1
|
Manikanta, NaveenKumar SK, Thushara RM, Hemshekhar M, Sumedini ML, Sunitha K, Kemparaju K, Girish KS. Counteraction of unconjugated bilirubin against heme-induced toxicity in platelets. Thromb Res 2024; 244:109199. [PMID: 39467509 DOI: 10.1016/j.thromres.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Platelets are essential for normal hemostasis and thrombosis but become hyperactive in hemolytic disorders. Cell-free heme is known to be toxic to platelets and endothelial cells, playing a significant role in the progression of pathological complications in various hemolytic conditions. The abnormal activation of circulatory platelets results in micro/macrovascular thrombosis and clot formation in the lungs, worsening the disease. This work aimed to establish the potent bioactive molecule that can regulate the heme-induced toxicity in platelets. We found that unconjugated bilirubin (UCB), an endogenous antioxidant and a byproduct of heme degradation, exhibited a higher protective effect against hemin-induced platelet aggregation and activation. This protective effect could mainly be due to reducing ROS and lipid peroxidation-mediated ferroptosis in hemin-treated platelets. Further experiments suggested that by blocking the interaction between hemin and the CLEC-2 receptor, UCB regulates the downstream Syk phosphorylation, a key event in hemin-induced platelet toxicity. Thus, UCB is emerging as a natural regulatory molecule that mitigates hemin-induced platelet toxicity and holds promise as an adjunctive therapy for managing platelet-associated complications, particularly in hemolytic disorders.
Collapse
Affiliation(s)
- Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India
| | | | - Ram M Thushara
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Mahadevappa Hemshekhar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Mysuru L Sumedini
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Kabburahalli Sunitha
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
2
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
3
|
Ma H, Huang Y, Tian W, Liu J, Yan X, Ma L, Lai J. Endothelial transferrin receptor 1 contributes to thrombogenesis through cascade ferroptosis. Redox Biol 2024; 70:103041. [PMID: 38241836 PMCID: PMC10831316 DOI: 10.1016/j.redox.2024.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Oxidative stress and iron accumulation-induced ferroptosis occurs in injured vascular cells and can promote thrombogenesis. Transferrin receptor 1 (encoded by the TFRC gene) is an initial element involved in iron transport and ferroptosis and is highly expressed in injured vascular tissues, but its role in thrombosis has not been determined. To explore the potential mechanism and therapeutic effect of TFRC on thrombogenesis, a DVT model of femoral veins (FVs) was established in rats, and weighted correlation network analysis (WGCNA) was used to identify TFRC as a hub protein that is associated with thrombus formation. TFRC was knocked down by adeno-associated virus (AAV) or lentivirus transduction in FVs or human umbilical vein endothelial cells (HUVECs), respectively. Thrombus characteristics and ferroptosis biomarkers were evaluated. Colocalization analysis, molecular docking and coimmunoprecipitation (co-IP) were used to evaluate protein interactions. Tissue-specific TFRC knockdown alleviated iron overload and redox stress, thereby preventing ferroptosis in injured FVs. Loss of TFRC in injured veins could alleviate thrombogenesis, reduce thrombus size and attenuate hypercoagulability. The protein level of thrombospondin-1 (THBS1) was increased in DVT tissues, and silencing TFRC decreased the protein level of THBS1. In vitro experiments further showed that TFRC and THBS1 were sensitive to erastin-induced ferroptosis and that TFRC knockdown reversed this effect. TFRC can interact with THBS1 in the domain spanning from TSR1-2 to TSR1-3 of THBS1. Amino acid sites, including GLN320 of TFRC and ASP502 of THBS1, could be potential pharmacological targets. Erastin induced ferroptosis affected extracellular THBS1 levels and weakened the interaction between TFRC and THBS1 both in vivo and in vitro, and promoted the interaction between THBS1 and CD47. This study revealed a linked relationship between venous ferroptosis and coagulation cascades. Controlling TFRC and ferroptosis in endothelial cells can be an efficient approach for preventing and treating thrombogenesis.
Collapse
Affiliation(s)
- Haotian Ma
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Yongtao Huang
- Department of Orthopedics, Ruihua Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenrong Tian
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Yan
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Lei Ma
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Chen Z, Liu P, Xia X, Cao C, Ding Z, Li X. Low ambient temperature exposure increases the risk of ischemic stroke by promoting platelet activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169235. [PMID: 38097078 DOI: 10.1016/j.scitotenv.2023.169235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Accumulating epidemiological evidence suggests the association between low ambient temperature exposure and the risk of ischemic stroke, but the underlying mechanisms remain unclear. OBJECTIVE Given the crucial role of platelet activation and thrombosis in ischemic stroke, this study aims to investigate the effect of ambient temperature on platelet activation through multi-center clinical data in Tianjin as well as animal experiments. METHODS From 2018 to 2020, nearly 3000 ischemic stroke patients from three stroke centers in Tianjin were included in the analysis, among them the ADP induced platelet aggregation rate was available. Meteorological data from the same period had also been collected. After controlling for confounding factors, the generalized additive mixed model (GAMM) was used to evaluate the correlation between environmental temperature and platelet aggregation rate. In further animal experiments, platelet function assessments were conducted on mice from the cold exposure group and the normal temperature group, including platelet aggregation, spreading, and clot retraction. Additionally, tail bleeding and mesentery thrombosis were also tested to monitor hemostasis and thrombosis in vivo. RESULT A nonlinear "S" shaped relationship between outdoor temperature and platelet aggregation was found. Each 1 °C decrease of mean temperature was associated with an increase of 7.77 % (95 % CI: 2.06 % - 13.48 %) in platelet aggregation. The ambient temperature is not related to other platelet parameters. Subgroup analysis found that males, people aged ≥65 years, and hypertensive individuals are more susceptible to temperature changes. Furthermore, animal experiments demonstrated that the increased CIRBP levels and subsequent activation of p-AKT/p-ERK may be one of the reasons for cold exposure induced platelets activation. CONCLUSION Both clinical data and basic research support that low ambient temperature exposure has the potential to increase platelet activation. These results provide a basis for understanding the potential mechanism of temperature variations on the pathogenesis of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Chen Cao
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhongren Ding
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; School of Pharmacy, Tianjin Medical University, China.
