1
|
Parrillo L, Spinelli R, Longo M, Zatterale F, Santamaria G, Leone A, Campitelli M, Raciti GA, Beguinot F. The Transcription Factor HOXA5: Novel Insights into Metabolic Diseases and Adipose Tissue Dysfunction. Cells 2023; 12:2090. [PMID: 37626900 PMCID: PMC10453582 DOI: 10.3390/cells12162090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The transcription factor HOXA5, from the HOX gene family, has long been studied due to its critical role in physiological activities in normal cells, such as organ development and body patterning, and pathological activities in cancer cells. Nonetheless, recent evidence supports the hypothesis of a role for HOXA5 in metabolic diseases, particularly in obesity and type 2 diabetes (T2D). In line with the current opinion that adipocyte and adipose tissue (AT) dysfunction belong to the group of primary defects in obesity, linking this condition to an increased risk of insulin resistance (IR) and T2D, the HOXA5 gene has been shown to regulate adipocyte function and AT remodeling both in humans and mice. Epigenetics adds complexity to HOXA5 gene regulation in metabolic diseases. Indeed, epigenetic mechanisms, specifically DNA methylation, influence the dynamic HOXA5 expression profile. In human AT, the DNA methylation profile at the HOXA5 gene is associated with hypertrophic obesity and an increased risk of developing T2D. Thus, an inappropriate HOXA5 gene expression may be a mechanism causing or maintaining an impaired AT function in obesity and potentially linking obesity to its associated disorders. In this review, we integrate the current evidence about the involvement of HOXA5 in regulating AT function, as well as its association with the pathogenesis of obesity and T2D. We also summarize the current knowledge on the role of DNA methylation in controlling HOXA5 expression. Moreover, considering the susceptibility of epigenetic changes to reversal through targeted interventions, we discuss the potential therapeutic value of targeting HOXA5 DNA methylation changes in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Rosa Spinelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Michele Longo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Federica Zatterale
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Gregory Alexander Raciti
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy; (R.S.); (M.L.); (F.Z.); (A.L.); (M.C.); (G.A.R.)
| |
Collapse
|
2
|
Leclerc K, Remark LH, Ramsukh M, Josephson AM, Palma L, Parente PEL, Sambon M, Lee S, Lopez EM, Morgani SM, Leucht P. Hox genes are crucial regulators of periosteal stem cell identity. Development 2023; 150:dev201391. [PMID: 36912250 PMCID: PMC10112919 DOI: 10.1242/dev.201391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Lindsey H. Remark
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Malissa Ramsukh
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Palma
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo E. L. Parente
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Margaux Sambon
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Sooyeon Lee
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Emma Muiños Lopez
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sophie M. Morgani
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Clinical characteristics and outcomes of EZH2-mutant myelodysplastic syndrome: A large single institution analysis of 1774 patients. Leuk Res 2023; 124:106999. [PMID: 36542963 DOI: 10.1016/j.leukres.2022.106999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
EZH2 mutations in myeloid neoplasms are loss of function type, and have been linked to poor overall survival (OS) in patients with myelodysplastic syndrome (MDS). However, the specific determinants of outcomes in EZH2-mutant (mut) MDS are not well characterized. In this single-center retrospective study, clinical and genomic data were collected on 1774 patients with MDS treated at Moffitt Cancer Center. In our cohort, 83 (4.7%) patients had a pathogenic EZH2 mutation. Patients with EZH2mut MDS were older than EZH2-wild type (wt) group (median age- 72 vs. 69 years, p = 0.010). The most common co-occurring mutation in EZH2mut MDS was ASXL1, with a significantly higher frequency than EZH2wt (54% vs. 19%, p < 0.001). Patients with EZH2mut MDS had lower response rates to hypomethylating agents compared to EZH2wt MDS (26% vs. 39%; p = 0.050). Median OS of patients with EZH2mut MDS was 30.8 months, with a significantly worse OS than EZH2wt group (35.5 vs. 61.2 months, p = 0.003) in the lower-risk IPSS-R categories. Among patients with EZH2mut MDS, co-presence of ASXL1 or RUNX1 mutations was associated with inferior median OS compared to their wt counterparts (26.8 vs. 48.7 months, p = 0.031). Concurrent chromosome 7 abnormalities (12%) were also associated with significantly worse OS (median OS- 20.8 vs. 35.5 months, p = 0.002) in EZH2mut MDS. Future clinical trials should explore the potential role of novel targeted therapies in improving outcomes in patients with EZH2mut MDS.
Collapse
|
4
|
Phillips RV, Wei L, Cardenas A, Hubbard AE, McHale CM, Vermeulen R, Wei H, Smith MT, Zhang L, Lan Q, Rothman N. Epigenome-wide association studies of occupational exposure to benzene and formaldehyde. Epigenetics 2022; 17:2259-2277. [PMID: 36017556 PMCID: PMC9665125 DOI: 10.1080/15592294.2022.2115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Sufficient evidence supports a relationship between certain myeloid neoplasms and exposure to benzene or formaldehyde. DNA methylation could underlie benzene- and formaldehyde-induced health outcomes, but data in exposed human populations are limited. We conducted two cross-sectional epigenome-wide association studies (EWAS), one in workers exposed to benzene and another in workers exposed to formaldehyde. Using HumanMethylation450 BeadChips, we investigated differences in blood cell DNA methylation among 50 benzene-exposed subjects and 48 controls, and among 31 formaldehyde-exposed subjects and 40 controls. We performed CpG-level and regional-level analyses. In the benzene EWAS, we found genome-wide significant alterations, i.e., FWER-controlled P-values <0.05, in the mean and variance of methylation at 22 and 318 CpG sites, respectively, and in mean methylation of a large genomic region. Pathway analysis of genes corresponding to benzene-associated differential methylation sites revealed an impact on the AMPK signalling pathway. In formaldehyde-exposed subjects compared to controls, 9 CpGs in the DUSP22 gene promoter had genome-wide significant decreased methylation variability and a large region of the HOXA5 promoter with 44 CpGs was hypomethylated. Our findings suggest that DNA methylation may contribute to the pathogenesis of diseases related to benzene and formaldehyde exposure. Aberrant expression and methylation of HOXA5 previously has been shown to be clinically significant in myeloid leukaemias. The tumour suppressor gene DUSP22 is a potential biomarker of exposure to formaldehyde, and irregularities have been associated with multiple exposures and diseases.
Collapse
Affiliation(s)
- Rachael V. Phillips
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Alan E. Hubbard
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Cliona M. McHale
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteit Utrecht (UU), Utrecht, The Netherlands
| | - Hu Wei
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Martyn T. Smith
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
5
|
Huang BJ, Smith JL, Farrar JE, Wang YC, Umeda M, Ries RE, Leonti AR, Crowgey E, Furlan SN, Tarlock K, Armendariz M, Liu Y, Shaw TI, Wei L, Gerbing RB, Cooper TM, Gamis AS, Aplenc R, Kolb EA, Rubnitz J, Ma J, Klco JM, Ma X, Alonzo TA, Triche T, Meshinchi S. Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia. Nat Commun 2022; 13:5487. [PMID: 36123353 PMCID: PMC9485122 DOI: 10.1038/s41467-022-33244-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated with poor outcomes and relapse risk prediction approaches have not changed significantly in decades. To build a robust transcriptional risk prediction model for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in our aggregated pediatric study population, LSC17 is no longer predictive within established cytogenetic and molecular (cytomolecular) risk groups. Therefore, we identify distinct LSC signatures on the basis of AML cytomolecular subtypes (LSC47) that were more predictive than LSC17. Based on these findings, we build a robust relapse prediction model within a training cohort and then validate it within independent cohorts. Here, we show that LSC47 increases the predictive power of conventional risk stratification and that applying biomarkers in a manner that is informed by cytomolecular profiling outperforms a uniform biomarker approach. Relapsed pediatric acute myeloid leukemia is associated with poor prognosis. Here, the authors use RNA-seq data from 1503 primary samples to create a combined transcriptional and cytomolecular signature to improve relapse risk prediction.
