1
|
Chardon N, Nourredine M, Ledochowski S, Kurland NT, Dailler F, Ritzenthaler T, Nougier C, Balança B. Trajectory of mean platelet volume changes after aneurysmal subarachnoid hemorrhage in patients with or without delayed cerebral ischemia. Sci Rep 2024; 14:25122. [PMID: 39448701 PMCID: PMC11502662 DOI: 10.1038/s41598-024-75587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The morbidity of aneurysmal subarachnoid hemorrhage (aSAH) remains high, particularly because of secondary cerebral lesions that significantly aggravate the primary lesions. The main type of secondary lesions is delayed cerebral ischemia (DCI), in which platelets (PLT) appear to play a key role. Mean platelet volume (MPV) is an indirect marker of platelet activation. We aimed to determine the individual trajectories of MPV over time in patients with and without DCI during the course of aSAH. This is a single-center, retrospective, longitudinal analysis of individual trajectories of MPV over time, in a cohort of aSAH patients included in the Prospective, Observational Registry of Patient with Subarachnoid Hemorrhage in Neurocritical Care Unit (ProReSHA). A mixed-effects linear regression model was used to compare the trajectories of MPV and MPV/PLT ratio between patients who developed a DCI and those who did not. A total of 3634 MPV values were collected in 587 patients. The analysis of MPV as a function of DCI occurrence showed a significant difference in the trajectory over time between patients with DCI and those without, with an estimate of 0.02 (95%CI 0.01, 0.04, p = 0.009). The analysis of the MPV/PLT ratio as a function of DCI occurrence and other covariates showed a significant difference in the trajectory over time only for patients with a modified Fisher score less than 3, with an estimate of -0.59 (95%CI: -0.94, -0.23, p = 0.001). The individual trajectories of MPV over time differ between patients with DCI and those without. However, MPV values vary greatly over time and between patients. Thus it does not appear as a reliable biomarker for stratifying patients based on their specific risk of developing DCI. ClinicalTrials.gov identifier: (NCT02890004), registered in August 2016.
Collapse
Affiliation(s)
- Nicolas Chardon
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France.
| | | | - Stanislas Ledochowski
- Service de Réanimation Polyvalente, Médipôle Lyon-Villeurbanne, Ramsay Santé, France
| | | | - Frédéric Dailler
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France
| | - Thomas Ritzenthaler
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France
| | - Christophe Nougier
- Laboratoire d'Hématologie-Hémostase, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Baptiste Balança
- Département d'Anesthésie et Réanimation, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital), 59 Boulevard Pinel Bron, Lyon, 69500, France
- Lyon Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| |
Collapse
|
2
|
Dmour BA, Costache AD, Dmour A, Huzum B, Duca ȘT, Chetran A, Miftode RȘ, Afrăsânie I, Tuchiluș C, Cianga CM, Botnariu G, Șerban LI, Ciocoiu M, Bădescu CM, Costache II. Could Endothelin-1 Be a Promising Neurohormonal Biomarker in Acute Heart Failure? Diagnostics (Basel) 2023; 13:2277. [PMID: 37443671 DOI: 10.3390/diagnostics13132277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute heart failure (AHF) is a life-threatening condition with high morbidity and mortality. Even though this pathology has been extensively researched, there are still challenges in establishing an accurate and early diagnosis, determining the long- and short-term prognosis and choosing a targeted therapeutic strategy. The use of reliable biomarkers to support clinical judgment has been shown to improve the management of AHF patients. Despite a large pool of interesting candidate biomarkers, endothelin-1 (ET-1) appears to be involved in multiple aspects of AHF pathogenesis that include neurohormonal activation, cardiac remodeling, endothelial dysfunction, inflammation, atherosclerosis and alteration of the renal function. Since its discovery, numerous studies have shown that the level of ET-1 is associated with the severity of symptoms and cardiac dysfunction in this pathology. The purpose of this paper is to review the existing information on ET-1 and answer the question of whether this neurohormone could be a promising biomarker in AHF.
Collapse
Affiliation(s)
- Bianca-Ana Dmour
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Awad Dmour
- Department of Orthopedics and Traumatology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Orthopaedics and Traumatology, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Huzum
- Department of Orthopaedics and Traumatology, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Adriana Chetran
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Radu Ștefan Miftode
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Irina Afrăsânie
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina Tuchiluș
- Department of Microbiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Microbiology Laboratory, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Corina Maria Cianga
- Immunology Laboratory, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Immunology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Gina Botnariu
- Unit of Diabetes, Nutrition and Metabolic Diseases, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Manuela Ciocoiu
- Department of Morpho-Functional Sciences II, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Codruța Minerva Bădescu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Irina Iuliana Costache
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
3
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
4
|
The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation. Life (Basel) 2021; 11:life11090986. [PMID: 34575135 PMCID: PMC8472034 DOI: 10.3390/life11090986] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Hypertension (HTN) is one of the most prevalent diseases worldwide and is among the most important risk factors for cardiovascular and cerebrovascular complications. It is currently thought to be the result of disturbances in a number of neural, renal, hormonal, and vascular mechanisms regulating blood pressure (BP), so crucial importance is given to the imbalance of a number of vasoactive factors produced by the endothelium. Decreased nitric oxide production and increased production of endothelin-1 (ET-1) in the vascular wall may promote oxidative stress and low-grade inflammation, with the development of endothelial dysfunction (ED) and increased vasoconstrictor activity. Increased ET-1 production can contribute to arterial aging and the development of atherosclerotic changes, which are associated with increased arterial stiffness and manifestation of isolated systolic HTN. In addition, ET-1 is involved in the complex regulation of BP through synergistic interactions with angiotensin II, regulates the production of catecholamines and sympathetic activity, affects renal hemodynamics and water–salt balance, and regulates baroreceptor activity and myocardial contractility. This review focuses on the relationship between ET-1 and HTN and in particular on the key role of ET-1 in the pathogenesis of ED, arterial structural changes, and impaired vascular regulation of BP. The information presented includes basic concepts on the role of ET-1 in the pathogenesis of HTN without going into detailed analyses, which allows it to be used by a wide range of specialists. Also, the main pathological processes and mechanisms are richly illustrated for better understanding.
Collapse
|
5
|
Araos P, Figueroa S, Amador CA. The Role of Neutrophils in Hypertension. Int J Mol Sci 2020; 21:ijms21228536. [PMID: 33198361 PMCID: PMC7697449 DOI: 10.3390/ijms21228536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.
Collapse
|
6
|
Involvement of the Endothelin Receptor Type A in the Cardiovascular Inflammatory Response Following Scorpion Envenomation. Toxins (Basel) 2020; 12:toxins12060389. [PMID: 32545475 PMCID: PMC7374423 DOI: 10.3390/toxins12060389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of endothelin-1 (ET-1) were recorded in sera of scorpion sting patients. However, no studies focused on the mechanism of ET-1 involvement in the pathogenesis of scorpion envenomation, particularly in the cardiovascular system which is seriously affected in severe cases of scorpion stings. Inflammation induced by Androctonus australis hector (Aah) scorpion venom in the heart together with the aorta was studied in mice pretreated with a specific endothelin A receptor (ETA-R) inhibitor. ETA-R inhibition resulted in the attenuation of the high amounts of cytokine (tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17)) recorded in the sera of envenomed mice. The recovery of the oxidative stress marker balance and matrix metalloproteinase (MMP) expression were also observed, concomitantly with the reduction of tissular neutrophil infiltration. Additionally, the cardiac and the aortic tissue alterations, and the metabolic enzymes (creatine kinase (CK) and muscle–brain isoform creatine kinase (CK-MB)) overspread into sera were significantly attenuated. Obtained results suggest the implication of endothelin throughout its ETA receptors in the inflammatory response observed in the cardiovascular components during scorpion envenomation. Further knowledge is needed to better understand the implication of the endothelin axis and to improve the therapeutic management of severe scorpion sting cases.
