, High AA, Jeha S, Pui CH, Peng J, Pruett-Miller SM, Savic D. Mutual antagonism between glucocorticoid and canonical Wnt signaling pathways in B-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:4107-4111. [PMID: 37289547 PMCID: PMC10388724 DOI: 10.1182/bloodadvances.2022009498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Brennan P. Bergeron
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly R. Barnett
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Robert J. Mobley
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Baranda S. Hansen
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Junmin Peng
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shondra M. Pruett-Miller
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
7
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
8
|
Sarno J, Domizi P, Liu Y, Merchant M, Pedersen CB, Jedoui D, Jager A, Nolan GP, Gaipa G, Bendall SC, Bava FA, Davis KL. Dasatinib overcomes glucocorticoid resistance in B-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:2935. [PMID: 37217509 DOI: 10.1038/s41467-023-38456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Resistance to glucocorticoids (GC) is associated with an increased risk of relapse in B-cell progenitor acute lymphoblastic leukemia (BCP-ALL). Performing transcriptomic and single-cell proteomic studies in healthy B-cell progenitors, we herein identify coordination between the glucocorticoid receptor pathway with B-cell developmental pathways. Healthy pro-B cells most highly express the glucocorticoid receptor, and this developmental expression is conserved in primary BCP-ALL cells from patients at diagnosis and relapse. In-vitro and in vivo glucocorticoid treatment of primary BCP-ALL cells demonstrate that the interplay between B-cell development and the glucocorticoid pathways is crucial for GC resistance in leukemic cells. Gene set enrichment analysis in BCP-ALL cell lines surviving GC treatment show enrichment of B cell receptor signaling pathways. In addition, primary BCP-ALL cells surviving GC treatment in vitro and in vivo demonstrate a late pre-B cell phenotype with activation of PI3K/mTOR and CREB signaling. Dasatinib, a multi-kinase inhibitor, most effectively targets this active signaling in GC-resistant cells, and when combined with glucocorticoids, results in increased cell death in vitro and decreased leukemic burden and prolonged survival in an in vivo xenograft model. Targeting the active signaling through the addition of dasatinib may represent a therapeutic approach to overcome GC resistance in BCP-ALL.
Collapse
Affiliation(s)
- Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Pablo Domizi
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Yuxuan Liu
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Milton Merchant
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Christina Bligaard Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dorra Jedoui
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Astraea Jager
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, (MB), Italy
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Felice-Alessio Bava
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
10
|
Bergeron BP, Barnett KR, Bhattarai KR, Mobley RJ, Hansen BS, Brown A, Kodali K, High AA, Jeha S, Pui CH, Peng J, Pruett-Miller SM, Savic D. Mutual antagonism between glucocorticoid and canonical Wnt signaling pathways in B-cell acute lymphoblastic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524798. [PMID: 36711662 PMCID: PMC9882342 DOI: 10.1101/2023.01.20.524798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glucocorticoids (GCs; i.e., steroids) are important chemotherapeutic agents in the treatment of B-cell precursor acute lymphoblastic leukemia (B-ALL) and de novo GC resistance predicts relapse and poor clinical outcome in patients. Glucocorticoids induce B-ALL cell apoptosis through activation of glucocorticoid receptor (GR), a ligand-induced nuclear receptor transcription factor (TF). We previously identified disruptions to glucocorticoid receptor (GR)-bound cis -regulatory elements controlling TLE1 expression in GC-resistant primary B-ALL cells from patients. TLE1 is a GC-response gene up-regulated by steroids and functions as a canonical Wnt signaling repressor. To better understand the mechanistic relationship between GC signaling and canonical Wnt signaling, we performed diverse functional analyses that identified extensive crosstalk and mutual antagonism between these two signaling pathways in B-ALL. We determined that crosstalk and antagonism was driven by the binding of GR and the canonical Wnt signaling TFs LEF1 and TCF7L2 to overlapping sets of cis -regulatory elements associated with genes impacting cell death and cell proliferation, and was further accompanied by overlapping and opposing transcriptional programs. Our data additionally suggest that cis -regulatory disruptions at TLE1 are linked to GC resistance through a dampening of the GC response and GC-mediated apoptosis via enhanced canonical Wnt signaling. As a result of the extensive genomic and gene regulatory connectivity between these two signaling pathways, our data supports the importance of canonical Wnt signaling in mediating GC resistance in B-ALL.
Collapse
|
11
|
Lalonde ME, Sasseville M, Gélinas AM, Milanese JS, Béland K, Drouin S, Haddad E, Marcotte R. Genome-wide CRISPR screens identify ferroptosis as a novel therapeutic vulnerability in acute lymphoblastic leukemia. Haematologica 2022; 108:382-393. [PMID: 36134452 PMCID: PMC9890019 DOI: 10.3324/haematol.2022.280786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 02/03/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent cancer diagnosed in children. Despite the great progress achieved over the last 40 years, with cure rates now exceeding 85%, refractory or relapsed ALL still exhibit a dismal prognosis. This poor outcome reflects the lack of treatment options specifically targeting relapsed or refractory ALL. In order to address this gap, we performed whole-genome CRISPR/Cas drop-out screens on a panel of seven B-ALL cell lines. Our results demonstrate that while there was a significant overlap in gene essentiality between ALL cell lines and other cancer types survival of ALL cell lines was dependent on several unique metabolic pathways, including an exquisite sensitivity to GPX4 depletion and ferroptosis induction. Detailed molecular analysis of B-ALL cells suggest that they are primed to undergo ferroptosis as they exhibit high steady-state oxidative stress potential, a low buffering capacity, and a disabled GPX4-independent secondary lipid peroxidation detoxification pathway. Finally, we validated the sensitivity of BALL to ferroptosis induction using patient-derived B-ALL samples.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Marc Sasseville
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Anne-Marie Gélinas
- Human Health Therapeutics Research Center, National Research Council Canada
| | | | - Kathie Béland
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Simon Drouin
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Elie Haddad
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Richard Marcotte
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2.
