1
|
Vorsteveld EE, Van der Made CI, Smeekens SP, Schuurs-Hoeijmakers JH, Astuti G, Diepstra H, Gilissen C, Hoenselaar E, Janssen A, van Roozendaal K, Engelen JSV, Steyaert W, Weiss MM, Yntema HG, Mantere T, AlZahrani MS, van Aerde K, Derfalvi B, Faqeih EA, Henriet SSV, van Hoof E, Idressi E, Issekutz TB, Jongmans MCJ, Keski-Filppula R, Krapels I, Te Loo M, Mulders-Manders CM, Ten Oever J, Potjewijd J, Sarhan NT, Slot MC, Terhal PA, Thijs H, Vandersteen A, Vanhoutte EK, van de Veerdonk F, van Well G, Netea MG, Simons A, Hoischen A. Clinical exome sequencing data from patients with inborn errors of immunity: Cohort level diagnostic yield and the benefit of systematic reanalysis. Clin Immunol 2024; 268:110375. [PMID: 39369972 DOI: 10.1016/j.clim.2024.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
While next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review. The molecular diagnostic yield after standard exome analysis was 11.8 %. Through systematic reanalysis, we identified variants of interest in 5.2 % of undiagnosed patients, with 76.7 % being (candidate) disease-causing, providing a (candidate) diagnosis in 15.2 % of our cohort. We find a 1.7 percentage point increase in conclusive molecular diagnoses. We find a high degree of actionability in patients with a genetic diagnosis (76.4 %). Despite the modest absolute diagnostic gain, these data support the benefit of iterative exome reanalysis in IEI patients, conveying the notion that our current understanding of genes and variants involved in IEI is by far not saturated.
Collapse
Affiliation(s)
- Emil E Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caspar I Van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sanne P Smeekens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Galuh Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen Diepstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Hoenselaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alice Janssen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kees van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Wouter Steyaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mofareh S AlZahrani
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Koen van Aerde
- Department of Paediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Beata Derfalvi
- Division of Immunology, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stefanie S V Henriet
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elise van Hoof
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eman Idressi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Thomas B Issekutz
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maroeska Te Loo
- Department of Pediatric Hematology, Amalia children's hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Ten Oever
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith Potjewijd
- Department of Internal Medicine, Division of Experimental and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nora Tarig Sarhan
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Marjan C Slot
- Department of Allergology and Clinical Immunology, Maastricht UMC+, Maastricht, The Netherlands
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Herman Thijs
- Department of Pediatrics, Gelre Ziekenhuizen Zutphen, The Netherlands
| | - Anthony Vandersteen
- Division of Medical Genetics, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Els K Vanhoutte
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gijs van Well
- Department of Paediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Doye A, Chaintreuil P, Lagresle-Peyrou C, Batistic L, Marion V, Munro P, Loubatier C, Chirara R, Sorel N, Bessot B, Bronnec P, Contenti J, Courjon J, Giordanengo V, Jacquel A, Barbry P, Couralet M, Aladjidi N, Fischer A, Cavazzana M, Mallebranche C, Visvikis O, Kracker S, Moshous D, Verhoeyen E, Boyer L. RAC2 gain-of-function variants causing inborn error of immunity drive NLRP3 inflammasome activation. J Exp Med 2024; 221:e20231562. [PMID: 39212656 PMCID: PMC11363864 DOI: 10.1084/jem.20231562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
A growing number of patients presenting severe combined immunodeficiencies attributed to monoallelic RAC2 variants have been identified. The expression of the RHO GTPase RAC2 is restricted to the hematopoietic lineage. RAC2 variants have been described to cause immunodeficiencies associated with high frequency of infection, leukopenia, and autoinflammatory features. Here, we show that specific RAC2 activating mutations induce the NLRP3 inflammasome activation leading to the secretion of IL-1β and IL-18 from macrophages. This activation depends on the activation state of the RAC2 variant and is mediated by the downstream kinase PAK1. Inhibiting the RAC2-PAK1-NLRP3 inflammasome pathway might be considered as a potential treatment for these patients.
Collapse
Affiliation(s)
- Anne Doye
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | - Chantal Lagresle-Peyrou
- Université Paris Cité, Paris, France
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | | | | | | | | | - Rayana Chirara
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Nataël Sorel
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Boris Bessot
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Pauline Bronnec
- Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Lyon, France
- Université Claude Bernard Lyon 1, CNRS UMR5308, École normale supérieure de Lyon, Lyon, France
| | - Julie Contenti
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Johan Courjon
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Valerie Giordanengo
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | - Pascal Barbry
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Marie Couralet
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Autoimmunes de l’Enfant, Pediatric Hematologic Unit, Centre d’Investigation Clinique Plurithématique INSERM 1401, University Hospital of Bordeaux, Bordeaux, France
| | - Alain Fischer
- Imagine Institute, INSERM UMR 1163, Paris, France
- Necker Hospital, Pediatric Hematology-Immunology and Rheumatology Unit, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| | - Marina Cavazzana
- Université Paris Cité, Paris, France
- Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Coralie Mallebranche
- Université d’Angers, Université de Nantes, Inserm, CNRS, CRCI2NA, SFR ICAT, Angers, France
- Centre Hospitalier Universitaire Angers, Pediatric Immuno-Hemato-Oncology Unit, Angers, France
| | | | - Sven Kracker
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Laboratoire Dynamique du Génome et Système Immunitaire, Imagine Institute, INSERM UMR 1163, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, Nice, France
- Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Lyon, France
| | | |
Collapse
|
3
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Donkó Á, Sharapova SO, Kabat J, Ganesan S, Hauck FH, Bergerson JRE, Marois L, Abbott J, Moshous D, Williams KW, Campbell N, Martin PL, Lagresle-Peyrou C, Trojan T, Kuzmenko NB, Deordieva EA, Raykina EV, Abers MS, Abolhassani H, Barlogis V, Milla C, Hall G, Mousallem T, Church J, Kapoor N, Cros G, Chapdelaine H, Franco-Jarava C, Lopez-Lerma I, Miano M, Leiding JW, Klein C, Stasia MJ, Fischer A, Hsiao KC, Martelius T, Sepännen MRJ, Barmettler S, Walter J, Masmas TN, Mukhina AA, Falcone EL, Kracker S, Shcherbina A, Holland SM, Leto TL, Hsu AP. Clinical and functional spectrum of RAC2-related immunodeficiency. Blood 2024; 143:1476-1487. [PMID: 38194689 PMCID: PMC11033590 DOI: 10.1182/blood.2023022098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Fabian H. Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Louis Marois
- Department of Medicine, Centre Hospitalier Universitaire de Montréal and Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Medecine, Centre Hospitalier Universitaire de Québec, Université de Laval, Québec, QC, Canada
| | - Jordan Abbott
- University of Colorado School of Medicine, Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital of Colorado, Aurora, CO
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris Centre Université de Paris, Paris, France
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, INSERM UMR 1163, Paris, France
| | - Kelli W. Williams
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Paul L. Martin
- Division of Transplant and Cellular Therapy, Duke University Medical School, Durham, NC
| | - Chantal Lagresle-Peyrou
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
| | | | - Natalia B. Kuzmenko
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina A. Deordieva
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena V. Raykina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael S. Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vincent Barlogis
- Pediatric Hematology Unit, La Timone University Hospital, Marseille, France
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey Hall
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Talal Mousallem
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Joseph Church
- Pediatric Allergy/Immunology, Children’s Hospital Los Angeles, Los Angeles, CA
- Clinical Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Guilhem Cros
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Clara Franco-Jarava
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Ingrid Lopez-Lerma
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Maurizio Miano
- Haematology Unit, Scientific Institute for Research, Hospitalization and Healthcare Istituto Giannina Gaslini, Genoa, Italy
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
- Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Centre Diagnostic et Recherche sur la Granulomatose Septique Chronique, Grenoble, France
- Université Grenoble Alpes, Centre National de le Recherche Scientifique, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Kuang-Chih Hsiao
- Department of Immunology, Starship Child Health, Te Whatu Ora, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Timi Martelius
- Inflammation Center/Infectious Diseases, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Mikko R. J. Sepännen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- ERN-RITA Core Center Member, RITAFIN, Helsinki, Finland
- Rare Disease Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Jolan Walter
- University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Tania N. Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Department, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna A. Mukhina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Emilia Liana Falcone
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Sven Kracker
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anna Shcherbina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Thomas L. Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Xu K, Jiang P, Chen Z, Gu X, Zhang T. ADAM22 acts as a novel predictive biomarker for unfavorable prognosis and facilitates metastasis via PI3K/AKT signaling pathway in nasopharyngeal carcinoma. Pathol Res Pract 2024; 256:155264. [PMID: 38518731 DOI: 10.1016/j.prp.2024.155264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis. METHODS The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database. Subsequently, various techniques including quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, migration and invasion assays, in conjunction with bioinformatics and prognostic modeling, were utilized to elucidate the role of candidate genes in NPC metastasis. RESULTS We discerned the gene a disintegrin and metalloprotease 22 (ADAM22) as a distinct and significant factor in the progression and metastasis of NPC through five datasets. The elevated expression of ADAM22 was observed in clinical tissue and plasma samples with advanced NPC, as well as in high metastatic cells. Furthermore, we highlighted its essential role in a prognostic model that demonstrated strong prediction performance for NPC. Notably, overexpression of ADAM22 was found to enhance the aggressiveness and epithelial-mesenchymal transition (EMT) of low metastatic NPC cells, whereas the downregulation of ADAM22 resulted in suppressed effect in high metastatic cells. Delving into the mechanism, ADAM22 activated the PI3K/Akt signaling pathway through the mediation of Rac Family Small GTPase 2 (RAC2), thereby facilitating EMT and metastasis in NPC. CONCLUSIONS The study provided pioneering insights that ADAM22 had the potential to act as an oncogene by promoting EMT and metastasis of NPC through the RAC2-mediated PI3K/Akt signaling pathway. Thus, ADAM22 could serve as a novel prognostic indicator in NPC.
