1
|
Atiq F, Rawley O, O'Sullivan JM, Özbil M, Doherty D, Cooke N, Terraube V, Chion A, Amin A, Hulshof AM, Baci B, Byrne C, Aburawi HE, Lillicrap D, O'Donnell JS. R1205H (Vicenza) causes conformational changes in the von Willebrand factor D'D3 domains and enhances von Willebrand factor binding to clearance receptors LRP1 and SR-AI. J Thromb Haemost 2024; 22:2752-2760. [PMID: 38996914 PMCID: PMC11533894 DOI: 10.1016/j.jtha.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND von Willebrand factor (VWF)-R1205H variant (Vicenza) results in markedly enhanced VWF clearance in humans that has been shown to be largely macrophage-mediated. However, the biological mechanisms underlying this enhanced clearance remain poorly understood. OBJECTIVES This study aimed to investigate the roles of (i) specific VWF domains and (ii) different macrophage receptors in regulating enhanced VWF-R1205H clearance. METHODS In vivo clearance of full-length and truncated wild-type (WT)-VWF and VWF with R1205 substitutions was investigated in VWF-/- mice. Plate-binding assays were employed to characterize VWF binding to purified scavenger receptor class A member 1 (SR-AI), low-density lipoprotein receptor-related protein-1 (LRP1) cluster II or cluster IV receptors, and macrophage galactose-type lectin. RESULTS In full-length VWF missing the A1 domain, introduction of R1205H led to significantly enhanced clearance in VWF-/- mice compared with WT-VWF missing the A1 domain. Importantly, R1205H in a truncated VWF-D'D3 fragment also triggered increased clearance compared with WT-VWF-D'D3. Additional in vivo studies demonstrated that VWF-R1205K (which preserves the positive charge at 1205) exhibited normal clearance, whereas VWF-R1205E (which results in loss of the positive charge) caused significantly enhanced clearance, pinpointing the importance of the positive charge at VWF-R1205. In vitro plate-binding studies confirmed increased VWF-R1205H interaction with SR-AI compared with WT-VWF. Furthermore, significantly enhanced VWF-R1205H binding to LRP1 cluster IV (P < .001) and less marked enhanced binding to LRP1 cluster II (P = .034) was observed. In contrast, VWF-R1205H and WT-VWF demonstrated no difference in binding affinity to macrophage galactose-type lectin. CONCLUSION Disruption of the positive charge at amino acid R1205 causes conformational changes in the VWF-D'D3 domains and triggers enhanced LRP1-mediated and SR-AI-mediated clearance.
Collapse
Affiliation(s)
- Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orla Rawley
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mehmet Özbil
- Computational Biochemistry Group, Gebze Technical University, Institute of Biotechnology, Gebze, Kocaeli, Turkey
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh Cooke
- BioMedicine Design, Pfizer, Grange Castle, Dublin, Ireland
| | | | - Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aamir Amin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anne-Marije Hulshof
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bogdan Baci
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Byrne
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hanan E Aburawi
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Coagulation Centre, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Chion A, Byrne C, Atiq F, Doherty D, Aguila S, Fazavana J, Lopes P, Karampini E, Amin A, Preston RJS, Baker RI, McKinnon TAJ, Zhu S, Gilbert JC, Emsley J, Jilma B, O’Donnell JS. The aptamer BT200 blocks interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. Blood 2024; 144:1445-1456. [PMID: 38996211 PMCID: PMC11451302 DOI: 10.1182/blood.2024024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
ABSTRACT Rondaptivon pegol (previously BT200) is a pegylated RNA aptamer that binds to the A1 domain of von Willebrand factor (VWF). Recent clinical trials demonstrated that BT200 significantly increased plasma VWF-factor VIII levels by attenuating VWF clearance. The biological mechanism(s) through which BT200 attenuates in vivo clearance of VWF has not been defined. We hypothesized that BT200 interaction with the VWF-A1 domain may increase plasma VWF levels by attenuating macrophage-mediated clearance. We observed that full-length and VWF-A1A2A3 binding to macrophages and VWF-A1 domain binding to lipoprotein receptor-related protein 1 (LRP1) cluster II and cluster IV were concentration-dependently inhibited by BT200. Additionally, full-length VWF binding to LRP1 expressed on HEK293T (HEK-LRP1) cells was also inhibited by BT200. Importantly, BT200 interacts with the VWF-A1 domain in proximity to a conserved cluster of 4 lysine residues (K1405, K1406, K1407, and K1408). Alanine mutagenesis of this K1405-K1408 cluster (VWF-4A) significantly (P < .001) attenuated binding of VWF to both LRP1 clusters II and IV. Furthermore, in vivo clearance of VWF-4A was significantly (P < .001) reduced than that of wild-type VWF. BT200 did not significantly inhibit binding of VWF-4A to LRP1 cluster IV or HEK-LRP1 cells. Finally, BT200 interaction with the VWF-A1 domain also inhibited binding to macrophage galactose lectin and the SR-AI scavenger receptor. Collectively, our findings demonstrate that BT200 prolongs VWF half-life by attenuating macrophage-mediated clearance and specifically the interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. These data support the concept that targeted inhibition of VWF clearance pathways represents a novel therapeutic approach for von Willebrand disease and hemophilia A.
Collapse
Affiliation(s)
- Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Byrne
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sonia Aguila
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Murcia, Spain
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Patricia Lopes
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aamir Amin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ross I. Baker
- Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, WA, Australia
- Irish-Australian Blood Collaborative Network, Dublin, Ireland
| | - Thomas A. J. McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, United Kingdom
| | | | | | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, United Kingdom
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Atiq F, O’Donnell JS. Novel functions for von Willebrand factor. Blood 2024; 144:1247-1256. [PMID: 38728426 PMCID: PMC11561537 DOI: 10.1182/blood.2023021915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT For many years, it has been known that von Willebrand factor (VWF) interacts with factor VIII, collagen, and platelets. In addition, the key roles played by VWF in regulating normal hemostasis have been well defined. However, accumulating recent evidence has shown that VWF can interact with a diverse array of other novel ligands. To date, over 60 different binding partners have been described, with interactions mapped to specific VWF domains in some cases. Although the biological significance of these VWF-binding interactions has not been fully elucidated, recent studies have identified some of these novel ligands as regulators of various aspects of VWF biology, including biosynthesis, proteolysis, and clearance. Conversely, VWF binding has been shown to directly affect the functional properties for some of its ligands. In keeping with those observations, exciting new roles for VWF in regulating a series of nonhemostatic biological functions have also emerged. These include inflammation, wound healing, angiogenesis, and bone metabolism. Finally, recent evidence supports the hypothesis that the nonhemostatic functions of VWF directly contribute to pathogenic mechanisms in a variety of diverse diseases including sepsis, malaria, sickle cell disease, and liver disease. In this manuscript, we review the accumulating data regarding novel ligand interactions for VWF and critically assess how these interactions may affect cellular biology. In addition, we consider the evidence that nonhemostatic VWF functions may contribute to the pathogenesis of human diseases beyond thrombosis and bleeding.
Collapse
Affiliation(s)
- Ferdows Atiq
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Zhang W, Li L, Wu Y, Li C, Xu Z, Zhang N, Wang X, Zhao Y, Zu T, He Q, Jiao J, Zheng R. Biomimetic Iron-Based Nanoparticles Remodel Immunosuppressive Tumor Microenvironment for Metabolic Immunotherapy. Int J Nanomedicine 2024; 19:9333-9349. [PMID: 39286354 PMCID: PMC11403131 DOI: 10.2147/ijn.s473463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Immunotherapy has led to a paradigm shift in reinvigorating treatment of cancer. Nevertheless, tumor associated macrophages (TAMs) experience functional polarization on account of the generation of suppressive metabolites, contributing to impaired antitumor immune responses. Methods Hence, metabolic reprogramming of tumor microenvironment (TME) can synergistically improve the efficacy of anti-tumor immunotherapy. Herein, we engineered an iron-based nanoplatform termed ERFe3O4 NPs. This platform features hollow Fe3O4 nanoparticles loaded with the natural product emodin, the outer layer is coated with red blood cell membrane (mRBCs) inserted with DSPE-PEG2000-galactose. This effectively modulates lactate production, thereby reversing the tumor immune suppressive microenvironment (TIME). Results The ERFe3O4 NPs actively targeted TAMs on account of their ability to bind to M2-like TAMs with high expression of galectin (Mgl). ERFe3O4 NPs achieved efficient ability to reverse TIME via the production of reducing lactate and prompting enrichment iron of high concentrations. Furthermore, ERFe3O4 NPs resulted in heightened expression of CD16/32 and enhanced TNF-α release, indicating promotion of M1 TAMs polarization. In vitro and in vivo experiments revealed that ERFe3O4 NPs induced significant apoptosis of tumor cells and antitumor immune response. Discussion This study combines Traditional Chinese Medicine (TCM) with nanomaterials to synergistically reprogram TAMs and reverse TIME, opening up new ideas for improving anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Yaguang Wu
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Zi'ang Xu
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Nianlei Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Xinyu Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Yingchun Zhao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Tingjian Zu
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| |
Collapse
|
5
|
Karampini E, Doherty D, Bürgisser PE, Garre M, Schoen I, Elliott S, Bierings R, O’Donnell JS. O-glycan determinants regulate VWF trafficking to Weibel-Palade bodies. Blood Adv 2024; 8:3254-3266. [PMID: 38640438 PMCID: PMC11226974 DOI: 10.1182/bloodadvances.2023012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT von Willebrand factor (VWF) undergoes complex posttranslational modification within endothelial cells (ECs) before secretion. This includes significant N- and O-linked glycosylation. Previous studies have demonstrated that changes in N-linked glycan structures significantly influence VWF biosynthesis. In contrast, although abnormalities in VWF O-linked glycans (OLGs) have been associated with enhanced VWF clearance, their effect on VWF biosynthesis remains poorly explored. Herein, we report a novel role for OLG determinants in regulating VWF biosynthesis and trafficking within ECs. We demonstrate that alterations in OLGs (notably reduced terminal sialylation) lead to activation of the A1 domain of VWF within EC. In the presence of altered OLG, VWF multimerization is reduced and Weibel-Palade body (WPB) formation significantly impaired. Consistently, the amount of VWF secreted from WPB after EC activation was significantly reduced in the context of O-glycosylation inhibition. Finally, altered OLG on VWF not only reduced the amount of VWF secreted after EC activation but also affected its hemostatic efficacy. Notably, VWF secreted after WPB exocytosis consisted predominantly of low molecular weight multimers, and the length of tethered VWF string formation on the surface of activated ECs was significantly reduced. In conclusion, our data therefore support the hypothesis that alterations in O-glycosylation pathways directly affect VWF trafficking within human EC. These findings are interesting given that previous studies have reported altered OLG on plasma VWF (notably increased T-antigen expression) in patients with von Willebrand disease.