Collapse
|
7
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
8
|
Aaron PA, Jamklang M, Uhrig JP, Gelli A. The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cell Microbiol 2018; 20. [PMID: 29197141 DOI: 10.1111/cmi.12811] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningitis most commonly in populations with impaired immunity. Here, we resolved the transcriptome of the human brain endothelium challenged with C. neoformans to establish whether C. neoformans invades the CNS by co-opting particular signalling pathways as a means to promote its own entry. Among the 5 major pathways targeted by C. neoformans, the EPH-EphrinA1 (EphA2) tyrosine kinase receptor-signalling pathway was examined further. Silencing the EphA2 receptor transcript in a human brain endothelial cell line or blocking EphA2 activity with an antibody or chemical inhibitor prevented transmigration of C. neoformans in an in vitro model of the blood-brain barrier (BBB). In contrast, treating brain endothelial cells with an EphA2 chemical agonist or an EphA2 ligand promoted greater migration of fungal cells across the BBB. C. neoformans activated the EPH-tyrosine kinase pathway through a CD44-dependent phosphorylation of EphA2, promoting clustering and internalisation of EphA2 receptors. Moreover, HEK293T cells expressing EphA2 revealed an association between EphA2 and C. neoformans that boosted internalisation of C. neoformans. Collectively, the results suggest that C. neoformans promotes EphA2 activity via CD44, and this in turn creates a permeable barrier that facilitates the migration of C. neoformans across the BBB.
Collapse
Affiliation(s)
- Phylicia A Aaron
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| | - Mantana Jamklang
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| | - John P Uhrig
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| |
Collapse
|
9
|
Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol 2017; 13:648-656. [PMID: 28855694 DOI: 10.1038/nrrheum.2017.134] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.
Collapse
|
10
|
Potential role for ET-2 acting through ETA receptors in experimental colitis in mice. Inflamm Res 2016; 66:141-155. [PMID: 27778057 DOI: 10.1007/s00011-016-1001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE AND DESIGN This study attempted to clarify the roles of endothelins and mechanisms associated with ETA/ETB receptors in mouse models of colitis. MATERIALS AND METHODS Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ETA receptor antagonist, 10 mg/kg), A-192621 (ETB receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. RESULTS Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ETA and ETB receptors mRNA were increased at 24, 48 and 72 h after colitis induction. CONCLUSIONS Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ETA receptors might be a potential target for inflammatory bowel diseases.
Collapse
|
11
|
Kostov K, Blazhev A, Atanasova M, Dimitrova A. Serum Concentrations of Endothelin-1 and Matrix Metalloproteinases-2, -9 in Pre-Hypertensive and Hypertensive Patients with Type 2 Diabetes. Int J Mol Sci 2016; 17:ijms17081182. [PMID: 27490532 PMCID: PMC5000590 DOI: 10.3390/ijms17081182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its plasma or serum concentrations are elevated in some forms of experimental and human hypertension, this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9 (MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2 and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover.
Collapse
Affiliation(s)
- Krasimir Kostov
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Alexander Blazhev
- Division of Biology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Milena Atanasova
- Division of Biology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Anelia Dimitrova
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| |
Collapse
|
12
|
Griffin JM, Kho D, Graham ES, Nicholson LFB, O’Carroll SJ. Statins Inhibit Fibrillary β-Amyloid Induced Inflammation in a Model of the Human Blood Brain Barrier. PLoS One 2016; 11:e0157483. [PMID: 27309956 PMCID: PMC4911157 DOI: 10.1371/journal.pone.0157483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/31/2016] [Indexed: 02/03/2023] Open
Abstract
Background Astrocytes and cerebral endothelial cells are important components of the blood-brain barrier (BBB). Disruption to this barrier through inflammation is a major contributor to Alzheimer’s disease (AD) pathology. The amyloid beta (Aβ) protein is known to exist in several forms and is a key modulator of AD that is known to cause inflammation and changes to BBB function. While one of these forms, fibrillary Aβ (fAβ), is known to cause endothelial cell death at the BBB, no studies have looked specifically at its role on inflammation in a model of the human BBB. Aims To determine if fAβ is inflammatory to the human BBB. As statins have been shown to be anti-inflammatory and protective in AD, we also tested if these could inhibit the inflammatory effect of fAβ. Methods Using cultured cerebral endothelial cells and astrocytes we determined changes in cytokine release, cell toxicity and barrier function in response to fibrillary β-amyloid1–42 (fAβ1–42) alone and in combination with statins. Results fAβ1–42 induced inflammatory cytokine release from endothelial cells in the absence of cell toxicity. It also induced astrocyte cytokine release and cell death and caused a loss of barrier integrity. Statin treatment inhibited all of these effects. Conclusions We conclude that fAβ1–42 has both inflammatory and cytotoxic effects on the BBB and the protective effect of statins in AD may in part be through inhibiting these effects.
Collapse
Affiliation(s)
- Jarred M. Griffin
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Kho
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - E. Scott Graham
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Louise F. B. Nicholson
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
13
|
Unić D, Barić D, Brkić K, Planinc M, Jonjić D, Rudež I, Sutlić Ž. Off-pump myocardial revascularization attenuates endothelin-1 expression in systemic, pulmonary, and coronary circulation. Wien Klin Wochenschr 2014; 126:710-7. [PMID: 25398294 DOI: 10.1007/s00508-014-0664-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 10/22/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate the influence of cardiopulmonary bypass (CPB) on endothelin-1 (ET-1) expression in various circulation compartments in patients undergoing myocardial revascularization. METHODS A total of 30 patients were randomized to undergo myocardial revascularization with (CABG, n = 15) or without (OPCAB, n = 15) CPB. Samples were taken preoperatively, after establishing CPB and after CPB (CABG group), prior to and after revascularization (OPCAB group), and 6 and 24 h postoperatively. Values of ET-1 were compared between groups at all time points and correlated with postoperative cardioselective enzyme values and clinical parameters. RESULTS In OPCAB group, ET-1 levels did not significantly vary between time points. In CABG group, ET-1 levels were significantly elevated vs. baseline in arterial: ART-T2 vs. ART-T0 (1.83 ± 1.81 vs. 0.76 ± 1.07 fmol/mL, p = 0.05), pulmonary: SG-T2 vs. SG-T0 (2.70 ± 2.75 vs. 0.39 ± 0.28 fmol/mL, p < 0.001) and SG-T3 vs. SG-T0 (1.56 ± 0.28 vs. 0.39 ± 0.28 fmol/mL, p < 0.001), and coronary circulation CS-T2 vs. CS-T1 (1.12 ± 0.49 vs. 0.27 ± 0.09 fmol/mL, p = 0.01). ET-1 levels were significantly higher in CABG group in all vascular compartments: ART-T2 (1.83 ± 1.81 vs. 0.17 ± 0.16 fmol/mL, p = 0.02), ART-T4 (0.99 ± 0.56 vs. 0.24 ± 0.12 fmol/mL, p = 0.01), SG-T1 (0.59 ± 0.15 vs. 0.25 ± 0.13 fmol/mL, p = 0.01), SG-T2 (2.70 ± 2.75 vs. 0.30 ± 0.24 fmol/mL, p = 0.004), SG-T3 (1.56 ± 0.28 vs. 0.35 ± 0.31 fmol/mL, p < 0.001), SG-T4 (1.34 ± 0.11 vs. 0.34 ± 0.16 fmol/mL, p < 0.001), and CS-T2 (1.12 ± 0.49 vs. 0.12 ± 0.12 fmol/mL, p = 0.004). Coronary sinus ET-1 level after CPB (CS-T2) in CABG group correlated positively with troponin-I level 24 h postoperatively (r(2) = 0.802, p = 0.02) CONCLUSION: Off-pump myocardial revascularization attenuates ET-1 expression in all investigated vascular compartments. Elevated coronary ET-1 levels after CPB in CABG group correlate with troponin-I levels 24 h postoperatively.
Collapse
Affiliation(s)
- Daniel Unić
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Av. G. Šuška 6, HR-10 000, Zagreb, Croatia,
| | | | | | | | | | | | | |
Collapse
|
14
|
Altered expression of immune-related genes in children with Down syndrome. PLoS One 2014; 9:e107218. [PMID: 25222269 PMCID: PMC4164533 DOI: 10.1371/journal.pone.0107218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023] Open
Abstract
Individuals with Down syndrome (DS) have a high incidence of immunological alterations with increased susceptibility to bacterial and viral infections and high frequency of different types of hematologic malignancies and autoimmune disorders. In the current study, we profiled the expression pattern of 92 immune-related genes in peripheral blood mononuclear cells (PBMCs) of two different groups, children with DS and control children, to identify differentially expressed genes that might be of pathogenetic importance for the development and phenotype of the immunological alterations observed in individuals with DS. PBMCs samples were obtained from six DS individuals with karyotypically confirmed full trisomy 21 and six healthy control individuals (ages 2–6 years). Gene expression was profiled in duplicate according to the manufacturer's instructions provided by commercially available TaqMan Human Immune Array representing 92 immune function genes and four reference genes on a 96-plex gene card. A set of 17 differentially expressed genes, not located on chromosome 21 (HSA21), involved in immune and inflammatory pathways was identified including 13 genes (BCL2, CCL3, CCR7, CD19, CD28, CD40, CD40LG, CD80, EDN1, IKBKB, IL6, NOS2 and SKI) significantly down-regulated and four genes (BCL2L1, CCR2, CCR5 and IL10) significantly up-regulated in children with DS. These findings highlight a list of candidate genes for further investigation into the molecular mechanism underlying DS pathology and reinforce the secondary effects of the presence of a third copy of HSA21.