Collapse
Affiliation(s)
- Kaixiong Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ping Jiang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zui Chen
- Department of Oncology, the Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
6
|
Hall G, Donkó Á, Pratt C, Kim-Chang JJ, Martin PL, Stallings AP, Sleasman JW, Holland SM, Hsu AP, Leto TL, Mousallem T. Case Report: Profound newborn leukopenia related to a novel RAC2 variant. Front Pediatr 2024; 12:1365187. [PMID: 38516355 PMCID: PMC10954883 DOI: 10.3389/fped.2024.1365187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
We report the case of a 1-week-old male born full-term, who had two inconclusive severe combined immunodeficiency (SCID) newborn screens and developed scalp cellulitis and Escherichia coli bacteremia. He did not pass early confirmatory hearing screens. Initial blood counts and lymphocyte flow cytometry revealed profound neutropenia and lymphopenia with a T-/B-/NK- phenotype. Red blood cell adenosine deaminase 1 activity was within normal limits. A presumptive diagnosis of reticular dysgenesis was considered. Granulocyte colony-stimulating factor was started, but there was no improvement in neutrophil counts. Subsequent lymphocyte flow cytometry at around 4 weeks of age demonstrated an increase in T-, B- and NK-cell numbers, eliminating suspicion for SCID and raising concern for congenital neutropenia and bone marrow failure syndromes. Genetic testing revealed a novel variant in RAC2 [c.181C>A (p.Gln61Lys)] (Q61K). RAC2, a Ras-related GTPase, is the dominant RAC protein expressed in hematopoietic cells and is involved with various downstream immune-mediated responses. Pathogenic RAC2 variants show significant phenotypic heterogeneity (spanning from neutrophil defects to combined immunodeficiency) across dominant, constitutively activating, dominant activating, dominant negative, and autosomal recessive subtypes. Given the identification of a novel variant, functional testing was pursued to evaluate aberrant pathways described in other RAC2 pathogenic variants. In comparison to wild-type RAC2, the Q61K variant supported elevated superoxide production under both basal and PMA-stimulated conditions, increased PAK1 binding, and enhanced plasma membrane ruffling, consistent with other dominant, constitutively active mutations. This case highlights the diagnostic challenge associated with genetic variants identified via next-generation sequencing panels and the importance of functional assays to confirm variant pathogenicity.
Collapse
Affiliation(s)
- Geoffrey Hall
- Division of Allergy and Immunology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Ágnes Donkó
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cristina Pratt
- Division of Allergy and Immunology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Julie J. Kim-Chang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Paul L. Martin
- Division of Pediatric Transplant and Cellular Therapy, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Amy P. Stallings
- Division of Allergy and Immunology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - John W. Sleasman
- Division of Allergy and Immunology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amy P. Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thomas L. Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Talal Mousallem
- Division of Allergy and Immunology, Department of Pediatrics, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Ashby L, Chan L, Winterbourn C, Woon ST, Keating P, Heller R, Ameratunga R, Chua I, Hsiao KC. Phenotypic spectrum in a family with a novel RAC2 p.I21S dominant-activating mutation. Clin Transl Immunology 2024; 13:e1493. [PMID: 38410820 PMCID: PMC10895683 DOI: 10.1002/cti2.1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives Dominant-activating (DA) lesions in RAC2 have been reported in 18 individuals to date. Some have required haematopoietic stem cell transplantation (HSCT) for their (severe) combined immunodeficiency syndrome phenotype. We aimed to investigate clinical and cellular features of a kindred harbouring a novel variant in RAC2 p.Ile21Ser (I21S) to better understand DA lesions' phenotypic spectrum. Methods Clinical and immunological information was collated for seven living individuals from the same kindred with RAC2 p.I21S. We evaluated neutrophil morphology, RAC2 protein expression and superoxide production using freshly isolated neutrophils stimulated with phorbol-12-myristate-13-acetate (PMA) and N-formyl-MetLeuPhe (fMLP). Results Patient 1 (P1, aged 11, male) has a history of bacterial suppurative otitis media, viral and bacterial cutaneous infections. P1's siblings (P2, P3), mother (P4), maternal aunt (P5) and uncle (P6) have similar infection histories. P1's maternal cousin (P7) presented with Burkitt's lymphoma at age 9. All affected individuals are alive and none has required HSCT to date. They have chronic lymphopenia affecting the CD4+T and B-cell compartments. P1-3 have isolated reduction in IgM levels whereas the adults universally have normal immunoglobulins. Specific antibody responses are preserved. Affected individuals have neutrophil vacuolation, and their neutrophils have enhanced superoxide production compared to healthy controls. Conclusion RAC2 p.I21S is an activating variant causing notable morphological and functional abnormalities similar to other reported DA mutations. This novel variant expands the broad clinical phenotypic spectrum of RAC2 DA lesions, emphasising the need to tailor clinical management according to patients' disease phenotype and severity.
Collapse
Affiliation(s)
- Louisa Ashby
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science University of Otago Christchurch Christchurch New Zealand
| | - Lydia Chan
- Department of Clinical Immunology Auckland City Hospital Auckland New Zealand
| | - Christine Winterbourn
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science University of Otago Christchurch Christchurch New Zealand
| | - See-Tarn Woon
- LabPLUS Te Toka Tumai, Te Whatu Ora Auckland New Zealand
| | - Paula Keating
- Canterbury Health Laboratories Te Whatu Ora Christchurch New Zealand
| | - Raoul Heller
- Genetic Health Service NZ - Northern Hub, Te Toka Tumai Auckland New Zealand
| | - Rohan Ameratunga
- Department of Clinical Immunology Auckland City Hospital Auckland New Zealand
- LabPLUS Te Toka Tumai, Te Whatu Ora Auckland New Zealand
| | - Ignatius Chua
- Canterbury Health Laboratories Te Whatu Ora Christchurch New Zealand
- Christchurch Hospital Te Whatu Ora Christchurch New Zealand
| | - Kuang-Chih Hsiao
- Starship Child Health Te Whatu Ora Auckland New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
8
|
Guo Y, Deng X, Wang S, Yuan Y, Guo Z, Hao H, Jiao Y, Li P, Han S. SILAC proteomics based on 3D cell spheroids unveils the role of RAC2 in regulating the crosstalk between triple-negative breast cancer cells and tumor-associated macrophages. Int J Biol Macromol 2024; 254:127639. [PMID: 37879580 DOI: 10.1016/j.ijbiomac.2023.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is characterized by a high infiltration of tumor-associated macrophages (TAMs). TAMs contribute significantly to tumor progression by intricately interacting with tumor cells. Deeply investigating the interaction between TNBC cells and TAMs is of great importance for finding potential biomarkers and developing novel therapeutic strategies to further improve the clinical outcomes of TNBC patients. In this study, we confirmed the interplay using both 3D and 2D co-culture models. The stable-isotype labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was conducted on 3D cell spheroids containing TNBC cells and macrophages to identify the potential candidate in regulating the crosstalk between TNBC and TAMs. Ras-related C3 botulinum toxin substrate 2 (RAC2) was identified as a potential molecule for further exploration, given its high expression in TNBC and positive correlation with M2 macrophage infiltration. The suppression of RAC2 inhibited TNBC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Meanwhile, knocking down RAC2 in TNBC cells impaired macrophage recruitment and M2 polarization. Mechanistically, RAC2 exerted its roles in TNBC cells and TAMs by regulating the activation of P65 NF-κB and P38 MAPK, while TAMs further elevated RAC2 expression and P65 NF-κB activation by secreting soluble mediators including IL-10. These findings highlight the significance of RAC2 as a crucial molecule in the crosstalk between TNBC and TAMs, suggesting it could be a promising therapeutic target in TNBC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Xinxin Deng