Collapse
Affiliation(s)
- Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dearbhla Doherty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Petra E. Bürgisser
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Massimiliano Garre
- Super-Resolution Imaging Consortium, Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephanie Elliott
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ruben Bierings
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Shi H, Gao L, Kirby N, Shao B, Shan X, Kudo M, Silasi R, McDaniel JM, Zhou M, McGee S, Jing W, Lupu F, Cleuren A, George JN, Xia L. Clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in sickle cell anemia mice. Blood 2024; 143:1293-1309. [PMID: 38142410 PMCID: PMC10997916 DOI: 10.1182/blood.2023021583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Although it is caused by a single-nucleotide mutation in the β-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Nicole Kirby
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Mariko Kudo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Wei Jing
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - James N. George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
7
|
O'Donnell JS, Fleming H, Noone D, Preston RJS. Unraveling coagulation factor-mediated cellular signaling. J Thromb Haemost 2023; 21:3342-3353. [PMID: 37391097 DOI: 10.1016/j.jtha.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Blood coagulation is initiated in response to blood vessel injury or proinflammatory stimuli, which activate coagulation factors to coordinate complex biochemical and cellular responses necessary for clot formation. In addition to these critical physiologic functions, plasma protein factors activated during coagulation mediate a spectrum of signaling responses via receptor-binding interactions on different cell types. In this review, we describe examples and mechanisms of coagulation factor signaling. We detail the molecular basis for cell signaling mediated by coagulation factor proteases via the protease-activated receptor family, considering new insights into the role of protease-specific cleavage sites, cofactor and coreceptor interactions, and distinct signaling intermediate interactions in shaping protease-activated receptor signaling diversity. Moreover, we discuss examples of how injury-dependent conformational activation of other coagulation proteins, such as fibrin(ogen) and von Willebrand factor, decrypts their signaling potential, unlocking their capacity to contribute to aberrant proinflammatory signaling. Finally, we consider the role of coagulation factor signaling in disease development and the status of pharmacologic approaches to either attenuate or enhance coagulation factor signaling for therapeutic benefit, emphasizing new approaches to inhibit deleterious coagulation factor signaling without impacting hemostatic activity.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland. https://twitter.com/profJSOdonnell
| | - Harry Fleming
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland.
| |
Collapse
|
8
|
Zhu H, Shen F, Liao T, Qian H, Liu Y. Immunosenescence and macrophages: From basics to therapeutics. Int J Biochem Cell Biol 2023; 165:106479. [PMID: 37866656 DOI: 10.1016/j.biocel.2023.106479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Ageing decreases the function of the immune system and increases susceptibility to some chronic, infectious, and autoimmune diseases. Senescence cells, which produce senescence-associated secretory phenotypes (SASPs), can activate the innate and adaptive immune responses. Macrophages are among the most abundant innate immune cell types in senescent microenvironments. Senescence-associated macrophages, recruited by SASPs, play a vital role in establishing the essential microenvironments for maintaining tissue homeostasis. However, it's important to note that these senescence-associated macrophages can also influence senescent processes, either by enhancing or impeding the functions of tissue-resident senescent cells. In this discussion, we describe the potential targets of immunosenescence and shed light on the probable mechanisms by which macrophages influence cellular senescence. Furthermore, we analyze their dual function in both clearing senescent cells and modulating age-related diseases. This multifaceted influence operates through processes including heightened inflammation, phagocytosis, efferocytosis, and autophagy. Given the potential off-target effects and immune evasion mechanisms associated with traditional anti-ageing strategies (senolytics and senomorphics), 'resetting' immune system tolerance or targeting senescence-related macrophage functions (i.e., phagocytotic capacity and immunosurveillance) will inform treatment of age-related diseases. Therefore, we review recent advances in the use of macrophage therapeutics to treat ageing and age-associated disorders, and outline the key gaps in this field.
Collapse
Affiliation(s)
- Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | | | - Tingting Liao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Yu Liu
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi 214062, China.
| |
Collapse
|
9
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
10
|
Groeneveld DJ, Poole LG, Bouck EG, Schulte A, Wei Z, Williams KJ, Watson VE, Lisman T, Wolberg AS, Luyendyk JP. Robust coagulation activation and coagulopathy in mice with experimental acetaminophen-induced liver failure. J Thromb Haemost 2023; 21:2430-2440. [PMID: 37054919 PMCID: PMC10524846 DOI: 10.1016/j.jtha.2023.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Patients with acetaminophen (APAP)-induced acute liver failure (ALF) display both hyper- and hypocoagulable changes not necessarily recapitulated by standard hepatotoxic doses of APAP used in mice (eg, 300 mg/kg). OBJECTIVES We sought to examine coagulation activation in vivo and plasma coagulation potential ex vivo in experimental settings of APAP-induced hepatotoxicity and repair (300-450 mg/kg) and APAP-induced ALF (600 mg/kg) in mice. RESULTS APAP-induced ALF was associated with increased plasma thrombin-antithrombin complexes, decreased plasma prothrombin, and a dramatic reduction in plasma fibrinogen compared with lower APAP doses. Hepatic fibrin(ogen) deposits increased independent of APAP dose, whereas plasma fibrin(ogen) degradation products markedly increased in mice with experimental ALF. Early pharmacologic anticoagulation (+2 hours after 600 mg/kg APAP) limited coagulation activation and reduced hepatic necrosis. The marked coagulation activation evident in mice with APAP-induced ALF was associated with a coagulopathy detectable ex vivo in plasma. Specifically, prolongation of the prothrombin time and inhibition of tissue factor-initiated clot formation were evident even after restoration of physiological fibrinogen concentrations. Plasma endogenous thrombin potential was similarly reduced at all APAP doses. Interestingly, in the presence of ample fibrinogen, ∼10 times more thrombin was required to clot plasma from mice with APAP-induced ALF compared with plasma from mice with simple hepatotoxicity. CONCLUSION The results indicate that robust pathologic coagulation cascade activation in vivo and suppressed coagulation ex vivo are evident in mice with APAP-induced ALF. This unique experimental setting may fill an unmet need as a model to uncover mechanistic aspects of the complex coagulopathy of ALF.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Emma G Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony Schulte
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Kurt J Williams
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Victoria E Watson
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ton Lisman
- Section of Hepatobiliary Surgery and Liver Transplantation and Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
11
|
Swystun LL, Michels A, Lillicrap D. The contribution of the sinusoidal endothelial cell receptors CLEC4M, stabilin-2, and SCARA5 to VWF-FVIII clearance in thrombosis and hemostasis. J Thromb Haemost 2023; 21:2007-2019. [PMID: 37085036 PMCID: PMC11539076 DOI: 10.1016/j.jtha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. https://twitter.com/michels_alison
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Liu Z, Yu D, Song H, Postings ML, Scott P, Wang Z, Ren J, Qu X. Enantioselective Degrader for Elimination of Extracellular Aggregation-Prone Proteins hIAPP Associated with Type 2 Diabetes. ACS NANO 2023; 17:8141-8152. [PMID: 37057955 DOI: 10.1021/acsnano.2c11476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Targeted protein degradation has demonstrated the power to modulate protein homeostasis. For overcoming the limitation to intracellular protein degradation, lysosome targeting chimeras have been recently developed and successfully utilized to degrade a range of disease-relevant extracellular and membrane proteins. Inspired by this strategy, here we describe our proof-of-concept studies using metallohelix-based degraders to deliver the extracellular human islet amyloid polypeptide (hIAPP) into the lysosomes for degradation. Our designed metallohelix can bind and inhibit hIAPP aggregation, and the conjugated tri-GalNAc motif can target macrophage galactose-type lectin 1 (MGL1), yielding chimeric molecules that can both inhibit hIAPP aggregation and direct the bound hIAPP for lysosomal degradation in macrophages. Further studies demonstrate that the enhanced hIAPP clearance has been through the endolysosomal system and depends on MGL1-mediated endocytosis. Intriguingly, Λ enantiomers show even better efficiency in preventing hIAPP aggregation and promoting internalization and degradation of hIAPP than Δ enantiomers. Moreover, metallohelix-based degraders also faciltate the clearance of hIAPP through asialoglycoprotein receptor in liver cells. Overall, our studies demonstrate that chiral metallohelix can be employed for targeted degradation of extracellular misfolded proteins and possess enantioselectivity.