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
5
|
Sisario D, Spindler M, Ermer KJ, Grütz N, Nicolai L, Gaertner F, Machesky LM, Bender M. Differential Role of the RAC1-Binding Proteins FAM49b (CYRI-B) and CYFIP1 in Platelets. Cells 2024; 13:299. [PMID: 38391912 PMCID: PMC10886774 DOI: 10.3390/cells13040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Platelet function at vascular injury sites is tightly regulated through the actin cytoskeleton. The Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (WAVE)-regulatory complex (WRC) activates lamellipodia formation via ARP2/3, initiated by GTP-bound RAC1 interacting with the WRC subunit CYFIP1. The protein FAM49b (Family of Unknown Function 49b), also known as CYRI-B (CYFIP-Related RAC Interactor B), has been found to interact with activated RAC1, leading to the negative regulation of the WRC in mammalian cells. To investigate the role of FAM49b in platelet function, we studied platelet-specific Fam49b-/--, Cyfip1-/--, and Cyfip1/Fam49b-/--mice. Platelet counts and activation of Fam49b-/- mice were comparable to those of control mice. On fully fibrinogen-coated surfaces, Fam49b-/--platelets spread faster with an increased mean projected cell area than control platelets, whereas Cyfip1/Fam49b-/--platelets did not form lamellipodia, phenocopying the Cyfip1-/--platelets. However, Fam49b-/--platelets often assumed a polarized shape and were more prone to migrate on fibrinogen-coated surfaces. On 2D structured micropatterns, however, Fam49b-/--platelets displayed reduced spreading, whereas spreading of Cyfip1-/-- and Cyfip1/Fam49b-/--platelets was enhanced. In summary, FAM49b contributes to the regulation of morphology and migration of spread platelets, but to exert its inhibitory effect on actin polymerization, the functional WAVE complex must be present.
Collapse
Affiliation(s)
- Dmitri Sisario
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Katharina J. Ermer
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Noah Grütz
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig, Maximilian University, 81377 Munich, Germany (F.G.)
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Florian Gaertner
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig, Maximilian University, 81377 Munich, Germany (F.G.)
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Laura M. Machesky
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Markus Bender
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This review highlights how the perception of platelet function is evolving based on recent insights into platelet mechanobiology. RECENT FINDINGS The mechanosensitive ion channel Piezo1 mediates activation of free-flowing platelets under conditions of flow acceleration through mechanisms independent of adhesion receptors and classical activation pathways. Interference with the initiation of platelet migration or with the phenotypic switch of migrating platelets to a procoagulant state aggravates inflammatory bleeding. Mechanosensing of biochemical and biophysical microenvironmental cues during thrombus formation feed into platelet contractile force generation. Measurements of single platelet contraction and bulk clot retraction show promise to identify individuals at risk for hemorrhage. SUMMARY New findings unravel novel mechanotransduction pathways and effector functions in platelets, establishing mechanobiology as a pivotal component of platelet function. These insights highlight limitations of existing treatments and offer new potential therapeutic approaches and diagnostic avenues based on mechanobiological principles. Further extensive research is required to distinguish between core hemostatic and pathological mechanisms influenced by platelet mechanosensing.
Collapse
Affiliation(s)
- Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| | - Martin Kenny
- UCD Conway SPHERE Research Group
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| |
Collapse
|
7
|
Kaiser R, Escaig R, Nicolai L. Hemostasis without clot formation: how platelets guard the vasculature in inflammation, infection, and malignancy. Blood 2023; 142:1413-1425. [PMID: 37683182 DOI: 10.1182/blood.2023020535] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Platelets are key vascular effectors in hemostasis, with activation signals leading to fast recruitment, aggregation, and clot formation. The canonical process of hemostasis is well-characterized and shares many similarities with pathological thrombus formation. However, platelets are also crucially involved in the maintenance of vascular integrity under both steady-state and inflammatory conditions by ensuring blood vessel homeostasis and preventing microbleeds. In these settings, platelets use distinct receptors, signaling pathways, and ensuing effector functions to carry out their deeds. Instead of simply forming clots, they mainly act as individual sentinels that swiftly adapt their behavior to the local microenvironment. In this review, we summarize previously recognized and more recent studies that have elucidated how anucleate, small platelets manage to maintain vascular integrity when faced with challenges of infection, sterile inflammation, and even malignancy. We dissect how platelets are recruited to the vascular wall, how they identify sites of injury, and how they prevent hemorrhage as single cells. Furthermore, we discuss mechanisms and consequences of platelets' interaction with leukocytes and endothelial cells, the relevance of adhesion as well as signaling receptors, in particular immunoreceptor tyrosine-based activation motif receptors, and cross talk with the coagulation system. Finally, we outline how recent insights into inflammatory hemostasis and vascular integrity may aid in the development of novel therapeutic strategies to prevent hemorrhagic events and vascular dysfunction in patients who are critically ill.