| |
Collapse
|
12
|
Bergeron BP, Diedrich JD, Zhang Y, Barnett KR, Dong Q, Ferguson DC, Autry RJ, Yang W, Hansen BS, Smith C, Crews KR, Fan Y, Pui CH, Pruett-Miller SM, Relling MV, Yang JJ, Li C, Evans WE, Savic D. Epigenomic profiling of glucocorticoid responses identifies cis-regulatory disruptions impacting steroid resistance in childhood acute lymphoblastic leukemia. Leukemia 2022; 36:2374-2383. [PMID: 36028659 PMCID: PMC9522591 DOI: 10.1038/s41375-022-01685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022]
Abstract
Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.
Collapse
Affiliation(s)
- Brennan P Bergeron
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly R Barnett
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Dong
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chunliang Li
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Gladbach YS, Sklarz LM, Roolf C, Beck J, Schütz E, Fuellen G, Junghanss C, Murua Escobar H, Hamed M. Molecular Characterization of the Response to Conventional Chemotherapeutics in Pro-B-ALL Cell Lines in Terms of Tumor Relapse. Genes (Basel) 2022; 13:genes13071240. [PMID: 35886023 PMCID: PMC9316692 DOI: 10.3390/genes13071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Little is known about optimally applying chemotherapeutic agents in a specific temporal sequence to rapidly reduce the tumor load and to improve therapeutic efficacy. The clinical optimization of drug efficacy while reducing side effects is still restricted due to an incomplete understanding of the mode of action and related tumor relapse mechanisms on the molecular level. The molecular characterization of transcriptomic drug signatures can help to identify the affected pathways, downstream regulated genes and regulatory interactions related to tumor relapse in response to drug application. We tried to outline the dynamic regulatory reprogramming leading to tumor relapse in relapsed MLL-rearranged pro-B-cell acute lymphoblastic leukemia (B-ALL) cells in response to two first-line treatments: dexamethasone (Dexa) and cytarabine (AraC). We performed an integrative molecular analysis of whole transcriptome profiles of each treatment, specifically considering public knowledge of miRNA regulation via a network-based approach to unravel key driver genes and miRNAs that may control the relapse mechanisms accompanying each treatment. Our results gave hints to the crucial regulatory roles of genes leading to Dexa-resistance and related miRNAs linked to chemosensitivity. These genes and miRNAs should be further investigated in preclinical models to obtain more hints about relapse processes.
Collapse
Affiliation(s)
- Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Madeleine Sklarz
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Catrin Roolf
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Julia Beck
- Chronix Biomedical GmbH, 37073 Göttingen, Germany; (J.B.); (E.S.)
| | - Ekkehard Schütz
- Chronix Biomedical GmbH, 37073 Göttingen, Germany; (J.B.); (E.S.)
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
| | - Christian Junghanss
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Hugo Murua Escobar
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
- Correspondence:
| |
Collapse
|
14
|
De Marco I. The supercritical antisolvent precipitation from a sustainable perspective: A Life Cycle Assessment. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Abstract
Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.
Collapse
Affiliation(s)
- Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Vanessa Sanchez
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
16
|
Hui PY, Chen YH, Qin J, Jiang XH. PON2 blockade overcomes dexamethasone resistance in acute lymphoblastic leukemia. Hematology 2021; 27:32-42. [PMID: 34957927 DOI: 10.1080/16078454.2021.2009643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The high frequency of chemotherapy resistance is ultimately responsible for clinical relapse in acute lymphoblastic leukemia (ALL). Nevertheless, the molecular mechanism relevant to glucocorticoid (GC) resistance remains ambiguous. METHODS Quantitative real-time polymerase chain reaction and Western blot were performed to detect the expressions of paraoxonase 2 (PON2), Bcl-2 and Bax. shRNA was used to knockdown PON2 expression in SUP-B15 and REH cell. CCK-8 and flow cytometry assay were conducted to monitor the changes of proliferation and apoptosis in ALL cells. The growth of ALL REH cells in vivo was determined using transplanted tumor model. RESULTS This study was designed to identify GC resistance-associated genes by means of the transcriptome chip from the public Gene Expression Omnibus database, and preliminarily investigation of dexamethasone (DEX)-resistance mechanism in ALL. We disclosed that PON2 expression was elevated in ALL patients and especially higher in DEX-resistance ALL patients. Then, cell apoptosis assay suggested that silencing of PON2 dramatically promoted in DEX-resistant ALL cells apoptosis and the activity of Caspase 3 induced by DEX administration. In xenograft tumor model, PON2 knockdown significantly reduced DEX-resistant ALL cells growth in immunodeficient mice. CONCLUSIONS Collectively, inhibition of PON2 may represent a novel method to restore the sensitivity of treatment-resistant ALL to GC-induced cell death.