Collapse
Affiliation(s)
- Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hualong Song
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Miles L Postings
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
14
|
Chia S, Tay SJ, Song Z, Yang Y, Walsh I, Pang KT. Enhancing pharmacokinetic and pharmacodynamic properties of recombinant therapeutic proteins by manipulation of sialic acid content. Biomed Pharmacother 2023; 163:114757. [PMID: 37087980 DOI: 10.1016/j.biopha.2023.114757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023] Open
Abstract
The circulatory half-life of recombinant therapeutic proteins is an important pharmacokinetic attribute because it determines the dosing frequency of these drugs, translating directly to treatment cost. Thus, recombinant therapeutic glycoproteins such as monoclonal antibodies have been chemically modified by various means to enhance their circulatory half-life. One approach is to manipulate the N-glycan composition of these agents. Among the many glycan constituents, sialic acid (specifically, N-acetylneuraminic acid) plays a critical role in extending circulatory half-life by masking the terminal galactose that would otherwise be recognised by the hepatic asialoglycoprotein receptor (ASGPR), resulting in clearance of the biotherapeutic from the circulation. This review aims to provide an illustrative overview of various strategies to enhance the pharmacokinetic/pharmacodynamic properties of recombinant therapeutic proteins through manipulation of their sialic acid content.
Collapse
Affiliation(s)
- Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore.
| | - Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, 637459, Singapore.
| |
Collapse
|
15
|
Swystun LL, Lillicrap D. Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation. Pharmgenomics Pers Med 2023; 16:239-252. [PMID: 36998673 PMCID: PMC10046206 DOI: 10.2147/pgpm.s383221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
The inherited bleeding disorder hemophilia A involves the quantitative deficiency of the coagulation cofactor factor VIII (FVIII). Prophylactic treatment of severe hemophilia A patients with FVIII concentrates aims to reduce the frequency of spontaneous joint bleeding and requires personalized tailoring of dosing regimens to account for the substantial inter-individual variability of FVIII pharmacokinetics. The strong reproducibility of FVIII pharmacokinetic (PK) metrics between repeat analyses in the same individual suggests this trait is genetically regulated. While the influence of plasma von Willebrand factor antigen (VWF:Ag) levels, ABO blood group, and patient age on FVIII PK is well established, estimates suggest these factors account for less than 35% of the overall variability in FVIII PK. More recent studies have identified genetic determinants that modify FVIII clearance or half-life including VWF gene variants that impair VWF-FVIII binding resulting in the accelerated clearance of VWF-free FVIII. Additionally, variants in receptors that regulate the clearance of FVIII or the VWF-FVIII complex have been associated with FVIII PK. The characterization of genetic modifiers of FVIII PK will provide mechanistic insight into a subject of clinical significance and support the development of personalized treatment plans for patients with hemophilia A.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
16
|
O'Donnell JS, Byrne C, Preston RJS. Von Willebrand factor-inflammation crosstalk in deep vein thrombosis. J Thromb Haemost 2023; 21:453-455. [PMID: 36858790 PMCID: PMC11548016 DOI: 10.1016/j.jtha.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 03/02/2023]
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Coagulation Centre, St James's Hospital, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.
| | - Ciara Byrne
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| |
Collapse
|
17
|
O'Donnell JS, Baker RI. Low von Willebrand Disease: A Bleeding Disorder of Unknown Cause? Hamostaseologie 2023; 43:44-51. [PMID: 36807819 DOI: 10.1055/a-1980-8198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
von Willebrand disease (VWD) represents the most common inherited bleeding disorder. The majority of VWD cases are characterized by partial quantitative reductions in plasma von Willebrand factor (VWF) levels. Management of patients with mild to moderate VWF reductions in the range of 30 to 50 IU/dL poses a common clinical challenge. Some of these low VWF patients present with significant bleeding problems. In particular, heavy menstrual bleeding and postpartum hemorrhage can cause significant morbidity. Conversely, however, many individuals with mild plasma VWF:Ag reductions do not have any bleeding sequelae. In contrast to type 1 VWD, most patients with low VWF do not have detectable pathogenic VWF sequence variants, and bleeding phenotype correlates poorly with residual VWF levels. These observations suggest that low VWF is a complex disorder caused by variants in other genes beyond VWF. With respect to low VWF pathobiology, recent studies have shown that reduced VWF biosynthesis within endothelial cells likely plays a key role. However, pathological enhanced VWF clearance from plasma has also been described in approximately 20% of low VWF cases. For low VWF patients who require hemostatic treatment prior to elective procedures, tranexamic acid and desmopressin have both been shown to be efficacious. In this article, we review the current state of the art regarding low VWF. In addition, we consider how low VWF represents an entity that appears to fall between type 1 VWD on the one hand and bleeding disorders of unknown cause on the other.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,National Coagulation Centre, St James's Hospital, Dublin, Ireland.,Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland
| | - Ross I Baker
- Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland.,Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, Australia.,Hollywood Haemophilia Treatment Centre, Hollywood Hospital, Perth, Australia
| |
Collapse
|
18
|
Xiang Q, Tao JS, Li JJ, Tian RB, Li XH. What is the role of Von Willebrand factor in chronic hepatitis B virus infection to hepatocellular carcinoma: a review article. Ther Adv Chronic Dis 2022; 13:20406223221125683. [PMID: 36407018 PMCID: PMC9669690 DOI: 10.1177/20406223221125683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2023] Open
Abstract
Von Willebrand factor (VWF) is a glycoprotein synthesized and secreted by vascular endothelial cells and megakaryocytes, found on plasma surface, endothelial cells, and α-granule of platelets. VWF can be interacted with collagen and platelet membrane glycoproteins GPIb and GPIb-IIa and play an important role in platelet adhesion and aggregation. Growing research evidence suggests that VWF also mediates the prevention or protesting of hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients from several clinical studies. While the mechanism of VWF in HCC protection or protest is still unclear, further study is required. This article aims to rationalize the role of VWF in the development of HCC, and the functional domain of VWF in cancer as well as cross-talking with platelets and miRNAs. This article also looks forward to the future development and challenges of VWF research.
Collapse
Affiliation(s)
- Qiong Xiang
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Jia-Sheng Tao
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Jing-Jing Li
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Rong-Bo Tian
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou
University, 120 Ren min south road, Jishou 416000, China
| |
Collapse
|
19
|
von Willebrand factor links primary hemostasis to innate immunity. Nat Commun 2022; 13:6320. [PMID: 36329021 PMCID: PMC9633696 DOI: 10.1038/s41467-022-33796-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.
Collapse
|
20
|
Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J Thromb Haemost 2022; 20:2255-2269. [PMID: 35810466 PMCID: PMC9804390 DOI: 10.1111/jth.15817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deficiency in blood coagulation factor VIII (FVIII) results in life-threating bleeding (hemophilia A) treated by infusions of FVIII concentrates. To improve disease treatment, FVIII has been modified to increase its plasma half-life, which requires understanding mechanisms of FVIII catabolism. An important catabolic actor is hepatic low density lipoprotein receptor-related protein 1 (LRP1), which also regulates many other clinically significant processes. Previous studies showed complexity of FVIII site for binding LRP1. OBJECTIVES To characterize binding sites between FVIII and LRP1 and suggest a model of the interaction. METHODS A series of recombinant ligand-binding complement-type repeat (CR) fragments of LRP1 including mutated variants was generated in a baculovirus system and tested for FVIII interaction using surface plasmon resonance, tissue culture model, hydrogen-deuterium exchange mass spectrometry, and in silico. RESULTS Multiple CR doublets within LRP1 clusters II and IV were identified as alternative FVIII-binding sites. These interactions follow the canonical binding mode providing major binding energy, and additional weak interactions are contributed by adjacent CR domains. A representative CR doublet was shown to have multiple contact sites on FVIII. CONCLUSIONS FVIII and LRP1 interact via formation of multiple complex contacts involving both canonical and non-canonical binding combinations. We propose that FVIII-LRP1 interaction occurs via switching such alternative binding combinations in a dynamic mode, and that this mechanism is relevant to other ligand interactions of the low-density lipoprotein receptor family members including LRP1.