Collapse
Affiliation(s)
- Rainer Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig Maximilian University, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
8
|
Schurr Y, Reil L, Spindler M, Nieswandt B, Machesky LM, Bender M. The WASH-complex subunit Strumpellin regulates integrin αIIbβ3 trafficking in murine platelets. Sci Rep 2023; 13:9526. [PMID: 37308549 PMCID: PMC10260982 DOI: 10.1038/s41598-023-36387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The platelet specific integrin αIIbβ3 mediates platelet adhesion, aggregation and plays a central role in thrombosis and hemostasis. In resting platelets, αIIbβ3 is expressed on the membrane surface and in intracellular compartments. Upon activation, the number of surface-expressed αIIbβ3 is increased by the translocation of internal granule pools to the plasma membrane. The WASH complex is the major endosomal actin polymerization-promoting complex and has been implicated in the generation of actin networks involved in endocytic trafficking of integrins in other cell types. The role of the WASH complex and its subunit Strumpellin in platelet function is still unknown. Here, we report that Strumpellin-deficient murine platelets display an approximately 20% reduction in integrin αIIbβ3 surface expression. While exposure of the internal αIIbβ3 pool after platelet activation was unaffected, the uptake of the αIIbβ3 ligand fibrinogen was delayed. The number of platelet α-granules was slightly but significantly increased in Strumpellin-deficient platelets. Quantitative proteome analysis of isolated αIIbβ3-positive vesicular structures revealed an enrichment of protein markers, which are associated with the endoplasmic reticulum, Golgi complex and early endosomes in Strumpellin-deficient platelets. These results point to a so far unidentified role of the WASH complex subunit Strumpellin in integrin αIIbβ3 trafficking in murine platelets.
Collapse
Affiliation(s)
- Yvonne Schurr
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Lucy Reil
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Laura M Machesky
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Markus Bender
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
9
|
Luo L, Chen Z, Gong T, Ye Q, Li H, Guo Y, Wen J, Hu Y, Wu J. Cytosolic perfluorocarbon delivery to platelets via albumin for antithrombotic therapy. J Control Release 2023; 355:109-121. [PMID: 36682727 DOI: 10.1016/j.jconrel.2023.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Thrombosis is a major contributor to global disease burden. Antiplatelet therapy is the critical approach to prevent thrombosis by reducing platelet reactivity. However, classical antiplatelet strategies generally interfere with platelet integrin αIIbβ3-mediated platelet activation, thereby facing severe bleeding risk. To break the limitation, we described an integrin αIIbβ3-independent antiplatelet method by cytosolic delivery of nanoscale perfluorocarbon (PFC) to platelets via albumin carrier. Denatured albumin was found to build high affinity with platelets to mediate cytosolic PFC delivery. While, cytosolic PFC impaired cytoskeleton reorganization during platelet activation to inhibit relevant platelet functions, but avoided to interfere with integrin αIIbβ3. We proved that this αIIbβ3-indenpendent antiplatelet pattern showed potential antiplatelet effect with low bleeding risk to prevent thrombosis in various thrombosis models. Together, cytosolic PFC delivery via albumin is a promising antiplatelet approach, and will provide an alternative regimen for current antithrombotic therapy.
Collapse
Affiliation(s)
- Lifeng Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China; Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Zhong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Tong Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jiqiu Wen
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
10
|
Paul M, Golla K, Kim H. Gelsolin Modulates Platelet Dense Granule Secretion and Hemostasis via the Actin Cytoskeleton. Thromb Haemost 2023; 123:219-230. [PMID: 36522181 DOI: 10.1055/s-0042-1758800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE The mechanisms underlying platelet granule release are not fully understood. The actin cytoskeleton serves as the platelet's structural framework that is remodeled upon platelet activation. Gelsolin is a calcium-dependent protein that severs and caps existing actin filaments although its role in modulating platelet granule exocytosis is unknown. METHODS The hemostatic function of wild-type (WT) and gelsolin null (Gsn-/- ) mice was measured ex vivo by rotational thromboelastometry analysis of whole blood. Platelets were purified from WT and Gsn-/- mouse blood and activated with thrombin. Platelet aggregation was assessed by light-transmission aggregometry. Clot retraction was measured to assess outside-in integrin signaling. Adenosine triphosphate (ATP) release and surface P-selectin were measured as markers of dense- and α-granule secretion, respectively. RESULTS The kinetics of agonist-induced aggregation, clot retraction, and ATP release were accelerated in Gsn-/- platelets relative to WT. However, levels of surface P-selectin were diminished in Gsn-/- platelets. ATP release was also accelerated in WT platelets pretreated with the actin-depolymerizing drug cytochalasin D, thus mimicking the kinetics observed in Gsn-/- platelets. Conversely, ATP release kinetics were normalized in Gsn-/- platelets treated with the actin polymerization agonist jasplakinolide. Rab27b and Munc13-4 are vesicle-priming proteins known to promote dense granule secretion. Co-immunoprecipitation indicates that the association between Rab27b and Munc13-4 is enhanced in Gsn-/- platelets. CONCLUSIONS Gelsolin regulates the kinetics of hemostasis by modulating the platelet's actin cytoskeleton and the protein machinery of dense granule exocytosis.
Collapse
Affiliation(s)
- Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Bura A, de Matteis MA, Bender M, Swinkels M, Versluis J, Jansen AJG, Jurak Begonja A. Oculocerebrorenal syndrome of Lowe protein controls cytoskeletal reorganisation during human platelet spreading. Br J Haematol 2023; 200:87-99. [PMID: 36176266 DOI: 10.1111/bjh.18478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Lowe syndrome (LS) is a rare, X-linked disorder characterised by numerous symptoms affecting the brain, the eyes, and the kidneys. It is caused by mutations in the oculocerebrorenal syndrome of Lowe (OCRL) protein, a 5-phosphatase localised in different cellular compartments that dephosphorylates phosphatidylinositol-4,5-bisphosphate into phosphatidylinositol-4-monophosphate. Some patients with LS also have bleeding disorders, with normal to low platelet (PLT) count and impaired PLT function. However, the mechanism of PLT dysfunction in patients with LS is not completely understood. The main function of PLTs is to activate upon vessel wall injury and stop the bleeding by clot formation. PLT activation is accompanied by a shape change that is a result of massive cytoskeletal rearrangements. Here, we show that OCRL-inhibited human PLTs do not fully spread, form mostly filopodia, and accumulate actin nodules. These nodules co-localise with ARP2/3 subunit p34, vinculin, and sorting nexin 9. Furthermore, OCRL-inhibited PLTs have a retained microtubular coil with high levels of acetylated tubulin. Also, myosin light chain phosphorylation is decreased upon OCRL inhibition, without impaired degranulation or integrin activation. Taken together, these results suggest that OCRL contributes to cytoskeletal rearrangements during PLT activation that could explain mild bleeding problems in patients with LS.