Collapse
Affiliation(s)
- Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Jenny L Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jason E Farrar
- University of Arkansas for Medical Sciences & Arkansas Children's Research Institute, Little Rock, AR, USA
| | | | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Erin Crowgey
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Katherine Tarlock
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Marcos Armendariz
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lisa Wei
- Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Alan S Gamis
- Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Richard Aplenc
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
7
|
Ahmedy IA, Tayel SI. Prognostic impact of homeobox and PR domain containing protein 16 genes expressions in patients with acute myeloid leukemia. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Association of miR-499 Polymorphism and Its Regulatory Networks with Hashimoto Thyroiditis Susceptibility: A Population-Based Case-Control Study. Int J Mol Sci 2021; 22:ijms221810094. [PMID: 34576267 PMCID: PMC8470033 DOI: 10.3390/ijms221810094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic background. Several genetic factors have been suggested, yet numerous genetic contributors remain to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators critically involved in biological processes, of which polymorphisms can alter their function, leading to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444 polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore, we investigated the potential interacting regulatory network of the miR-499. This case-control study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in heterozygous (OR = 3.32, 95%CI = 2.00–5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI = 1.30–6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97–5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI = 1.62–4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92, 95%CI = 1.37–2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated in regulating immune system functions, including immunorecognition and complement activity. We demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However, predicted regulatory networks revealed that this polymorphism is contributing to the regulation of immune system pathways.
Collapse
|
9
|
Role of the HOXA cluster in HSC emergence and blood cancer. Biochem Soc Trans 2021; 49:1817-1827. [PMID: 34374409 DOI: 10.1042/bst20210234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.
Collapse
|
10
|
Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, Dooner MS, Borgovan T, Wen S, Goldberg LR, Aliotta JM, Ventetuolo CE, Quesenberry PJ, Liang OD. Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. Am J Respir Cell Mol Biol 2020; 62:577-587. [PMID: 31721618 DOI: 10.1165/rcmb.2019-0154oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mandy Pereira
- Division of Hematology and Oncology, Department of Medicine, and
| | | | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island; and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology and Oncology, Department of Medicine, and
| | - Mark S Dooner
- Division of Hematology and Oncology, Department of Medicine, and
| | | | - Sicheng Wen
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Laura R Goldberg
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jason M Aliotta
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Corey E Ventetuolo
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peter J Quesenberry
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Pathways, Processes, and Candidate Drugs Associated with a Hoxa Cluster-Dependency Model of Leukemia. Cancers (Basel) 2019; 11:cancers11122036. [PMID: 31861091 PMCID: PMC6966468 DOI: 10.3390/cancers11122036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
High expression of the HOXA cluster correlates with poor clinical outcome in acute myeloid leukemias, particularly those harboring rearrangements of the mixed-lineage-leukemia gene (MLLr). Whilst decreased HOXA expression acts as a readout for candidate experimental therapies, the necessity of the HOXA cluster for leukemia maintenance has not been fully explored. Primary leukemias were generated in hematopoietic stem/progenitor cells from Cre responsive transgenic mice for conditional deletion of the Hoxa locus. Hoxa deletion resulted in reduced proliferation and colony formation in which surviving leukemic cells retained at least one copy of the Hoxa cluster, indicating dependency. Comparative transcriptome analysis of Hoxa wild type and deleted leukemic cells identified a unique gene signature associated with key pathways including transcriptional mis-regulation in cancer, the Fanconi anemia pathway and cell cycle progression. Further bioinformatics analysis of the gene signature identified a number of candidate FDA-approved drugs for potential repurposing in high HOXA expressing cancers including MLLr leukemias. Together these findings support dependency for an MLLr leukemia on Hoxa expression and identified candidate drugs for further therapeutic evaluation.
Collapse
|
12
|
Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, Fung TK, Zeisig BB, Cui Y, Zha J, Cogle C, Wang F, Xu B, Yang FC, Li W, So CWE, Qiu Y, Xu M, Huang S. HOTTIP lncRNA Promotes Hematopoietic Stem Cell Self-Renewal Leading to AML-like Disease in Mice. Cancer Cell 2019; 36:645-659.e8. [PMID: 31786140 PMCID: PMC6917035 DOI: 10.1016/j.ccell.2019.10.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/30/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are critical for regulating HOX genes, aberration of which is a dominant mechanism for leukemic transformation. How HOX gene-associated lncRNAs regulate hematopoietic stem cell (HSC) function and contribute to leukemogenesis remains elusive. We found that HOTTIP is aberrantly activated in acute myeloid leukemia (AML) to alter HOXA-driven topologically associated domain (TAD) and gene expression. HOTTIP loss attenuates leukemogenesis of transplanted mice, while reactivation of HOTTIP restores leukemic TADs, transcription, and leukemogenesis in the CTCF-boundary-attenuated AML cells. Hottip aberration in mice abnormally promotes HSC self-renewal leading to AML-like disease by altering the homeotic/hematopoietic gene-associated chromatin signature and transcription program. Hottip aberration acts as an oncogenic event to perturb HSC function by reprogramming leukemic-associated chromatin and gene transcription.
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jianfeng Xu
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Bowen Yan
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ying Guo
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; Department of Cell System & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK
| | - Ya Cui
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 210009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; Department of Cell System & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK.
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
13
|
Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cells Int 2018; 2018:3569493. [PMID: 30154863 PMCID: PMC6081605 DOI: 10.1155/2018/3569493] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development.
Collapse
|
14
|
Gao F, Liu W, Guo Q, Bai Y, Yang H, Chen H. Physcion blocks cell cycle and induces apoptosis in human B cell precursor acute lymphoblastic leukemia cells by downregulating HOXA5. Biomed Pharmacother 2017; 94:850-857. [PMID: 28810515 DOI: 10.1016/j.biopha.2017.07.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/01/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) presents the most common type of malignancy in children and ranks the third most common cancer in adults. This study is aimed to investigate the anti-leukemia activity of physcion in ALL. Our results have showed that physcion could significantly suppress cell growth, induce apoptosis and blocked cell cycle progression in vitro. Mechanistically, we found that physcion downregulated the expression of HOXA5, which is responsible for the anti-leukemia activity of physcion. To verify this finding, siRNA targeting HOXA5 and overexpressing plasmid were used to repress HOXA5 expression and introduce ectopic overexpression of HOXA5 in ALL cell lines, respectively. Our results showed that overexpression of HOXA5 significantly abrogated the inducing effect of physcion on apoptosis and cell cycle blockasde. In contrast, knockdown of HOXA5 by siRNA enhanced the anti-tumor effect of physcion on ALL cell lines. Our results provided experimental base for the use of physcion in the treatment of ALL.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qulian Guo
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yongqi Bai
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hong Yang
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hongying Chen
- Department of Pediatrics, Affliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
15
|
A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes. Blood Adv 2017; 1:1505-1516. [PMID: 29296792 DOI: 10.1182/bloodadvances.2017008284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) not only participate in normal hematopoiesis but also contribute to the pathogenesis of acute leukemia. However, their clinical and prognostic relevance in myelodysplastic syndromes (MDSs) remains unclear to date. In this study, we profiled lncRNA expressions in 176 adult patients with primary MDS, and identified 4 lncRNAs whose expression levels were significantly associated with overall survival (OS). We then constructed a risk-scoring system with the weighted sum of these 4 lncRNAs. Higher lncRNA scores were associated with higher marrow blast percentages, higher-risk subtypes of MDSs (based on both the Revised International Prognostic Scoring System [IPSS-R] and World Health Organization classification), complex cytogenetic changes, and mutations in RUNX1, ASXL1, TP53, SRSF2, and ZRSR2, whereas they were inversely correlated with SF3B1 mutation. Patients with higher lncRNA scores had a significantly shorter OS and a higher 5-year leukemic transformation rate compared with those with lower scores. The prognostic significance of our 4-lncRNA risk score could be validated in an independent MDS cohort. In multivariate analysis, higher lncRNA scores remained an independent unfavorable risk factor for OS (relative risk, 4.783; P < .001) irrespective of age, cytogenetics, IPSS-R, and gene mutations. To our knowledge, this is the first report to provide a lncRNA platform for risk stratification of MDS patients. In conclusion, our integrated 4-lncRNA risk-scoring system is correlated with distinctive clinical and biological features in MDS patients, and serves as an independent prognostic factor for survival and leukemic transformation. This concise yet powerful lncRNA-based scoring system holds the potential to improve the current risk stratification of MDS patients.