Collapse
Affiliation(s)
- Haarin Chun
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - James H. Kurasawa
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Biologics Engineering, R&D, AstraZeneca, GaithersburgMarylandUSA
| | - Philip Olivares
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ekaterina S. Marakasova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
(1) Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver SpringMarylandUSA
- Present address:
George Mason University, School of Systems Biology, FairfaxVirginiaUSA
| | - Svetlana A. Shestopal
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Gabriela U. Hassink
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
GSK‐Rockville Center for Vaccines Research, RockvilleMarylandUSA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mary Migliorini
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Juliet O. Obi
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ally K. Smith
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Patrick L. Wintrode
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Keunwan Park
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Daniel Deredge
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrey G. Sarafanov
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
21
|
Akiyama M, Eura Y, Kokame K. Siglec-5 and Siglec-14 mediate the endocytosis of ADAMTS13. Thromb Res 2022; 219:49-59. [PMID: 36116391 DOI: 10.1016/j.thromres.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND The plasma metalloprotease ADAMTS13 regulates the thrombotic activity of the von Willebrand factor (VWF). ADAMTS13 is highly glycosylated and its carbohydrate chains are capped with sialic acid (SA). Thus, ADAMTS13 may interact with carbohydrate- and/or SA-binding plasma membrane receptors that are involved in the clearance of various plasma proteins. We have investigated ADAMTS13 endocytosis via Siglecs, which were originally identified as SA-binding immunoreceptor family proteins expressed on leukocytes and are also known as endocytic receptors. MATERIALS AND METHODS Endocytic internalization of fluorescently labeled ADAMTS13 into HEK293 cells expressing Siglecs was examined via fluorescence microscopy. In vitro binding of ADAMTS13 to the extracellular region of Siglec-5 was examined. Plasma ADAMTS13 activity in human Siglec-5-expressing mice was measured. RESULTS AND CONCLUSIONS Siglec-5- and Siglec-14-expressing cells internalized not only full-length ADAMTS13 (FL) but also the truncated form (MDTCS) at least partly in an SA-independent manner. Replacement of the V-set domain of Siglec-14 with that of Siglec-3 abrogated the internalization of ADAMTS13. ADAMTS13 directly bound to the extracellular region of Siglec-5 in vitro. Expression of Siglec-5 in the mouse liver resulted in a significant decrease in plasma ADAMTS13 activity. These results suggest that Siglec-5 and Siglec-14, which have nearly identical ligand-binding domains, may contribute to the regulation of plasma ADAMTS13 levels as endocytic receptors for ADAMTS13.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| |
Collapse
|
22
|
Lenting PJ, Kizlik-Manson C, Casari C. Towards novel treatment options in von Willebrand disease. Haemophilia 2022; 28 Suppl 4:5-10. [PMID: 35521728 DOI: 10.1111/hae.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Deficiency or dysfunction of von Willebrand factor (VWF) is associated with a bleeding disorder known as von Willebrand disease (VWD). The clinical manifestations of VWD are heterogeneous, and are in part dictated by the structural or functional defects of VWF. The tools to control bleeding in VWD are dominated by VWF concentrates, desmopressin and antifibrinolytic therapy. In view of these treatments being considered as effective, it is surprising that quality-of-life studies consistently demonstrate a significant mental and physical burden in VWD patients, particularly in women. Apparently, the current weaponry to support the management of VWD is insufficient to fully address the needs of the patients. It is important therefore to continue to search for innovative treatment options which could better serve the VWD patients. In this short review, two of such options are discussed in more detail: emicizumab to correct for the deficiency of factor VIII (FVIII), and the pegylated aptamer BT200 to increase endogenous levels of the VWF/FVIII complex.
Collapse
Affiliation(s)
- Peter J Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Kizlik-Manson
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Ward SE, O'Sullivan JM, Moran AB, Spencer DIR, Gardner RA, Sharma J, Fazavana J, Monopoli M, McKinnon TAJ, Chion A, Haberichter S, O'Donnell JS. Sialylation on O-linked glycans protects von Willebrand factor from macrophage galactose lectin-mediated clearance. Haematologica 2022; 107:668-679. [PMID: 33763999 PMCID: PMC8883566 DOI: 10.3324/haematol.2020.274720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Terminal sialylation determines the plasma half-life of von Willebrand factor (VWF). A role for macrophage galactose lectin (MGL) in regulating hyposialylated VWF clearance has recently been proposed. In this study, we showed that MGL influences physiological plasma VWF clearance. MGL inhibition was associated with a significantly extended mean residence time and 3-fold increase in endogenous plasma VWF antigen levels (P<0.05). Using a series of VWF truncations, we further demonstrated that the A1 domain of VWF is predominantly responsible for enabling the MGL interaction. Binding of both full-length and VWF-A1-A2-A3 to MGL was significantly enhanced in the presence of ristocetin (P<0.05), suggesting that the MGL-binding site in A1 is not fully accessible in globular VWF. Additional studies using different VWF glycoforms demonstrated that VWF O-linked glycans, clustered at either end of the A1 domain, play a key role in protecting VWF against MGLmediated clearance. Reduced sialylation has been associated with pathological, increased clearance of VWF in patients with von Willebrand disease. Herein, we demonstrate that specific loss of α2-3 linked sialylation from O-glycans results in markedly increased MGL-binding in vitro, and markedly enhanced MGL-mediated clearance of VWF in vivo. Our data further show that the asialoglycoprotein receptor (ASGPR) does not have a significant role in mediating the increased clearance of VWF following loss of O-sialylation. Conversely however, we observed that loss of N-linked sialylation from VWF drives enhanced circulatory clearance predominantly via the ASGPR. Collectively, our data support the hypothesis that in addition to regulating physiological VWF clearance, the MGL receptor works in tandem with ASGPR to modulate enhanced clearance of aberrantly sialylated VWF in the pathogenesis of von Willebrand disease.
Collapse
Affiliation(s)
- Soracha E Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Alan B Moran
- Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom; Leiden University Medical Centre, Centre for Proteomics and Metabolomics, 2300 RC Leiden
| | | | | | - Jyotika Sharma
- Department of Basic Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| | - Judicael Fazavana
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Marco Monopoli
- Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2
| | - Thomas A J McKinnon
- Faculty of Medicine, Imperial College, Hammersmith Hospital, Ducane Road, London
| | - Alain Chion
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | | | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; National Coagulation Centre, St James's Hospital, Dublin.
| |
Collapse
|
24
|
O’Donnell AS, Fazavana J, O’Donnell JS. The von Willebrand factor - ADAMTS-13 axis in malaria. Res Pract Thromb Haemost 2022; 6:e12641. [PMID: 35128300 PMCID: PMC8804941 DOI: 10.1002/rth2.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) continues to be associated with major morbidity and mortality, particularly in children aged <5 years in sub-Saharan Africa. Although the biological mechanisms underpinning severe malaria pathophysiology remain incompletely understood, studies have shown that cytoadhesion of malaria-infected erythrocytes to endothelial cells (ECs) within the cerebral microvasculature represents a key step in this process. Furthermore, these studies have also highlighted that marked EC activation, with secretion of Weibel-Palade bodies (WPBs), occurs at a remarkably early stage following malaria infection. As a result, plasma levels of proteins normally stored within WPBs (including high-molecular-weight von Willebrand factor [VWF] multimers, VWF propeptide, and angiopoietin-2) are significantly elevated. In this review, we provide an overview of recent studies that have identified novel roles through which these secreted WPB glycoproteins may directly facilitate malaria pathogenesis through a number of different platelet-dependent and platelet-independent pathways. Collectively, these emerging insights suggest that hemostatic dysfunction, and in particular disruption of the normal VWF-ADAMTS-13 axis, may be of specific importance in triggering cerebral microangiopathy. Defining the molecular mechanisms involved may offer the opportunity to develop novel targeted therapeutic approaches, which are urgently needed as the mortality rate associated with CM remains in the order of 20%.
Collapse
Affiliation(s)
- Andrew S. O’Donnell
- Department of PaediatricsUniversity Maternity Hospital LimerickLimerickIreland
| | - Judicael Fazavana
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
- National Coagulation CentreSt James’s HospitalDublinIreland
- National Children’s Research CentreOur Lady’s Children’s Hospital CrumlinDublinIreland
| |
Collapse
|
25
|
Xie B, Shi X, Li Y, Xia B, Zhou J, Du M, Xing X, Bai L, Liu E, Alvarez F, Jin L, Deng S, Mitchell GA, Pan D, Li M, Wu J. Deficiency of ASGR1 in pigs recapitulates reduced risk factor for cardiovascular disease in humans. PLoS Genet 2021; 17:e1009891. [PMID: 34762653 PMCID: PMC8584755 DOI: 10.1371/journal.pgen.1009891] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Genetic variants in the asialoglycoprotein receptor 1 (ASGR1) are associated with a reduced risk of cardiovascular disease (CVD) in humans. However, the underlying molecular mechanism remains elusive. Given the cardiovascular similarities between pigs and humans, we generated ASGR1-deficient pigs using the CRISPR/Cas9 system. These pigs show age-dependent low levels of non-HDL-C under standard diet. When received an atherogenic diet for 6 months, ASGR1-deficient pigs show lower levels of non-HDL-C and less atherosclerotic lesions than that of controls. Furthermore, by analysis of hepatic transcriptome and in vivo cholesterol metabolism, we show that ASGR1 deficiency reduces hepatic de novo cholesterol synthesis by downregulating 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and increases cholesterol clearance by upregulating the hepatic low-density lipoprotein receptor (LDLR), which together contribute to the low levels of non-HDL-C. Despite the cardioprotective effect, we unexpectedly observed mild to moderate hepatic injury in ASGR1-deficient pigs, which has not been documented in humans with ASGR1 variants. Thus, targeting ASGR1 might be an effective strategy to reduce hypercholesterolemia and atherosclerosis, whereas further clinical evidence is required to assess its hepatic impact. Previous studies have reported an association between ASGR1 variants and CVD in humans. However, the underlying mechanism is unknown. We used ASGR1-deficient pig to recapitulate the reduced risk features of CVD in humans with ASGR1 variants, indicating that ASGR1 inhibition could be an effective strategy to treat atherosclerotic CVD. Our results highlight the demand for taking advantage of genetically modified large animal models to investigate the pathogenesis and therapeutic development of CVD in humans. Unexpectedly, we demonstrate the first link between ASGR1 deficiency and liver injury, a feature that has not been documented in humans with ASGR1 variants. These results suggest that ASGR1 might be an effective target for reducing CVD, whereas revealing a genetic predisposition to liver disease in humans with ASGR1 variants.