Collapse
Affiliation(s)
- Ana Bura
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Maria Antonietta de Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Rudolf Virchow Center, Wuerzburg, Germany
| | - Maurice Swinkels
- Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jurjen Versluis
- Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | | |
Collapse
|
12
|
Loss of α4A- and β1-tubulins leads to severe platelet spherocytosis and strongly impairs hemostasis in mice. Blood 2022; 140:2290-2299. [PMID: 36026602 DOI: 10.1182/blood.2022016729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific β1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for β1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and β-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.
Collapse
|
13
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
14
|
Baumann J, Sachs L, Otto O, Schoen I, Nestler P, Zaninetti C, Kenny M, Kranz R, von Eysmondt H, Rodriguez J, Schäffer TE, Nagy Z, Greinacher A, Palankar R, Bender M. Reduced platelet forces underlie impaired hemostasis in mouse models of MYH9-related disease. SCIENCE ADVANCES 2022; 8:eabn2627. [PMID: 35584211 PMCID: PMC9116608 DOI: 10.1126/sciadv.abn2627] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MYH9-related disease patients with mutations in the contractile protein nonmuscle myosin heavy chain IIA display, among others, macrothrombocytopenia and a mild-to-moderate bleeding tendency. In this study, we used three mouse lines, each with one point mutation in the Myh9 gene at positions 702, 1424, or 1841, to investigate mechanisms underlying the increased bleeding risk. Agonist-induced activation of Myh9 mutant platelets was comparable to controls. However, myosin light chain phosphorylation after activation was reduced in mutant platelets, which displayed altered biophysical characteristics and generated lower adhesion, interaction, and traction forces. Treatment with tranexamic acid restored clot retraction in the presence of tPA and reduced bleeding. We verified our findings from the mutant mice with platelets from patients with the respective mutation. These data suggest that reduced platelet forces lead to an increased bleeding tendency in patients with MYH9-related disease, and treatment with tranexamic acid can improve the hemostatic function.
Collapse
Affiliation(s)
- Juliane Baumann
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Laura Sachs
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz—Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen, University Greifswald, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Nestler
- Zentrum für Innovationskompetenz—Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen, University Greifswald, Greifswald, Germany
| | - Carlo Zaninetti
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- University of Pavia, Pavia, Italy
| | - Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ruth Kranz
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | | | - Johanna Rodriguez
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | | | - Zoltan Nagy
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Corresponding author. (M.B.); (R.P.)
| | - Markus Bender
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
- Corresponding author. (M.B.); (R.P.)
| |
Collapse
|
15
|
Palankar R, Sachs L, Wesche J, Greinacher A. Cytoskeleton Dependent Mobility Dynamics of FcγRIIA Facilitates Platelet Haptotaxis and Capture of Opsonized Bacteria. Cells 2022; 11:cells11101615. [PMID: 35626650 PMCID: PMC9139458 DOI: 10.3390/cells11101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Platelet adhesion and spreading at the sites of vascular injury is vital to hemostasis. As an integral part of the innate immune system, platelets interact with opsonized bacterial pathogens through FcγRIIA and contribute to host defense. As mechanoscavangers, platelets actively migrate and capture bacteria via cytoskeleton-rich, dynamic structures, such as filopodia and lamellipodia. However, the role of human platelet FcγRIIA in cytoskeleton-dependent interaction with opsonized bacteria is not well understood. To decipher this, we used a reductionist approach with well-defined micropatterns functionalized with immunoglobulins mimicking immune complexes at planar interfaces and bacteriamimetic microbeads. By specifically blocking of FcγRIIA and selective disruption of the platelet cytoskeleton, we show that both functional FcγRIIA and cytoskeleton are necessary for human platelet adhesion and haptotaxis. The direct link between FcγRIIA and the cytoskeleton is further explored by single-particle tracking. We then demonstrate the relevance of cytoskeleton-dependent differential mobilities of FcγRIIA on bacteria opsonized with the chemokine platelet factor 4 (PF4) and patient-derived anti-PF4/polyanion IgG. Our data suggest that efficient capture of opsonized bacteria during host-defense is governed by mobility dynamics of FcγRIIA on filopodia and lamellipodia, and the cytoskeleton plays an essential role in platelet morphodynamics at biological interfaces that display immune complexes.
Collapse
|
16
|
Wang L, Gong T, Ming W, Qiao X, Ye W, Zhang L, Pan C. One step preparation of multifunctional poly (ether sulfone) thin films with potential for wound dressing. BIOMATERIALS ADVANCES 2022; 136:212758. [PMID: 35929327 DOI: 10.1016/j.bioadv.2022.212758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for higher-quality medical care has resulted in the obsolescence of traditional biomaterials. Medical care is currently transitioning from an era depending on single-functional biomaterials to one that is supported by multifunctional and stable biomaterials. Herein, long-lasting multifunctional poly(ether sulfone) thin films (MPFs) containing heparin-mimic groups and a quaternary ammonium compound (QAC) were prepared via semi-interpenetrating polymer network (SIPN) strategy. The MPFs, with rough surface and inner finger-like macrovoid, had better hydrophilicity and anti-protein fouling ability, as revealed by scanning electron microscopy (SEM), atomic force microscope (AFM) and water contact angle (WCA) and protein adsorption tests. The results of platelet adhesion and activation, and clotting time confirmed that the hemocompatibility of the MPFs was significantly improved. From cell culture and germ-culture test, it was noted that the overall trend of human umbilical vein endothelial cell (HUVEC) proliferation was enhanced by a combination of heparin-mimic groups and QAC, whereas the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was significantly prohibited. In addition, the MPFs were capable of modulating the expression level of basic fibroblast growth factor (bFGF) and transforming growth factor-beta1 (TGF-β1) in fibroblast, which was beneficial to controlling the formation of hypertrophic scar. In summary, the MPFs had potential to be used in the field of wound management and the study might help guide the design of surface structure of wound dressing.