Collapse
|
16
|
Ptaschinski C, Hrycaj SM, Schaller MA, Wellik DM, Lukacs NW. Hox5 Paralogous Genes Modulate Th2 Cell Function during Chronic Allergic Inflammation via Regulation of Gata3. THE JOURNAL OF IMMUNOLOGY 2017; 199:501-509. [PMID: 28576978 DOI: 10.4049/jimmunol.1601826] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a significant health burden in western countries, and continues to increase in prevalence. Th2 cells contribute to the development of disease through release of the cytokines IL-4, IL-5, and IL-13, resulting in increased airway eosinophils and mucus hypersecretion. The molecular mechanisms behind the disease pathology remain largely unknown. In this study we investigated a potential regulatory role for the Hox5 gene family, Hoxa5, Hoxb5, and Hoxc5, genes known to be important in lung development within mesenchymal cell populations. We found that Hox5-mutant mice show exacerbated pathology compared with wild-type controls in a chronic allergen model, with an increased Th2 response and exacerbated lung tissue pathology. Bone marrow chimera experiments indicated that the observed enhanced pathology was mediated by immune cell function independent of mesenchymal cell Hox5 family function. Examination of T cells grown in Th2 polarizing conditions showed increased proliferation, enhanced Gata3 expression, and elevated production of IL-4, IL-5, and IL-13 in Hox5-deficient T cells compared with wild-type controls. Overexpression of FLAG-tagged HOX5 proteins in Jurkat cells demonstrated HOX5 binding to the Gata3 locus and decreased Gata3 and IL-4 expression, supporting a role for HOX5 proteins in direct transcriptional control of Th2 development. These results reveal a novel role for Hox5 genes as developmental regulators of Th2 immune cell function that demonstrates a redeployment of mesenchyme-associated developmental genes.
Collapse
Affiliation(s)
| | - Steven M Hrycaj
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Matthew A Schaller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Deneen M Wellik
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
17
|
Jeannotte L, Gotti F, Landry-Truchon K. Hoxa5: A Key Player in Development and Disease. J Dev Biol 2016; 4:E13. [PMID: 29615582 PMCID: PMC5831783 DOI: 10.3390/jdb4020013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
A critical position in the developmental hierarchy is occupied by the Hox genes, which encode transcription factors. Hox genes are crucial in specifying regional identity along the embryonic axes and in regulating morphogenesis. In mouse, targeted mutations of Hox genes cause skeletal transformations and organ defects that can impair viability. Here, we present the current knowledge about the Hoxa5 gene, a paradigm for the function and the regulation of Hox genes. The phenotypic survey of Hoxa5-/- mice has unveiled its critical role in the regional specification of the skeleton and in organogenesis. Most Hoxa5-/- mice die at birth from respiratory distress due to tracheal and lung dysmorphogenesis and impaired diaphragm innervation. The severity of the phenotype establishes that Hoxa5 plays a predominant role in lung organogenesis versus other Hox genes. Hoxa5 also governs digestive tract morphogenesis, thyroid and mammary glands development, and ovary homeostasis. Deregulated Hoxa5 expression is reported in cancers, indicating Hoxa5 involvement in tumor predisposition and progression. The dynamic Hoxa5 expression profile is under the transcriptional control of multiple cis-acting sequences and trans-acting regulators. It is also modulated by epigenetic mechanisms, implicating chromatin modifications and microRNAs. Finally, lncRNAs originating from alternative splicing and distal promoters encompass the Hoxa5 locus.
Collapse
Affiliation(s)
- Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Florian Gotti
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| |
Collapse
|
18
|
Zhao P, Tan L, Ruan J, Wei XP, Zheng Y, Zheng LX, Jiang WQ, Fang WJ. Aberrant Expression of HOXA5 and HOXA9 in AML. Asian Pac J Cancer Prev 2016; 16:3941-4. [PMID: 25987065 DOI: 10.7314/apjcp.2015.16.9.3941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant expression of HOX gene expression has been observed in cancer. The purpose of this study was to investigate the alteration of HOXA5 and HOXA9 expression and their clinical significance in acute meloid leukemia (AML). MATERIALS AND METHODS The expression of HOXA5 and HOXA9 genes of bone marrow samples from 75 newly diagnosed AML patients and 22 healthy controls for comparison were examined by Real- time quantitative PCR (RQ-PCR) assay. Statistical analysis was conducted to evaluate HOXA5 and HOXA9 expression as possible biomarkers for AML. RESULTS The results showed that the complete remission rate (52.6%) of the patients who highly expressed HOXA5 and HOXA9 was significantly lower than that (88.9%) in patients who lowly express the genes (P=0.015). Spearmann correlation coefficients indicated that the expression levels for HOXA5 and HOXA9 genes were highly interrelated (r=0.657, P<0.001). Meanwhile, we detected significant correlations between HOXA9 expression and age in this limited set of patients (P=0.009). CONCLUSIONS The results suggest a prognostic impact of increased expression of HOXA5 and HOXA9 in AML patients.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang D, Zhang X, Dong Y, Liu X, Wang T, Wang X, Geng Y, Fang S, Zheng Y, Chen X, Chen J, Pan G, Wang J. Enforced expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Cell Cycle 2015; 14:612-20. [PMID: 25590986 DOI: 10.4161/15384101.2014.992191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.
Collapse
Key Words
- BFU-E, burst-forming unit-erythroid
- CFU-G, colony forming unit-granulocyte
- CFU-GM, colony forming unit-granulocyte macrophage
- CMP, common myeloid progenitor
- GMP, granulocyte monocyte progenitor
- HSC, haematopoietic stem cell
- LSK, lineage negative, Sca1 positive, cKit positive
- MEP, megakaryocyte-erythroid progenitor
- MP, myeloid progenitor
- MPP, multipotent progenitor
- apoptosis
- cell cycle
- erythropoiesis
- haematopoietic stem cells, Hoxa5
Collapse
Affiliation(s)
- Dan Yang
- a Department of Hematology ; Third Affiliated Hospital of Sun Yat-Sen University ; Guangzhou , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yin C, Zhang J, Shi Z, Sun W, Zhang H, Fu Y. Identification and expression of the target gene emx2 of miR-26a and miR-26b in Paralichthys olivaceus. Gene 2015; 570:205-12. [PMID: 26079439 DOI: 10.1016/j.gene.2015.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 11/26/2022]
Abstract
MicroRNAs (miRNAs) can regulate specific gene expression by binding to target mRNA further involution to diverse biological processes. Our previous miRNA sequencing showed that pol-miR-26a and pol-miR-26b have a sex-biased expression in ovary and testis of Paralichthys olivaceus (P. olivaceus). And the gene empty spiracles homeobox 2 (emx2) was proposed to be a candidate target by bioinformatics prediction. In this study, we cloned the P. olivaceus emx2 cDNA, including a coding region of 741 bp and a 3'-untranslated region (UTR) of 912 bp and the 5'-UTR of 12 bp. The Emx2 protein is highly conserved and especially its homeodomain region is 100% identical from teleosts to mammals. Real-time PCR results showed that the emx2 is not only highly expressed in embryonic neurula stage and adult brain but also has abundant expression in adult gonad, moreover, it exhibits higher expression in ovary than testis. To determine the relationship between emx2 and miRNAs, a luciferase reporter assay was performed and verified that the emx2 is a common target gene of pol-miR-26a and pol-miR-26b. These data thus helps further clarify that miR-26a and miR-26b are involved in regulating gonad development partially through its target on emx2 expression in P. olivaceus.
Collapse
Affiliation(s)
- Cui Yin
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Junling Zhang
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Zhiyi Shi
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China.
| | - Wenhui Sun
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Hongmei Zhang
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Yuanshuai Fu
- Key laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
21
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|
22
|
Cuevas I, Layman H, Coussens L, Boudreau N. Sustained endothelial expression of HoxA5 in vivo impairs pathological angiogenesis and tumor progression. PLoS One 2015; 10:e0121720. [PMID: 25821967 PMCID: PMC4379087 DOI: 10.1371/journal.pone.0121720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
HoxA5 is expressed in quiescent endothelial cells (EC), but absent in activated angiogenic EC. To examine the efficacy of targeting HoxA5 therapeutically to quell pathologic or tumor angiogenesis, we generated an inducible, transgenic mouse model of sustained HoxA5 expression in ECs. During pathologic angiogenesis, sustained HoxA5 regulates expression several angiogenic effector molecules, notably increased expression of TSP-2 and reduced expression of VEGF, thus leading to inhibition of pathological angiogenesis in tissues. To evaluate if this impressive reduction of vascularization could also impact tumor angiogenesis, HoxA5 mice were bred with a mouse model of de novo squamous carcinogenesis, e.g., K14-HPV16 mice. Activation of EC-HoxA5 significantly reduced infiltration by mast cells into neoplastic skin, an early hallmark of progression to dysplasia, reduced angiogenic vasculature, and blunted characteristics of tumor progression. To evaluate HoxA5 as a therapeutic, topical application of a HoxA5 transgene onto early neoplastic skin of K14-HPV16 mice similarly resulted in a significant impairment of angiogenic vasculature and progression to dysplasia to a similar extent as observed with genetic delivery of HoxA5. Together these data indicate that HoxA5 represents a novel molecule for restricting pathological and tumorigenic angiogenesis.