Collapse
Affiliation(s)
- Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaochen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Zhou
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Minjie Du
- Chengdu Clonorgan Biotechnology Co. LTD, Chengdu, Sichuan, China
| | - Xiangyang Xing
- Chengdu Clonorgan Biotechnology Co. LTD, Chengdu, Sichuan, China
| | - Liang Bai
- Institute of Cardiovascular Sciences, Health Science Center, Xi’an Jiao Tong University, Xi’an, Shaanxi, China
| | - Enqi Liu
- Institute of Cardiovascular Sciences, Health Science Center, Xi’an Jiao Tong University, Xi’an, Shaanxi, China
| | - Fernando Alvarez
- Divisions of Gastroenterology, Hepatology and Nurition, University of Montreal and Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Grant A. Mitchell
- Divisions of Medical Genetics, Department of Pediatrics, University of Montreal and Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- * E-mail: (DP); (ML); (JW)
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail: (DP); (ML); (JW)
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (DP); (ML); (JW)
| |
Collapse
|
26
|
Jiang Y, Tang Y, Hoover C, Kondo Y, Huang D, Restagno D, Shao B, Gao L, Michael McDaniel J, Zhou M, Silasi-Mansat R, McGee S, Jiang M, Bai X, Lupu F, Ruan C, Marth JD, Wu D, Han Y, Xia L. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 2021; 28:3009-3021. [PMID: 33993195 PMCID: PMC8564511 DOI: 10.1038/s41418-021-00797-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f-/-) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f-/- mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.
Collapse
Affiliation(s)
- Yizhi Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yaqiong Tang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Christopher Hoover
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Yuji Kondo
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Dongping Huang
- grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Damien Restagno
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Bojing Shao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Liang Gao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - J. Michael McDaniel
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Meixiang Zhou
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Robert Silasi-Mansat
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Samuel McGee
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Miao Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Xia Bai
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Florea Lupu
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Changgeng Ruan
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Jamey D. Marth
- grid.133342.40000 0004 1936 9676Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106 USA
| | - Depei Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yue Han
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Lijun Xia
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| |
Collapse
|
27
|
Susan-Resiga D, Girard E, Essalmani R, Roubtsova A, Marcinkiewicz J, Derbali RM, Evagelidis A, Byun JH, Lebeau PF, Austin RC, Seidah NG. Asialoglycoprotein receptor 1 is a novel PCSK9-independent ligand of liver LDLR cleaved by furin. J Biol Chem 2021; 297:101177. [PMID: 34508778 PMCID: PMC8479480 DOI: 10.1016/j.jbc.2021.101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023] Open
Abstract
The hepatic carbohydrate-recognizing asialoglycoprotein receptor (ASGR1) mediates the endocytosis/lysosomal degradation of desialylated glycoproteins following binding to terminal galactose/N-acetylgalactosamine. Human heterozygote carriers of ASGR1 deletions exhibit ∼34% lower risk of coronary artery disease and ∼10% to 14% reduction of non-HDL cholesterol. Since the proprotein convertase PCSK9 is a major degrader of the low-density lipoprotein receptor (LDLR), we investigated the degradation and functionality of LDLR and/or PCSK9 by endogenous/overexpressed ASGR1 using Western blot and immunofluorescence in HepG2-naïve and HepG2-PCSK9-knockout cells. ASGR1, like PCSK9, targets LDLR, and both independently interact with/enhance the degradation of the receptor. This lack of cooperativity between PCSK9 and ASGR1 was confirmed in livers of wildtype (WT) and Pcsk9−/− mice. ASGR1 knockdown in HepG2-naïve cells significantly increased total (∼1.2-fold) and cell-surface (∼4-fold) LDLR protein. In HepG2-PCSK9-knockout cells, ASGR1 silencing led to ∼2-fold higher levels of LDLR protein and DiI (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate)-LDL uptake associated with ∼9-fold increased cell-surface LDLR. Overexpression of WT-ASGR1/2 primarily reduced levels of immature non-O-glycosylated LDLR (∼110 kDa), whereas the triple Ala-mutant of Gln240/Trp244/Glu253 (characterized by loss of carbohydrate binding) reduced expression of the mature form of LDLR (∼150 kDa), suggesting that ASGR1 binds the LDLR in both a sugar-dependent and -independent fashion. The protease furin cleaves ASGR1 at the RKMK103↓ motif into a secreted form, likely resulting in a loss of function on LDLR. Altogether, we demonstrate that LDLR is the first example of a liver-receptor ligand of ASGR1. We conclude that silencing of ASGR1 and PCSK9 may lead to higher LDL uptake by hepatocytes, thereby providing a novel approach to further reduce LDL cholesterol levels.
Collapse
Affiliation(s)
- Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Emmanuelle Girard
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Jadwiga Marcinkiewicz
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Rabeb M Derbali
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Alexandra Evagelidis
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Jae H Byun
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Affiliated to the University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
28
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
29
|
Lunghi B, Morfini M, Martinelli N, Balestra D, Linari S, Frusconi S, Branchini A, Cervellera CF, Marchetti G, Castaman G, Bernardi F. The Asialoglycoprotein Receptor Minor Subunit Gene Contributes to Pharmacokinetics of Factor VIII Concentrates in Hemophilia A. Thromb Haemost 2021; 122:715-725. [PMID: 34407556 DOI: 10.1055/a-1591-7869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The asialoglycoprotein receptor (ASGPR) binds with high affinity factor VIII (FVIII) through its N-linked oligosaccharides. However, its contribution to the wide inter-individual variation of infused FVIII pharmacokinetics (PK) in hemophilia A (HA) is unknown. OBJECTIVE To investigate the variability in FVIII PK outcomes in relation to genetic variation in the ASGR2, encoding the ASGPR2 subunit. METHODS Thirty-two HA patients with FVIII:C ≤2 IU/dL underwent 66 single-dose FVIII PK studies. PK parameters were evaluated in relation to ASGR2 5' untranslated region (5'UTR) polymorphisms, which were investigated by recombinant and white blood cell reverse transcription-polymerase chain reaction approaches. RESULTS The 5'UTR polymorphisms determine a frequent and conserved haplotype (HT1) in a regulatory region. The HT1 homozygotes may differ in the amounts of alternatively spliced mRNA transcripts and thus ASGPR2 isoforms. Compared with the other ASGR2 genotypes, the c.-95TT homozygotes (n = 9), showed threefold longer Alpha HL (3.60 hours, 95% confidence interval: 1.44-5.76, p = 0.006), and the c.-95TC heterozygotes (n = 17) showed 25% shorter mean residence time (MRT; 18.5 hours, 15.0-22.0, p = 0.038) and 32% shorter Beta HL (13.5 hours, 10.9-16.0, p = 0.016). These differences were confirmed in patients (n = 27) undergoing PK studies (n = 54) with full-length FVIII only. In different linear regression models, the contribution of the ASGR2 genotypes remained significant after adjustment by ABO genotypes and von Willebrand factor (VWF) antigen levels, and explained 14% (MRT), 15 to 18% (Beta HL), and 22% (Alpha HL) of parameter variability. CONCLUSIONS Infused FVIII distribution was modulated by frequent ASGR2 genotypes, independently from and together with ABO and VWF antigen levels, which has potential implications for genetically tailored substitutive treatment in HA.
Collapse
Affiliation(s)
- Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Morfini
- Italian Association Hemophilia Centers (AICE), Naples, Italy
| | | | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Linari
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
31
|
Ward S, O'Sullivan JM, O'Donnell JS. The Biological Significance of von Willebrand Factor O-Linked Glycosylation. Semin Thromb Hemost 2021; 47:855-861. [PMID: 34130346 DOI: 10.1055/s-0041-1726373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosylation is a key posttranslational modification, known to occur on more than half of all secreted proteins in man. As such, the role of N- and O-linked glycan structures in modulating various aspects of protein biology is an area of much research. Given their prevalence, it is perhaps unsurprising that variations in glycan structures have been demonstrated to play critical roles in modulating protein function and have been implicated in the pathophysiology of human diseases. von Willebrand factor (VWF), a plasma glycoprotein that is essential for normal hemostasis, is heavily glycosylated, containing 13 N-linked and 10 O-linked glycans. Together, these carbohydrate chains account for 20% of VWF monomeric mass, and have been shown to modulate VWF structure, function, and half-life. In this review, we focus on the specific role played by O-linked glycans in modulating VWF biology. Specifically, VWF O-linked glycans have been shown to modulate tertiary protein structure, susceptibility to ADAMTS13 proteolysis, platelet tethering, and VWF circulatory half-life.