Collapse
Affiliation(s)
- Pei-Ye Hui
- Pharmacy Department, Shandong Weifang Maternal and Child Health Hospital, Weifang, People's Republic of China
| | - Yan-Hua Chen
- Pharmacy Department, Rizhao people's Hospital, Rizhao, People's Republic of China
| | - Jing Qin
- Pharmacy Department, Rizhao people's Hospital, Rizhao, People's Republic of China
| | - Xiao-Hua Jiang
- Department of Pediatrics, 970 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Yantai, People's Republic of China
| |
Collapse
|
17
|
Prekovic S, Schuurman K, Mayayo-Peralta I, Manjón AG, Buijs M, Yavuz S, Wellenstein MD, Barrera A, Monkhorst K, Huber A, Morris B, Lieftink C, Chalkiadakis T, Alkan F, Silva J, Győrffy B, Hoekman L, van den Broek B, Teunissen H, Debets DO, Severson T, Jonkers J, Reddy T, de Visser KE, Faller W, Beijersbergen R, Altelaar M, de Wit E, Medema R, Zwart W. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun 2021; 12:4360. [PMID: 34272384 PMCID: PMC8285479 DOI: 10.1038/s41467-021-24537-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.
Collapse
Affiliation(s)
- Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna G Manjón
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Buijs
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Selçuk Yavuz
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Max D Wellenstein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alejandro Barrera
- Department of Biostatistics & Bioinformatics, and Centre for Genomic & Computational Biology, Duke University Medical Centre, Durham, NC, USA
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Huber
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Ben Morris
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theofilos Chalkiadakis
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Balázs Győrffy
- Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Liesbeth Hoekman
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology and BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tesa Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Timothy Reddy
- Department of Biostatistics & Bioinformatics, and Centre for Genomic & Computational Biology, Duke University Medical Centre, Durham, NC, USA
| | - Karin E de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William Faller
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rene Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Cancers (Basel) 2021; 13:cancers13071618. [PMID: 33807411 PMCID: PMC8037275 DOI: 10.3390/cancers13071618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
Collapse
|
19
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
20
|
Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo J. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res 2021; 49:1951-1971. [PMID: 33524141 PMCID: PMC7913686 DOI: 10.1093/nar/gkab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Zimmerman JAO, Fang M, Doumbia B, Neyman A, Cha JH, Thomas M, Hall B, Wu M, Wilson AM, Pufall MA. Deacylcortivazol-like pyrazole regioisomers reveal a more accommodating expanded binding pocket for the glucocorticoid receptor. RSC Med Chem 2020; 12:203-212. [PMID: 34046609 DOI: 10.1039/d0md00278j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/26/2020] [Indexed: 01/26/2023] Open
Abstract
Glucocorticoids (GCs) are widely used, potent anti-inflammatory and chemotherapeutic drugs. They work by binding to the glucocorticoid receptor (GR), a ligand-activated transcription factor, inducing translocation to the nucleus and regulation of genes that influence a variety of cellular activities. Despite being effective for a broad number of conditions, GC use is limited by severe side effects. To identify ligands that are more selective, we synthesized pairs of regioisomers in the pyrazole ring that probe the expanded binding pocket of GR opened by deacylcortivazol (DAC). Using an Ullmann-type reaction, a deacylcortivazol-like (DAC-like) backbone was modified with five pendant groups at the 1'- and 2'-positions of the pyrazole ring, yielding 9 ligands. Most of the compounds were cytotoxic to leukemia cells, and all required GR expression. Both aliphatic and other aromatic groups substituted at the 2'-position produced ligands with GC activity, with phenyl and 4-fluorophenyl substitutions exhibiting high cellular affinity for the receptor and >5× greater potency than dexamethasone, a commonly used strong GC. Surprisingly, phenyl substitution at the 1'-position produced a high-affinity ligand with ∼10× greater potency than dexamethasone, despite little apparent room in the expanded binding pocket to accommodate 1'-modifications. Other 1'-modifications, however, were markedly less potent. The potency of the 2'-substituted and 1'-substituted DAC-like compounds tracked linearly with cellular affinity but had different slopes, suggesting a different mode of interaction with GR. These data provide evidence that the expanded binding pocket opened by deacylcortivazol is more accommodating that expected, allowing development of new, and possibly selective, GCs by substitution within the pyrazole ring.
Collapse
Affiliation(s)
- Jessica A O Zimmerman
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA .,Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa Iowa City IA USA
| | - Mimi Fang
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA
| | - Bintou Doumbia
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Alexis Neyman
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Ji Hyeon Cha
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Michael Thomas
- Department of Chemistry, Butler University Indianapolis IN USA
| | | | - Meng Wu
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA .,University of Iowa High Throughput Screening (UIHTS) Core USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa USA
| | - Anne M Wilson
- Department of Chemistry, Butler University Indianapolis IN USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City IA USA
| |
Collapse
|
22
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
23
|
Insights into glucocorticoid responses derived from omics studies. Pharmacol Ther 2020; 218:107674. [PMID: 32910934 DOI: 10.1016/j.pharmthera.2020.107674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
Glucocorticoid drugs are commonly used in the treatment of several conditions, including autoimmune diseases, asthma and cancer. Despite their widespread use and knowledge of biological pathways via which they act, much remains to be learned about the cell type-specific mechanisms of glucocorticoid action and the reasons why patients respond differently to them. In recent years, human and in vitro studies have addressed these questions with genomics, transcriptomics and other omics approaches. Here, we summarize key insights derived from omics studies of glucocorticoid response, and we identify existing knowledge gaps related to mechanisms of glucocorticoid action that future studies can address.