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yuan Yuan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Zhengwang Guo
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Huifeng Hao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yanna Jiao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Pingping Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
9
|
Mishra AK, Rodriguez M, Torres AY, Smith M, Rodriguez A, Bond A, Morrissey MA, Montell DJ. Hyperactive Rac stimulates cannibalism of living target cells and enhances CAR-M-mediated cancer cell killing. Proc Natl Acad Sci U S A 2023; 120:e2310221120. [PMID: 38109551 PMCID: PMC10756302 DOI: 10.1073/pnas.2310221120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Melanie Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Alba Yurani Torres
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Morgan Smith
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Anthony Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Denise J. Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
10
|
Nakamura T, Sakaguchi H, Mohri H, Ninoyu Y, Goto A, Yamaguchi T, Hishikawa Y, Matsuda M, Saito N, Ueyama T. Dispensable role of Rac1 and Rac3 after cochlear hair cell specification. J Mol Med (Berl) 2023; 101:843-854. [PMID: 37204479 PMCID: PMC10300165 DOI: 10.1007/s00109-023-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
Rac small GTPases play important roles during embryonic development of the inner ear; however, little is known regarding their function in cochlear hair cells (HCs) after specification. Here, we revealed the localization and activation of Racs in cochlear HCs using GFP-tagged Rac plasmids and transgenic mice expressing a Rac1-fluorescence resonance energy transfer (FRET) biosensor. Furthermore, we employed Rac1-knockout (Rac1-KO, Atoh1-Cre;Rac1flox/flox) and Rac1 and Rac3 double KO (Rac1/Rac3-DKO, Atoh1-Cre;Rac1flox/flox;Rac3-/-) mice, under the control of the Atoh1 promoter. However, both Rac1-KO and Rac1/Rac3-DKO mice exhibited normal cochlear HC morphology at 13 weeks of age and normal hearing function at 24 weeks of age. No hearing vulnerability was observed in young adult (6-week-old) Rac1/Rac3-DKO mice even after intense noise exposure. Consistent with prior reports, the results from Atoh1-Cre;tdTomato mice confirmed that the Atoh1 promoter became functional only after embryonic day 14 when the sensory HC precursors exit the cell cycle. Taken together, these findings indicate that although Rac1 and Rac3 contribute to the early development of sensory epithelia in cochleae, as previously shown, they are dispensable for the maturation of cochlear HCs in the postmitotic state or for hearing maintenance following HC maturation. KEY MESSAGES: Mice with Rac1 and Rac3 deletion were generated after HC specification. Knockout mice exhibit normal cochlear hair cell morphology and hearing. Racs are dispensable for hair cells in the postmitotic state after specification. Racs are dispensable for hearing maintenance after HC maturation.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Akihiro Goto
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8315, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, 573-0101, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8315, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
11
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
13
|
Hsu AP. Not too little, not too much: the impact of mutation types in Wiskott-Aldrich syndrome and RAC2 patients. Clin Exp Immunol 2023; 212:137-146. [PMID: 36617178 PMCID: PMC10128166 DOI: 10.1093/cei/uxad001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Primary immune deficiencies (PIDs) are genetic disorders impacting the appropriate development or functioning of any portion of the immune system. The broad adoption of high-throughput sequencing has driven discovery of new genes as well as expanded phenotypes associated with known genes. Beginning with the identification of WAS mutations in patients with severe Wiskott-Aldrich Syndrome, recognition of WAS mutations in additional patients has revealed phenotypes including isolated thrombocytopenia and X-linked neutropenia. Likewise RAC2 patients present with vastly different phenotypes depending on the mutation-ranging from reticular dysgenesis or severe neutrophil dysfunction with neonatal presentation to later onset common variable immune deficiency. This review examines genotype-phenotype correlations in patients with WAS (Wiskott-Aldrich Syndrome) and RAC2 mutations, highlighting functional protein domains, how mutations alter protein interactions, and how specific mutations can affect isolated functions of the protein leading to disparate phenotypes.
Collapse
Affiliation(s)
- Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Zhang L, Lv G, Peng Y, Yang L, Chen J, An Y, Zhang Z, Tang X, Li Z, Zhao X. A Novel RAC2 Mutation Causing Combined Immunodeficiency. J Clin Immunol 2023; 43:229-240. [PMID: 36190591 DOI: 10.1007/s10875-022-01373-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/24/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Ras-related C3 botulinum toxin substrate 2 (RAC2) acts as a molecular switch and has crucial roles in cell signaling and actin dynamics. A broad spectrum of genetic RAC2 mutations can cause various types of primary immunodeficiency, with complete penetrance. Here, we report a novel heterozygous missense mutation in RAC2 with incomplete penetrance, and the associated phenotypes, in a Chinese family. METHODS Immunological phenotype was detected by flow cytometry. T cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) were assessed by real-time quantitative PCR. Gene mutations were detected by whole-exome sequencing (WES) and confirmed by Sanger sequencing. RESULTS The proband was an 11-year-old girl who presented with recurrent respiratory infections, bronchiectasis, persistent Epstein-Barr virus viremia, infectious mononucleosis, encephalitis, and cutaneous human papillomavirus infections. Laboratory analyses revealed increased serum IgG and decreased IgM levels, reduced naïve CD4+ and CD8+ T cells, an inverted CD4+/CD8+ ratio, and low TREC and KREC numbers. The mutation resulted in increased production of reactive oxygen species, while impaired actin polarization in neutrophils; diminished proliferative responses, increased cytokine production and a dysregulated phenotype in T lymphocytes; as well as accelerated apoptosis and hyperactivity of AKT in HL-60 human leukemia cells. WES identified a c.44G > A mutation in RAC2 resulting in a p.G15D substitution. Despite sharing the same mutation as the proband, her father suffered from recurrent respiratory infections and bronchiectasis, and had similar immunological defects, whereas her sister was apparently healthy, other than cutaneous human papillomavirus infections, and only mild immunological defects were detected preliminarily. CONCLUSIONS Our findings broaden the clinical and genetic spectra of RAC2 mutations and underline the importance of RAC2 gain-of-function mutations with complete or incomplete penetrance.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ge Lv
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Peng
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Pediatrics Research Institute, Hunan Children's Hospital, Changsha, Hunan, China
| | - Lu Yang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Li
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China.
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Banka S, Bennington A, Baker MJ, Rijckmans E, Clemente GD, Ansor NM, Sito H, Prasad P, Anyane-Yeboa K, Badalato L, Dimitrov B, Fitzpatrick D, Hurst ACE, Jansen AC, Kelly MA, Krantz I, Rieubland C, Ross M, Rudy NL, Sanz J, Stouffs K, Xu ZL, Malliri A, Kazanietz MG, Millard TH. Activating RAC1 variants in the switch II region cause a developmental syndrome and alter neuronal morphology. Brain 2022; 145:4232-4245. [PMID: 35139179 PMCID: PMC9762944 DOI: 10.1093/brain/awac049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.