Collapse
Affiliation(s)
- Soracha Ward
- Haemostasis Research Group, Irish Centre for Vascular Biology, School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jamie M O'Sullivan
- Haemostasis Research Group, Irish Centre for Vascular Biology, School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S O'Donnell
- Haemostasis Research Group, Irish Centre for Vascular Biology, School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Coagulation Centre, St James's Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Groeneveld DJ, Poole LG, Luyendyk JP. Targeting von Willebrand factor in liver diseases: A novel therapeutic strategy? J Thromb Haemost 2021; 19:1390-1408. [PMID: 33774926 PMCID: PMC8582603 DOI: 10.1111/jth.15312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Acute and chronic liver disease are associated with substantial alterations in the hemostatic system. Evidence from both experimental and clinical studies suggests that anticoagulants slow the progression of liver disease. Efficacy of those anticoagulant drugs is, in part, attributed to a reduction of microthrombi formation within the liver. Although anticoagulant drugs show promising results, bleeding risk associated with these drugs is an obvious drawback, particularly in patients with a complex coagulopathy driven by decreased liver function. Identifying therapies that reduce intrahepatic thrombosis with minimal bleeding risk would significantly advance the field. Among the hemostatic alterations observed in patients are substantially increased levels of the platelet-adhesive protein von Willebrand factor (VWF). In contrast, levels of A Disintegrin and Metalloproteinase with Thrombospondin motifs, the enzyme that regulates VWF activity, are significantly reduced in patients with liver disease. Highly elevated VWF levels are proposed to accelerate intrahepatic thrombus formation and thus be a driver of disease progression. Strong clinical evidence suggesting a link between liver disease and changes in VWF is now being matched by emerging mechanistic data showing a detrimental role for VWF in the progression of liver disease. This review focuses on clinical and experimental evidence supporting a connection between VWF function and the progression of acute and chronic liver diseases. Furthermore, with the recent anticipated approval of several novel therapies targeting VWF, we discuss potential strategies and benefits of targeting VWF as an innovative therapy for patients with liver disease.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Low VWF: insights into pathogenesis, diagnosis, and clinical management. Blood Adv 2021; 4:3191-3199. [PMID: 32663299 DOI: 10.1182/bloodadvances.2020002038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 01/17/2023] Open
Abstract
von Willebrand disease (VWD) constitutes the most common inherited human bleeding disorder. Partial quantitative von Willebrand factor (VWF) deficiency is responsible for the majority of VWD cases. International guidelines recommend that patients with mild to moderate reductions in plasma VWF antigen (VWF:Ag) levels (typically in the range of 30-50 IU/dL) should be diagnosed with low VWF. Over the past decade, a series of large cohort studies have provided significant insights into the biological mechanisms involved in type 1 VWD (plasma VWF:Ag levels <30 IU/dL). In striking contrast, however, the pathogenesis underpinning low VWF has remained poorly understood. Consequently, low VWF patients continue to present significant clinical challenges with respect to genetic counseling, diagnosis, and management. For example, there is limited information regarding the relationship between plasma VWF:Ag levels and bleeding phenotype in subjects with low VWF. In addition, it is not clear whether patients with low VWF need treatment. For those patients with low VWF in whom treatment is deemed necessary, the optimal choice of therapy remains unknown. However, a number of recent studies have provided important novel insights into these clinical conundrums and the molecular mechanisms responsible for the reduced levels observed in low VWF patients. These emerging clinical and scientific findings are considered in this review, with particular focus on pathogenesis, diagnosis, and clinical management of low VWF.
Collapse
|
34
|
Di Minno A, Spadarella G, Esposito S, Mathew P, Di Minno G, Mannucci PM. Perspective - The case for zero bleeds and drug bioequivalence in the treatment of congenital hemophilia A in 2021. Blood Rev 2021; 50:100849. [PMID: 34024681 DOI: 10.1016/j.blre.2021.100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2023]
Abstract
Not all patients with severe hemophilia A (HA) respond optimally to a given dose of a given product. Within-individual variance in cross-over studies makes each patient unique in the response to each standard half-life (SHL) factor VIII (FVIII) product in pharmacokinetic (PK) terms. This hampers the prediction of efficacy when a SHL FVIII product is employed. PK data showing that half-lives of SHL rFVIII are unsatisfactory to achieve zero bleeding in individual HA patients provide the rationale for switching from SHL to extended half-life (EHL) products. However, not all subjects receiving prophylaxis with EHL products achieve zero bleeding, the most cogent objective of personalized prophylaxis. Known determinants of FVIII half-life (age, von Willebrand factor [VWF] levels, blood group) cumulatively account for one third of the total inter-individual variation in FVIII clearance in subjects with severe HA. Investigations into precision, and accuracy of laboratory measurement to be employed; newer pathways for the clearance of both free-FVIII and VWF-bound FVIII, and adequately powered studies on omics and phenotypic heterogeneity, are likely to provide additional information on the remaining two thirds of inter-individual variation in FVIII clearance in HA. Variability in the clinical response has also been documented in patients when FVIII activity is mimicked by fixed subcutaneous doses of the bispecific antibody emicizumab. National registries that collect PK data of available FVIII products and ad hoc information on the individual response to emicizumab should be encouraged, to establish newer standards of care and ease personalized clinical decisions to achieve zero bleeding.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Italy; CEINGE-Biotecnologie Avanzate, Università degli Studi di Napoli "Federico II", Italy.
| | - Gaia Spadarella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Italy
| | - Salvatore Esposito
- Dipartimento di Medicina Clinica e Chirurgia and Centro Hub per le Malattie Emorragiche Congenite e le Trombofilie, Università degli Studi di Napoli "Federico II", Italy
| | | | - Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia and Centro Hub per le Malattie Emorragiche Congenite e le Trombofilie, Università degli Studi di Napoli "Federico II", Italy.
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy..
| |
Collapse
|
35
|
Atiq F, van de Wouw J, Sorop O, Heinonen I, de Maat MPM, Merkus D, Duncker DJ, Leebeek FWG. Endothelial Dysfunction, Atherosclerosis, and Increase of von Willebrand Factor and Factor VIII: A Randomized Controlled Trial in Swine. Thromb Haemost 2021; 121:676-686. [PMID: 33506473 DOI: 10.1055/s-0040-1722185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well known that high von Willebrand factor (VWF) and factor VIII (FVIII) levels are associated with an increased risk of cardiovascular disease. It is still debated whether VWF and FVIII are biomarkers of endothelial dysfunction and atherosclerosis or whether they have a direct causative role. Therefore, we aimed to unravel the pathophysiological pathways of increased VWF and FVIII levels associated with cardiovascular risk factors. First, we performed a randomized controlled trial in 34 Göttingen miniswine. Diabetes mellitus (DM) was induced with streptozotocin and hypercholesterolemia (HC) via a high-fat diet in 18 swine (DM + HC), while 16 healthy swine served as controls. After 5 months of follow-up, FVIII activity (FVIII:C) was significantly higher in DM + HC swine (5.85 IU/mL [5.00-6.81]) compared with controls (4.57 [3.76-5.40], p = 0.010), whereas VWF antigen (VWF:Ag) was similar (respectively 0.34 IU/mL [0.28-0.39] vs. 0.34 [0.31-0.38], p = 0.644). DM + HC swine had no endothelial dysfunction or atherosclerosis during this short-term follow-up. Subsequently, we performed a long-term (15 months) longitudinal cohort study in 10 Landrace-Yorkshire swine, in five of which HC and in five combined DM + HC were induced. VWF:Ag was higher at 15 months compared with 9 months in HC (0.37 [0.32-0.42] vs. 0.27 [0.23-0.40], p = 0.042) and DM + HC (0.33 [0.32-0.37] vs. 0.25 [0.24-0.33], p = 0.042). Both long-term groups had endothelial dysfunction compared with controls and atherosclerosis after 15 months. In conclusion, short-term hyperglycemia and dyslipidemia increase FVIII, independent of VWF. Long-term DM and HC increase VWF via endothelial dysfunction and atherosclerosis. Therefore, VWF seems to be a biomarker for advanced cardiovascular disease.
Collapse
Affiliation(s)
- Ferdows Atiq
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ilkka Heinonen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| | - Moniek P M de Maat
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
36
|
The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2021; 136:2864-2874. [PMID: 32785650 DOI: 10.1182/blood.2020005843] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported significant associations between ABO blood group and risk of cardiovascular disease. These studies have consistently demonstrated that thrombotic risk is significantly reduced in individuals in blood group O. Nevertheless, the biological mechanisms through which ABO influences hemostasis have remained poorly understood. Exciting recent data have provided novel insights into how these ABO effects are modulated and have highlighted that ABO group significantly influences platelet plug formation at sites of vascular injury (primary hemostasis). In particular, ABO affects multiple aspects of von Willebrand factor (VWF) biology. In keeping with their reduced thrombotic risk, plasma VWF levels are ∼25% lower in healthy group O compared with healthy group non-O individuals. In addition, blood group O VWF demonstrates enhanced susceptibility to ADAMTS13 proteolysis. Finally, preliminary findings suggest that the interaction of group O VWF with platelets may also be reduced. Although the molecular mechanisms underlying these ABO effects on VWF have not been fully elucidated, it seems likely that they are mediated in large part by the ABO(H) carbohydrate structures that are carried on both the N- and O-linked glycans of VWF. Interestingly, ABO(H) determinants are also expressed on several different platelet surface glycoprotein receptors. Recent studies support the hypothesis that ABO group not only exerts major quantitative and qualitative effects on VWF, but also affect specific aspects of platelet function. Given the severe morbidity and the mortality associated with thrombotic disorders, defining the mechanisms underlying these ABO effects is not only of scientific interest, but also of direct clinical importance.