Collapse
|
15
|
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91:507-16. [PMID: 22483688 DOI: 10.1016/j.lfs.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. It is involved in the development of endothelial dysfunction including important interactions with nitric oxide. The expression and functional effects of ET-1 and its receptors are markedly altered during development of cardiovascular disease. Increased production of ET-1 and its receptors mediate many pathophysiological events contributing to the development of atherosclerosis and vascular complications in diabetes mellitus. The present review focuses on the pathophysiological role of ET-1 and the potential importance of ET receptors as a therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- John Pernow
- Karolinska Institutet, Cardiology Unit, Department of Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
16
|
Endothelin receptor antagonist attenuates inflammatory response and prolongs the survival time in a neonatal sepsis model. Intensive Care Med 2010; 36:2132-9. [DOI: 10.1007/s00134-010-2040-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/22/2010] [Indexed: 11/27/2022]
|
17
|
Chen L, Swartz KR, Toborek M. Vessel microport technique for applications in cerebrovascular research. J Neurosci Res 2009; 87:1718-27. [PMID: 19115415 DOI: 10.1002/jnr.21973] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cerebrovascular research suffers from a lack of reliable methods with which to deliver exogenous substances effectively into the central nervous system (CNS) of small experimental animals. Here we describe a novel vessel microport surgical technique for a variety of cerebrovascular applications that is reproducible and well tolerated in mice. The procedure is based on the insertion of a vessel microport into the external carotid artery for substance delivery into the CNS via the internal carotid artery. The method results in selective substance delivery into the ipsilateral hemisphere. Other novel aspects of this surgical technique include the ability to perform multiple injections, study of conscious mice well removed from surgery, and lack of occlusion of the common or internal carotid artery that allows carotid flow to be maintained. The feasibility of this technique has been validated by infusion of HIV Tat protein to induce permeability of the blood-brain barrier and by implantation of tumor cells to establish a brain metastasis model. Thus, the described vessel microport technique can be employed in a variety of cerebrovascular research applications.
Collapse
Affiliation(s)
- Lei Chen
- Molecular Neuroscience and Vascular Biology Laboratory, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
18
|
Peng H, Chen P, Cai Y, Chen Y, Wu QH, Li Y, Zhou R, Fang X. Endothelin-1 increases expression of cyclooxygenase-2 and production of interlukin-8 in hunan pulmonary epithelial cells. Peptides 2008; 29:419-24. [PMID: 18191873 DOI: 10.1016/j.peptides.2007.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.
Collapse
Affiliation(s)
- Hong Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hauck EF, Hoffmann JF, Heimann A, Kempski O. EndothelinA receptor antagonist BSF-208075 causes immune modulation and neuroprotection after stroke in gerbils. Brain Res 2007; 1157:138-45. [PMID: 17506996 DOI: 10.1016/j.brainres.2007.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 03/12/2007] [Accepted: 04/19/2007] [Indexed: 11/21/2022]
Abstract
UNLABELLED Leukocytes contribute to the ischemia-reperfusion injury. Recent studies suggested endothelins could be important mediators for leukocyte activation in stroke. We tested if the endothelinA receptor antagonist BSF-208075 (ambrisentan) could reduce an ischemic lesion by modulation of leukocyte-endothelium interactions. Twenty-four gerbils underwent either a sham operation (n=6) or 15 min of bilateral carotid artery occlusion resulting in global cerebral ischemia. Ischemic animals received normal saline (n=6), 5 mg/kg BSF-208075 (n=6) or 30 mg/kg (n=6) administered intravenously at 10 min of reperfusion. Leukocytes rolling or adhering to endothelium were counted by intravital microscopy in parietal subsurface venules through a closed cranial window. BSF-208075 dose-dependently reduced postischemic leukocytes rolling (7.3+/-2.3 vs. 3.3+/-1.4 vs. 0.7+/-0.7 [n/100 microm/min]; p<0.05) and adhering (5.3+/-1.4 vs. 2.7+/-1.6 vs. 1.3+/-0.5 [n/100 microm/min]; p<0.05). Cerebral blood flow was not significantly changed by BSF-208075. Cortical neurons [n/mm2] in an area corresponding to the in vivo microscopy were dose-dependently preserved 7 days after ischemia (2456+/-687 vs. 3254+/-245 vs. 3780+/-168; p<0.05). CONCLUSION Endothelins mediate leukocyte activation in ischemic stroke. The endothelinA receptor antagonist BSF-208075 administered during reperfusion reduces the postischemic leukocyte activation and causes neuroprotection.
Collapse
Affiliation(s)
- Erik F Hauck
- Division of Neurosurgery, University of Texas Medical Branch, Galveston, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Endothelins are powerful vasoconstrictor peptides that also play numerous other roles. The endothelin (ET) family consists of three peptides produced by a variety of tissues. Endothelin-1 (ET-1) is the principal isoform produced by the endothelium in the human cardiovascular system, and it exerts its actions through binding to specific receptors, the so-called type A (ET(A)) and type B (ET(B)) receptors. ET-1 is primarily a locally acting paracrine substance that appears to contribute to the maintenance of basal vascular tone. It is also activated in several diseases, including congestive heart failure, arterial hypertension, atherosclerosis, endothelial dysfunction, coronary artery diseases, renal failure, cerebrovascular disease, pulmonary arterial hypertension, and sepsis. Thus, ET-1 antagonists are promising new agents. They have been shown to be effective in the management of primary pulmonary hypertension, but disappointing in heart failure. Clinical trials are needed to determine whether manipulation of the ET system will be beneficial in other diseases.
Collapse
Affiliation(s)
- Rahman Shah
- Section of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
21
|
Gemici G, Erdim R, Tokay S, Tezcan H, Fak AS, Oktay A. Interaction between C-reactive protein and endothelin-1 in coronary artery disease. Cardiology 2007; 107:340-4. [PMID: 17283423 DOI: 10.1159/000099048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/13/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increased concentrations of serum C-reactive protein (CRP) have been reported to predict major cardiovascular events in patients with coronary artery disease (CAD). Increased concentrations of endothelin-1 (ET-1) are also associated with poor prognosis after myocardial infarction. HYPOTHESIS We tested the hypothesis that ET-1 might contribute to CRP in prediction of adverse outcome in CAD. METHODS Serum high sensitive CRP and plasma ET-1 levels of 40 patients who have stable CAD and 25 control subjects were measured, and correlation analysis between these molecules was performed. RESULTS Mean high sensitive CRP was 8.64 +/- 12.73 mg/l, and mean ET-1 was 8.24 +/- 7.06 pg/ml in the CAD group. We found that there was no statistically significant correlation between high sensitive CRP and ET-1 in either CAD group (p = 0.82), or the control group (p = 0.85). In a subgroup of 13 patients who were not under statin treatment, we found a strong correlation between the levels of these molecules (p = 0.01). CONCLUSION Our study does not clearly support or exclude a link between CRP and ET-1 in patients who have stable CAD.