Collapse
|
24
|
Sklarz LM, Gladbach YS, Ernst M, Hamed M, Roolf C, Sender S, Beck J, Schütz E, Fischer S, Struckmann S, Junghanss C, Fuellen G, Murua Escobar H. Combination of the PI3K inhibitor Idelalisib with the conventional cytostatics cytarabine and dexamethasone leads to changes in pathway activation that induce anti-proliferative effects in B lymphoblastic leukaemia cell lines. Cancer Cell Int 2020; 20:390. [PMID: 32817744 PMCID: PMC7425054 DOI: 10.1186/s12935-020-01431-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The introduction of combined conventional cytostatics and pathway-specific inhibitors has opened new treatment options for several cancer types including hematologic neoplasia such as leukaemias. As the detailed understanding of the combination-induced molecular effects is often lacking, the identification of combination-induced molecular mechanisms bears significant value for the further development of interventional approaches. METHODS Combined application of conventional cytostatic agents (cytarabine and dexamethasone) with the PI3K-inhibitor Idelalisib was analysed on cell-biologic parameters in two acute pro-B lymphoblastic leukaemia (B-ALL) cell lines. In particular, for comparative characterisation of the molecular signatures induced by the combined and mono application, whole transcriptome sequencing was performed. Emphasis was placed on pathways and genes exclusively regulated by drug combinations. RESULTS Idelalisib + cytostatics combinations changed pathway activation for, e.g., "Retinoblastoma in cancer", "TGF-b signalling", "Cell cycle" and "DNA-damage response" to a greater extent than the two cytostatics alone. Analyses of the top-20 regulated genes revealed that both combinations induce characteristic gene expression changes. CONCLUSION A specific set of genes was exclusively deregulated by the drug combinations, matching the combination-specific anti-proliferative cell-biologic effects. The addition of Idelalisib suggests minor synergistic effects which are rather to be classified as additive.
Collapse
Affiliation(s)
- L.-M. Sklarz
- Department of Medicine, Clinic III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Y. S. Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, Rostock, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - M. Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, Rostock, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - M. Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, Rostock, Germany
| | - C. Roolf
- Department of Medicine, Clinic III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - S. Sender
- Department of Medicine, Clinic III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - J. Beck
- Chronix Biomedical GmbH, Göttingen, Germany
| | - E. Schütz
- Chronix Biomedical GmbH, Göttingen, Germany
| | - S. Fischer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, Rostock, Germany
| | - S. Struckmann
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, Rostock, Germany
| | - C. Junghanss
- Department of Medicine, Clinic III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - G. Fuellen
- Department of Medicine, Clinic III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - H. Murua Escobar
- Department of Medicine, Clinic III - Hematology/Oncology/Palliative Care, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
25
|
Gallagher KM, Roderick JE, Tan SH, Tan TK, Murphy L, Yu J, Li R, O'Connor KW, Zhu J, Green MR, Sanda T, Kelliher MA. ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia. Blood Adv 2020; 4:3154-3168. [PMID: 32658986 PMCID: PMC7362368 DOI: 10.1182/bloodadvances.2020001555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Synthetic glucocorticoids (GCs), such as dexamethasone and prednisone, remain key components of therapy for patients with lymphoid malignancies. For pediatric patients with acute lymphoblastic leukemia (ALL), response to GCs remains the most reliable prognostic indicator; failure to respond to GC correlates with poor event-free survival. To uncover GC resistance mechanisms, we performed a genome-wide, survival-based short hairpin RNA screen and identified the orphan nuclear receptor estrogen-related receptor-β (ESRRB) as a critical transcription factor that cooperates with the GC receptor (GR) to mediate the GC gene expression signature in mouse and human ALL cells. Esrrb knockdown interfered with the expression of genes that were induced and repressed by GR and resulted in GC resistance in vitro and in vivo. Dexamethasone treatment stimulated ESRRB binding to estrogen-related receptor elements (ERREs) in canonical GC-regulated genes, and H3K27Ac Hi-chromatin immunoprecipitation revealed increased interactions between GR- and ERRE-containing regulatory regions in dexamethasone-treated human T-ALL cells. Furthermore, ESRRB agonists enhanced GC target gene expression and synergized with dexamethasone to induce leukemic cell death, indicating that ESRRB agonists may overcome GC resistance in ALL, and potentially, in other lymphoid malignancies.
Collapse
Affiliation(s)
- Kayleigh M Gallagher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Justine E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore
| | - Leonard Murphy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Kevin W O'Connor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| |
Collapse
|
26
|
Liu K, Chu J, Dai Y, Jiang A, Yang L, Xie Z, Zhang K, Tu S, Cai H, Wu Z, Wang N. Long-term follow-up of acute lymphoblastic leukemia in young children treated by the SCMC-ALL-2009 protocol. Leuk Lymphoma 2020; 61:2850-2858. [PMID: 32643496 DOI: 10.1080/10428194.2020.1786557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study evaluated the long-term therapeutic effect and prognostic factors of acute lymphoblastic leukemia (ALL) in 100 young Chinese children (<2 years old) who were enrolled in the Shanghai Children's Medical Center (SCMC)-ALL-2009 study in five pediatric hematological disease centers based on collaboration. The 5-year and 10-year event-free survivals (EFS) were 74.7 ± 3.2% and 73.3 ± 3.4%. The 10-year EFS rates for low risk, intermediate-risk, and high-risk patients were 81.9 ± 5.0%, 71.3 ± 4.3%, and 22.2 ± 13.9%, respectively. Relapse occurred in 19 patients. MRD results on day 55, good or poor response to prednisolone, and age at diagnosis were shown to have important prognostic and therapeutic implications. Compared with the SCMC-ALL-2005 protocol, showed that the 10-year-EFS and 10-year-overall survival of the SCMC-ALL-2009 protocol were better than that of the -2005 protocol. Notably, the intermediate-risk group was improved after the chemotherapy intensity was strengthened.