Collapse
Affiliation(s)
- Ileana Cuevas
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, San Francisco, California, United States of America
| | - Hans Layman
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, San Francisco, California, United States of America
| | - Lisa Coussens
- Department of Cell & Developmental Biology and Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Nancy Boudreau
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M, Juszczyński P, Borg K, Florek I, Jakóbczyk M, Siedlecki JA. Promoter DNA methylation and expression levels of HOXA4, HOXA5 and MEIS1 in acute myeloid leukemia. Mol Med Rep 2015; 11:3948-54. [PMID: 25585874 DOI: 10.3892/mmr.2015.3196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
HOXA genes encode transcription factors, which are crucial for embryogenesis and tissue differentiation and are involved in the early stages of hematopoiesis. Aberrations in HOXA genes and their cofactor MEIS1 are found in human neoplasms, including acute myeloid leukemia (AML). The present study investigated the role of HOXA4, HOXA5 and MEIS1 promoter DNA methylation and mRNA expression in AML. Samples from 78 AML patients and 12 normal bone marrow (BM) samples were included. The levels of promoter DNA methylation were determined using quantitative methylation‑specific polymerase chain reaction (PCR; qMSP) and the relative expression levels were measured using reverse transcription quantitative PCR in Ficoll‑separated BM mononuclear cells and in fluorescent activated cell sorting‑sorted populations of normal hematopoietic progenitors. In total, 38.1 and 28.9% of the patients exhibited high methylation levels of HOXA4 and HOXA5, respectively, compared with the control samples, and MEIS1 methylation was almost absent. An inverse correlation between HOXA4 methylation and expression was identified in a group of patients with a normal karyotype (NK AML). An association between the genes was observed and correlation between the DNA methylation and expression levels of the HOXA gene promoter with the expression of MEIS1 was observed. Patients with favorable chromosomal aberrations revealed a low level of HOXA4 methylation and decreased expression levels of HOXA5 and MEIS1 compared with the NK AML and the adverse cytogenetic risk patients. The NK AML patients with NPM1 mutations exhibited elevated HOXA4 methylation and expression levels of HOXA5 and MEIS1 compared with the NPM1 wild‑type patients. Comparison of the undifferentiated BM‑derived hematopoietic CD34+CD38low, CD34+CD38+ and CD15+ cells revealed a gradual decrease in the expression levels of these three genes and an increase in HOXA4 promoter methylation. This differentiation‑associated variability was not observed in AML, which was classified according to the French‑American‑British system.
Collapse
Affiliation(s)
- Ewa Musialik
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Monika Anna Grygorowicz
- Department of Immunology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Marta Libura
- Department of Hematology, Oncology and Internal Diseases, The Medical University of Warsaw, Warsaw 02‑097, Poland
| | - Marta Przestrzelska
- Department of Hematology, Oncology and Internal Diseases, The Medical University of Warsaw, Warsaw 02‑097, Poland
| | - Przemysław Juszczyński
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw 02‑109, Poland
| | - Katarzyna Borg
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw 02‑109, Poland
| | - Izabela Florek
- Department of Hematology, Jagiellonian University, Cracow 31‑501, Poland
| | | | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| |
Collapse
|
24
|
Li J, Ariunbold U, Suhaimi N, Sunn N, Guo J, McMahon JA, McMahon AP, Little M. Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity. J Am Soc Nephrol 2014; 26:81-94. [PMID: 24904087 DOI: 10.1681/asn.2013050517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously described a mesenchymal stem cell (MSC)-like population within the adult mouse kidney that displays long-term colony-forming efficiency, clonogenicity, immunosuppression, and panmesodermal potential. Although phenotypically similar to bone marrow (BM)-MSCs, kidney MSC-like cells display a distinct expression profile. FACS sorting from Hoxb7/enhanced green fluorescent protein (GFP) mice identified the collecting duct as a source of kidney MSC-like cells, with these cells undergoing an epithelial-to-mesenchymal transition to form clonogenic, long-term, self-renewing MSC-like cells. Notably, after extensive passage, kidney MSC-like cells selectively integrated into the aquaporin 2-positive medullary collecting duct when microinjected into the kidneys of neonatal mice. No epithelial integration was observed after injection of BM-MSCs. Indeed, kidney MSC-like cells retained a capacity to form epithelial structures in vitro and in vivo, and conditioned media from these cells supported epithelial repair in vitro. To investigate the origin of kidney MSC-like cells, we further examined Hoxb7(+) fractions within the kidney across postnatal development, identifying a neonatal interstitial GFP(lo) (Hoxb7(lo)) population displaying an expression profile intermediate between epithelium and interstitium. Temporal analyses with Wnt4(GCE/+):R26(tdTomato/+) mice revealed evidence for the intercalation of a Wnt4-expressing interstitial population into the neonatal collecting duct, suggesting that such intercalation may represent a normal developmental mechanism giving rise to a distinct collecting duct subpopulation. These results extend previous observations of papillary stem cell activity and collecting duct plasticity and imply a role for such cells in collecting duct formation and, possibly, repair.
Collapse
Affiliation(s)
- Joan Li
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Usukhbayar Ariunbold
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Norseha Suhaimi
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Nana Sunn
- Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia; and
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Melissa Little
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia;
| |
Collapse
|
25
|
Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 2014; 11:777-87. [PMID: 24824789 DOI: 10.4161/rna.28828] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | | | - Peter E Newburger
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA; Department of Cancer Biology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
26
|
Cerdá-Esteban N, Spagnoli FM. Glimpse into Hox and tale regulation of cell differentiation and reprogramming. Dev Dyn 2013; 243:76-87. [PMID: 24123411 DOI: 10.1002/dvdy.24075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022] Open
Abstract
During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming.
Collapse
Affiliation(s)
- Nuria Cerdá-Esteban
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
27
|
Abstract
The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.
Collapse
|
28
|
Nagel S, Schneider B, Rosenwald A, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. t(4;8)(q27;q24) in Hodgkin lymphoma cells targets phosphodiesterase PDE5A and homeobox gene ZHX2. Genes Chromosomes Cancer 2011; 50:996-1009. [PMID: 21987443 DOI: 10.1002/gcc.20920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/02/2023] Open
Abstract
Hodgkin/Reed-Sternberg (HRS) cells represent the malignant fraction of infiltrated lymph nodes in Hodgkin lymphoma (HL). Although HRS cells display multiple chromosomal aberrations, few are recurrent and the targeted genes unknown. However, understanding the pathology of HL and developing rational therapies may well require identifying putative deregulated genes. Here, we analyzed the karyotype of the well-defined HL cell line L-1236 by spectral karyotyping and identified multiple abnormalities, therein, notably t(4;8)(q27;q24) which includes two breakpoint regions previously highlighted in HL. Target genes at 4q27 and 8q24 were shortlisted by high density genomic arrays and fluorescence in situ hybridization. Expression analysis of candidate target genes revealed conspicuous activation of phosphodiesterase PDE5A at 4q27 and inhibition of homeobox gene ZHX2 at 8q24. Treatment of L-1236 with PDE5A-inhibitor sildenafil or with siRNA directed against PDE5A and concomitant stimulation with cyclic guanosine monophosphate (cGMP) resulted in enhanced apoptosis, indicating PDE5A as an oncogene. Expression profiling of L-1236 cells following siRNA-mediated knockdown of ZHX2 showed inhibition of genes regulating differentiation and apoptosis, suggesting tumor suppressor activity of ZHX2. Downstream genes included STAT1 and several STAT1-target genes, indicating activation of STAT1-signaling by ZHX2 as analyzed by RQ-PCR and western blot. Taken together, we have identified a novel aberration with recurrent breakpoints in HL, t(4;8)(q27;q24), which activate PDE5A and repress ZHX2, deregulating apoptosis, differentiation, and STAT1-signaling in HL cells.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, DSMZ--German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mahdipour E, Mace KA. Hox transcription factor regulation of adult bone-marrow-derived cell behaviour during tissue repair and regeneration. Expert Opin Biol Ther 2011; 11:1079-90. [PMID: 21513461 DOI: 10.1517/14712598.2011.579096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Bone marrow offers a valuable source of stem/progenitor cells that contribute to the repair of injured tissues. Failure in the function of these cells results in delayed or reduced tissue repair. Identification of factors that can correct these defects is critical to treating the underlying dysfunction. Notably, homeobox (Hox) transcription factors have been identified as having significant effects on BMDC behaviour, including differentiation, migration and adhesion in injured tissue, and may provide a basis for future therapies. AREAS COVERED Hox protein regulation of bone-marrow-derived cell (BMDC) differentiation, factors that influence BMDC behaviour in response to injury, the effects of the diabetic environment on BMDCs, methods that can be used to reprogramme BMDCs, and the use of Hox transcription factors to correct BMDC behaviour. EXPERT OPINION Hox gene therapy has been successfully employed to change cell behaviour using ex vivo 'reprogramming' strategies overexpressing selected Hox genes in BMDCs to direct the fate of these cells to the desired cell type, promoting tissue repair.