Collapse
Affiliation(s)
- Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China; Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, United States.
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, United States
| | - Xinglong Qiao
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - Linna Zhang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China
| | - ChangJiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, China.
| |
Collapse
|
17
|
Lickert S, Kenny M, Selcuk K, Mehl JL, Bender M, Früh SM, Burkhardt MA, Studt JD, Nieswandt B, Schoen I, Vogel V. Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. SCIENCE ADVANCES 2022; 8:eabj8331. [PMID: 35275711 PMCID: PMC8916723 DOI: 10.1126/sciadv.abj8331] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Platelets interact with multiple adhesion proteins during thrombogenesis, yet little is known about their ability to assemble fibronectin matrix. In vitro three-dimensional superresolution microscopy complemented by biophysical and biochemical methods revealed fundamental insights into how platelet contractility drives fibronectin fibrillogenesis. Platelets adhering to thrombus proteins (fibronectin and fibrin) versus basement membrane components (laminin and collagen IV) pull fibronectin fibrils along their apical membrane versus underneath their basal membrane, respectively. In contrast to other cell types, platelets assemble fibronectin nanofibrils using αIIbβ3 rather than α5β1 integrins. Apical fibrillogenesis correlated with a stronger activation of integrin-linked kinase, higher platelet traction forces, and a larger tension in fibrillar-like adhesions compared to basal fibrillogenesis. Our findings have potential implications for how mechanical thrombus integrity might be maintained during remodeling and vascular repair.
Collapse
Affiliation(s)
- Sebastian Lickert
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Martin Kenny
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Kateryna Selcuk
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Johanna L. Mehl
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Bender
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Melanie A. Burkhardt
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jan-Dirk Studt
- Division of Hematology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- Corresponding author. (V.V.); (I.S.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Corresponding author. (V.V.); (I.S.)
| |
Collapse
|
18
|
Tyagi T, Jain K, Gu SX, Qiu M, Gu VW, Melchinger H, Rinder H, Martin KA, Gardiner EE, Lee AI, Ho Tang W, Hwa J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. NATURE CARDIOVASCULAR RESEARCH 2022; 1:223-237. [PMID: 37502132 PMCID: PMC10373053 DOI: 10.1038/s44161-022-00021-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/17/2022] [Indexed: 07/29/2023]
Abstract
Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions. Developments in methods such as electron microscopy, flow cytometry, mass spectrometry, and 'omics' studies, have led to new insights. In this Review, we focus on advances in platelet biology and function, with an emphasis on current and promising methodologies. We also discuss technical and biological challenges in platelet investigations. Using coronavirus disease 2019 (COVID-19) as an example, we further describe the translational relevance of these approaches and the possible 'bench-to-bedside' utility in patient diagnosis and care.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Miaoyun Qiu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Melchinger
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Henry Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth E Gardiner
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Schrottmaier WC, Pirabe A, Pereyra D, Heber S, Hackl H, Schmuckenschlager A, Brunnthaler L, Santol J, Kammerer K, Oosterlee J, Pawelka E, Treiber SM, Khan AO, Pugh M, Traugott MT, Schörgenhofer C, Seitz T, Karolyi M, Jilma B, Rayes J, Zoufaly A, Assinger A. Platelets and Antiplatelet Medication in COVID-19-Related Thrombotic Complications. Front Cardiovasc Med 2022; 8:802566. [PMID: 35141292 PMCID: PMC8818754 DOI: 10.3389/fcvm.2021.802566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) induces a hypercoagulatory state that frequently leads to thromboembolic complications. Whereas anticoagulation is associated with reduced mortality, the role of antiplatelet therapy in COVID-19 is less clear. We retrospectively analyzed the effect of anticoagulation and antiplatelet therapy in 578 hospitalized patients with COVID-19 and prospectively monitored 110 patients for circulating microthrombi and plasma markers of coagulation in the first week of admission. Moreover, we determined platelet shape change and also thrombi in postmortem lung biopsies in a subset of patients with COVID-19. We observed no association of antiplatelet therapy with COVID-19 survival. Adverse outcome in COVID-19 was associated with increased activation of the coagulation cascade, whereas circulating microthrombi did not increase in aggravated disease. This was in line with analysis of postmortem lung biopsies of patients with COVID-19, which revealed generally fibrin(ogen)-rich and platelet-low thrombi. Platelet spreading was normal in severe COVID-19 cases; however, plasma from patients with COVID-19 mediated an outcome-dependent inhibitory effect on naïve platelets. Antiplatelet medication disproportionally exacerbated this platelet impairment in plasma of patients with fatal outcome. Taken together, this study shows that unfavorable outcome in COVID-19 is associated with a profound dysregulation of the coagulation system, whereas the contribution of platelets to thrombotic complications is less clear. Adverse outcome may be associated with impaired platelet function or platelet exhaustion. In line, antiplatelet therapy was not associated with beneficial outcome.