Collapse
Affiliation(s)
- Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, University of Manchester, St Mary’s Hospital, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Abigail Bennington
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of ManchesterM13 9PL, UK
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ellen Rijckmans
- Department of Pediatrics, UZ Brussel, Brussels, Belgium
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Giuliana D Clemente
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of ManchesterM13 9PL, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nurhuda Mohamad Ansor
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of ManchesterM13 9PL, UK
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Hilary Sito
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of ManchesterM13 9PL, UK
| | - Pritha Prasad
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of ManchesterM13 9PL, UK
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Columbia University Medical Center, New York 10032, USA
| | - Lauren Badalato
- Department of Pediatrics, School of Medicine, Kingston General Hospital, Queen’s University, Kingston, ON, Canada
| | - Boyan Dimitrov
- Centre for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - David Fitzpatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | | | - Ian Krantz
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Meredith Ross
- Division of Clinical Genetics, Columbia University Medical Center, New York 10032, USA
| | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Javier Sanz
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrien Stouffs
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Centre for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Zhuo Luan Xu
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tom H Millard
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of ManchesterM13 9PL, UK
| |
Collapse
|
17
|
Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front Immunol 2022; 13:912826. [PMID: 35784324 PMCID: PMC9241517 DOI: 10.3389/fimmu.2022.912826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes’ differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Reza Yazdani, ;
| |
Collapse
|
18
|
Zhang J, Zhao X, Guo Y, Liu Z, Wei S, Yuan Q, Shang H, Sang W, Cui S, Xu T, Yang K, Guo J, Pan C, Wang J, Pang J, Han T, Chen Y, Xu F. Macrophage ALDH2 (Aldehyde Dehydrogenase 2) Stabilizing Rac2 Is Required for Efferocytosis Internalization and Reduction of Atherosclerosis Development. Arterioscler Thromb Vasc Biol 2022; 42:700-716. [PMID: 35354308 PMCID: PMC9126264 DOI: 10.1161/atvbaha.121.317204] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Clinical studies show that the most common single-point mutation in humans, ALDH2 (aldehyde dehydrogenase 2) rs671 mutation, is a risk factor for the development and poor prognosis of atherosclerotic cardiovascular diseases, but the underlying mechanism remains unclear. Apoptotic cells are phagocytosed and eliminated by macrophage efferocytosis during atherosclerosis, and enhancement of arterial macrophage efferocytosis reduces atherosclerosis development. METHODS Plaque areas, necrotic core size, apoptosis, and efferocytosis in aortic lesions were investigated in APOE-/- mice with bone marrow transplanted from APOE-/-ALDH2-/- and APOE-/- mice. RNA-seq, proteomics, and immunoprecipitation experiments were used to screen and validate signaling pathways affected by ALDH2. Efferocytosis and protein levels were verified in human macrophages from wild-type and rs671 mutation populations. RESULTS We found that transplanting bone marrow from APOE-/-ALDH2-/- to APOE-/- mice significantly increased atherosclerosis plaques compared with transplanting bone marrow from APOE-/- to APOE-/- mice. In addition to defective efferocytosis in plaques of APOE-/- mice bone marrow transplanted from APOE-/-ALDH2-/- mice in vivo, macrophages from ALDH2-/- mice also showed significantly impaired efferocytotic activity in vitro. Subsequent RNA-seq, proteomics, and immunoprecipitation experiments showed that wild-type ALDH2 directly interacted with Rac2 and attenuated its degradation due to decreasing the K48-linked polyubiquitination of lysine 123 in Rac2, whereas the rs671 mutant markedly destabilized Rac2. Furthermore, Rac2 played a more crucial role than other Rho GTPases in the internalization process in which Rac2 was up-regulated, activated, and clustered into dots. Overexpression of wild-type ALDH2 in ALDH2-/- macrophages, rather than the rs671 mutant, rescued Rac2 degradation and defective efferocytosis. More importantly, ALDH2 rs671 in human macrophages dampened the apoptotic cells induced upregulation of Rac2 and subsequent efferocytosis. CONCLUSIONS Our study has uncovered a pivotal role of the ALDH2-Rac2 axis in mediating efferocytosis during atherosclerosis, highlighting a potential therapeutic strategy in cardiovascular diseases, especially for ALDH2 rs671 mutation carriers.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Xiangkai Zhao
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Yunyun Guo
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Zhiping Liu
- Center of Intelligent Medical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China (Z.L., H.S.)
| | - Shujian Wei
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Haixia Shang
- Center of Intelligent Medical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China (Z.L., H.S.)
| | - Wentao Sang
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Sumei Cui
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Tonghui Xu
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Kehui Yang
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Jialin Guo
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Jiaojiao Pang
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Tianrui Han
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Chest Pain Center (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.Z., X.Z., Y.G., S.W., Q.Y., W.S., S.C., T.X., K.Y., J.G., C.P., J.W., J.P., T.H., Y.C., F.X.), Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
20
|
Zhang L, Chen Z, Li W, Liu Q, Wang Y, Chen X, Tian Z, Yang Q, An Y, Zhang Z, Mao H, Tang X, Lv G, Zhao X. Combined Immunodeficiency Caused by a Novel De Novo Gain-of-Function RAC2 Mutation. J Clin Immunol 2022; 42:1280-1292. [PMID: 35596857 DOI: 10.1007/s10875-022-01288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023]
Abstract
Ras-related C3 botulinum toxin substrate 2 (RAC2) is a GTPase exclusively expressed in hematopoietic cells that acts as a pivotal regulator of several aspects of cell behavior via various cellular processes. RAC2 undergoes a tightly regulated GTP-binding/GTP-hydrolysis cycle, enabling it to function as a molecular switch. Mutations in RAC2 have been identified in 18 patients with different forms of primary immunodeficiency, ranging from phagocyte defects caused by dominant negative mutations to common variable immunodeficiency resulting from autosomal recessive loss-of-function mutations, or severe combined immunodeficiency due to dominant activating gain-of-function mutations. Here, we describe an 11-year-old girl with combined immunodeficiency presenting with recurrent respiratory infections and bronchiectasis. Immunological investigations revealed low T-cell receptor excision circle/K-deleting recombination excision circles numbers, lymphopenia, and low serum immunoglobulin G. Targeted next-generation sequencing identified a novel heterozygous mutation in RAC2, c.86C > G (p.P29R), located in the highly conserved Switch I domain. The mutation resulted in enhanced reactive oxygen species production, elevated F-actin content, and increased RAC2 protein expression in neutrophils, as well as increased cytokine production and a dysregulated phenotype in T lymphocytes. Furthermore, the dominant activating RAC2 mutation led to accelerated apoptosis with augmented intracellular active caspase 3, impaired actin polarization in lymphocytes and neutrophils, and diminished RAC2 polarization in neutrophils. We present a novel RAC2 gain-of-function mutation with implications for immunodeficiency and linked to functional dysregulation, including abnormal apoptosis and cell polarization arising from altered RAC2 expression. Thus, our findings broaden the spectrum of known RAC2 mutations and their underlying mechanisms.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, The Paediatric Academy of University of South China, Changsha, Hunan, China
| | - Zhi Chen
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Immunology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyan Li
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Liu
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Yang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huawei Mao
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ge Lv
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaodong Zhao
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Recurrent switch 2 domain RAC2 mutations in intravascular large B-cell lymphoma. Blood Adv 2022; 6:6051-6055. [PMID: 35395066 PMCID: PMC9706525 DOI: 10.1182/bloodadvances.2022006985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
|
22
|
Hsu AP, Holland SM. Host genetics of innate immune system in infection. Curr Opin Immunol 2022; 74:140-149. [DOI: 10.1016/j.coi.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
|
23
|
Redmond MT, Scherzer R, Prince BT. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63:55-74. [PMID: 35020168 PMCID: PMC8753955 DOI: 10.1007/s12016-021-08881-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/12/2023]
Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Collapse
Affiliation(s)
- Margaret T. Redmond
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Rebecca Scherzer
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Benjamin T. Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
24
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders classically characterized by an increased susceptibility to infection and/or disruption in the regulation of an immunologic pathway. This review summarizes and highlights the new IEI disorders in the IUIS 2019 report and 2020 interim report and discusses the directions for the future management of PIDs. RECENT FINDINGS Since 2017, the International Union of Immunologic Societies (IUIS) IEI committee has updated the IUIS classification of IEIs with 88 new gene defects and 75 new immune disorders. The increased utilization of genetic testing and advances in the strategic evaluation of genetic variants have identified, not only novel IEI disorders, but additional genetic causes for known IEI disorders. Investigation of potential immune susceptibilities during the ongoing COVID-19 pandemic suggests that defects in Type I interferon signalling may underlie more severe disease. SUMMARY The rapid discovery of new IEIs reflects the growing trend of applying genetic testing modalities as part of medical diagnosis and management.In turn, elucidating the pathophysiology of these novel IEIs have enhanced our understanding of how genetic mutations can modulate the immune system and their consequential effect on human health and disease.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| | - Jordan S Orange
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
- Division of Immunogenetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| |
Collapse
|
26
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int 2021; 21:527. [PMID: 34627249 PMCID: PMC8502390 DOI: 10.1186/s12935-021-02234-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Migration is one of the five major behaviors of cells. Although RhoC-a classic member of the Rho gene family-was first identified in 1985, functional RhoC data have only been widely reported in recent years. Cell migration involves highly complex signaling mechanisms, in which RhoC plays an essential role. Cell migration regulated by RhoC-of which the most well-known function is its role in cancer metastasis-has been widely reported in breast, gastric, colon, bladder, prostate, lung, pancreatic, liver, and other cancers. Our review describes the role of RhoC in various types of cell migration. The classic two-dimensional cell migration cycle constitutes cell polarization, adhesion regulation, cell contraction and tail retraction, most of which are modulated by RhoC. In the three-dimensional cell migration model, amoeboid migration is the most classic and well-studied model. Here, RhoC modulates the formation of membrane vesicles by regulating myosin II, thereby affecting the rate and persistence of amoeba-like migration. To the best of our knowledge, this review is the first to describe the role of RhoC in all cell migration processes. We believe that understanding the detail of RhoC-regulated migration processes will help us better comprehend the mechanism of cancer metastasis. This will contribute to the study of anti-metastatic treatment approaches, aiding in the identification of new intervention targets for therapeutic or genetic transformational purposes.