Collapse
Affiliation(s)
- Elahe Mahdipour
- University of Manchester, Healing Foundation Centre, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
30
|
Bahrami SB, Veiseh M, Dunn AA, Boudreau NJ. Temporal changes in Hox gene expression accompany endothelial cell differentiation of embryonic stem cells. Cell Adh Migr 2011; 5:133-41. [PMID: 21200152 DOI: 10.4161/cam.5.2.14373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In pluripotent embryonic stem cells (ESCs), expression of the Hox master regulatory transcription factors that play essential roles in organogenesis, angiogenesis, and maintenance of differentiated tissues, is globally suppressed. We investigated whether differentiation of endothelial cells (ECs) from mouse ESCs was accompanied by activation of distinct Hox gene expression profiles. Differentiation was observed within 3 days, as indicated by the appearance of cells expressing specific endothelial marker genes (Flk-1+ /VE-Cadherin+ ). Expression of HoxA3 and HoxD3, which drive adult endothelial cell invasion and angiogenesis, peaked at day 3 and declined thereafter, whereas expression of HoxA5 and HoxD10, which maintain a mature quiescent EC phenotype, was low at day 3, but increased over time. The temporal and reciprocal changes in HoxD3 and HoxA5 expression were accompanied by corresponding changes in expression of established downstream target genes including integrin β3 and Thrombospondin-2. Our results indicate that differentiation and maturation of ECs derived from cultured ESCs mimic changes in Hox gene expression that accompany maturation of immature angiogenic endothelium into differentiated quiescent endothelium in vivo.
Collapse
Affiliation(s)
- S Bahram Bahrami
- Department of Surgery; University of California-San Francisco, CA, USA
| | | | | | | |
Collapse
|
31
|
Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal. Exp Hematol 2009; 37:322-33.e3. [DOI: 10.1016/j.exphem.2008.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/10/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
32
|
Cortelezzi A, Colombo G, Pellegrini C, Silvestris I, Moronetti Mazzeo L, Bosari S, Lambertenghi Deliliers G, Fracchiolla NS. Bone marrow glycophorin-positive erythroid cells of myelodysplastic patients responding to high-dose rHuEPO therapy have a different gene expression pattern from those of nonresponders. Am J Hematol 2008; 83:531-9. [PMID: 18383321 DOI: 10.1002/ajh.21178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The main clinical problems of low-risk patients with myelodysplastic syndromes (MDS), as defined by the International Prognostic Scoring System, are infections and the need for frequent transfusions due to ineffective myelopoiesis and peripheral blood cytopenia. Promising results in treating MDS-related anemia have been obtained using high-dose recombinant human erythropoietin (rhEPO). To evaluate the molecular basis of the response to rhEPO, we used commercially available macro-arrays to investigate gene expression profiles in the glycophorin-expressing (Gly+) bone marrow (BM) erythroid cells of five responders (ERs) and five non-responders (ENRs) to rhEPO treatment. The cells were separated by means of positive selection using an immunomagnetic procedure, after which flow cytometry showed that their purity was more than 97% in all cases. The array data were validated by means of real time RT-PCR. The results showed that the genes responsible for proliferation/differentiation and DNA repair/stability were repressed in the BM Gly+ erythroid cells of the ENRs, but almost normally expressed in the ERs. Furthermore, the expression of genes involved in signal transduction suggested that the activity of the MAPK signaling pathway is inhibited in ERs. The different gene expression profiles of ERs and ENRs may provide a basis for early gene testing as a means of predicting the response to rhEPO of MDS patients with low endogenous EPO levels.
Collapse
Affiliation(s)
- Agostino Cortelezzi
- Hematology-Bone Marrow Transplant Unit, Fondazione Ospedale Maggiore Maggiore Policlinico, Mangiagalli, Regina Elena IRCCS, Milan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lim CK, Hwang WYK, Aw SE, Sun L. Study of gene expression profile during cord blood-associated megakaryopoiesis. Eur J Haematol 2008; 81:196-208. [PMID: 18510698 DOI: 10.1111/j.1600-0609.2008.01104.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS To study the gene profile in cord blood (CB)-associated megakaryopoiesis. METHODS In vitro differentiation of megakaryocytes (Mks) was carried out using human CB CD34(+) cells under the stimulation of recombinant human interleukin-3, stem cell factor and thrombopoietin for 7 d, followed by thrombopoietin only for further 3 d. Lineage-specific differentiation of Mk was examined by the expression of CD41 using flow cytometry and confocal microscopy. Total cellular RNA was extracted from day-0 CD34(+), day-10 CD41(+) and CD41(-) populations were isolated by immunomagnetic sorting respectively. Microarray was performed, and the data were analyzed using the GeneChip Operating System, Spotfire software and Genomatix BiblioSphere. RESULTS Flow cytometric analysis showed 19.44 +/- 3.05% CD41(+) cells at day 10 of culture. The purity of CD41(+) population was enriched to 95.70 +/- 4.19% after sorting. Gene expression profiling revealed an upregulation of 285 and downregulation of 53 unique genes in the CD41(+) cells compared with CD41(-) and CD34(+) cells. Platelet-associated genes, such as thrombospondin 1, platelet glycoprotein IIIa, etc., were highly expressed in CD41(+) cells but not in CD41(-) cells and CD34(+) cells. Moreover, some genes that have not been reported to be associated with CB-derived megakaryopoiesis, such as Cbl-interacting proteins Sts-1, protocadherin 21, etc., are found to be highly expressed in the CD41(+) cells from this study. CONCLUSIONS This study reveals a global gene expression profile of in vitro human CB-derived megakaryopoiesis at day 10. Some of these genes may play regulatory roles during the development of CB-derived megakaryopoiesis.
Collapse
Affiliation(s)
- Che Kang Lim
- Department of Clinical Research, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
34
|
Morgan R, Whiting K. Differential expression of HOX genes upon activation of leukocyte sub-populations. Int J Hematol 2008; 87:246-9. [PMID: 18317880 PMCID: PMC2330060 DOI: 10.1007/s12185-008-0057-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 01/02/2008] [Accepted: 01/21/2008] [Indexed: 11/30/2022]
Abstract
The HOX genes are key determinants of cellular identity both in early development and in the renewal and differentiation of adult blood cells. Although a number of studies have examined the expression of individual HOX genes in defined blood cell lineages, we have undertaken a comprehensive analysis of HOX gene expression in resting and activated lymphocytic and monocytic subpopulations. This has revealed distinct patterns of expression between different cell types and resting and activated states. (Main category A: Erythrocytes, Leukocytes and Hematopoiesis, subcategory: 8: Lymphocytes).