Collapse
Affiliation(s)
- Waltraud C. Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Kerstin Kammerer
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Justin Oosterlee
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erich Pawelka
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Sonja M. Treiber
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Tamara Seitz
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Seifert J, von Eysmondt H, Chatterjee M, Gawaz M, Schäffer TE. Effect of Oxidized LDL on Platelet Shape, Spreading, and Migration Investigated with Deep Learning Platelet Morphometry. Cells 2021; 10:2932. [PMID: 34831155 PMCID: PMC8616354 DOI: 10.3390/cells10112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atherosclerosis, and immune response. Platelet interaction with the immediate microenvironment in blood, vasculature, and tissues alters platelet morphology. The quantification of platelet morphodynamics by geometrical parameters (morphometry) can provide important insights into how platelets sense and respond to stimulatory cues in their vicinity. However, the extraction of platelet shapes from phase contrast microscopy images by conventional image processing is difficult. Here, we used a convolutional neural network (CNN) to develop a deep-learning-based approach for the unbiased extraction of information on platelet morphodynamics by phase contrast microscopy. We then investigated the effect of normal and oxidized low-density lipoproteins (LDL, oxLDL) on platelet morphodynamics, spreading, and haptotactic migration. Exposure of platelets to oxLDL led to a decreased spreading area and rate on fibrinogen, accompanied by increased formation of filopodia and impaired formation of lamellipodia. Haptotactic platelet migration was affected by both LDL and oxLDL in terms of decreased migration velocity and reduced directional persistence. Our results demonstrate the use of deep learning in investigating platelet morphodynamics and reveal differential effects of LDL and oxLDL on platelet morphology and platelet-matrix interaction.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Tilman E. Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| |
Collapse
|
21
|
Quach ME, Chen W, Wang Y, Deckmyn H, Lanza F, Nieswandt B, Li R. Differential regulation of the platelet GPIb-IX complex by anti-GPIbβ antibodies. J Thromb Haemost 2021; 19:2044-2055. [PMID: 33915031 PMCID: PMC8324530 DOI: 10.1111/jth.15359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets' initial recognition of endothelial damage proceeds through the interaction between collagen, plasma von Willebrand factor (VWF), and the platelet glycoprotein (GP)Ib-IX complex (CD42). The GPIb-IX complex consists of one GPIbα, one GPIX, and two GPIbβ subunits. Once platelets are immobilized to the subendothelial matrix, shear generated by blood flow unfolds a membrane-proximal mechanosensory domain (MSD) in GPIbα, exposing a conserved trigger sequence and activating the receptor. Currently, GPIbα appears to solely facilitate ligand-induced activation because it contains both the MSD and the binding sites for all known ligands to GPIb-IX. Despite being positioned directly adjacent to the MSD, the roles of GPIbβ and GPIX in signal transduction remain murky. OBJECTIVES To characterize a novel rat monoclonal antibody 3G6 that binds GPIbβ. METHODS Effects of 3G6 on activation of GPIb-IX are characterized in platelets and Chinese hamster ovary cells expressing GPIb-IX (CHO-Ib-IX) and compared with those of an inhibitory anti-GPIbβ antibody, RAM.1. RESULTS Both RAM.1 and 3G6 bind to purified GPIbβ and GPIb-IX with high affinity. 3G6 potentiates GPIb-IX-associated filopodia formation in platelets or CHO-Ib-IX when they adhere VWF or antibodies against the ligand-binding domain (LBD) of GPIbα. Pretreatment with 3G6 also increased anti-LBD antibody-induced GPIb-IX activation. Conversely, RAM.1 inhibits nearly all GPIb-IX-related signaling in platelets and CHO-Ib-IX cells. CONCLUSIONS These data represent the first report of a positive modulator of GPIb-IX activation. The divergent modulatory effects of 3G6 and RAM.1, both targeting GPIbβ, strongly suggest that changes in the conformation of GPIbβ underlie outside-in activation via GPIb-IX.
Collapse
Affiliation(s)
- M. Edward Quach
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Julius Maximilian University of Wurzburg, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
22
|
Stahnke S, Döring H, Kusch C, de Gorter DJJ, Dütting S, Guledani A, Pleines I, Schnoor M, Sixt M, Geffers R, Rohde M, Müsken M, Kage F, Steffen A, Faix J, Nieswandt B, Rottner K, Stradal TEB. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Curr Biol 2021; 31:2051-2064.e8. [PMID: 33711252 DOI: 10.1016/j.cub.2021.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.
Collapse
Affiliation(s)
- Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hermann Döring
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David J J de Gorter
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Aleks Guledani
- Institute of Molecular Cell Biology, Westphalian Wilhelms University Münster WWU, Münster, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 07360 Mexico City, Mexico
| | - Michael Sixt
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research HZI, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School MHH, 30625 Hannover, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| |
Collapse
|
23
|
Kaneva VN, Dunster JL, Volpert V, Ataullahanov F, Panteleev MA, Nechipurenko DY. Modeling Thrombus Shell: Linking Adhesion Receptor Properties and Macroscopic Dynamics. Biophys J 2021; 120:334-351. [PMID: 33472026 DOI: 10.1016/j.bpj.2020.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Damage to arterial vessel walls leads to the formation of platelet aggregate, which acts as a physical obstacle for bleeding. An arterial thrombus is heterogeneous; it has a dense inner part (core) and an unstable outer part (shell). The thrombus shell is very dynamic, being composed of loosely connected discoid platelets. The mechanisms underlying the observed mobility of the shell and its (patho)physiological implications are unclear. To investigate arterial thrombus mechanics, we developed a novel, to our knowledge, two-dimensional particle-based computational model of microvessel thrombosis. The model considers two types of interplatelet interactions: primary reversible (glycoprotein Ib (GPIb)-mediated) and stronger integrin-mediated interaction, which intensifies with platelet activation. At high shear rates, the former interaction leads to adhesion, and the latter is primarily responsible for stable platelet aggregation. Using a stochastic model of GPIb-mediated interaction, we initially reproduced experimental curves that characterize individual platelet interactions with a von Willebrand factor-coated surface. The addition of the second stabilizing interaction results in thrombus formation. The comparison of thrombus dynamics with experimental data allowed us to estimate the magnitude of critical interplatelet forces in the thrombus shell and the characteristic time of platelet activation. The model predicts moderate dependence of maximal thrombus height on the injury size in the absence of thrombin activity. We demonstrate that the developed stochastic model reproduces the observed highly dynamic behavior of the thrombus shell. The presence of primary stochastic interaction between platelets leads to the properties of thrombus consistent with in vivo findings; it does not grow upstream of the injury site and covers the whole injury from the first seconds of the formation. А simplified model, in which GPIb-mediated interaction is deterministic, does not reproduce these features. Thus, the stochasticity of platelet interactions is critical for thrombus plasticity, suggesting that interaction via a small number of bonds drives the dynamics of arterial thrombus shell.