Collapse
|
37
|
O'Donnell JS. Toward Personalized Treatment for Patients with Low von Willebrand Factor and Quantitative von Willebrand Disease. Semin Thromb Hemost 2021; 47:192-200. [PMID: 33636750 DOI: 10.1055/s-0041-1722864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Coagulation Centre, St. James's Hospital, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital at Crumlin, Dublin, Ireland
| |
Collapse
|
38
|
Mechanisms of anti-GPIbα antibody-induced thrombocytopenia in mice. Blood 2021; 135:2292-2301. [PMID: 32157300 DOI: 10.1182/blood.2019003770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by antibody-mediated platelet destruction. Different mechanisms have been suggested to explain accelerated platelet clearance and impaired thrombopoiesis, but the pathophysiology of ITP has yet to be fully delineated. In this study, we tested 2 mouse models of immune-mediated thrombocytopenia using the rat anti-mouse GPIbα monoclonal antibody 5A7, generated in our laboratory. After a single IV administration of high-dose (2 mg/kg) 5A7, opsonized platelets were rapidly cleared from the circulation into the spleen and liver; this was associated with rapid upregulation of thrombopoietin (TPO) messenger RNA. In contrast, subcutaneous administration of low-dose 5A7 (0.08-0.16 mg/kg) every 3 days gradually lowered the platelet count; in this case, opsonized platelets were observed only in the spleen, and TPO levels remained unaltered. Interestingly, in both models, the 5A7 antibody was found on the surface of, as well as internalized to, bone marrow megakaryocytes. Consequently, platelets generated in the chronic phase of repeated subcutaneous 5A7 administration model showed reduced GPIbα membrane expression on their surface. Our findings indicate that evaluation of platelet surface GPIbα relative to platelet size may be a useful marker to support the diagnosis of anti-GPIbα antibody-induced ITP.
Collapse
|
39
|
Nabavi Z, Baniardalani M, Basseri H. Purification and Partial Characterization of Agglutinin Lectin from Heamolymph of German Cockroach, Blattella germanica. J Arthropod Borne Dis 2020; 14:144-152. [PMID: 33365342 PMCID: PMC7738926 DOI: 10.18502/jad.v14i2.3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Lectin molecules have crucial biological role in insects’ immune system. The aim of present study was to find the agglutinin activities in haemolymph of German cockroach, Belatella germanica with appropriate screening and purification. Methods: The heamolymph of cockroach was collected and agglutinin test performed against different animal and human red blood cells (RBC). Then sugar inhibition assay was carried out to find carbohydrate specific binding lectin. The proteins of haemolymph was purified using ion-exchange chromatography (HPLC) and each fraction was tested for agglutinin activity. Finally the molecular weight of the agglutinin protein was determined using SDS-page. Results: The most agglutinin activity of haemolymph was found against RBC of mouse at titer 1/128ml/L dilution and sugar inhibition assay showed that fucos, N-acetyglucoseamine and galactose reduced titer of agglutinin to ½ml/L. Only one fraction of heamolymph at rotation time of 36 minute showed agglutinin activity. The molecular weight of this lectin was measured as 120Kds. Conclusion: The range of agglutinin activities against different RBC indicates that the isolated lectin is not specific for a particular carbohydrate. In addition, the isolated lectin at low concentration present in heamolymph should be an innate lactin not secreted, because we found it without any trigger immunity of the insect.
Collapse
Affiliation(s)
- Zohreh Nabavi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Baniardalani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Basseri
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Deppermann C, Kratofil RM, Peiseler M, David BA, Zindel J, Castanheira FVES, van der Wal F, Carestia A, Jenne CN, Marth JD, Kubes P. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J Exp Med 2020; 217:133651. [PMID: 31978220 PMCID: PMC7144524 DOI: 10.1084/jem.20190723] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.
Collapse
Affiliation(s)
- Carsten Deppermann
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel M Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Moritz Peiseler
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Bruna A David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fernanda Vargas E Silva Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fardau van der Wal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Agostina Carestia
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Craig N Jenne
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jamey D Marth
- Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Turecek PL, Johnsen JM, Pipe SW, O'Donnell JS. Biological mechanisms underlying inter-individual variation in factor VIII clearance in haemophilia. Haemophilia 2020; 26:575-583. [PMID: 32596930 PMCID: PMC7496649 DOI: 10.1111/hae.14078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
Previous studies have highlighted marked inter‐individual variations in factor VIII (FVIII) clearance between patients with haemophilia (PWH). The half‐life of infused FVIII has been reported to vary from as little as 5.3 hours in some adult PWH, up to as long as 28.8 hours in other individuals. These differences in clearance kinetics have been consistently observed using a number of different plasma‐derived and recombinant FVIII products. Furthermore, recent studies have demonstrated that half‐life for extended half‐life (EHL‐) FVIII products also demonstrates significant inter‐patient variation. Since time spent with FVIII trough levels <1% has been shown to be associated with increased bleeding risk in PWH on prophylaxis therapy, this variability in FVIII clearance clearly has major clinical significance. Recent studies have provided significant novel insights into the cellular basis underlying FVIII clearance pathways. In addition, accumulating data have shown that endogenous plasma VWF levels, ABO blood group and age, all play important roles in regulating FVIII half‐life in PWH. Indeed, multiple regression analysis suggests that together these factors account for approximately 34% of the total inter‐individual variation in FVIII clearance observed between subjects with severe haemophilia A. In this review, we consider these and other putative modulators of FVIII half‐life, and discuss the biological mechanisms through which these factors impact upon FVIII clearance in vivo.
Collapse
Affiliation(s)
- Peter L Turecek
- Baxalta Innovations GmbH, A Member of the Takeda Group of Companies, Vienna, Austria
| | - Jill M Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James S O'Donnell
- Haemostasis Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | | |
Collapse
|
42
|
Fazavana J, Brophy TM, Chion A, Cooke N, Terraube V, Cohen J, Parng C, Pittman D, Cunningham O, Lambert M, O'Donnell JS, O'Sullivan JM. Investigating the clearance of VWF A-domains using site-directed PEGylation and novel N-linked glycosylation. J Thromb Haemost 2020; 18:1278-1290. [PMID: 32108991 PMCID: PMC7645976 DOI: 10.1111/jth.14785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have demonstrated that the A1A2A3 domains of von Willebrand factor (VWF) play a key role in regulating macrophage-mediated clearance in vivo. In particular, the A1-domain has been shown to modulate interaction with macrophage low-density lipoprotein receptor-related protein-1 (LRP1) clearance receptor. Furthermore, N-linked glycans within the A2-domain have been shown to protect VWF against premature LRP1-mediated clearance. Importantly, however, the specific regions within A1A2A3 that enable macrophage binding have not been defined. OBJECTIVE AND METHODS To address this, we utilized site-directed PEGylation and introduced novel targeted N-linked glycosylation within A1A2A3-VWF and subsequently examined VWF clearance. RESULTS Conjugation with a 40-kDa polyethylene glycol (PEG) moiety significantly extended the half-life of A1A2A3-VWF in VWF-/- mice in a site-specific manner. For example, PEGylation at specific sites within the A1-domain (S1286) and A3-domain (V1803, S1807) attenuated VWF clearance in vivo, compared to wild-type A1A2A3-VWF. Furthermore, PEGylation at these specific sites ablated binding to differentiated THP-1 macrophages and LRP1 cluster II and cluster IV in-vitro. Conversely, PEGylation at other positions (Q1353-A1-domain and M1545-A2-domain) had limited effects on VWF clearance or binding to LRP1.Novel N-linked glycan chains were introduced at N1803 and N1807 in the A3-domain. In contrast to PEGylation at these sites, no significant extension in half-life was observed with these N-glycan variants. CONCLUSIONS These novel data demonstrate that site specific PEGylation but not site specific N-glycosylation modifies LRP1-dependent uptake of the A1A2A3-VWF by macrophages. This suggests that PEGylation, within the A1- and A3-domains in particular, may be used to attenuate LRP1-mediated clearance of VWF.
Collapse
Affiliation(s)
- Judicael Fazavana
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Teresa M Brophy
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alain Chion
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh Cooke
- BioMedicine Design, Pfizer, Grange Castle, Dublin, Ireland
| | | | | | | | - Debra Pittman
- Rare Disease Research Unit, Pfizer, Cambridge, MA, USA
| | | | | | - James S O'Donnell
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James Hospital, Dublin, Ireland
| | - Jamie M O'Sullivan
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
43
|
Tischer A, Machha VR, Moon-Tasson L, Benson LM, Auton M. Glycosylation sterically inhibits platelet adhesion to von Willebrand factor without altering intrinsic conformational dynamics. J Thromb Haemost 2020; 18:79-90. [PMID: 31479573 PMCID: PMC6940534 DOI: 10.1111/jth.14628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A molecular basis for von Willebrand factor (VWF) self-inhibition has been proposed by which the N-terminal and C-terminal flanking sequences of the globular A1 domain disulfide loop bind to and suppress the conformational dynamics of A1. These flanking sequences are rich in O-linked glycosylation (OLG), which is known to suppress platelet adhesion to VWF, presumably by steric hindrance. The inhibitory mechanism remains unresolved as to whether inhibition is due to steric exclusion by OLGs or a direct self-association interaction that stabilizes the domain. OBJECTIVES The platelet adhesive function, thermodynamic stability, and conformational dynamics of the wild-type and type 2M G1324S A1 domain lacking glycosylation (Escherichia coli) are compared with the wild-type glycosylated A1 domain (HEK293 cell culture) to decipher the self-inhibitory mechanism. METHODS Surface plasmon resonance and analytical rheology are utilized to assess Glycoprotein Ibα (GPIbα) binding at equilibrium and platelet adhesion under shear flow. The conformational stability is assessed through a combination of protein unfolding thermodynamics and hydrogen-deuterium exchange mass spectrometry (HXMS). RESULTS A1 glycosylation inhibits both GPIbα binding and platelet adhesion. Glycosylation increases the hydrodynamic size of A1 and stabilizes the thermal unfolding of A1 without changing its equilibrium stability. Glycosylation does not alter the intrinsic conformational dynamics of the A1 domain. CONCLUSIONS These studies invalidate the proposed inhibition through conformational suppression since glycosylation within these flanking sequences does not alter the native state stability or the conformational dynamics of A1. Rather, they confirm a mechanism by which glycosylation sterically hinders platelet adhesion to the A1 domain at equilibrium and under rheological shear stress.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Venkata R. Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Linda M. Benson
- Proteomics Core, Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
44
|
MGL1 Receptor Plays a Key Role in the Control of T. cruzi Infection by Increasing Macrophage Activation through Modulation of ERK1/2, c-Jun, NF-κB and NLRP3 Pathways. Cells 2020; 9:cells9010108. [PMID: 31906385 PMCID: PMC7017267 DOI: 10.3390/cells9010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophage galactose-C type lectin (MGL)1 receptor is involved in the recognition of Trypanosoma cruzi (T. cruzi) parasites and is important for the modulation of the innate and adaptive immune responses. However, the mechanism by which MGL1 promotes resistance to T. cruzi remains unclear. Here, we show that MGL1 knockout macrophages (MGL1-/- Mφ) infected in vitro with T. cruzi were heavily parasitized and showed decreased levels of reactive oxygen species (ROS), nitric oxide (NO), IL-12 and TNF-α compared to wild-type macrophages (WT Mφ). MGL1-/- Mφ stimulated in vitro with T. cruzi antigen (TcAg) showed low expression of TLR-2, TLR-4 and MHC-II, which resulted in deficient splenic cell activation compared with similar co-cultured WT Mφ. Importantly, the activation of p-ERK1/2, p-c-Jun and p-NF-κB p65 were significantly reduced in MGL1-/- Mφ exposed to TcAg. Similarly, procaspase 1, caspase 1 and NLRP3 inflammasome also displayed a reduced expression that was associated with low IL-β production. Our data reveal a previously unappreciated role for MGL1 in Mφ activation through the modulation of ERK1/2, c-Jun, NF-κB and NLRP3 signaling pathways, and to the development of protective innate immunity against experimental T. cruzi infection.