Collapse
Affiliation(s)
- Richard Morgan
- Postgraduate Medical School, University of Surrey, Guildford, Surrey, GU2 7WG, UK.
| | | |
Collapse
|
35
|
|
36
|
Strathdee G, Holyoake TL, Sim A, Parker A, Oscier DG, Melo JV, Meyer S, Eden T, Dickinson AM, Mountford JC, Jorgensen HG, Soutar R, Brown R. Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin Cancer Res 2007; 13:5048-55. [PMID: 17785556 DOI: 10.1158/1078-0432.ccr-07-0919] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The HOX genes comprise a large family of homeodomain-containing transcription factors, present in four separate clusters, which are key regulators of embryonic development, hematopoietic differentiation, and leukemogenesis. We aimed to study the role of DNA methylation as an inducer of HOX gene silencing in leukemia. EXPERIMENTAL DESIGN Three hundred and seventy-eight samples of myeloid and lymphoid leukemia were quantitatively analyzed (by COBRA analysis and pyrosequencing of bisulfite-modified DNA) for methylation of eight HOXA and HOXB cluster genes. The biological significance of the methylation identified was studied by expression analysis and through re-expression of HOXA5 in a chronic myeloid leukemia (CML) blast crisis cell line model. RESULTS Here, we identify frequent hypermethylation and gene inactivation of HOXA and HOXB cluster genes in leukemia. In particular, hypermethylation of HOXA4 and HOXA5 was frequently observed (26-79%) in all types of leukemias studied. HOXA6 hypermethylation was predominantly restricted to lymphoid malignancies, whereas hypermethylation of other HOXA and HOXB genes was only observed in childhood leukemia. HOX gene methylation exhibited clear correlations with important clinical variables, most notably in CML, in which hypermethylation of both HOXA5 (P = 0.00002) and HOXA4 (P = 0.006) was strongly correlated with progression to blast crisis. Furthermore, re-expression of HOXA5 in CML blast crisis cells resulted in the induction of markers of granulocytic differentiation. CONCLUSION We propose that in addition to the oncogenic role of some HOX family members, other HOX genes are frequent targets for gene inactivation and normally play suppressor roles in leukemia development.
Collapse
Affiliation(s)
- Gordon Strathdee
- Centre for Oncology and Applied Pharmacology, Cancer Research UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Duff MD, Mestre J, Maddali S, Yan ZP, Stapleton P, Daly JM. Analysis of gene expression in the tumor-associated macrophage. J Surg Res 2007; 142:119-28. [PMID: 17597158 DOI: 10.1016/j.jss.2006.12.542] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/15/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The tumor-associated macrophage (TAM) is at the front line of the host's defense against malignancy and provides an attractive target for immune-modulatory therapy. However, factors present within the tumor microenvironment can alter macrophage phenotype, preventing its cytotoxic activity and reducing its susceptibility to interferon-gamma and lipopolysaccharide-mediated stimulation. METHODS Macrophages were isolated from subcutaneous B16 melanoma tumors implanted in C57 BL/6 mice. Wound macrophages were harvested from subcutaneously-implanted PVA sponges, and resting peritoneal macrophages were harvested by peritoneal lavage. Gene expression was analyzed using an Atlas cDNA array (Clontech, Mountain View, CA). RESULTS TAM demonstrated a pattern of gene expression distinct from both wound and peritoneal macrophage. There is an increase in proliferation-associated genes and in genes encoding the ultrastructural proteins cofillin, zyxin, and vimentin more commonly associated with fibroblast-like cells. In addition, an observed decrease in expression of the CD14 gene, and increase in inhibitory pathways including osteopontin and its receptor CD44, the inositol 1,4,5-triphosphate receptor, and the receptors for interleukin-4 and granulocyte monocyte-colony stimulating factor could explain the resistance of TAM to lipopolysaccharide-mediated stimulation. There was also a significant decrease in the expression of the interferon-gamma second messenger, IRF-1. CONCLUSIONS This study has identified a number of pathways involved in the suppression of TAM function. Targeting of these pathways may allow for the generation of more effective immune-modulatory anti-neoplastic therapy.
Collapse
Affiliation(s)
- Michael D Duff
- Department of Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Moore MAS, Chung KY, Plasilova M, Schuringa JJ, Shieh JH, Zhou P, Morrone G. NUP98 Dysregulation in Myeloid Leukemogenesis. Ann N Y Acad Sci 2007; 1106:114-42. [PMID: 17442773 DOI: 10.1196/annals.1392.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleoporin 98 (NUP98) is a component of the nuclear pore complex that facilitates mRNA export from the nucleus. It is mapped to 11p15.5 and is fused to a number of distinct partners, including nine members of the homeobox family as a consequence of leukemia-associated chromosomal translocations. NUP98-HOXA9 is associated with the t(7;11)(p15;p15) translocation in acute myeloid leukemia (AML), myelodysplastic syndrome, and blastic crisis of chronic myeloid leukemia. Expression of NUP98-HOXA9 in murine bone marrow resulted in a myeloproliferative disease progressing to AML by 7-8 months. Transduction of NUP98 fusion genes into human CD34(+) cells confers a proliferative advantage in long-term cytokine-stimulated and stromal cocultures and in NOD-SCID engrafted mice, associated with a five- to eight-fold increase in hematopoietic stem cells. NUP98-HOXA9 expression inhibited erythroid and myeloid differentiation but enhanced serial progenitor replating. NUP98-HOXA9 upregulated a number of homeobox genes of the A and B cluster as well as MEIS1 and Pim-1, and downmodulated globin genes and C/EBPalpha. The HOXA9 component of the NUP98-HOXA9 fusion protein was protected from cullin-4A-mediated ubiquitination and subsequent proteasome-dependent degradation. In NUP98-HOX-transduced CD34(+) cells and cells from AML patients with t(7;11)(p15;p15) NUP98 was no longer associated with the nuclear pore complex but formed intranuclear aggregation bodies. Analysis of NUP98 allelic expression in AML and myelodysplastic syndrome showed loss of heterozygosity observed in 29% of the former and 8% of the latter. This was associated with poor prognosis.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD34/biosynthesis
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 7
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Loss of Heterozygosity
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Pore Complex Proteins/physiology
Collapse
Affiliation(s)
- M A S Moore
- Moore Laboratory, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yue Y, Farcas R, Thiel G, Bommer C, Grossmann B, Galetzka D, Kelbova C, Küpferling P, Daser A, Zechner U, Haaf T. De novo t(12;17)(p13.3;q21.3) translocation with a breakpoint near the 5′ end of the HOXB gene cluster in a patient with developmental delay and skeletal malformations. Eur J Hum Genet 2007; 15:570-7. [PMID: 17327879 DOI: 10.1038/sj.ejhg.5201795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A boy with severe mental retardation, funnel chest, bell-shaped thorax, and hexadactyly of both feet was found to have a balanced de novo t(12;17)(p13.3;q21.3) translocation. FISH with BAC clones and long-range PCR products assessed in the human genome sequence localized the breakpoint on chromosome 17q21.3 to a 21-kb segment that lies <30 kb upstream of the HOXB gene cluster and immediately adjacent to the 3' end of the TTLL6 gene. The breakpoint on chromosome 12 occurred within telomeric hexamer repeats and, therefore, is not likely to affect gene function directly. We propose that juxtaposition of the HOXB cluster to a repetitive DNA domain and/or separation from required cis-regulatory elements gave rise to a position effect.
Collapse
Affiliation(s)
- Ying Yue
- Institute for Human Genetics, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y, Zhou P, Moore MAS. Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res 2007; 66:11781-91. [PMID: 17178874 DOI: 10.1158/0008-5472.can-06-0706] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The t(7;11)(p15;p15) translocation, observed in acute myelogenous leukemia and myelodysplastic syndrome, generates a chimeric gene where the 5' portion of the sequence encoding the human nucleoporin NUP98 protein is fused to the 3' region of HOXA9. Here, we show that retroviral-mediated enforced expression of the NUP98-HOXA9 fusion protein in cord blood-derived CD34(+) cells confers a proliferative advantage in both cytokine-stimulated suspension cultures and stromal coculture. This advantage is reflected in the selective expansion of hematopoietic stem cells as measured in vitro by cobblestone area-forming cell assays and in vivo by competitive repopulation of nonobese diabetic/severe combined immunodeficient mice. NUP98-HOXA9 expression inhibited erythroid progenitor differentiation and delayed neutrophil maturation in transduced progenitors but strongly enhanced their serial replating efficiency. Analysis of the transcriptosome of transduced cells revealed up-regulation of several homeobox genes of the A and B cluster as well as of Meis1 and Pim-1 and down-modulation of globin genes and of CAAT/enhancer binding protein alpha. The latter gene, when coexpressed with NUP98-HOXA9, reversed the enhanced proliferation of transduced CD34(+) cells. Unlike HOXA9, the NUP98-HOXA9 fusion was protected from ubiquitination mediated by Cullin-4A and subsequent proteasome-dependent degradation. The resulting protein stabilization may contribute to the leukemogenic activity of the fusion protein.