Collapse
Affiliation(s)
- Valeriia N Kaneva
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France; INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne, France; Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Fazoil Ataullahanov
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Dmitry Yu Nechipurenko
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
24
|
Bender M, Palankar R. Platelet Shape Changes during Thrombus Formation: Role of Actin-Based Protrusions. Hamostaseologie 2021; 41:14-21. [PMID: 33588449 DOI: 10.1055/a-1325-0993] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Platelet activation and aggregation are essential to limit blood loss at sites of vascular injury but may also lead to occlusion of diseased vessels. The platelet cytoskeleton is a critical component for proper hemostatic function. Platelets change their shape after activation and their contractile machinery mediates thrombus stabilization and clot retraction. In vitro studies have shown that platelets, which come into contact with proteins such as fibrinogen, spread and first form filopodia and then lamellipodia, the latter being plate-like protrusions with branched actin filaments. However, the role of platelet lamellipodia in hemostasis and thrombus formation has been unclear until recently. This short review will briefly summarize the recent findings on the contribution of the actin cytoskeleton and lamellipodial structures to platelet function.
Collapse
Affiliation(s)
- Markus Bender
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Nicolai L, Schiefelbein K, Lipsky S, Leunig A, Hoffknecht M, Pekayvaz K, Raude B, Marx C, Ehrlich A, Pircher J, Zhang Z, Saleh I, Marel AK, Löf A, Petzold T, Lorenz M, Stark K, Pick R, Rosenberger G, Weckbach L, Uhl B, Xia S, Reichel CA, Walzog B, Schulz C, Zheden V, Bender M, Li R, Massberg S, Gaertner F. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun 2020; 11:5778. [PMID: 33188196 PMCID: PMC7666582 DOI: 10.1038/s41467-020-19515-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. Breakdown of vascular barriers is a major complication of inflammatory diseases. However, the mechanisms underlying platelet recruitment to inflammatory micro-environments remains unclear. Here, the authors identify haptotaxis as a key effector function of immune-responsive platelets
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Karin Schiefelbein
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Silvia Lipsky
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Alexander Leunig
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Marie Hoffknecht
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ben Raude
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Charlotte Marx
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Zhe Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Inas Saleh
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | | | - Achim Löf
- Ludwig-Maximilians-Universität, 80799, Munich, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Robert Pick
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, München, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Munich, Germany
| | - Gerhild Rosenberger
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ludwig Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolarynology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sheng Xia
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | | | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, München, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Vanessa Zheden
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Ludwig-Maximilians-Universität, 81377, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany.
| | - Florian Gaertner
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany. .,Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
26
|
Ariens R, Becattini C, Bender M, Bergmeier W, Castoldi E, Devreese K, Ellis M, Gailani D, Ignjatovic V, James PD, Kerrigan S, Lambert M, Lee LH, Levi M, Maugeri N, Meijers J, Melero-Martin J, Michelson AD, Mingozzi F, Neeves K, Ni H, Olsson AK, Prohászka Z, Ranson M, Riva N, Senis Y, van Ommen CH, Vaughan DE, Weisel J. Illustrated State-of-the-Art Capsules of the ISTH 2020 Congress. Res Pract Thromb Haemost 2020; 4:680-713. [PMID: 32685876 PMCID: PMC7354406 DOI: 10.1002/rth2.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023] Open
Abstract
The 2020 Congress of the International Society of Thrombosis and Haemostasis (ISTH) was held virtually July 12-15, 2019, due to the coronavirus disease 2019 pandemic. The congress convenes annually to discuss clinical and basic topics in hemostasis and thrombosis. Each year, the program includes State of Art (SOA) lectures given by prominent scientists. Presenters are asked to create Illustrated Capsules of their talks, which are concise illustrations with minimal explanatory text. Capsules cover major themes of the presentation, and these undergo formal peer review for inclusion in this article. Owing to the shift to a virtual congress this year, organizers reduced the program size. There were 39 SOA lectures virtually presented, and 29 capsules (9 from talks omitted from the virtual congress) were both submitted and successful in peer review, and are included in this article. Topics include the roles of the hemostatic system in inflammation, infection, immunity, and cancer, platelet function and signaling, platelet function disorders, megakaryocyte biology, hemophilia including gene therapy, phenotype tests in hemostasis, von Willebrand factor, anticoagulant factor V, computational driven discovery, endothelium, clinical and basic aspects of thrombotic microangiopathies, fibrinolysis and thrombolysis, antithrombotics in pediatrics, direct oral anticoagulant management, and thrombosis and hemostasis in pregnancy. Capsule authors invite virtual congress attendees to refer to these capsules during the live presentations and participate on Twitter in discussion. Research and Practice in Haemostasis and Thrombosis will release 2 tweets from @RPTHJournal during each presentation, using #IllustratedReview, #CoagCapsule and #ISTH2020. Readers are also welcome to utilize capsules for teaching and ongoing education.