Collapse
Affiliation(s)
- Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Li
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
27
|
Abstract
Ras homology (RHO) GTPases are signalling proteins that have crucial roles in triggering multiple immune functions. Through their interactions with a broad range of effectors and kinases, they regulate cytoskeletal dynamics, cell polarity and the trafficking and proliferation of immune cells. The activity and localization of RHO GTPases are highly controlled by classical families of regulators that share consensus motifs. In this Review, we describe the recent discovery of atypical modulators and partners of RHO GTPases, which bring an additional layer of regulation and plasticity to the control of RHO GTPase activities in the immune system. Furthermore, the development of large-scale genetic screening has now enabled researchers to identify dysregulation of RHO GTPase signalling pathways as a cause of many immune system-related diseases. We discuss the mutations that have been identified in RHO GTPases and their signalling circuits in patients with rare diseases. The discoveries of new RHO GTPase partners and genetic mutations in RHO GTPase signalling hubs have uncovered unsuspected layers of crosstalk with other signalling pathways and may provide novel therapeutic opportunities for patients affected by complex immune or broader syndromes.
Collapse
|
28
|
Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, Rawat A, Vignesh P, Madkaikar M, Stasia MJ, Bakri FG, de Boer M, Roesler J, Köker N, Köker MY, Jakobsen M, Bustamante J, Garcia-Morato MB, Shephard JLV, Cagdas D, Tezcan I, Sherkat R, Mortaz E, Fayezi A, Shahrooei M, Wolach B, Blancas-Galicia L, Kanegane H, Kawai T, Condino-Neto A, Vihinen M, Zerbe CS, Holland SM, Malech HL, Gallin JI, Kuhns DB. Hematologically important mutations: The autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis 2021; 92:102596. [PMID: 34547651 DOI: 10.1016/j.bcmd.2021.102596] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe, recurrent bacterial and fungal infections. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is subsequently metabolized to hydrogen peroxide and other reactive oxygen species (ROS). These products are essential for intracellular killing of pathogens by phagocytic leukocytes (neutrophils, eosinophils, monocytes and macrophages). The leukocyte NADPH oxidase is composed of five subunits, four of which are encoded by autosomal genes. These are CYBA, encoding p22phox, NCF1, encoding p47phox, NCF2, encoding p67phox and NCF4, encoding p40phox. This article lists all mutations identified in these genes in CGD patients. In addition, cytochrome b558 chaperone-1 (CYBC1), recently recognized as an essential chaperone protein for the expression of the X-linked NADPH oxidase component gp91phox (also called Nox2), is encoded by the autosomal gene CYBC1. Mutations in this gene also lead to CGD. Finally, RAC2, a small GTPase of the Rho family, is needed for activation of the NADPH oxidase, and mutations in the RAC2 gene therefore also induce CGD-like symptoms. Mutations in these last two genes are also listed in this article.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Debra Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Manesha Madkaikar
- National Institute of Immunohaematology, ICMR, 13th Floor, KEM Hospital Campus, Mumbai, Parel 400012, India
| | - Marie José Stasia
- University Grenoble Alpes, CEA, CNRS, IBS, and Centre Hospitalier Universitaire Grenoble Alpes, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), 38000 Grenoble, France
| | - Faris Ghalib Bakri
- Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Martin de Boer
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Joachim Roesler
- Dept of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nezihe Köker
- Dept of Immunology, Erciyes University School of Medicine, Kayseri, Turkey; Dept of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - M Yavuz Köker
- Dept of Immunology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Marianne Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM, U550, and René Descartes University, Necker Medical School, Paris, France
| | - Maria Bravo Garcia-Morato
- Department of Immunology, La Paz University Hospital, IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | | | - Deniz Cagdas
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Section of Pediatric Immunology, 06100 Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Section of Pediatric Immunology, 06100 Ankara, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmaeil Mortaz
- Dept of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Fayezi
- Dept of Allergy and Clinical Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Ahvaz, Iran; Dept. of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Baruch Wolach
- Dept of Pediatrics and Laboratory for Leukocyte Function, Meir Medical Centre, Kfar Saba, Israel
| | | | - Hirokazu Kanegane
- Dept of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Antonio Condino-Neto
- Dept of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauno Vihinen
- Dept of Experimental Medical Science, Lund University, BMC B13, SE-22184 Lund, Sweden
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John I Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
29
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
30
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
31
|
Bakri FG, Mollin M, Beaumel S, Vigne B, Roux-Buisson N, Al-Wahadneh AM, Alzyoud RM, Hayajneh WA, Daoud AK, Shukair MEA, Karadshe MF, Sarhan MM, Al-Ramahi JAW, Fauré J, Rendu J, Stasia MJ. Second Report of Chronic Granulomatous Disease in Jordan: Clinical and Genetic Description of 31 Patients From 21 Different Families, Including Families From Lybia and Iraq. Front Immunol 2021; 12:639226. [PMID: 33746979 PMCID: PMC7973097 DOI: 10.3389/fimmu.2021.639226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic granulomatous Disease (CGD) is a rare innate immunodeficiency disorder caused by mutations in one of the six genes (CYBA, CYBB, NCF1, NCF2, NCF4, and CYBC1/EROS) encoding the superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH)—oxidase complex in phagocytes. In the Western population, the most prevalent form of CGD (about two-thirds of all cases) is the X-linked form (X-CGD) caused by mutations in CYBB. The autosomal recessive forms (AR-CGD), due to mutations in the other genes, collectively account for the remaining one-third of CGD cases. We investigated the clinical and molecular features of 22 Jordanian, 7 Libyan, and 2 Iraqi CGD patients from 21 different families. In addition, 11 sibling patients from these families were suspected to have been died from CGD as suggested by their familial and clinical history. All patients except 9 were children of consanguineous parents. Most of the patients suffered from AR-CGD, with mutations in CYBA, NCF1, and NCF2, encoding p22phox, p47phox, and p67phox proteins, respectively. AR-CGD was the most frequent form, in Jordan probably because consanguineous marriages are common in this country. Only one patient from non-consanguineous parents suffered from an X910 CGD subtype (0 indicates no protein expression). AR670 CGD and AR220 CGD appeared to be the most frequently found sub-types but also the most severe clinical forms compared to AR470 CGD. As a geographical clustering of 11 patients from eight Jordanian families exhibited the c.1171_1175delAAGCT mutation in NCF2, segregation analysis with nine polymorphic markers overlapping NCF2 indicates that a common ancestor has arisen ~1,075 years ago.
Collapse
Affiliation(s)
- Faris Ghalib Bakri
- Division of Infectious Diseases, Department of Medicine, Jordan University Hospital, Amman, Jordan.,Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Michelle Mollin
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Bénédicte Vigne
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Nathalie Roux-Buisson
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Raed Mohammed Alzyoud
- Division of Immunology, Department of Pediatrics, Queen Rani Children's Hospital, Amman, Jordan
| | - Wail Ahmad Hayajneh
- Division of Infectious Diseases, Department of Pediatrics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ammar Khaled Daoud
- Division of Immunology, Jordan University of Science & Technology, Irbid, Jordan
| | | | | | | | | | - Julien Fauré
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - John Rendu
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Marie Jose Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France.,Université Grenoble Alpes, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
32
|
Lagresle-Peyrou C, Olichon A, Sadek H, Roche P, Tardy C, Da Silva C, Garrigue A, Fischer A, Moshous D, Collette Y, Picard C, Casanova JL, André I, Cavazzana M. A gain-of-function RAC2 mutation is associated with bone-marrow hypoplasia and an autosomal dominant form of severe combined immunodeficiency. Haematologica 2021; 106:404-411. [PMID: 31919089 PMCID: PMC7849581 DOI: 10.3324/haematol.2019.230250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of life-threatening genetic disorders that typically present in the first year of life. They are defined by the absence of autologous T cells and the presence of an intrinsic or extrinsic defect in the B-cell compartment. In three newborns presenting with frequent infections and profound leukopenia, we identified a private, heterozygous mutation in the RAC2 gene (p.G12R). This mutation was de novo in the index case, who had been cured by hematopoietic stem cell transplantation but had transmitted the mutation to her sick daughter. Biochemical assays showed that the mutation was associated with a gain of function. The results of in vitro differentiation assays showed that RAC2 is essential for the survival and differentiation of hematopoietic stem/progenitor cells. Therefore, screening for RAC2 gain-of-function mutations should be considered in patients with a SCID phenotype and who lack a molecular diagnosis.