Collapse
Affiliation(s)
- Gökmen Gemici
- Marmara University School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
22
|
Charalambous C, Virrey J, Kardosh A, Jabbour MN, Qazi-Abdullah L, Pen L, Zidovetzki R, Schönthal AH, Chen TC, Hofman FM. Glioma-associated endothelial cells show evidence of replicative senescence. Exp Cell Res 2007; 313:1192-202. [PMID: 17291495 DOI: 10.1016/j.yexcr.2006.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/16/2022]
Abstract
The innately programmed process of replicative senescence has been studied extensively with respect to cancer, but primarily from the perspective of tumor cells overcoming this stringent innate barrier and acquiring the capacity for unlimited proliferation. In this study, we focus on the potential role of replicative senescence affecting the non-transformed endothelial cells of the blood vessels within the tumor microenvironment. Based on the well-documented aberrant structural and functional features of blood vessels within solid tumors, we hypothesized that tumor-derived factors may lead to premature replicative senescence in tumor-associated brain endothelial cells (TuBEC). We show here that glioma tissue, but not normal brain tissue, contains cells that express the signature of replicative senescence, senescence-associated beta-galactosidase (SA-beta-gal), on CD31-positive endothelial cells. Primary cultures of human TuBEC stain for SA-beta-gal and exhibit characteristics of replicative senescence, including increased levels of the cell cycle inhibitors p21 and p27, increased resistance to cytotoxic drugs, increased growth factor production, and inability to proliferate. These data provide the first demonstration that tumor-derived brain endothelial cells may have reached an end-stage of differentiation known as replicative senescence and underscore the need for anti-angiogenic therapies to target this unique tumor-associated endothelial cell population.
Collapse
Affiliation(s)
- Christiana Charalambous
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Charalambous C, Chen TC, Hofman FM. Characteristics of tumor-associated endothelial cells derived from glioblastoma multiforme. Neurosurg Focus 2006; 20:E22. [PMID: 16709028 DOI: 10.3171/foc.2006.20.4.e22] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastomas multiforme (GBMs) are highly vascular brain tumors characterized by abnormal vessel structures in vivo. This finding supports the theory that glioma-associated endothelial cells (ECs) have intrinsically different properties from ECs in normal human brain. Therefore, identification of the functional and phenotypic characteristics of tumor-associated ECs is essential for designing a rational antiangiogenic therapy. The GBM-associated ECs have a large, flat, and veil-like appearance, in contrast to normal ones, which are small and plump. Although the tumor ECs have the typical markers, they proliferate more slowly than these cell types in normal brain. The GBM-associated ECs are resistant to cytotoxic drugs, and they undergo less apoptosis than control cells. Also, GBM-associated ECs migrate faster than controls and constitutively produce high levels of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor. An understanding of these unique characteristics of glioma-associated ECs is important for the development of novel antiangiogenic agents that specifically target tumor-associated ECs in gliomas.
Collapse
Affiliation(s)
- Christiana Charalambous
- Department of Molecular Microbiology, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
24
|
Derosa G, Cicero AFG, D'Angelo A, Tinelli C, Ciccarelli L, Piccinni MN, Pricolo F, Salvadeo S, Montagna L, Gravina A, Ferrari I, Galli S, Paniga S, Fogari R. Effect of Doxazosin on C-Reactive Protein Plasma Levels and on Nitric Oxide in Patients With Hypertension. J Cardiovasc Pharmacol 2006; 47:508-12. [PMID: 16680063 DOI: 10.1097/01.fjc.0000211743.93701.eb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inflammation has been hypothesized to play a role in the development of hypertension. The high-sensitivity C-reactive protein (hs-CRP) is a well-studied marker of systemic inflammation that has a predictive power with regard to the development of hypertension. This study was designed to test the hypothesis that hs-CRP plasma levels are altered in hypertension. Moreover, the study was to assess whether chronic antihypertensive treatment with doxazosin would normalize hs-CRP and nitrites/nitrates. We measured plasma levels of hs-CRP and nitrites/nitrates in 44 normotensive subjects and in 44 patients with hypertension before and after doxazosin therapy for 4 months. hs-CRP plasma levels were significantly higher (P < 0.007) in untreated hypertensive group compared to controls. Significant decrease was observed for hs-CRP (P < 0.05) in hypertensive patients after antihypertensive treatment. Nitrites/nitrates were significantly lower (P < 0.0001) in the untreated hypertensive group compared to controls. A significant increase was observed for nitrites/nitrates (P < 0.05) in hypertensive patients after antihypertensive treatment. These results suggest that doxazosin treatment exerts anti-inflammatory effects in addition to its antihypertensive properties in hypertensive patients.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zwijnenburg PJG, van der Poll T, Roord JJ, van Furth AM. Chemotactic factors in cerebrospinal fluid during bacterial meningitis. Infect Immun 2006; 74:1445-51. [PMID: 16495514 PMCID: PMC1418618 DOI: 10.1128/iai.74.3.1445-1451.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Petra J G Zwijnenburg
- Department of Pediatrics, VU Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Milan J, Charalambous C, Elhag R, Chen TC, Li W, Guan S, Hofman FM, Zidovetzki R. Multiple signaling pathways are involved in endothelin-1-induced brain endothelial cell migration. Am J Physiol Cell Physiol 2006; 291:C155-64. [PMID: 16452160 DOI: 10.1152/ajpcell.00239.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have observed that the vasoactive peptide endothelin-1 is a potent inducer of migration of primary human brain-derived microvascular endothelial cells. By blocking signal transduction pathways with specific inhibitors, and using dominant negative mutant infections, we have demonstrated that multiple pathways are involved in endothelin-1-induced migration. Absolutely required for migration are protein tyrosine kinase Src, Ras, protein kinase C (PKC), phosphatidylinositol 3-kinase, ERK, and JNK; partial requirements were exhibited by cAMP-activated protein kinase and p38 kinase. Partial elucidation of the signal transduction sequences showed that the MAPKs ERK, JNK, and p38 are positioned downstream of both PKC and cAMP-activated protein kinase in the signal transduction scheme. The results show that human brain endothelial cell migration has distinct characteristics, different from cells derived from other vascular beds, or from other species, often used as model systems. Furthermore, the results indicate that endothelin-1, secreted by many tumors, is an important contributor to tumor-produced proangiogenic microenvironment. This growth factor has been associated with increased microvessel density in tumors and is responsible for endothelial cell proliferation, migration, invasion, and tubule formation. Because many signal transduction pathways investigated in this study are potential or current targets for anti-angiogenesis therapy, these results are of critical importance for designing physiological antiangiogenic protocols.
Collapse
Affiliation(s)
- Johanna Milan
- Department of Cell Biology and Neuroscience, University of California, Riverside, 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ergul A. Development of endothelin receptor antagonists as potential therapeutic agents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.1.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Toborek M, Lee YW, Flora G, Pu H, András IE, Wylegala E, Hennig B, Nath A. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 2005; 25:181-99. [PMID: 15962513 DOI: 10.1007/s10571-004-1383-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
(1) Alterations of brain microvasculature and the disruption of the blood-brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD). (2) It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS. (3) The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND AND OBJECTIVES Pulmonary arterial hypertension (PHT) is a potentially fatal disease. The purpose of this article is to review the current knowledge of the role played by endothelin (ET) in PHT and the relevant drug regimens used in the treatment of this condition. METHODS A detailed search via MEDLINE (PubMed) was performed by using PHT and ET as the key terms. RESULTS PHT could be a primary or a secondary diagnosis associated with various heart and lung diseases. PHT appears during the late stage of systemic sclerosis and may complicate other systemic diseases such as systemic lupus erythematosus. The vascular endothelium and activation of various mediators and growth factors such as the ET system are thought to play a crucial role in the development of this condition. The pathologic process progresses very rapidly from vasoconstriction to widespread pulmonary vascular obstruction. The use of high doses of calcium channel blockers is of limited value. Life-long anticoagulant therapy is recommended for the treatment of PHT. Currently, the drug being used in PHT therapy is continuous central-venous prostacyclin infusion. Prostacyclin is a strong vasodilator with antiaggregate and antifibrotic properties and has the potential to reduce endothelial injury and to induce vasculature remodeling. This treatment results in improved functional status and increased life span. Unfortunately, its use is accompanied by various side effects, technical difficulties, and high cost. The role of other therapeutic modalities (inhaled prostacyclin, subcutaneous treprostinil, oral beraprost, sildenafil) in vascular remodeling, and the improvement in functional capacity and survival of patients with PHT, are currently under investigation. Bosentan, administered orally, is a recently developed active ET receptor antagonist. It is a promising new therapeutic tool in the treatment of PHT because of its potent vasodilator, antiproliferative, and vascular remodeling activity. CONCLUSIONS The revolutionary conceptual shift in understanding the pathogenesis of PHT from a vasoconstrictive process to a vasoproliferative one, has led to a modification in the treatment of this disease from the use of vasodilators to the use of drugs with antiproliferative and vascular remodeling activity. Until now, prostacyclin was the only drug of this type available for the treatment of PHT. ET blockade seems to be a reasonable and potential therapeutic option.