Collapse
Affiliation(s)
- Kangkang Liu
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jinhua Chu
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yu Dai
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, The Fourth Hospital of Anhui Medical University, Hefei, China
| | - Aoshuang Jiang
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China.,Hematology Department, Anhui Provincial Children's Hospital, Hefei, China
| | - Linhai Yang
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiwei Xie
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Kunlong Zhang
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Songji Tu
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Huaju Cai
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhengyu Wu
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ningling Wang
- Department of Pediatrics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Hurtz C, Wertheim GB, Loftus JP, Blumenthal D, Lehman A, Li Y, Bagashev A, Manning B, Cummins KD, Burkhardt JK, Perl AE, Carroll M, Tasian SK. Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. J Clin Invest 2020; 130:3637-3653. [PMID: 32191635 PMCID: PMC7324172 DOI: 10.1172/jci134424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
Children and adults with Philadelphia chromosome-like B cell acute lymphoblastic leukemia (Ph-like B-ALL) experience high relapse rates despite best-available conventional chemotherapy. Ph-like ALL is driven by genetic alterations that activate constitutive cytokine receptor and kinase signaling, and early-phase trials are investigating the potential of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy to improve clinical outcomes. However, preclinical studies have shown that JAK or PI3K pathway inhibition is insufficient to eradicate the most common cytokine receptor-like factor 2-rearranged (CRLF2-rearranged) Ph-like ALL subset. We thus sought to define additional essential signaling pathways required in Ph-like leukemogenesis for improved therapeutic targeting. Herein, we describe an adaptive signaling plasticity of CRLF2-rearranged Ph-like ALL following selective TKI pressure, which occurs in the absence of genetic mutations. Interestingly, we observed that Ph-like ALL cells have activated SRC, ERK, and PI3K signaling consistent with activated B cell receptor (BCR) signaling, although they do not express cell surface μ-heavy chain (μHC). Combinatorial targeting of JAK/STAT, PI3K, and "BCR-like" signaling with multiple TKIs and/or dexamethasone prevented this signaling plasticity and induced complete cell death, demonstrating a more optimal and clinically pragmatic therapeutic strategy for CRLF2-rearranged Ph-like ALL.
Collapse
Affiliation(s)
- Christian Hurtz
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Gerald B. Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Joseph P. Loftus
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Anne Lehman
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Yong Li
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asen Bagashev
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Bryan Manning
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Katherine D. Cummins
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
- Center for Cellular Immunotherapies
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Alexander E. Perl
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Martin Carroll
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Sarah K. Tasian
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, and
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Pufall MA, Wilson AM. An idea to explore: A collaboration and cross training in an extended classroom-based undergraduate research experience between primarily undergraduate and research-intensive institutions. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:269-275. [PMID: 32222096 DOI: 10.1002/bmb.21340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Providing students with training in advanced laboratory skills is an essential part of scientific education. At the same time, engaging students in research is becoming equally important. Classroom-based undergraduate research experiences (CUREs) have emerged to fill this need, and can take many forms. In this article we describe reengineering an advanced organic synthesis laboratory at a primarily undergraduate institution into a CURE. This objective of this CURE is to provide small molecules relevant to an ongoing research program at a research-intensive institution. This new model cross trains students and provides a new structure for a CURE that could be adapted to other partnerships and institutions.
Collapse
Affiliation(s)
- Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Anne M Wilson
- Clowes Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, Lau CE, Bonten EJ, Yang W, McCorkle JR, Beard JA, Panetta JC, Diedrich JD, Crews KR, Pei D, Coke CJ, Natarajan S, Khatamian A, Karol SE, Lopez-Lopez E, Diouf B, Smith C, Gocho Y, Hagiwara K, Roberts KG, Pounds S, Kornblau SM, Stock W, Paietta EM, Litzow MR, Inaba H, Mullighan CG, Jeha S, Pui CH, Cheng C, Savic D, Yu J, Gawad C, Relling MV, Yang JJ, Evans WE. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. NATURE CANCER 2020; 1:329-344. [PMID: 32885175 PMCID: PMC7467080 DOI: 10.1038/s43018-020-0037-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
Abstract
Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of mRNA and miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid-resistance. Single cell RNAseq and network-based transcriptomic modelling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.