Collapse
Affiliation(s)
- Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Aurélien Olichon
- Cancer Research Center of Toulouse, CRCT, University of Toulouse, UPS, INSERM U1037, F-31037 Toulouse, France
| | - Hanem Sadek
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Philippe Roche
- Marseille Cancer Research Center, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, Team ISCB, F-13273 Marseille, France
| | - Claudine Tardy
- Cancer Research Center of Toulouse, CRCT, University of Toulouse, UPS, INSERM U1037, F-31037 Toulouse, France
| | - Cindy Da Silva
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Alexandrine Garrigue
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Alain Fischer
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- College de France, F-75231 Paris, France
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
| | - Yves Collette
- Marseille Cancer Research Center, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, Team ISCB, F-13273 Marseille, France
| | - Capucine Picard
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- Study Center for Primary Immunodeficiencies, Assistance Publique–Hôpitaux de Paris (AP-HP), Necker- Enfants Malades University Hospital, F-75015 Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
| | - Jean Laurent Casanova
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| |
Collapse
|
33
|
Currier R, Puck JM. SCID newborn screening: What we've learned. J Allergy Clin Immunol 2021; 147:417-426. [PMID: 33551023 PMCID: PMC7874439 DOI: 10.1016/j.jaci.2020.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Newborn screening for severe combined immunodeficiency, the most profound form of primary immune system defects, has long been recognized as a measure that would decrease morbidity and improve outcomes by helping patients avoid devastating infections and receive prompt immune-restoring therapy. The T-cell receptor excision circle test, developed in 2005, proved to be successful in pilot studies starting in the period 2008 to 2010, and by 2019 all states in the United States had adopted versions of it in their public health programs. Introduction of newborn screening for severe combined immunodeficiency, the first immune disorder accepted for population-based screening, has drastically changed the presentation of this disorder while providing important lessons for public health programs, immunologists, and transplanters.
Collapse
Affiliation(s)
- Robert Currier
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital San Francisco, San Francisco, Calif
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital San Francisco, San Francisco, Calif.
| |
Collapse
|
34
|
Fell CW, Nagy V. Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability. Trends Mol Med 2021; 27:220-230. [PMID: 33397633 DOI: 10.1016/j.molmed.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Intellectual disabilities (ID) are a type of neurodevelopmental disorder (NDD). They can have a genetic cause, including an emerging class of ID centring around Rho GTPases, such as Ras-related C3 botulinum toxin substrate 1 (RAC1). Guidelines for establishing genetic causality include the use of cellular models, which often have morphological aberrations, a long-standing hallmark of ID. Disease cellular models can facilitate high-throughput screening (HTS) of chemical or genetic perturbations, which can provide translatable biological insight. Here, we discuss a class of IDs centring around RAC1. We review novel and established cellular models of ID, including mouse and human primary cells and reprogrammed or induced neurons. Finally, we review progress and remaining challenges in the adoption of HTS methodologies by the community studying neurological disorders.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria.
| |
Collapse
|
35
|
McNulty SN, Evenson MJ, Riley M, Yoest JM, Corliss MM, Heusel JW, Duncavage EJ, Pfeifer JD. A Next-Generation Sequencing Test for Severe Congenital Neutropenia: Utility in a Broader Clinicopathologic Spectrum of Disease. J Mol Diagn 2020; 23:200-211. [PMID: 33217554 DOI: 10.1016/j.jmoldx.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 10/24/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a collection of diverse disorders characterized by chronically low absolute neutrophil count in the peripheral blood, increased susceptibility to infection, and a significant predisposition to the development of myeloid malignancies. SCN can be acquired or inherited. Inherited forms have been linked to variants in a group of diverse genes involved in the neutrophil-differentiation process. Variants that promote resistance to treatment have also been identified. Thus, genetic testing is important for the diagnosis, prognosis, and management of SCN. Herein we describe clinically validated assay developed for assessing patients with suspected SCN. The assay is performed from a whole-exome backbone. Variants are called across all coding exons, and results are filtered to focus on 48 genes that are clinically relevant to SCN. Validation results indicated 100% analytical sensitivity and specificity for the detection of constitutional variants among the 48 reportable genes. To date, 34 individuals have been referred for testing (age range: birth to 67 years). Several pathogenic and likely pathogenic variants have been identified, including one in a patient with late-onset disease. The pattern of cases referred for testing suggests that this assay has clinical utility in a broader spectrum of patients beyond those in the pediatric population who have classic early-onset symptoms characteristic of SCN.
Collapse
Affiliation(s)
- Samantha N McNulty
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Meaghan Riley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Summit Pathology, Loveland, Colorado
| | - Jennifer M Yoest
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John D Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
36
|
Stern H, Donkó A, Shapiro T, Hsu AP, Leto TL, Holland SM, Andreae DA. A Novel RAC2 Variant Presenting as Severe Combined Immunodeficiency. J Clin Immunol 2020; 41:473-476. [PMID: 33188496 DOI: 10.1007/s10875-020-00915-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Heather Stern
- Department of Pediatrics, Division of Allergy and Immunology, Penn State Children's Hospital, 600 University Drive, Hershey, PA, 17036, USA
| | - Agnes Donkó
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Teresa Shapiro
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State Children's Hospital, 600 University Drive, Hershey, PA, 17036, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Doerthe Adriana Andreae
- Department of Pediatrics, Division of Allergy and Immunology, Penn State Children's Hospital, 600 University Drive, Hershey, PA, 17036, USA.
| |
Collapse
|
37
|
Mollin M, Beaumel S, Vigne B, Brault J, Roux-Buisson N, Rendu J, Barlogis V, Catho G, Dumeril C, Fouyssac F, Monnier D, Gandemer V, Revest M, Brion JP, Bost-Bru C, Jeziorski E, Eitenschenck L, Jarrasse C, Drillon Haus S, Houachée-Chardin M, Hancart M, Michel G, Bertrand Y, Plantaz D, Kelecic J, Traberg R, Kainulainen L, Fauré J, Fieschi F, Stasia MJ. Clinical, functional and genetic characterization of 16 patients suffering from chronic granulomatous disease variants - identification of 11 novel mutations in CYBB. Clin Exp Immunol 2020; 203:247-266. [PMID: 32954498 DOI: 10.1111/cei.13520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The most common form is the X-linked CGD (X91-CGD), caused by mutations in the CYBB gene. Clinical, functional and genetic characterizations of 16 CGD cases of male patients and their relatives were performed. We classified them as suffering from different variants of CGD (X910 , X91- or X91+ ), according to NADPH oxidase 2 (NOX2) expression and NADPH oxidase activity in neutrophils. Eleven mutations were novel (nine X910 -CGD and two X91- -CGD). One X910 -CGD was due to a new and extremely rare double missense mutation Thr208Arg-Thr503Ile. We investigated the pathological impact of each single mutation using stable transfection of each mutated cDNA in the NOX2 knock-out PLB-985 cell line. Both mutations leading to X91- -CGD were also novel; one deletion, c.-67delT, was localized in the promoter region of CYBB; the second c.253-1879A>G mutation activates a splicing donor site, which unveils a cryptic acceptor site leading to the inclusion of a 124-nucleotide pseudo-exon between exons 3 and 4 and responsible for the partial loss of NOX2 expression. Both X91- -CGD mutations were characterized by a low cytochrome b558 expression and a faint NADPH oxidase activity. The functional impact of new missense mutations is discussed in the context of a new three-dimensional model of the dehydrogenase domain of NOX2. Our study demonstrates that low NADPH oxidase activity found in both X91- -CGD patients correlates with mild clinical forms of CGD, whereas X910 -CGD and X91+ -CGD cases remain the most clinically severe forms.