Collapse
|
30
|
Hocher B, Schwarz A, Slowinski T, Bachmann S, Pfeilschifter J, Neumayer HH, Bauer C. In-vivo interaction of nitric oxide and endothelin. J Hypertens 2004; 22:111-9. [PMID: 15106802 DOI: 10.1097/00004872-200401000-00020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE AND METHODS Endothelin-1 (ET-1) was initially characterized as a potent vasoconstrictor. However, the expected role of ET-1 as a major blood pressure controlling peptide could not be clearly established. Moreover, ET-1 transgenic mice are not hypertensive. We assume that counter-regulating mechanisms such as the nitric oxide (NO) system or an altered expression of endothelin receptors might cause this finding. RESULTS An intravenous (i.v.) bolus injection of N(omega)-nitro-L-arginine methyl ester (L-NAME) resulted in a significantly higher blood pressure increase in ET-1 transgenic mice, as compared to non-transgenic littermates. On the other hand, blood pressure increased similarly after an i.v. injection of ET-1 in ET-1 transgenic mice and non-transgenic littermates. Pretreatment with dexamethasone abolished the higher blood pressure increase after L-NAME in ET-1 transgenic mice. Urinary excretion of NO metabolites was elevated in ET-1 transgenic mice and decreased significantly after dexamethasone treatment. Immunohistochemistry revealed that the inducible NO synthase (iNOS) was highly expressed in intrarenal arteries in these mice. Dexamethasone pretreatment abolished vascular iNOS expression. No vascular iNOS expression was detectable in non-transgenic littermates. Furthermore, immunohistochemistry revealed that ET-1 transgenic mice are characterized by an increased tissue density of CD4-positive lymphocytes and macrophages. Analysis of endothelin receptor expression and function revealed that the endothelin subtype A (ETA) receptor was not differently expressed in ET-1 transgenic mice as compared to age-matched littermates. The blood pressure response to an ETA receptor antagonist was likewise similar in ET-1 transgenic mice and age-matched littermates. The endothelin subtype B (ETB) receptor density was decreased in ET-1 transgenic mice. Treatment with an ETB receptor antagonist led to a non-significant slightly higher blood pressure increase in ET-1 transgenic mice as compared to controls. CONCLUSION The endothelin receptor expression pattern and the blood pressure responses to ETA and ETB receptor antagonists could not explain the lack of hypertension in ET-1 transgenic mice. Overexpression of the human ET-1 gene causes chronic kidney inflammation with an induction of vascular iNOS expression. The induction of iNOS expression might cause a new local balance between vascular ET-1 and nitric oxide, resulting in no alterations of blood pressure.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/administration & dosage
- Biomarkers/blood
- Blood Pressure/drug effects
- Endothelin-1/administration & dosage
- Endothelin-1/drug effects
- Endothelin-1/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/administration & dosage
- Immunohistochemistry
- Injections, Intra-Arterial
- Kidney/cytology
- Kidney/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Male
- Mice
- Mice, Transgenic
- Models, Animal
- Models, Cardiovascular
- NG-Nitroarginine Methyl Ester/administration & dosage
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Oligopeptides/administration & dosage
- Peptides, Cyclic/administration & dosage
- Piperidines/administration & dosage
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/drug effects
- Receptor, Endothelin B/metabolism
Collapse
Affiliation(s)
- Berthold Hocher
- Department of Nephrology, Charité, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Matthias Barton
- Medical Policlinic, Department of Internal Medicine, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|
32
|
Abstract
OBJECTIVE To examine the role of sevoflurane in myocardial protection in patients undergoing coronary artery bypass graft (CABG) surgery. DESIGN Prospective, randomized, controlled, double-blinded study. SETTING Veterans Administration Medical Center (VAMC), Buffalo, New York. SUBJECTS Twenty-one patients undergoing CABG were included in the study. Eleven patients were randomized to receive sevoflurane, and 10 patients served as controls. INTERVENTION Total intravenous anesthesia was provided for both study and control groups by infusion of propofol, fentanyl, and midazolam. Sevoflurane 2% was added to the cardioplegia solution in the experimental group. MEASUREMENTS AND MAIN RESULTS Neutrophil beta-integrins (CD11b/CD18), tumor necrosis factor alpha (TNF-alpha), and interleukin (IL)-6 were measured as indicators of the inflammatory response to myocardial ischemia-reperfusion injury. Blood samples were obtained from the aorta and coronary sinus before (T1) and immediately after cardiopulmonary bypass (CPB) (T2) and, in addition, from a peripheral artery 6 hours (T3) after CPB. Myocardial function was determined in all patients at each time point. Left ventricular stroke work index (LVSWI) was calculated as an estimation of left ventricular function. Left ventricular regional wall motion abnormality (RWMA) was assessed by transesophageal echocardiography at T1 and T2 time points. TNF-alpha was detectable only in the control group in arterial samples at T3. IL-6 levels (pg/mL) were found to be lower in the sevoflurane group compared with controls at T2 arterial circulation (38.2 +/- 21.1 v 60.6 +/- 19.1, p < 0.05) as well as in the coronary circulation (38.4 +/- 19.9 v 118.2 +/- 23.5, p < 0.01) at T2. CD11b/CD18 increased 79% after CPB in the control group while only increasing 36% in the sevoflurane group (p < 0.05). The post-CPB LVSWI was back to its baseline values in the sevoflurane group, whereas it was still significantly depressed in the control group. Eight of 10 patients in the control group showed a transient new-onset RWMA in either the septal or anteroseptal regions. Only 2 of 11 patients in the sevoflurane group showed transient RWMA of the LV. CONCLUSIONS Sevoflurane decreases the inflammatory response after CPB, as measured by the release of IL-6, CD11b/CD18, and TNF-alpha. Myocardial function after CPB, as assessed by RWMA and LVSWI, was also improved with sevoflurane. The role of sevoflurane in myocardial protection and the inflammatory response to myocardial reperfusion should be considered.
Collapse
Affiliation(s)
- Nader D Nader
- Department of Anesthesiology, Pathology and Anatomical Sciences, VA Western NY Healthcare System, Buffalo, NY, USA.
| | | | | | | | | |
Collapse
|
33
|
Getting SJ, Di Filippo C, Lam CW, Rossi F, D'Amico M. Investigation into the potential anti-inflammatory effects of endothelin antagonists in a murine model of experimental monosodium urate peritonitis. J Pharmacol Exp Ther 2004; 310:90-7. [PMID: 14996949 DOI: 10.1124/jpet.104.065573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin (ET)-1 has been detected in many inflammatory pathologies, including rheumatoid arthritic patients, asthma, and ischemic-reperfusion injury. In this study, we have investigated the effect of a panel of different ET-1 antagonists displaying different selectivities for the receptors in a murine model of experimental inflammatory peritonitis. Systemic treatment of mice with the ETA antagonist C33H44N6O5, N-[N-[-N(hexahydro-1H-azepin-1-yl)carbonyl]-L-leucyl]-1-methyl-D-tryptophyl]-3-(2-pyridinyl)-D-alanine (FR139317) inhibited neutrophil accumulation. However, a greater degree of inhibition was observed with the ETB antagonist C34H51N5O7, N-cis-2,6-dimethylpiperidinocarbonyl-b-tBu-Ala-D-Trp(1-methoxycarbonyl)-D-Nle-OH (BQ-788) and the ET(A and B) antagonist C52H65N7O10, N-acetyl-alpha-[10,11-dihydro-5H-dibenzo-[a,d]cycloheptadien-5-yl]-D-Gly-Leu-Asp-lle-lle-Trp (PD145065); all these effects occurred without altering peripheral blood cell counts. Release of the CXC chemokine KC was significantly reduced by the FR139317 and PD145065 but not by BQ-788. Evaluation of the therapeutic potential of these antagonists showed that PD145065 inhibited neutrophil migration and KC release, whereas the others caused a nonsignificant reduction in these parameters. Parameters of endothelial cell activation showed that urate-stimulated interleukin-1beta release was inhibited by BQ-788 and PD145065 but not by FR139317, whereas ET-1 was only inhibited by the mixed antagonist. A different scenario was observed with respect to release of the CXC chemokine KC with FR139317 and PD145065 being effective, whereas with a marker of polymorphonuclear activation the ETA and mixed antagonist inhibited adhesion molecule expression. These data show that ET-1 antagonists elicit different mechanisms of actions in the way they display their antimigratory effects in a murine model of monosodium urate crystal peritonitis.