Collapse
Affiliation(s)
- Ki Y Chung
- Department of Medicine and Moore Laboratory, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cheung AMS, Tam CKH, Chow HCH, Verfaillie CM, Liang R, Leung AYH. All-trans retinoic acid induces proliferation of an irradiated stem cell supporting stromal cell line AFT024. Exp Hematol 2007; 35:56-63. [PMID: 17198874 DOI: 10.1016/j.exphem.2006.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/25/2006] [Accepted: 09/19/2006] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We have previously shown that all-trans retinoic acid (ATRA) enhanced the maintenance of early human hematopoietic progenitor cells (HPCs) in the presence of an irradiated stromal cell line AFT024. In this study, we examined the effects of ATRA on the stromal cell component with particular reference to cellular proliferation and gene expression. METHODS Irradiated AFT024 cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum and were incubated with ATRA at 1 mumol/L up to 21 days. The cells were examined in terms of immunostaining for proliferative cell nuclear antigen (PCNA) and BrdU incorporation, apoptosis assay, cell cycle analysis, and gene expression using semiquantitative reverse-transcriptase polymerase chain reaction. RESULTS In the control experiments, AFT024 cells lost their confluence in culture after 15-Gy irradiation and were arrested in G2/M phase on days 7 and 21. ATRA restored the cellular confluence with an increase in proliferation on day 21 (BrdU incorporation: 20.6-fold; PCNA staining: 51.7-fold) with reversal of cell cycle arrest (S phase: 2.7-fold increase; G2/M phase: 2.0-fold decrease). There was no effect on apoptosis as shown by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. ATRA significantly upregulated the expression of cell cycle genes for checkpoint transition, including cyclin A2, B2, and aurora kinase B, as well as genes associated with a putative role in HPC maintenance, including osteopontin, HoxA5, enhancer of zeste homolog 2, and peroxisome proliferator-activated receptor gamma. CONCLUSION We concluded that ATRA induced cellular proliferation of irradiated AFT024 cells and expression of a number of genes whose relevance to HPC homeostasis would have to be further examined.
Collapse
Affiliation(s)
- Alice M S Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The existence and roles of a class of abundant regulatory RNA molecules have recently come into sharp focus. Micro-RNAs (miRNAs) are small (approximately 22 bases), non-protein-coding RNAs that recognize target sequences of imperfect complementarity in cognate mRNAs and either destabilize them or inhibit protein translation. Although mechanisms of miRNA biogenesis have been elucidated in some detail, there is limited appreciation of their biological functions. Reported examples typically focus on miRNA regulation of a single tissue-restricted transcript, often one encoding a transcription factor, that controls a specific aspect of development, cell differentiation, or physiology. However, computational algorithms predict up to hundreds of putative targets for individual miRNAs, single transcripts may be regulated by multiple miRNAs, and miRNAs may either eliminate target gene expression or serve to finetune transcript and protein levels. Theoretical considerations and early experimental results hence suggest diverse roles for miRNAs as a class. One appealing possibility, that miRNAs eliminate low-level expression of unwanted genes and hence refine unilineage gene expression, may be especially amenable to evaluation in models of hematopoiesis. This review summarizes current understanding of miRNA mechanisms, outlines some of the important outstanding questions, and describes studies that attempt to define miRNA functions in hematopoiesis.
Collapse
|
43
|
Strathdee G, Sim A, Soutar R, Holyoake TL, Brown R. HOXA5 is targeted by cell-type-specific CpG island methylation in normal cells and during the development of acute myeloid leukaemia. Carcinogenesis 2006; 28:299-309. [PMID: 16861263 DOI: 10.1093/carcin/bgl133] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HOXA5 is a member of the HOX gene family, which is known to play key roles during embryonic development and in differentiation of adult cells. In addition, HOXA5 has been implicated as a tumour suppressor in breast cancer and shown to transactivate the p53 gene. CpG island methylation is a common mechanism of gene inactivation in tumour cells, but is rarely involved in control of cell-type-specific (CTS) expression in normal cells. However, here we demonstrate that HOXA5 is one of a small number of genes whose CTS expression pattern is controlled by CTS CpG island methylation in normal cells. Furthermore, chromatin immunoprecipitation analysis identified novel patterns of histone modifications associated with DNA methylation of HOXA5. High levels of methylation of histone residues (lysine 9 and 36 of histone H3) previously associated with transcriptional repression were present in the unmethylated, actively transcribing state, and were then reduced following DNA methylation and gene inactivation. Alterations to the normal patterns of HOXA5 gene methylation were also observed in tumour cells. Quantitative analysis of HOXA5 methylation identified the presence of limited methylation in all of the breast, lung and ovarian tumours examined. However, methylation levels in these three tumour types were nearly always low and comparable with that detected in the corresponding normal tissue. In contrast, acute myeloid leukaemia (AML) samples frequently (60% of samples) exhibited very high methylation levels, far greater than that seen in normal haematopoietic cells, suggesting a role for hypermethylation of HOXA5 in the development of AML, consistent with its previously identified role in haematopoietic differentiation.
Collapse
Affiliation(s)
- Gordon Strathdee
- Centre for Oncology and Applied Pharmacology, CR-UK Beatson Laboratories, G61 1BD UK.
| | | | | | | | | |
Collapse
|
44
|
Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N. A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol 2006; 3:240-52. [PMID: 16379594 DOI: 10.1089/lrb.2005.3.240] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Homeobox (Hox) genes are transcriptional regulators which modulate embryonic morphogenesis and pathological tissue remodeling in adults via regulation of genes associated with cell-cell or cell extracellular matrix (ECM) interactions. We previously showed that while Hox 3 genes promote angiogenesis, Hox D10 inhibits this process. METHODS AND RESULTS Here we show that another Hox family gene, Hox A5, also blocks angiogenesis but accomplishes this by targeting different downstream genes than Hox D10. Sustained expression of Hox A5 leads to down regulation of many pro-angiogenic genes including VEGFR2, ephrin A1, Hif1alpha and COX-2. In addition, Hox A5 also upregulates expression of anti-angiogenic genes including Thrombospondin-2. Furthermore, we show that while Hox A5 mRNA is expressed in quiescent endothelial cells (EC), its expression is diminished or absent in active angiogenic EC found in association with breast tumors or in proliferating infantile hemangiomas. CONCLUSIONS Together our results suggest that restoring Hox A5 expression may provide a novel means to limit breast tumor growth or expansion of hemangiomas.
Collapse
Affiliation(s)
- Kim Rhoads
- Surgical Research Laboratory, Dept of Surgery, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
45
|
Zhai J, Lin H, Canete-Soler R, Schlaepfer WW. HoxB2 binds mutant SOD1 and is altered in transgenic model of ALS. Hum Mol Genet 2005; 14:2629-40. [PMID: 16079151 DOI: 10.1093/hmg/ddi297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in Cu/Zn superoxide dismutase (SOD1) cause approximately 20% of familial amyotrophic lateral sclerosis by a toxic gain of function; however, the precise mechanisms remain unclear. Here, we report the identification of HoxB2, a homeodomain-containing transcription factor, as a G93A mutant SOD1 interactive protein in a yeast two-hybrid screen. We show that HoxB2 co-precipitates and co-localizes with mutant SOD1 in neuronal cell lines, as well as in brain and spinal cord of G93A mutant SOD1 transgenic mice. Mutagenesis further shows that this interaction is mediated by the central homeodomain of HoxB2. In motor neuron-like NSC-34 cells, overexpression of HoxB2 or its homeodomain decreases the insolubility of mutant SOD1 and inhibits G93A or G86R mutant SOD1-induced neuronal cell death. In human and mouse tissues, we show that expression of HoxB2 persists in adult spinal cord and is primarily localized in nuclei of motor neurons. In G93A transgenic mice, HoxB2 co-localizes with mutant SOD1 and is redistributed to perikarya and proximal neurites of motor neurons. In addition, there is progressive accumulation of HoxB2 and mutant SOD1 as punctate inclusions in the neuropil surrounding motor neurons. Taken together, our findings demonstrate that interaction of HoxB2 with mutant SOD1 occurs in motor neurons of G93A mutant SOD1 transgenic mice and suggest that this interaction may modulate the neurotoxicity of mutant SOD1.