Collapse
Affiliation(s)
- Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven W Paugh
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert Carter
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Calvin E Lau
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Pediatric Oncology Education Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik J Bonten
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert McCorkle
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordan A Beard
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Coke
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alireza Khatamian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seth E Karol
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elixabet Lopez-Lopez
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barthelemy Diouf
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoshihiro Gocho
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- Hematopoiesis and Hematological Malignancies Program, University of Chicago, Chicago, IL, USA
| | - Elisabeth M Paietta
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, North Division, Bronx, NY, USA
| | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hiroto Inaba
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Gawad
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
30
|
Meyer LK, Huang BJ, Delgado-Martin C, Roy RP, Hechmer A, Wandler AM, Vincent TL, Fortina P, Olshen AB, Wood BL, Horton TM, Shannon KM, Teachey DT, Hermiston ML. Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. J Clin Invest 2020; 130:863-876. [PMID: 31687977 PMCID: PMC6994137 DOI: 10.1172/jci130189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of therapy for patients with T cell acute lymphoblastic leukemia (T-ALL), and although resistance to GCs is a strong negative prognostic indicator in T-ALL, the mechanisms of GC resistance remain poorly understood. Using diagnostic samples from patients enrolled in the frontline Children's Oncology Group (COG) T-ALL clinical trial AALL1231, we demonstrated that one-third of primary T-ALLs were resistant to GCs when cells were cultured in the presence of IL-7, a cytokine that is critical for normal T cell function and that plays a well-established role in leukemogenesis. We demonstrated that in these T-ALLs and in distinct populations of normal developing thymocytes, GCs paradoxically induced their own resistance by promoting upregulation of IL-7 receptor (IL-7R) expression. In the presence of IL-7, this augmented downstream signal transduction, resulting in increased STAT5 transcriptional output and upregulation of the prosurvival protein BCL-2. Taken together, we showed that IL-7 mediates an intrinsic and physiologic mechanism of GC resistance in normal thymocyte development that is retained during leukemogenesis in a subset of T-ALLs and is reversible with targeted inhibition of the IL-7R/JAK/STAT5/BCL-2 axis.
Collapse
Affiliation(s)
- Lauren K. Meyer
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | | | - Ritu P. Roy
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Aaron Hechmer
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | | | - Tiffaney L. Vincent
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Brent L. Wood
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin M. Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - David T. Teachey
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle L. Hermiston
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|
31
|
Vijayakrishnan J, Qian M, Studd JB, Yang W, Kinnersley B, Law PJ, Broderick P, Raetz EA, Allan J, Pui CH, Vora A, Evans WE, Moorman A, Yeoh A, Yang W, Li C, Bartram CR, Mullighan CG, Zimmerman M, Hunger SP, Schrappe M, Relling MV, Stanulla M, Loh ML, Houlston RS, Yang JJ. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat Commun 2019; 10:5348. [PMID: 31767839 PMCID: PMC6877561 DOI: 10.1038/s41467-019-13069-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence for a strong inherited genetic basis of susceptibility to acute lymphoblastic leukaemia (ALL) in children. To identify new risk variants for B-cell ALL (B-ALL) we conducted a meta-analysis with four GWAS (genome-wide association studies), totalling 5321 cases and 16,666 controls of European descent. We herein describe novel risk loci for B-ALL at 9q21.31 (rs76925697, P = 2.11 × 10-8), for high-hyperdiploid ALL at 5q31.1 (rs886285, P = 1.56 × 10-8) and 6p21.31 (rs210143 in BAK1, P = 2.21 × 10-8), and ETV6-RUNX1 ALL at 17q21.32 (rs10853104 in IGF2BP1, P = 1.82 × 10-8). Particularly notable are the pleiotropic effects of the BAK1 variant on multiple haematological malignancies and specific effects of IGF2BP1 on ETV6-RUNX1 ALL evidenced by both germline and somatic genomic analyses. Integration of GWAS signals with transcriptomic/epigenomic profiling and 3D chromatin interaction data for these leukaemia risk loci suggests deregulation of B-cell development and the cell cycle as central mechanisms governing genetic susceptibility to ALL.
Collapse
Affiliation(s)
- Jayaram Vijayakrishnan
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - James B Studd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Elizabeth A Raetz
- Division of Pediatric Hematology and Oncology, New York University Langone Health, New York, New York, USA
| | - James Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anthony Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Allen Yeoh
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- VIVA-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Claus R Bartram
- Institute of Human Genetics, University Hospital, Heidelberg, Germany
| | - Charles G Mullighan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Martin Zimmerman
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Stephen P Hunger
- Department of Paediatrics and Centre for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin Schrappe
- Department of Paediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Martin Stanulla
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
32
|
Verbruggen S, Menschaert G. mQC: A post-mapping data exploration tool for ribosome profiling. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 181:104806. [PMID: 30401579 DOI: 10.1016/j.cmpb.2018.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/05/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Ribosome profiling is a recent next generation sequencing technique enabling the genome-wide study of gene expression in biomedical research at the translation level. Too often, researchers precipitously start trying to test their hypotheses after alignment of their data, without checking the quality and the general features of their mapped data. Despite the fact that these checks are essential to prevent errors and ensure valid conclusions afterwards, easy-to-use tools for visualizing the quality and overall outlook of mapped ribosome profiling data are lacking. METHODS We present mQC, a modular tool implemented as a Bioconda package and also available in the Galaxy tool shed. Herewith both bio-informaticians as well as non-experts can easily perform the indispensable visualization of both the quality and the general features of their mapped P-site corrected ribosome profiling reads. The user manual, the raw code and more information can be found on its GitHub repository (https://github.com/Biobix/mQC). RESULTS mQC was tested on multiple datasets to assess its general applicability and was compared to other tools that partly perform similar tasks. CONCLUSIONS Our results demonstrate that mQC can accomplish an unfilled but essential position in the ribosome profiling data analysis procedure by performing a thorough RIBO-Seq-specific exploration of aligned and P-site corrected ribosome profiling data.