Collapse
|
45
|
Ragni MV. Case-based discussion on the implications of exogenous estrogens in hemostasis and thrombosis: the hematologist's view. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:152-157. [PMID: 31808846 PMCID: PMC6913423 DOI: 10.1182/hematology.2019000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the childbearing years, hormonal therapy or hormonal changes in the menstrual cycle or the puerperium may be complicated by bleeding or thrombosis; however, among women with congenital disorders of hemostasis and thrombosis, the risk of bleeding or thrombosis may be increased. In women with congenital bleeding disorders, heavy menstrual bleeding is the most common bleeding symptom, and postpartum hemorrhage occurs despite treatment. Given the limitations of current therapy and the associated medical and psychological burden in women with bleeding disorders, better treatment approaches are needed to improve health outcomes and quality of life. In women with congenital thrombotic disorders, thromboembolism may complicate exogenous hormonal therapy and endogenous hormonal change during pregnancy and procedures, but risk differs by type of thrombophilia, procedure, time at risk, and thrombosis risk factors, all of which affect management. In this article, I shall consider a case-based discussion of current issues in women with congenital bleeding and clotting disorders, including heavy menstrual bleeding in a woman with VWD, postpartum hemorrhage risk in VWD, and thrombosis risk with oocyte retrieval in a woman with factor V Leiden and past thromboembolism. The goals are to review bleeding or thrombosis risk in these cases, current data, limitations of current treatment guidelines, and areas for future study.
Collapse
Affiliation(s)
- Margaret V Ragni
- Department of Medicine, Division of Hematology/Oncology and Hemophilia Center of Western Pennsylvania, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
46
|
Emsley J. VWF (von Willebrand Factor) Comes in From the Cold As a Strategy to Improve Platelet Storage. Arterioscler Thromb Vasc Biol 2019; 39:1893-1895. [PMID: 31553666 DOI: 10.1161/atvbaha.119.313069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jonas Emsley
- School of Pharmacy, Centre for Biomolecular Sciences, University Park, Nottingham, United Kingom
| |
Collapse
|
47
|
Ward S, O'Sullivan JM, O'Donnell JS. von Willebrand factor sialylation-A critical regulator of biological function. J Thromb Haemost 2019; 17:1018-1029. [PMID: 31055873 DOI: 10.1111/jth.14471] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
Essentials Von Willebrand Factor (VWF) is extensively glycosylated with serial studies demonstrating that these carbohydrate determinants play critical roles in regulating multiple aspects of VWF biology. Terminal sialic acid residues, expressed on both the N- and O-linked glycans of VWF, regulate VWF functional activity, susceptibility to proteolysis and plasma clearance in vivo. Quantitative and qualitative variations in VWF sialylation have been reported in patients with von Willebrand Disease, as well as in a number of other physiological and pathological states. Further studies are warranted to define the molecular mechanisms through which N- and O-linked sialylation impacts upon the multiple biological activities of VWF. von Willebrand factor (VWF) undergoes complex post-translational modification prior to its secretion into the plasma. Consequently, VWF monomers contain complex N-glycan and O-glycan structures that, together, account for approximately 20% of the final monomeric mass. An increasing body of evidence has confirmed that these carbohydrate determinants play critical roles in regulating multiple aspects of VWF biology. In particular, studies have demonstrated that terminal ABO blood group has an important effect on plasma VWF levels. This effect is interesting, given that only 15% of the N-glycans and 1% of the O-glycans of VWF actually express terminal ABO(H) determinants. In contrast, the vast majority of the N-glycans and O-glycans on human VWF are capped by terminal negatively charged sialic acid residues. Recent data suggest that sialylation significantly regulates VWF functional activity, susceptibility to proteolysis, and clearance, through a number of independent pathways. These findings are of direct clinical relevence, in that quantitative and qualitative variations in VWF sialylation have been described in patients with VWD, as well as in patients with a number of other physiologic and pathologic conditions. Moreover, platelet-derived VWF is significantly hyposialylated as compared with plasma-derived VWF, whereas the recently licensed recombinant VWF therapeutic is hypersialylated. In this review, we examine the evidence supporting the hypothesis that VWF sialylation plays multiple biological roles. In addition, we consider data suggesting that quantitative and qualitative variations in VWF sialylation may play specific roles in the pathogenesis of VWD, and that sialic acid expression on VWF may also differ across a number of other physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Soracha Ward
- Haemostasis Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jamie M O'Sullivan
- Haemostasis Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S O'Donnell
- Haemostasis Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James's Hospital, Dublin, Ireland
| |
Collapse
|
48
|
Increased galactose expression and enhanced clearance in patients with low von Willebrand factor. Blood 2019; 133:1585-1596. [DOI: 10.1182/blood-2018-09-874636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/06/2019] [Indexed: 11/20/2022] Open
Abstract
Abstract
Glycan determinants on von Willebrand factor (VWF) play critical roles in regulating its susceptibility to proteolysis and clearance. Abnormal glycosylation has been shown to cause von Willebrand disease (VWD) in a number of different mouse models. However, because of the significant technical challenges associated with accurate assessment of VWF glycan composition, the importance of carbohydrates in human VWD pathogenesis remains largely unexplored. To address this, we developed a novel lectin-binding panel to enable human VWF glycan characterization. This methodology was then used to study glycan expression in a cohort of 110 patients with low VWF compared with O blood group-matched healthy controls. Interestingly, significant interindividual heterogeneity in VWF glycan expression was seen in the healthy control population. This variation included terminal sialylation and ABO(H) blood group expression on VWF. Importantly, we also observed evidence of aberrant glycosylation in a subgroup of patients with low VWF. In particular, terminal α(2-6)-linked sialylation was reduced in patients with low VWF, with a secondary increase in galactose (Gal) exposure. Furthermore, an inverse correlation between Gal exposure and estimated VWF half-life was observed in those patients with enhanced VWF clearance. Together, these findings support the hypothesis that loss of terminal sialylation contributes to the pathophysiology underpinning low VWF in at least a subgroup of patients by promoting enhanced clearance. In addition, alterations in VWF carbohydrate expression are likely to contribute to quantitative and qualitative variations in VWF levels in the normal population. This trial was registered at www.clinicaltrials.gov as #NCT03167320.
Collapse
|
49
|
Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, Qu S, Peng W, Zhang H, Cooper DKC, Dou K. A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation 2019; 26:e12497. [PMID: 30767272 DOI: 10.1111/xen.12497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Pig liver xenotransplantation appears to be more perplexing when compared to heart or kidney xenotransplantation, even though great progress has been achieved. The relevant molecular mechanisms involved in xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia, are complex, and need to be systematically investigated. The deletion of expression of Gal antigens in the liver graft highlights the injurious impact of nonGal antigens, which continue to induce humoral rejection. Innate immunity, particularly mediated by macrophages and natural killer cells, interplays with inflammation and coagulation disorders. Kupffer cells and liver sinusoidal endothelial cells (LSECs) together mediate leukocyte, erythrocyte, and platelet sequestration and phagocytosis, which can be exacerbated by increased cytokine production, cell desialylation, and interspecies incompatibilities. The coagulation cascade is activated by release of tissue factor which can be dependent or independent of the xenoreactive immune response. Depletion of endothelial anticoagulants and anti-platelet capacity amplify coagulation activation, and interspecies incompatibilities of coagulation-regulatory proteins facilitate dysregulation. LSECs involved in platelet phagocytosis and transcytosis, coupled with hepatocyte-mediated degradation, are responsible for thrombocytopenia. Adaptive immunity could also be problematic in long-term liver graft survival. Currently, relevant evidence and study results of various genetic modifications to the pig donor need to be fully determined, with the aim of identifying the ideal transgene combination for pig liver xenotransplantation. We believe that clinical trials of pig liver xenotransplantation should initially be considered as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
|