Collapse
Affiliation(s)
- M Mollin
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - S Beaumel
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - B Vigne
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - J Brault
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - N Roux-Buisson
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - J Rendu
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - V Barlogis
- Service de Pédiatrie et Hématologie Pédiatrique, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - G Catho
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - C Dumeril
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - F Fouyssac
- Département d'Onco-hématologie Pédiatrique, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - D Monnier
- Laboratoire d'Immunologie Cellulaire, Centre Hospitalier Universitaire Pontchaillou, Rennes, France
| | - V Gandemer
- Service d'Onco-hématologie Pédiatrique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - M Revest
- Service des Maladies Infectieuses et Réanimation Médicale, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - J-P Brion
- Pôle Médecine Aigue et Communautaire, Service d'Infectiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - C Bost-Bru
- Département de Pédiatrie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - E Jeziorski
- Département Urgences Post-urgences, CHU Montpellier, Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - L Eitenschenck
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - C Jarrasse
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - S Drillon Haus
- Service de Pédiatrie et Onco-hématologie, Centre Hospitalier Universitaire de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - M Houachée-Chardin
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - M Hancart
- Département Urgences Post-urgences, CHU Montpellier, Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - G Michel
- Service de Pédiatrie et Hématologie Pédiatrique, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - Y Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - D Plantaz
- Département de Pédiatrie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - J Kelecic
- Klinicki Bolnicki Centar Zagreb, Zagreb, Croatia
| | - R Traberg
- Hospital of Lithuanian University of Health Sciences, Kauno Klinikos, Kaunas, Lithuania
| | - L Kainulainen
- Department of Pediatrics, University Hospital of Turku, Turku, Finland.,Faculty of Medicine Turku, University of Turku, Turku, Finland
| | - J Fauré
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - F Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| | - M J Stasia
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| |
Collapse
|
38
|
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. J Innate Immun 2020; 13:3-25. [PMID: 32846417 DOI: 10.1159/000509717] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of primary immunodeficiencies (PIDs) have been identified over the last decade, which are caused by deleterious mutations in genes encoding for proteins involved in actin cytoskeleton regulation. These mutations primarily affect hematopoietic cells and lead to defective function of immune cells, such as impaired motility, signaling, proliferative capacity, and defective antimicrobial host defense. Here, we review several of these immunological "actinopathies" and cover both clinical aspects, as well as cellular mechanisms of these PIDs. We focus in particular on the effect of these mutations on human neutrophil function.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands, .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Steven D S Webbers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Arrington ME, Temple B, Schaefer A, Campbell SL. The molecular basis for immune dysregulation by the hyperactivated E62K mutant of the GTPase RAC2. J Biol Chem 2020; 295:12130-12142. [PMID: 32636302 PMCID: PMC7443499 DOI: 10.1074/jbc.ra120.012915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The RAS-related C3 botulinum toxin substrate 2 (RAC2) is a member of the RHO subclass of RAS superfamily GTPases required for proper immune function. An activating mutation in a key switch II region of RAC2 (RAC2E62K) involved in recognizing modulatory factors and effectors has been identified in patients with common variable immune deficiency. To better understand how the mutation dysregulates RAC2 function, we evaluated the structure and stability, guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) activity, and effector binding of RAC2E62K Our findings indicate the E62K mutation does not alter RAC2 structure or stability. However, it does alter GEF specificity, as RAC2E62K is activated by the DOCK GEF, DOCK2, but not by the Dbl homology GEF, TIAM1, both of which activate the parent protein. Our previous data further showed that the E62K mutation impairs GAP activity for RAC2E62K As this disease mutation is also found in RAS GTPases, we assessed GAP-stimulated GTP hydrolysis for KRAS and observed a similar impairment, suggesting that the mutation plays a conserved role in GAP activation. We also investigated whether the E62K mutation alters effector binding, as activated RAC2 binds effectors to transmit signaling through effector pathways. We find that RAC2E62K retains binding to an NADPH oxidase (NOX2) subunit, p67phox, and to the RAC-binding domain of p21-activated kinase, consistent with our earlier findings. Taken together, our findings indicate that the RAC2E62K mutation promotes immune dysfunction by promoting RAC2 hyperactivation, altering GEF specificity, and impairing GAP function yet retaining key effector interactions.
Collapse
Affiliation(s)
- Megan E Arrington
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
40
|
Lougaris V, Baronio M, Gazzurelli L, Benvenuto A, Plebani A. RAC2 and primary human immune deficiencies. J Leukoc Biol 2020; 108:687-696. [PMID: 32542921 DOI: 10.1002/jlb.5mr0520-194rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
RAC2 is a GTPase that is exclusively expressed in hematopoietic cells. Animal models have suggested important roles for RAC2 in the biology of different cell types, such as neutrophils and lymphocytes. Primary immunodeficiencies represent "experimentum naturae" and offer priceless insight on the function of the human immune system. Mutations in RAC2 have been identified in a small number of patients giving rise to different forms of primary immunodeficiencies ranging from granulocyte defects caused by dominant negative mutations to combined immunodeficiency due to dominant activating mutations. This review will focus on the clinical and immunologic phenotype of patients with germline mutations in RAC2.
Collapse
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Alessio Benvenuto
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
42
|
Abstract
The immune system is central to our interactions with the world in which we live and importantly dictates our response to potential allergens, toxins, and pathogens to which we are constantly exposed. Understanding the mechanisms that underlie protective host immune responses against microbial pathogens is vital for the development of improved treatment and vaccination strategies against infections. To that end, inherited immunodeficiencies that manifest with susceptibility to bacterial, viral, and/or fungal infections have provided fundamental insights into the indispensable contribution of key immune pathways in host defense against various pathogens. In this mini-review, we summarize the findings from a series of recent publications in which inherited immunodeficiencies have helped illuminate the interplay of human immunity and resistance to infection.
Collapse
Affiliation(s)
- Gregory M Constantine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| |
Collapse
|
43
|
Lu X, Zhang Y, Liu F, Wang L. Rac2 Regulates the Migration of T Lymphoid Progenitors to the Thymus during Zebrafish Embryogenesis. THE JOURNAL OF IMMUNOLOGY 2020; 204:2447-2454. [PMID: 32198141 DOI: 10.4049/jimmunol.1901494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022]
Abstract
The caudal hematopoietic tissue in zebrafish, the equivalent to the fetal liver in mammals, is an intermediate hematopoietic niche for the maintenance and differentiation of hematopoietic stem and progenitor cells before homing to the thymus and kidney marrow. As one of the ultimate hematopoietic organs, the thymus sustains T lymphopoiesis, which is essential for adaptive immune system. However, the mechanism of prethymic T lymphoid progenitors migrating to the thymus remains elusive. In this study, we identify an Rho GTPase Rac2 as a modulator of T lymphoid progenitor homing to the thymus in zebrafish. rac2-Deficient embryos show the inability of T lymphoid progenitors homing to the thymus because of defective cell-autonomous motility. Mechanistically, we demonstrate that Rac2 regulates homing of T lymphoid progenitor through Pak1-mediated AKT pathway. Taken together, our work reveals an important function of Rac2 in directing T lymphoid progenitor migration to the thymus during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Xinyan Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; and.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanlin Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; and .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China;
| |
Collapse
|
44
|
Smits BM, Lelieveld PHC, Ververs FA, Turkenburg M, de Koning C, van Dijk M, Leavis HL, Boelens JJ, Lindemans CA, Bloem AC, van de Corput L, van Montfrans J, Nierkens S, van Gijn ME, Geerke DP, Waterham HR, Koenderman L, Boes M. A dominant activating RAC2 variant associated with immunodeficiency and pulmonary disease. Clin Immunol 2020; 212:108248. [PMID: 31382036 DOI: 10.1016/j.clim.2019.108248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Affiliation(s)
- B M Smits
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P H C Lelieveld
- Department of Respiratory Medicine, University Medical Center Utrecht, 3508, AB, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F A Ververs
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Turkenburg
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - C de Koning
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M van Dijk
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - H L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J J Boelens
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pediatric Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, United States of America; Princess Maxima Centre for Pediatric Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - C A Lindemans
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Maxima Centre for Pediatric Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A C Bloem
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L van de Corput
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J van Montfrans
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Princess Maxima Centre for Pediatric Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - M E van Gijn
- Department of Genetics and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D P Geerke
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - H R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - L Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, 3508, AB, Utrecht, The Netherlands
| | - M Boes
- Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Lam MT, Mace EM, Orange JS. A research-driven approach to the identification of novel natural killer cell deficiencies affecting cytotoxic function. Blood 2020; 135:629-637. [PMID: 31945148 PMCID: PMC7046607 DOI: 10.1182/blood.2019000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
- Medical Scientist Training Program, and
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| |
Collapse
|
46
|
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2020; 40:24-64. [PMID: 31953710 PMCID: PMC7082301 DOI: 10.1007/s10875-019-00737-x] [Citation(s) in RCA: 713] [Impact Index Per Article: 178.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- Faculty of Medicine, St Vincent's Clinical School, UNSW, Sydney, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- King Hassan II University, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA at Faculty of Medicine and Pharmacy, Clinical Immunology Unit, Pediatric Infectiouse Disease Department, Children's Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Talal Chatila
- Division of Immunology, Children's Hospital Boston, Boston, MA, USA
| | | | - Amos Etzioni
- Ruth's Children's Hospital-Technion, Haifa, Israel
| | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Paris University, Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris University, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
47
|