Collapse
Affiliation(s)
- Jinbin Zhai
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
46
|
Chen H, Rubin E, Zhang H, Chung S, Jie CC, Garrett E, Biswal S, Sukumar S. Identification of transcriptional targets of HOXA5. J Biol Chem 2005; 280:19373-80. [PMID: 15757903 DOI: 10.1074/jbc.m413528200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The homeobox gene HOXA5 encodes a transcription factor that has been shown to play important roles in embryogenesis, hematopoiesis, and tumorigenesis. In order to decipher downstream signaling pathways of HOXA5, we utilized oligonucleotide microarray analysis to identify genes that are differentially expressed in HOXA5-induced cells compared with uninduced cells. Comparative analysis of gene expression changes after 9 h of HOXA5 induction in Hs578T breast cancer cells identified 306 genes whose expression was modulated at least 2-fold. Ten of these 306 genes were also up-regulated by at least 2-fold at 6 h post-induction. The expression of all of these 10 genes was confirmed by semiquantitative reverse transcription-PCR. Among these 10 genes, which are most likely to be direct targets of HOXA5, we initiated an investigation into the pleiotrophin gene by first cloning its promoter. Transient transfection assays indicated that HOXA5 can specifically activate the pleiotrophin promoter. Promoter deletion, chromatin immunoprecipitation assay, and gel-shift assays were performed to show that HOXA5 can directly bind to one binding site on the pleiotrophin promoter. These data strongly suggest that microarray analysis can successfully identify many potential direct downstream genes of HOXA5. Further functional analysis of these targets will allow us to better understand the diverse functions of HOXA5 in embryonic development and tumorigenesis.
Collapse
Affiliation(s)
- Hexin Chen
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205:154-71. [PMID: 15643670 DOI: 10.1002/path.1710] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The HOM-C clustered prototype homeobox genes of Drosophila, and their counterparts, the HOX genes in humans, are highly conserved at the genomic level. These master regulators of development continue to be expressed throughout adulthood in various tissues and organs. The physiological and patho-physiological functions of this network of genes are being avidly pursued within the scientific community, but defined roles for them remain elusive. The order of expression of HOX genes within a cluster is co-ordinated during development, so that the 3' genes are expressed more anteriorly and earlier than the 5' genes. Mutations in HOXA13 and HOXD13 are associated with disorders of limb formation such as hand-foot-genital syndrome (HFGS), synpolydactyly (SPD), and brachydactyly. Haematopoietic progenitors express HOX genes in a pattern characteristic of the lineage and stage of differentiation of the cells. In leukaemia, dysregulated HOX gene expression can occur due to chromosomal translocations involving upstream regulators such as the MLL gene, or the fusion of a HOX gene to another gene such as the nucleoporin, NUP98. Recent investigations of HOX gene expression in leukaemia are providing important insights into disease classification and prediction of clinical outcome. Whereas the oncogenic potential of certain HOX genes in leukaemia has already been defined, their role in other neoplasms is currently being studied. Progress has been hampered by the experimental approach used in many studies in which the expression of small subsets of HOX genes was analysed, and complicated by the functional redundancy implicit in the HOX gene system. Attempts to elucidate the function of HOX genes in malignant transformation will be enhanced by a better understanding of their upstream regulators and downstream target genes.
Collapse
Affiliation(s)
- D G Grier
- Department of Child Health, Queen's University, Belfast, Grosvenor Road, Belfast BT12 6BA, UK
| | | | | | | | | | | |
Collapse
|
48
|
Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D, Kogan SC, Radhakrishnan A, Le Beau MM, Largman C, Lawrence HJ. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 2004; 105:1456-66. [PMID: 15522959 DOI: 10.1182/blood-2004-04-1583] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HOX family of homeobox genes plays an important role in normal and malignant hematopoiesis. Dysregulated HOX gene expression profoundly effects the proliferation and differentiation of hematopoietic stem cells (HSCs) and committed progenitors, and aberrant activation of HOX genes is a common event in human myeloid leukemia. HOXB6 is frequently overexpressed in human acute myeloid leukemia (AML). To gain further insight into the role of HOXB6 in hematopoiesis, we overexpressed HOXB6 in murine bone marrow using retrovirus-mediated gene transfer. We also explored structure-function relationships using mutant HOXB6 proteins unable to bind to DNA or a key HOX-binding partner, pre-B-cell leukemia transcription factor-1 (PBX1). Additionally, we investigated the potential cooperative interaction with myeloid ecotropic viral integration site 1 homolog (MEIS1). In vivo, HOXB6 expanded HSCs and myeloid precursors while inhibiting erythropoiesis and lymphopoiesis. Overexpression of HOXB6 resulted in AML with a median latency of 223 days. Coexpression of MEIS1 dramatically shortened the onset of AML. Cytogenetic analysis of a subset of HOXB6-induced AMLs revealed recurrent deletions of chromosome bands 2D-E4, a region frequently deleted in HOXA9-induced AMLs. In vitro, HOXB6 immortalized a factor-dependent myelomonocytic precursor capable of granulocytic and monocytic differentiation. These biologic effects of HOXB6 were largely dependent on DNA binding but independent of direct interaction with PBX1.
Collapse
Affiliation(s)
- Neal A Fischbach
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M. Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol 2004; 32:571-8. [PMID: 15183898 DOI: 10.1016/j.exphem.2004.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 03/05/2004] [Accepted: 03/09/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mel-18 is a member of the mammalian Polycomb group (PcG) genes. This family of genes regulates global gene expression in many biologic processes, including hematopoiesis and anterior-posterior axis formation by manipulating specific target genes, including members of the Hox family. Here, we demonstrate that mel-18 negatively regulates the self-renewal activity of hematopoietic stem cells (HSCs). MATERIALS AND METHODS Long-term reconstitution activity was evaluated by competitive repopulating unit (CRU) and mean activity of the stem cells (MAS) assays in vivo in bone marrow cells (BMCs) derived from mel-18(-/-) and mel-18 tg mice. The expression levels of mel-18 and Hoxb4 were measured by quantitative real-time reverse transcription polymerase chain reaction. RESULTS The Hoxb4 gene was highly expressed in HSCs derived from mel-18(-/-) mice. The observed CRUs were 3.21, 4.77, 3.32, and 1.64 CRU per 10(5) BMCs in mel-18(+/+), mel-18(-/-), C57BL/6, and mel-18 tg, respectively. MAS was 0.58, 0.18, 0.41, and 5.89 in mel-18(+/+), mel-18(-/-), C57BL/6, and mel-18 tg, respectively. The percentage in G0 phase HSCs (lin(-)flk2(-)c-Kit(+)Sca1+ cells) was increased in mel-18(-/-) mice and decreased in mel-18 tg mice. CONCLUSION Loss or knockdown of mel-18 leads to the expression of Hoxb4, an increase in the proportion of HSCs in G0 phase, and the subsequent promotion of HSC self-renewal. These findings will enable us to develop new approaches for controlling HSC activity for hematopoietic transplantations based on ex vivo expansion of HSCs.
Collapse
Affiliation(s)
- Teruyuki Kajiume
- Department of Immunology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
50
|
McGuckin CP, Forraz N, Pettengell R, Thompson A. Thrombopoietin, flt3-ligand and c-kit-ligand modulate HOX gene expression in expanding cord blood CD133 cells. Cell Prolif 2004; 37:295-306. [PMID: 15245565 PMCID: PMC6496215 DOI: 10.1111/j.1365-2184.2004.00313.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Haemopoietic stem/progenitor cell (HSPC) development is regulated by extrinsic and intrinsic stimuli. Extrinsic modulators include growth factors and cell adhesion molecules, whereas intrinsic regulation is achieved with many transcription factor families, of which the HOX gene products are known to be important in haemopoiesis. Umbilical cord blood CD133+ HSPC proliferation potential was tested in liquid culture with 'TPOFLK' (thrombopoietin, flt-3 ligand and c-kit ligand, promoting HSPC survival and self-renewal), in comparison to 'K36EG' (c-kit-ligand, interleukins-3 and -6, erythropoietin and granulocyte colony-stimulating factor, inducing haemopoietic differentiation). TPOFLK induced a higher CD133+ HSPC proliferation (up to 60-fold more, at week 8) and maintained a higher frequency of the primitive colony-forming cells than K36EG. Quantitative polymerase chain reaction analysis revealed opposite expression patterns for specific HOX genes in expanding cord blood CD133+ HSPC. After 8 weeks in liquid culture, TPOFLK increased the expression of HOX B3, B4 and A9 (associated with uncommitted HSPC) and reduced the expression of HOX B8 and A10 (expressed in committed myeloid cells) when compared to K36EG. These results suggest that TPOFLK induces CD133+ HSPC proliferation, self-renewal and maintenance, up-regulation of HOX B3, B4 and A9 and down-regulation of HOX B8 and A10 gene expression.
Collapse
Affiliation(s)
- C P McGuckin
- King-George Stem Cell Therapy Laboratory, St George's Hospital Medical School and Kingston University, London, UK.
| | | | | | | |
Collapse
|