Collapse
Affiliation(s)
- Stephen J Getting
- Department of Biochemical Pharmacology, The William Harvey Research Institute, Charterhouse Square, London, UK.
| | | | | | | | | |
Collapse
|
34
|
Kimura H, Gules I, Meguro T, Zhang JH. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res 2004; 990:148-56. [PMID: 14568339 DOI: 10.1016/s0006-8993(03)03450-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Several studies reported that the levels of proinflammatory cytokines such as TNF-alpha, IL-1beta, IL-6, and IL-8 are elevated in the cerebrospinal fluid (CSF) of patients after subarachnoid hemorrhage (SAH). Cytokines in CSF may contribute to the development of vasospasm and cerebral ischemia. In the present study, we investigated the possible cytotoxic effects of these cytokines on cultured cerebral microvascular endothelial cells. METHOD The effects of TNF-alpha, IL-1beta, IL-6, and IL-8 were tested using cell viability assay, DNA fragmentation analysis (DNA laddering), Western blot analysis (Anti-poly-(ADP-ribose) polymerase [PARP] antibody), and caspase-3 activity. RESULTS TNF-alpha and IL-1beta, but not IL-6 or IL-8, caused cell detachment in a dose-dependent manner (p<0.05). TNF-alpha (200 pg/ml) and IL-1beta (150 pg/ml) produced DNA ladders at 24-72 h. TNF-alpha but not IL-1beta cleaved the PARP from 116- to 85-kDa fragments and enhanced caspase-3 activity at 24-72 h after incubation with endothelial cells. Caspase-3 inhibitor at 10 micromol/l significantly prevented TNF-alpha-induced cell detachment (p<0.05). DISCUSSION TNF-alpha induces apoptosis in cultured cerebral endothelial cells through the cleavage of caspase-3. IL-1beta decreases the adherent cells, produces DNA ladders, but fails to cleave PARP or increase caspase-3 activity. IL-1beta may induce apoptosis in cerebral endothelial cells through different pathway from that of TNF-alpha.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
35
|
Schillaci G, Pirro M, Gemelli F, Pasqualini L, Vaudo G, Marchesi S, Siepi D, Bagaglia F, Mannarino E. Increased C-reactive protein concentrations in never-treated hypertension. J Hypertens 2003; 21:1841-6. [PMID: 14508189 DOI: 10.1097/00004872-200310000-00010] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test whether the plasma concentration of C-reactive protein (CRP), a sensitive marker of systemic inflammation, is increased in patients with newly diagnosed, never-treated hypertension and whether blood pressure and its pulsatile component, pulse pressure, are correlated with plasma CRP concentration independently of a consistent number of cardiovascular risk factors. DESIGN Cross-sectional study in a hospital outpatient hypertension clinic. METHODS A total of 135 newly diagnosed, never-treated patients with hypertension and 40 healthy matched non-hypertensive controls underwent office and 24-h blood pressure measurement and blood sampling for determination of plasma CRP and serum lipid concentrations. RESULTS Plasma CRP concentration was greater in hypertensive individuals (1.85 mg/l, interquartile range 0.74-3.64) than in control individuals (1.01 mg/l, interquartile range 0.67-1.88; P = 0.02). In the entire population, CRP had a significant direct association with office systolic blood pressure and pulse pressure, but not with diastolic blood pressure. Among hypertensive patients, plasma CRP was related to 24-h systolic blood pressure (r = 0.28, P < 0.01) and pulse pressure (r = 0.32, P < 0.01), but not to diastolic blood pressure (r = 0.12, P > 0.2). CRP was also directly associated with body mass index (r = 0.25, P < 0.01), serum low-density lipoprotein cholesterol (r = 0.21, P = 0.03) and serum triglycerides (r = 0.21, P = 0.03). In the multivariate analysis, systolic blood pressure and pulse pressure, but not diastolic blood pressure, were significant predictors of plasma CRP concentration when a consistent number of cardiovascular risk factors was controlled for simultaneously. CONCLUSIONS Systolic blood pressure and pulse pressure, but not diastolic blood pressure, are predictors of plasma C-reactive protein concentrations in patients with newly diagnosed, never-treated hypertension, irrespective of the potential proinflammatory action of traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Giuseppe Schillaci
- Medicina Interna, Angiologia e Malattie da Arteriosclerosi, Policlinico Monteluce, Università degli Studi di Perugia, Via B. Brunamonti 51, 06122 Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lehmberg J, Putz C, Fürst M, Beck J, Baethmann A, Uhl E. Impact of the endothelin-A receptor antagonist BQ 610 on microcirculation in global cerebral ischemia and reperfusion. Brain Res 2003; 961:277-86. [PMID: 12531495 DOI: 10.1016/s0006-8993(02)03974-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of endogenous endothelin-1 in mediating microcirculatory disturbances after global cerebral ischemia was investigated in Mongolian gerbils. The pial microcirculation was studied by intravital fluorescent microscopy before, during, and up to 3 h after occlusion of both carotid arteries for 15 min. Pretreatment was achieved with the peptidergic selective endothelin-A (ET-A) receptor antagonist BQ 610. The neurological outcome was assessed daily for up to 4 days. The antagonist attenuated postischemic leukocyte-endothelium interactions in postcapillary venules, in particular the number of rolling leukocytes was found to be reduced (13.0+/-9.4 x 100 microm(-1) min(-1) in the control vs. 2.0+/-2.5 in the experimental group, P<0.05). The local microvascular perfusion, measured by the arterio-venous transit time, was improved during reperfusion by BQ 610 (1.3+/-0.5 s in the control vs. 0.7+/-0.2 s in the experimental group, P<0.05). The neurological deficit was significantly reduced in animals treated with the ET-A antagonist (P<0.05). The inhibition of the postischemic inflammatory reaction and the reversal of the delayed hypoperfusion may account for the improved neurological outcome. These observations suggest that application of endothelin-A antagonists may be a useful approach to interfere with derangements in cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Jens Lehmberg
- Department of Neurosurgery, Albert-Ludwigs-University, Freiburg i.B., Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Filippatos GS, Kardaras F. Chemokines and other novel inflammatory markers in hypertension: what can their plasma levels tell us? Int J Cardiol 2002; 83:21-3. [PMID: 11959379 DOI: 10.1016/s0167-5273(02)00020-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Gerasimos S Filippatos
- Heart Failure - Hypertension Clinic, Second Department of Cardiology, Evangelismos Hospital, Athens, Greece.
| | | |
Collapse
|
38
|
Parissis JT, Korovesis S, Giazitzoglou E, Kalivas P, Katritsis D. Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. Int J Cardiol 2002; 83:13-21. [PMID: 11959378 DOI: 10.1016/s0167-5273(02)00021-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND This study investigates the plasma activity of inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), C-C chemokines and soluble adhesion molecules, produced by monocyte-endothelial cell adhesive interaction, in patients with arterial hypertension. METHODS We studied 66 untreated patients with mild to moderate arterial hypertension (hypercholesterolemic: 34, normocholesterolemic: 32) and 30 sex- and age-matched normocholesterolemic normotensive controls. Plasma concentrations of GM-CSF, macrophage chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha), RANTES (regulated on activation normally T-cell expressed and secreted), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1), as well as plasma endothelin-1 (ET-1), were determined in study population by ELISA and RIA, respectively. RESULTS Hypertensives exhibited significantly higher levels of GM-CSF (6.5+/-1.3 vs. 2.3+/-0.7 pg/ml, P=0.099), MCP-1 (175+/-31 vs. 120+/-24 pg/ml, P=0.0093), MIP-1alpha (23+/-4 vs. 15+/-2 pg/ml, P=0.0089), RANTES (17+/-4 vs. 14+/-3 ng/ml, P=0.047), sICAM-1 (235+/-39 vs. 187+/-21 ng/ml, P=0.0041), sVCAM-1 (684+/-42 vs. 589+/-23 ng/ml, P=0.0045) and ET-1 (6.1+/-1.5 vs. 2.4+/-0.3 pg/ml, P=0.0095) than those of normotensives. The normocholesterolemic hypertensives had significantly lower levels of GM-CSF, MCP-1, MIP-1alpha, sICAM-1 and sVCAM-1 than hypercholesterolemic hypertensives but higher than normotensives. In hypertensives, ET-1 levels were significantly correlated with mean arterial pressure (r=0.51, P=0.028), MCP-1 values (r=0.45, P=0.047) and sICAM-1 levels (r=0.64, P=0.0090). Significant correlations were also found between LDL cholesterol values and plasma inflammatory factors GM-CSF (r=0.58, P=0.0088), MCP-1 (r=0.49, P=0.040) and sICAM-1 (r=0.53, P=0.034) in the hypercholesterolemic sub-group of hypertensives. CONCLUSIONS Inflammatory markers of monocyte-endothelial cell adhesive interaction are elevated in hypertensives in comparison to normotensives and may be related to plasma ET-1 activity. The coexistence of hypercholesterolemia may enhance this inflammatory process induced by arterial hypertension.