Lam MT, Coppola S, Krumbach OHF, Prencipe G, Insalaco A, Cifaldi C, Brigida I, Zara E, Scala S, Di Cesare S, Martinelli S, Di Rocco M, Pascarella A, Niceta M, Pantaleoni F, Ciolfi A, Netter P, Carisey AF, Diehl M, Akbarzadeh M, Conti F, Merli P, Pastore A, Levi Mortera S, Camerini S, Farina L, Buchholzer M, Pannone L, Cao TN, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Gibbs RA, Basso-Ricci L, Chiriaco M, Dvorsky R, Putignani L, Carsetti R, Janning P, Stray-Pedersen A, Erichsen HC, Horne A, Bryceson YT, Torralba-Raga L, Ramme K, Rosti V, Bracaglia C, Messia V, Palma P, Finocchi A, Locatelli F, Chinn IK, Lupski JR, Mace EM, Cancrini C, Aiuti A, Ahmadian MR, Orange JS, De Benedetti F, Tartaglia M. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. THE JOURNAL OF EXPERIMENTAL MEDICINE 2019. [PMID: 31601675 DOI: 10.1084/jem.20190147)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by immune dysregulation due to inadequate restraint of overactivated immune cells and is associated with a variable clinical spectrum having overlap with more common pathophysiologies. HLH is difficult to diagnose and can be part of inflammatory syndromes. Here, we identify a novel hematological/autoinflammatory condition (NOCARH syndrome) in four unrelated patients with superimposable features, including neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and HLH. Patients shared the same de novo CDC42 mutation (Chr1:22417990C>T, p.R186C) and altered hematopoietic compartment, immune dysregulation, and inflammation. CDC42 mutations had been associated with syndromic neurodevelopmental disorders. In vitro and in vivo assays documented unique effects of p.R186C on CDC42 localization and function, correlating with the distinctiveness of the trait. Emapalumab was critical to the survival of one patient, who underwent successful bone marrow transplantation. Early recognition of the disorder and establishment of treatment followed by bone marrow transplant are important to survival.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Baylor College of Medicine, Houston, TX.,Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY.,Medical Scientist Training Program and Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Simona Coppola
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Oliver H F Krumbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Giusi Prencipe
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Antonella Insalaco
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Cristina Cifaldi
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Erika Zara
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Department of Cellular Biotechnology and Haematology, Sapienza University of Rome, Rome, Italy
| | - Antonia Pascarella
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Petra Netter
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX.,Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY
| | - Michael Diehl
- Department of Bioengineering, Rice University, Houston, TX
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Francesca Conti
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Anna Pastore
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Stefano Levi Mortera
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Serena Camerini
- Core Facilities, Italian National Institute of Health, Rome, Italy
| | - Luciapia Farina
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy.,Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tram N Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiriaco
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Lorenza Putignani
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rita Carsetti
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Petra Janning
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Asbjorg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX.,Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - AnnaCarin Horne
- Pediatric Rheumatology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Lamberto Torralba-Raga
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kim Ramme
- Pediatric Hematology, Immunology and HCT Section, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Vittorio Rosti
- Center for Myelofibrosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Claudia Bracaglia
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Virginia Messia
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Paolo Palma
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Italy
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX.,Division of Pediatric Immunology, Allergy, Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX.,Baylor-Hopkins Center for Mendelian Genomics, Houston, TX.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY
| | - Caterina Cancrini
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Jordan S Orange
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY .,Medical Scientist Training Program and Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Fabrizio De Benedetti
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
48
|
Lam MT, Coppola S, Krumbach OHF, Prencipe G, Insalaco A, Cifaldi C, Brigida I, Zara E, Scala S, Di Cesare S, Martinelli S, Di Rocco M, Pascarella A, Niceta M, Pantaleoni F, Ciolfi A, Netter P, Carisey AF, Diehl M, Akbarzadeh M, Conti F, Merli P, Pastore A, Levi Mortera S, Camerini S, Farina L, Buchholzer M, Pannone L, Cao TN, Coban-Akdemir ZH, Jhangiani SN, Muzny DM, Gibbs RA, Basso-Ricci L, Chiriaco M, Dvorsky R, Putignani L, Carsetti R, Janning P, Stray-Pedersen A, Erichsen HC, Horne A, Bryceson YT, Torralba-Raga L, Ramme K, Rosti V, Bracaglia C, Messia V, Palma P, Finocchi A, Locatelli F, Chinn IK, Lupski JR, Mace EM, Cancrini C, Aiuti A, Ahmadian MR, Orange JS, De Benedetti F, Tartaglia M. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J Exp Med 2019; 216:2778-2799. [PMID: 31601675 PMCID: PMC6888978 DOI: 10.1084/jem.20190147] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/19/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by immune dysregulation due to inadequate restraint of overactivated immune cells and is associated with a variable clinical spectrum having overlap with more common pathophysiologies. HLH is difficult to diagnose and can be part of inflammatory syndromes. Here, we identify a novel hematological/autoinflammatory condition (NOCARH syndrome) in four unrelated patients with superimposable features, including neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and HLH. Patients shared the same de novo CDC42 mutation (Chr1:22417990C>T, p.R186C) and altered hematopoietic compartment, immune dysregulation, and inflammation. CDC42 mutations had been associated with syndromic neurodevelopmental disorders. In vitro and in vivo assays documented unique effects of p.R186C on CDC42 localization and function, correlating with the distinctiveness of the trait. Emapalumab was critical to the survival of one patient, who underwent successful bone marrow transplantation. Early recognition of the disorder and establishment of treatment followed by bone marrow transplant are important to survival.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY
- Medical Scientist Training Program and Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Simona Coppola
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Oliver H F Krumbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Giusi Prencipe
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Antonella Insalaco
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Cristina Cifaldi
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Erika Zara
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Department of Cellular Biotechnology and Haematology, Sapienza University of Rome, Rome, Italy
| | - Antonia Pascarella
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Petra Netter
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY
| | - Michael Diehl
- Department of Bioengineering, Rice University, Houston, TX
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Francesca Conti
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Anna Pastore
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Stefano Levi Mortera
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Serena Camerini
- Core Facilities, Italian National Institute of Health, Rome, Italy
| | - Luciapia Farina
- National Center for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tram N Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Zeynep H Coban-Akdemir
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiriaco
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Lorenza Putignani
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rita Carsetti
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Petra Janning
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Asbjorg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Norwegian National Unit for Newborn Screening, Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - AnnaCarin Horne
- Pediatric Rheumatology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Lamberto Torralba-Raga
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kim Ramme
- Pediatric Hematology, Immunology and HCT Section, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Vittorio Rosti
- Center for Myelofibrosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Claudia Bracaglia
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Virginia Messia
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Paolo Palma
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Italy
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Division of Pediatric Immunology, Allergy, Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY
| | - Caterina Cancrini
- Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Jordan S Orange
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY
- Medical Scientist Training Program and Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Fabrizio De Benedetti
- Immunology Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
49
|
Tabellini G, Baronio M, Patrizi O, Benevenuto A, Gazzurelli L, Plebani A, Parolini S, Lougaris V. The RAC2-PI3K axis regulates human NK cell maturation and function. Clin Immunol 2019; 208:108257. [PMID: 31491520 DOI: 10.1016/j.clim.2019.108257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessio Benevenuto
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Italy.
| |
Collapse
|
50
|
Sharapova SO, Haapaniemi E, Sakovich IS, Kostyuchenko LV, Donkó A, Dulau-Florea A, Malko O, Bondarenko AV, Stegantseva MV, Leto TL, Uygun V, Karasu GT, Holland SM, Hsu AP, Aleinikova OV. Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 2019; 205:1-5. [PMID: 31071452 DOI: 10.1016/j.clim.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022]
Abstract
Here we describe a 10-year-old girl with combined immunodeficiency presenting as recurring chest infections, lung disease and herpetic skin infections. The patient experienced two hematopoietic stem cell transplantations and despite full chimerism, she developed bone marrow aplasia due to adenovirus infection and died at post-transplant day 86. Immunologic investigation revealed low numbers of TRECs/KRECs, a severe reduction of memory B cells, absence of isohemagglutinins, and low IgG levels. Whole exome sequencing (WES) identified a novel heterozygous mutation in RAC2(c.275A > C, p.N92 T). Flow cytometric investigation of neutrophil migration demonstrated an absence of chemotaxis to fMLP. Cell lines transfected with RAC2 [N92 T] displayed characteristics of active GTP-bound RAC2 including enhanced NADPH oxidase-derived superoxide production both at rest and in response to PMA. Our findings broaden the clinical picture of RAC2 dysfunction, showing that some individuals can present with a combined immunodeficiency later in childhood rather than a congenital neutrophil disease.
Collapse
Affiliation(s)
- Svetlana O Sharapova
- Research department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Belarus.
| | - Emma Haapaniemi
- Department of Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden; Biomedicum Stem Cell Center, University of Helsinki, Finland; Center for Molecular Medicine Norway, University of Oslo, Norway
| | - Inga S Sakovich
- Research department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Belarus
| | | | - Agnes Donkó
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, USA
| | - Alina Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Oksana Malko
- Rivne Regional Children's Hospital, Rivne, Ukraine
| | - Anastasia V Bondarenko
- Department of Pediatric Infectious Diseases and Pediatric Immunology, P.L. Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Maria V Stegantseva
- Research department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Belarus
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, USA
| | - Vedat Uygun
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Gulsun Tezcan Karasu
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, USA
| | - Olga V Aleinikova
- Research department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Belarus
| |
Collapse
|