Collapse
Affiliation(s)
- Steven Verbruggen
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Gerben Menschaert
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
33
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
34
|
Relapse-associated AURKB blunts the glucocorticoid sensitivity of B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2019; 116:3052-3061. [PMID: 30733284 DOI: 10.1073/pnas.1816254116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) are used in combination chemotherapies as front-line treatment for B cell acute lymphoblastic leukemia (B-ALL). Although effective, many patients relapse and become resistant to chemotherapy and GCs in particular. Why these patients relapse is not clear. We took a comprehensive, functional genomics approach to identify sources of GC resistance. A genome-wide shRNA screen identified the transcriptional coactivators EHMT2, EHMT1, and CBX3 as important contributors to GC-induced cell death. This complex selectively supports GC-induced expression of genes contributing to cell death. A metaanalysis of gene expression data from B-ALL patient specimens revealed that Aurora kinase B (AURKB), which restrains GC signaling by phosphorylating EHMT1-2, is overexpressed in relapsed B-ALL, suggesting it as a potential contributor to relapse. Inhibition of AURKB enhanced GC-induced expression of cell death genes, resulting in potentiation of GC cytotoxicity in cell lines and relapsed B-ALL patient samples. This function for AURKB is distinct from its canonical role in the cell cycle. These results show the utility of functional genomics in understanding mechanisms of resistance and rapidly identifying combination chemotherapeutics.
Collapse
|
35
|
Targeting PI3K Signaling in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20020412. [PMID: 30669372 PMCID: PMC6358886 DOI: 10.3390/ijms20020412] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/11/2023] Open
Abstract
Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.
Collapse
|
36
|
Jing D, Huang Y, Liu X, Sia KCS, Zhang JC, Tai X, Wang M, Toscan CE, McCalmont H, Evans K, Mayoh C, Poulos RC, Span M, Mi J, Zhang C, Wong JWH, Beck D, Pimanda JE, Lock RB. Lymphocyte-Specific Chromatin Accessibility Pre-determines Glucocorticoid Resistance in Acute Lymphoblastic Leukemia. Cancer Cell 2018; 34:906-921.e8. [PMID: 30537513 DOI: 10.1016/j.ccell.2018.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Glucocorticoids play a critical role in the treatment of lymphoid malignancies. While glucocorticoid efficacy can be largely attributed to lymphocyte-specific apoptosis, its molecular basis remains elusive. Here, we studied genome-wide lymphocyte-specific open chromatin domains (LSOs), and integrated LSOs with glucocorticoid-induced RNA transcription and chromatin modulation using an in vivo patient-derived xenograft model of acute lymphoblastic leukemia (ALL). This led to the identification of LSOs critical for glucocorticoid-induced apoptosis. Glucocorticoid receptor cooperated with CTCF at these LSOs to mediate DNA looping, which was inhibited by increased DNA methylation in glucocorticoid-resistant ALL and non-lymphoid cell types. Our study demonstrates that lymphocyte-specific epigenetic modifications pre-determine glucocorticoid resistance in ALL and may account for the lack of glucocorticoid sensitivity in other cell types.
Collapse
Affiliation(s)
- Duohui Jing
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia.
| | - Yizhou Huang
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney, NSW 2052, Australia; Centre for Health Technologies, School of Biomedical Engineering and the School of Software, University of Technology, Sydney, NSW 2007, Australia
| | - Xiaoyun Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Keith C S Sia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Julia C Zhang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Xiaolu Tai
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meng Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cara E Toscan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Rebecca C Poulos
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney, NSW 2052, Australia
| | - Miriam Span
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - Jianqing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chao Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jason W H Wong
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney, NSW 2052, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney, NSW 2052, Australia; Centre for Health Technologies, School of Biomedical Engineering and the School of Software, University of Technology, Sydney, NSW 2007, Australia
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney, NSW 2052, Australia; Department of Haematology, Prince of Wales Hospital, Sydney, NSW 2210, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
37
|
Poulard C, Baulu E, Lee BH, Pufall MA, Stallcup MR. Increasing G9a automethylation sensitizes B acute lymphoblastic leukemia cells to glucocorticoid-induced death. Cell Death Dis 2018; 9:1038. [PMID: 30305606 PMCID: PMC6180122 DOI: 10.1038/s41419-018-1110-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Synthetic glucocorticoids (GCs) are used to treat lymphoid cancers, but many patients develop resistance to treatment, especially to GC. By identifying genes that influence sensitivity to GC-induced cell death, we found that histone methyltransferases G9a and G9a-like protein (GLP), two glucocorticoid receptor (GR) coactivators, are required for GC-induced cell death in acute lymphoblastic leukemia (B-ALL) cell line Nalm6. We previously established in a few selected genes that automethylated G9a and GLP recruit heterochromatin protein 1γ (HP1γ) as another required coactivator. Here, we used a genome-wide analysis to show that HP1γ is selectively required for GC-regulated expression of the great majority of GR target genes that require G9a and GLP. To further address the importance of G9a and GLP methylation in this process and in cell physiology, we found that JIB-04, a selective JmjC family lysine demethylase inhibitor, increased G9a methylation and thereby increased G9a binding to HP1γ. This led to increased expression of GR target genes regulated by G9a, GLP and HP1γ and enhanced Nalm6 cell death. Finally, the KDM4 lysine demethylase subfamily demethylates G9a in vitro, in contrast to other KDM enzymes tested. Thus, inhibiting G9a/GLP demethylation potentially represents a novel method to restore sensitivity of treatment-resistant B-ALL tumors to GC-induced cell death.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Estelle Baulu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brian H Lee
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Miles A Pufall
- Department of Biochemistry, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
38
|
Ramkumar P, Kampmann M. CRISPR-based genetic interaction maps inform therapeutic strategies in cancer. Transl Cancer Res 2018; 7:S61-S67. [PMID: 30148072 DOI: 10.21037/tcr.2018.01.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Poornima Ramkumar
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases and California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases and California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
39
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Kampmann M. Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells. Chem Commun (Camb) 2018; 53:7162-7167. [PMID: 28487920 DOI: 10.1039/c7cc02349a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phenotypic screening is a powerful approach to discover small molecules with desired effects on biological systems, which can then be developed into therapeutic drugs. The identification of the target and mechanism of action of compounds discovered in phenotypic screens remains a major challenge. This feature article describes the use of genetic tools to reveal drug targets and mechanisms in mammalian cells. Until recently, RNA interference was the method of choice for such studies. Here, we highlight very recent additions to the genetic toolkit in mammalian cells, including CRISPR, CRISPR interference, and CRISPR activation, and illustrate their usefulness for drug target identification.