Collapse
Affiliation(s)
- Robert Ariens
- Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK
| | - Cecilia Becattini
- Internal and Cardiovascular Medicine - Stroke Unit University of Perugia Perugia Italy
| | - Markus Bender
- Institute of Experimental Biomedicine - Chair I University Hospital and Rudolf Virchow Center Würzburg Germany
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics UNC Blood Research Center University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Elisabetta Castoldi
- Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Maastricht The Netherlands
| | - Katrien Devreese
- Coagulation Laboratory Department of Laboratory Medicine Ghent University Hospital Ghent University Ghent Belgium
- Coagulation Laboratory Department of Diagnostic Sciences Ghent University Hospital Ghent University Ghent Belgium
| | - Martin Ellis
- Hematology Institute and Blood Bank Meir Medical Center and Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - David Gailani
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TN USA
| | - Vera Ignjatovic
- Haematology Research Team Murdoch Children's Research Institute Department of Paediatrics The University of Melbourne Parkville Vic. Australia
| | | | - Steven Kerrigan
- Royal College of Surgeons in Ireland School of Pharmacy and Biomolecular Sciences Irish Centre for Vascular Biology Dublin Ireland
| | - Michele Lambert
- Department of Pediatrics Perelman School of Medicine at the University of Pennsylvania Philadelphia PA USA
| | - Lai Heng Lee
- Department of Haematology Singapore General Hospital SingHealth Singapore City Singapore
| | - Marcel Levi
- University College London Hospitals London UK
| | - Norma Maugeri
- San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milano Italy
| | - Joost Meijers
- Department of Experimental Vascular Medicine Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department of Molecular and Cellular Hemostasis Sanquin Research Amsterdam The Netherlands
| | | | - Alan D Michelson
- Boston Children's Hospital and Harvard Medical School Boston MA USA
| | | | - Keith Neeves
- Department of Chemical and Biological Engineering Colorado School of Mines Golden CO USA
| | - Heyu Ni
- Department of Laboratory Medicine and Keenan Research Centre for Biomedical Science of St. Michael's Hospital University of Toronto Toronto ON Canada
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Zoltán Prohászka
- Research Laboratory 3rd Department of Internal Medicine MTA-SE Research Group of Immunology and Hematology Hungarian Academy of Sciences and Semmelweis University Budapest Hungary
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong NSW Australia
| | - Nicoletta Riva
- Department of Pathology Faculty of Medicine and Surgery University of Malta Msida Malta
| | - Yotis Senis
- Directeur de Recherche Etablissement Français du Sang Grand Est Inserm UMR-S1255 Université de Strasbourg Strasbourg France
| | - Cornelia H van Ommen
- Department of Pediatric Hematology Oncology Erasmus MC Sophia Children's Hospital Rotterdam The Netherlands
| | | | - John Weisel
- Department of Cell and Developmental Biology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
27
|
Pike JA, Simms VA, Smith CW, Morgan NV, Khan AO, Poulter NS, Styles IB, Thomas SG. An adaptable analysis workflow for characterization of platelet spreading and morphology. Platelets 2020; 32:54-58. [PMID: 32321340 PMCID: PMC8802896 DOI: 10.1080/09537104.2020.1748588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmentation is performed by interactive learning and touching platelets are separated with an efficient semi-automated protocol. We also use machine learning methods to robustly automate the classification of platelets into different subtypes. These adaptable and reproducible workflows are made freely available and are implemented using the open-source software KNIME and ilastik.
Collapse
Affiliation(s)
- Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Victoria A Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Natalie S Poulter
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Iain B Styles
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.,School of Computer Science, University of Birmingham , Birmingham, UK
| | - Steven G Thomas
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| |
Collapse
|
28
|
Green HLH, Zuidscherwoude M, Alenazy F, Smith CW, Bender M, Thomas SG. SMIFH2 inhibition of platelets demonstrates a critical role for formin proteins in platelet cytoskeletal dynamics. J Thromb Haemost 2020; 18:955-967. [PMID: 31930764 PMCID: PMC7186844 DOI: 10.1111/jth.14735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Reorganization of the actin cytoskeleton is required for proper functioning of platelets following activation in response to vascular damage. Formins are a family of proteins that regulate actin polymerization and cytoskeletal organization via a number of domains including the FH2 domain. However, the role of formins in platelet spreading has not been studied in detail. OBJECTIVES Several formin proteins are expressed in platelets so we used an inhibitor of FH2 domains (SMIFH2) to uncover the role of these proteins in platelet spreading and in maintenance of resting platelet shape. METHODS Washed human and mouse platelets were treated with various concentrations of SMIFH2 and the effects on platelet spreading, platelet size, platelet cytoskeletal dynamics, and organization were analyzed using fluorescence and electron microscopy. RESULTS Pretreatment with SMIFH2 completely blocks platelet spreading in both mouse and human platelets through effects on the organization and dynamics of actin and microtubules. However, platelet aggregation and secretion are unaffected. SMIFH2 also caused a decrease in resting platelet size and disrupted the balance of tubulin post-translational modification. CONCLUSIONS These data therefore demonstrated an important role for formin-mediated actin polymerization in platelet spreading and highlighted the importance of formins in cross-talk between the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Hannah L. H. Green
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Present address:
School of Cardiovascular Medicine & SciencesBHF Centre of Research ExcellenceKing's College LondonLondonUK
| | - Malou Zuidscherwoude
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| | - Fawaz Alenazy
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | | | - Markus Bender
- Institute of Experimental Biomedicine – Chair IUniversity Hospital and Rudolf Virchow CenterWürzburgGermany
| | - Steven G. Thomas
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| |
Collapse
|