Collapse
|
39
|
|
40
|
Ergul A. Endothelin-1 and endothelin receptor antagonists as potential cardiovascular therapeutic agents. Pharmacotherapy 2002; 22:54-65. [PMID: 11794430 DOI: 10.1592/phco.22.1.54.33505] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelin (ET)-1 is an endothelium-derived peptide with potent vasoconstrictor and proliferative properties. The ET system is activated in several cardiovascular disease states associated with functional and structural vascular changes, including hypertension and heart failure. The two ET receptor subtypes are known as ET(A)R and ET(B)R. The former is located mainly on vascular smooth muscle cells and is responsible for mediating vasoconstriction and proliferation. The latter is present predominantly on endothelial cells and mediates vasorelaxation as well as ET-1 clearance. Activation of smooth muscle ET(B)R causes vasoconstriction. Selective ET(A)R antagonists as well as nonselective ET(A)R-ET(B)R antagonists have been developed. Studies with animal models and early-phase clinical trials provided strong evidence that these agents are effective in the treatment of heart failure, essential hypertension, pulmonary hypertension, and atherosclerosis. However, the complexity of biologic effects mediated by two different receptor subtypes complicates therapy with selective versus nonselective ET receptor antagonists. In addition to subtype selectivity and potency, changes in receptor subtype distribution under different pathologic conditions and different patient populations will play a crucial role in the evaluation of these potentially therapeutic drugs.
Collapse
Affiliation(s)
- Adviye Ergul
- Department of Clinical and Administrative Sciences, University of Georgia College of Pharmacy, Athens, USA.
| |
Collapse
|
41
|
Xia M, Hyman BT. GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation-a role in Alzheimer's disease? J Neuroimmunol 2002; 122:55-64. [PMID: 11777543 DOI: 10.1016/s0165-5728(01)00463-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammation has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative diseases. We have examined the potential role of some chemokine/chemokine receptors in this process. It is known that CXCR2 is a strongly expressed chemokine receptor on neurons and is strongly upregulated in AD in a subpopulation of neuritic plaques. Here, we show that one of the CXCR2 ligand GROalpha/KC can be a potent trigger for the ERK1/2 and PI-3 kinase pathways, as well as tau hyperphosphorylation in the mouse primary cortical neurons. GROalpha immunoreactivity can be detected in a subpopulation of neurons in normal and AD. Therefore, the CXCR2-ligand pair may have a potent pathophysiological role in neurodegenerative diseases.
Collapse
Affiliation(s)
- MengQi Xia
- Alzheimer's Research Unit, CAGN 2009, Department of Neurology, Massachusetts General Hospital-East, Harvard Medical School, 144 16th Street, Charlestown, MA, USA
| | | |
Collapse
|
42
|
Lee YW, Hennig B, Fiala M, Kim KS, Toborek M. Cocaine activates redox-regulated transcription factors and induces TNF-alpha expression in human brain endothelial cells. Brain Res 2001; 920:125-33. [PMID: 11716818 DOI: 10.1016/s0006-8993(01)03047-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cocaine abuse is frequently associated with cerebrovascular pathology. Although the cellular and molecular mechanisms of these alterations are not fully understood, they may involve oxidative injury or dysfunction of brain microvascular endothelial cells. To test this hypothesis, total glutathione levels, activation of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), as well as induction of the TNF-alpha gene expression were determined in human brain microvascular endothelial cells (HBMEC) exposed to cocaine. Exposure of HBMEC to cocaine resulted in a dose-dependent depletion of total glutathione levels. In addition, cocaine markedly activated redox-regulated transcription factors, NF-kappaB and AP-1. Activation of these transcription factors was accompanied by induction of AP-1- or NF-kappaB-dependent transcription, as measured by dual luciferase assay in HBMEC transfected with the AP-1- or NF-kappaB-responsive reporter constructs. Furthermore, HBMEC treatment with cocaine induced a dose-dependent expression of the tumor necrosis factor-alpha (TNF-alpha) gene. These results indicate that exposure to cocaine can trigger inflammatory pathways via activation of redox-sensitive transcription factors and induction of expression of the inflammatory genes in HBMEC. These events may contribute to the cerebrovascular insults observed in cocaine-abused patients.
Collapse
Affiliation(s)
- Y W Lee
- Department of Surgery, Division of Neurosurgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
43
|
Chen P, Shibata M, Zidovetzki R, Fisher M, Zlokovic BV, Hofman FM. Endothelin-1 and monocyte chemoattractant protein-1 modulation in ischemia and human brain-derived endothelial cell cultures. J Neuroimmunol 2001; 116:62-73. [PMID: 11311331 DOI: 10.1016/s0165-5728(01)00280-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain tissue damage due to ischemia/reperfusion has been shown to be caused, in part, by activated macrophages infiltrating into the post-ischemic brain. Using the Middle Cerebral Artery Occlusion (MCAO) mouse model, this study demonstrated that, in vivo, both endothelin-1 (Et-1), a potent vasoconstrictor, and the macrophage chemokine, monocyte chemoattractant factor-1 (MCP-1) are induced in ischemia. Further studies, using human brain-derived endothelial cells (CNS-EC), showed that in vitro, Et-1 can directly stimulate MCP-1 mRNA expression and MCP-1 protein; and this Et-1-induced MCP-1 production is mediated by the ET(A) receptor. Inflammatory cytokines, tumor necrosis factor alpha and interleukin-1beta, functioned additively and synergistically, respectively, with Et-1 to increase this MCP-1 production. Partial elucidation of the signal transduction pathways involved in Et-1-induced MCP-1 production demonstrated that protein kinase C-, but not cAMP-dependent pathways are involved. These data demonstrate that Et-1, functioning as an inflammatory peptide, increased levels of MCP-1, suggesting a mechanism for chemokine regulation during ischemia/reperfusion injury.
Collapse
Affiliation(s)
- P Chen
- Department of Pathology, University of Southern California, School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
44
|
Reber PU, Peter M, Patel AG, Stauffer E, Printzen G, Mettler D, Hakki H, Kniemeyer HW. Ischaemia/reperfusion contributes to colonic injury following experimental aortic surgery. Eur J Vasc Endovasc Surg 2001; 21:35-9. [PMID: 11170875 DOI: 10.1053/ejvs.2000.1264] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES ischaemia of the colon is an important complication of abdominal aortic aneurysm (AAA) repair. The aim of this animal study was to investigate the effect of sequential ischaemia and reperfusion on sigmoid mucosal pO2 and its association with local ET-1 release. MATERIAL AND METHODS twelve pigs underwent colonic ischaemia followed by complete reperfusion. Six other animals were sham controls. A Clark-type microcatheter was used for continuous mucosal pO2 measurements. Serial systemic and inferior mesenteric vein blood samples were obtained for determination of ET-1 concentration. Neutrophil extravasation was assessed by tissue myeloperoxidase (MPO) activity. RESULTS arterial occlusion was associated with a gradual decrease of mucosal pO2 and local release of ET-1. After restoration of blood flow, mucosal pO2 returned to near baseline values, whereas ET-1 reached its maximum concentration during the reperfusion period. MPO activity was significantly increased. CONCLUSIONS colonic ischaemia and reperfusion causes neutrophil extravasation and local ET-1.