Collapse
Affiliation(s)
- Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco and Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
41
|
Abstract
Next-generation DNA sequencing technologies have led to a massive accumulation of genomic and transcriptomic data from patients and healthy individuals. The major challenge ahead is to understand the functional significance of the elements of the human genome and transcriptome, and implications for diagnosis and treatment. Genetic screens in mammalian cells are a powerful approach to systematically elucidating gene function in health and disease states. In particular, recently developed CRISPR/Cas9-based screening approaches have enormous potential to uncover mechanisms and therapeutic strategies for human diseases. The focus of this review is the use of CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) for genetic screens in mammalian cells. We introduce the underlying technology and present different types of CRISPRi/a screens, including those based on cell survival/proliferation, sensitivity to drugs or toxins, fluorescent reporters, and single-cell transcriptomes. Combinatorial screens, in which large numbers of gene pairs are targeted to construct genetic interaction maps, reveal pathway relationships and protein complexes. We compare and contrast CRISPRi and CRISPRa with alternative technologies, including RNA interference (RNAi) and CRISPR nuclease-based screens. Finally, we highlight challenges and opportunities ahead.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases and California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
42
|
Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat Commun 2017; 8:1739. [PMID: 29170386 PMCID: PMC5700924 DOI: 10.1038/s41467-017-01569-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) suppresses inflammation by activating anti-inflammatory and repressing pro-inflammatory genes. GR-interacting protein-1 (GRIP1) is a GR corepressor in macrophages, however, whether GRIP1 mediates GR-activated transcription, and what dictates its coactivator versus corepressor properties is unknown. Here we report that GRIP1 loss in macrophages attenuates glucocorticoid induction of several anti-inflammatory targets, and that GC treatment of quiescent macrophages globally directs GRIP1 toward GR binding sites dominated by palindromic GC response elements (GRE), suggesting a non-redundant GRIP1 function as a GR coactivator. Interestingly, GRIP1 is phosphorylated at an N-terminal serine cluster by cyclin-dependent kinase-9 (CDK9), which is recruited into GC-induced GR:GRIP1:CDK9 hetero-complexes, producing distinct GRE-specific GRIP1 phospho-isoforms. Phosphorylation potentiates GRIP1 coactivator but, remarkably, not its corepressor properties. Consistently, phospho-GRIP1 and CDK9 are not detected at GR transrepression sites near pro-inflammatory genes. Thus, GR restricts actions of its own coregulator via CDK9-mediated phosphorylation to a subset of anti-inflammatory genes. Glucocorticoid reduces inflammation by both inducing anti-inflammatory genes and suppressing pro-inflammatory genes, but how these two functions are dictated is unclear. Here the authors show that phosphorylated glucocorticoid receptor-interacting protein 1 (GRIP1) serves as a coactivator for this response in macrophage.
Collapse
|
43
|
Nagy T, Kampmann M. CRISPulator: a discrete simulation tool for pooled genetic screens. BMC Bioinformatics 2017; 18:347. [PMID: 28732459 PMCID: PMC5521134 DOI: 10.1186/s12859-017-1759-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The rapid adoption of CRISPR technology has enabled biomedical researchers to conduct CRISPR-based genetic screens in a pooled format. The quality of results from such screens is heavily dependent on the selection of optimal screen design parameters, which also affects cost and scalability. However, the cost and effort of implementing pooled screens prohibits experimental testing of a large number of parameters. RESULTS We present CRISPulator, a Monte Carlo method-based computational tool that simulates the impact of screen parameters on the robustness of screen results, thereby enabling users to build intuition and insights that will inform their experimental strategy. CRISPulator enables the simulation of screens relying on either CRISPR interference (CRISPRi) or CRISPR nuclease (CRISPRn). Pooled screens based on cell growth/survival, as well as fluorescence-activated cell sorting according to fluorescent reporter phenotypes are supported. CRISPulator is freely available online ( http://crispulator.ucsf.edu ). CONCLUSIONS CRISPulator facilitates the design of pooled genetic screens by enabling the exploration of a large space of experimental parameters in silico, rather than through costly experimental trial and error. We illustrate its power by deriving non-obvious rules for optimal screen design.
Collapse
Affiliation(s)
- Tamas Nagy
- Graduate program in Bioinformatics, University of California, San Francisco, CA 94158 USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases and California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|