Collapse
Affiliation(s)
- P U Reber
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Levels of endothelin-1 (ET-1), a potent endogenous vasoconstrictor, are elevated in plasma and cerebrospinal fluid (CSF) following cerebral ischemia and reperfusion injury. The present study sought insight into the potential differential vasoactive effects on the cerebral vasculature and resultant neural damage of ET-1 during normoxic vs. ischemic conditions and upon reperfusion. Under normoxic conditions, intrastriatal stereotaxic injection of exogenous ET-1 (40 pmol) induced a significant (P<0.05) reduction (</=29+/-12%) in the regional (striatal) cerebral blood flow measured by Laser Doppler flowmetry (CBF(LDF)) for up to 40 min in halothane-anesthetized male Long-Evans rats. Intrastriatal injection of ET-1 10 min after the onset of hypoxia (12% O(2), balance N(2)) tended to blunt, but not significantly, the striatal CBF(LDF) responses to the 35 min period of hypoxia. ET-1 given during reoxygenation significantly (P<0.05) reduced striatal CBF(LDF), which was similar to the effect of ET-1 during normoxia. ET-1-induced infarction when administered prior to hypoxia, but not during or post-hypoxia, was significantly (P<0.05) exacerbated compared to infarction of ET-1 without hypoxia. These results suggest that exogenous ET-1 administered into the brain parenchyma can induce an infarction associated with modulation of CBF(LDF) during the normoxic or reoxygenation period, but not during the hypoxic period and that the increased release of ET-1 in any pathological phase of cerebral ischemia contributes to irreversible neural damage with associated hemodynamic disturbances.
Collapse
Affiliation(s)
- L Park
- Department of Physiology and Saskatchewan Stroke Research Center, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N 5E5, Saskatchewan, Canada.
| | | |
Collapse
|
46
|
Lüscher TF, Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation 2000; 102:2434-40. [PMID: 11067800 DOI: 10.1161/01.cir.102.19.2434] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 21-amino acid peptide endothelin-1 (ET-1) is the predominant isoform of the endothelin peptide family, which includes ET-2, ET-3, and ET-4. It exerts various biological effects, including vasoconstriction and the stimulation of cell proliferation in tissues both within and outside of the cardiovascular system. ET-1 is synthesized by endothelin-converting enzymes (ECE), chymases, and non-ECE metalloproteases; it is regulated in an autocrine fashion in vascular and nonvascular cells. ET-1 acts through the activation of G(i)-protein-coupled receptors. ET(A) receptors mediate vasoconstriction and cell proliferation, whereas ET(B) receptors are important for the clearance of ET-1, endothelial cell survival, the release of nitric oxide and prostacyclin, and the inhibition of ECE-1. ET is activated in hypertension, atherosclerosis, restenosis, heart failure, idiopathic cardiomyopathy, and renal failure. Tissue concentrations more reliably reflect the activation of the ET system because increased vascular ET-1 levels occur in the absence of changes in plasma. Experimental studies using molecular and pharmacological inhibition of the ET system and the first clinical trials have demonstrated that ET-1 takes part in normal cardiovascular homeostasis. Thus, ET-1 plays a major role in the functional and structural changes observed in arterial and pulmonary hypertension, glomerulosclerosis, atherosclerosis, and heart failure, mainly through pressure-independent mechanisms. ET antagonists are promising new agents in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- T F Lüscher
- Department of Cardiology, University Hospital Zürich, University of Zürich, Switzerland
| | | |
Collapse
|
47
|
Abstract
Endothelial injury, obliterative microvascular lesions, and increased vascular wall thickness are present in all involved organs in scleroderma. The vascular pathology is associated with altered vascular function with increased vasospasm, reduced vasodilatory capacity and increased adhesiveness of the blood vessels to platelets and lymphocytes. The extent of injury and dysfunction is reflected by changes in the circulating levels of vascular markers. The initial triggers for the vascular pathology are not known. Possible viral triggers are visited here, including cytomegalovirus in view of increased levels of anti-CMV antibodies in scleroderma, and the remarkable similarities between CMV vasculopathies and scleroderma vascular disease. Endothelial apoptosis in scleroderma may be related to viral infection, immune reactions to viral or environmental factors, reperfusion injury or to anti-endothelial antibodies. The impact of the vascular pathology on the evolution of tissue fibrosis is not known; still, cytokines (TGFbeta, IL4), vascular factors (endothelin), and growth factors (PDGF) are possibly crucial signals that link the vascular disease to tissue fibrosis. Knowledge of the regulation of these and other factors will provide the opportunity to develop more rational therapeutic approaches to the disease.
Collapse
Affiliation(s)
- M B Kahaleh
- Department of Medicine, Richard Ruppert Health Center, Medical College of Ohio, Toledo 43614-5809, USA
| | | |
Collapse
|
48
|
Abstract
BACKGROUND Vascular endothelium represents a complex network of cells producing a large number of active substrates affecting physiologic, metabolic, and immunologic properties of the whole organism, as well as particular organs or tissues. The potential influence of endothelium-derived paracrine factors on prostate cancer progression has only begun to be examined. METHODS This review summarizes recent literature on endothelium-derived factors, including vasoactive agents, peptide growth factors, cytokines, and colony-stimulating factors, involved in the development and progression of prostate cancer. RESULTS Endothelial cells produce an array of active substrates, many of which have been shown to influence prostate cancer growth. Available data demonstrate the positive impact of such molecules as endothelin-1, basic FGF, TGF-beta, IL-6, and IL-8 on prostate cancer progression. Many other endothelium-derived factors NO, IGF, PDGF, IL-1, G-CSF, and GM-CSF (Nitric Oxide, Insulin-Like Growth Factor, Platelet-Derived Growth Factor, Interleukin-1, Granulocyte Colony Stimulating Factor, and Granulocyte-Macrophage Colony Stimulating Factor) are, at best, implicated in prostate cancer growth, and in most cases support cancer progression. CONCLUSIONS A better understanding of endothelium-derived factors, as paracrine mediators of prostate carcinogenesis and progression, should aid in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- G Pirtskhalaishvili
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
49
|
Barton M. Endothelial dysfunction and atherosclerosis: endothelin receptor antagonists as novel therapeutics. Curr Hypertens Rep 2000; 2:84-91. [PMID: 10981133 DOI: 10.1007/s11906-000-0064-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis, a chronic systemic disease of the vasculature with an inflammatory component, is the primary cause of cardiovascular morbidity and mortality in industrialized countries. It is associated with the impairment of endothelium-dependent relaxation in the coronary, systemic circulation due to decreased bioavailability of nitric oxide, and increased release oxygen-derived free radicals, thus promoting vasoconstriction, leukocyte adhesion, thrombosis, inflammation, and cell proliferation. Expression of endothelin (ET)-1, a 21-amino acid peptide and major isoform of the endothelin peptide family, is produced by endothelial, vascular smooth muscle cells, and macrophages and acts through Gi-protein-coupled ET(A) and ET(B) receptors. Endothelin-1 increases in hypercholesterolemia and atherosclerosis in humans and experimental animals. This paper reviews current experimental and clinical evidence for the involvement of ET-1 in atherogenesis. Furthermore, the effects of ET receptor blockade on experimental hypercholesterolemia and atherosclerosis will be discussed. As chronic endothelin blockade inhibits fatty streak formation and improves vascular function in experimental hypercholesterolemia, hypertension, and heart failure, and as it restores nitric oxide (NO)-mediated endothelial function and reduces atheroma formation in animals with atherosclerosis, endothelin receptor blockade may therefore offer a novel approach for the treatment of atherosclerosis and its vascular complications.
Collapse
Affiliation(s)
- M Barton
- Cardiology, Department of Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
50
|
Abstract
The endothelin system has been implicated in the pathogenesis of arterial hypertension and renal disorders. Endothelin-1, the predominant isoform of the endothelin peptide family, regulates vasoconstriction and cell proliferation in tissues both within and outside the cardiovascular system through activation of Gi-protein-coupled ET(A) and ET(B) receptors. Endothelin synthesis is regulated through autocrine mechanisms by endothelin converting enzymes, chymases, and non-endothelin converting enzyme metalloproteases. In-vitro experiments have demonstrated that endothelin-1 stimulates growth in vascular smooth muscle and in the kidney. Recent studies indicate that endothelin mRNA and protein are also increased in vivo in the kidney and vasculature in hypertension and renal disease. Studies using molecular or pharmacological inhibition of the endothelin system demonstrate that endothelin-1 contributes to the functional and structural changes associated with arterial hypertension and glomerulosclerosis, and that these effects are only in part dependent on blood pressure. These experimental studies and first clinical trials suggest that endothelin antagonists may offer therapeutic potential to reduce end-organ damage in diseases associated with vascular remodeling and renal injury.
Collapse
Affiliation(s)
- M Barton
- Cardiology, University Hospital Zürich, Switzerland.
| | | |
Collapse
|