1
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2024:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
2
|
Jantsch MH, Doleski PH, Viana AR, da Silva JLG, Passos DF, Cabral FL, Manzoni AG, Ebone RDS, Soares ABU, de Andrade CM, Schetinger MRC, Leal DBR. Effects of clopidogrel bisulfate on B16-F10 cells and tumor development in a murine model of melanoma. Biochem Cell Biol 2023; 101:443-455. [PMID: 37163764 DOI: 10.1139/bcb-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Metastatic melanoma is a very aggressive skin cancer. Platelets are constituents of the tumor microenvironment and, when activated, contribute to cancer progression, especially metastasis and inflammation. P2Y12 is an adenosine diphosphate receptor that triggers platelet activation. Inhibition of P2Y12 by clopidogrel bisulfate (CB) decreases platelet activation, which is also controlled by the extracellular concentration and the metabolism of purines by purinergic enzymes. We evaluated the effects of CB on the viability and proliferation of cultured B16-F10 cells. We also used a metastatic melanoma model with C57BL-6 mice to evaluate cancer development and purine metabolism modulation in platelets. B16-F10 cells were administered intraperitoneally to the mice. Two days later, the animals underwent a 12-day treatment with CB (30 mg/kg by gavage). We have found that CB reduced cell viability and proliferation in B16-F10 culture in 72 h at concentrations above 30 µm. In vivo, CB decreased tumor nodule counts and lactate dehydrogenase levels and increased platelet purine metabolism. Our results showed that CB has significant effects on melanoma progression.
Collapse
Affiliation(s)
- Matheus Henrique Jantsch
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Instituto Federal Farroupilha, Campus Santo Ângelo, Santo Ângelo, RS, Brazil
| | - Pedro Henrique Doleski
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Altevir Rossato Viana
- Programa de Pós-graduação em Nanociências; Laboratório de Biociências. Universidade Franciscana, Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra Guedes Manzoni
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renan da Silva Ebone
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Cínthia Melazzo de Andrade
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
5
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Pinheiro D, Mawhin MA, Prendecki M, Woollard KJ. In-silico analysis of myeloid cells across the animal kingdom reveals neutrophil evolution by colony-stimulating factors. eLife 2020; 9:60214. [PMID: 33236983 PMCID: PMC7717901 DOI: 10.7554/elife.60214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils constitute the largest population of phagocytic granulocytes in the blood of mammals. The development and function of neutrophils and monocytes is primarily governed by the granulocyte colony-stimulating factor receptor family (CSF3R/CSF3) and macrophage colony-stimulating factor receptor family (CSF1R/IL34/CSF1) respectively. Using various techniques this study considered how the emergence of receptor:ligand pairings shaped the distribution of blood myeloid cell populations. Comparative gene analysis supported the ancestral pairings of CSF1R/IL34 and CSF3R/CSF3, and the emergence of CSF1 later in lineages after the advent of Jawed/Jawless fish. Further analysis suggested that the emergence of CSF3 lead to reorganisation of granulocyte distribution between amphibian and early reptiles. However, the advent of endothermy likely contributed to the dominance of the neutrophil/heterophil in modern-day mammals and birds. In summary, we show that the emergence of CSF3R/CSF3 was a key factor in the subsequent evolution of the modern-day mammalian neutrophil.
Collapse
Affiliation(s)
- Damilola Pinheiro
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Marie-Anne Mawhin
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Ng J, Guo F, Marneth AE, Ghanta S, Kwon MY, Keegan J, Liu X, Wright KT, Kamaz B, Cahill LA, Mullally A, Perrella MA, Lederer JA. Augmenting emergency granulopoiesis with CpG conditioned mesenchymal stromal cells in murine neutropenic sepsis. Blood Adv 2020; 4:4965-4979. [PMID: 33049055 PMCID: PMC7556132 DOI: 10.1182/bloodadvances.2020002556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Patients with immune deficiencies from cancers and associated treatments represent a growing population within the intensive care unit with increased risk of morbidity and mortality from sepsis. Mesenchymal stromal cells (MSCs) are an integral part of the hematopoietic niche and express toll-like receptors, making them candidate cells to sense and translate pathogenic signals into an innate immune response. In this study, we demonstrate that MSCs administered therapeutically in a murine model of radiation-associated neutropenia have dual actions to confer a survival benefit in Pseudomonas aeruginosa pneumo-sepsis that is not from improved bacterial clearance. First, MSCs augment the neutrophil response to infection, an effect that is enhanced when MSCs are preconditioned with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist. Using cytometry by time of flight, we identified proliferating neutrophils (Ly6GlowKi-67+) as the main expanded cell population within the bone marrow. Further analysis revealed that CpG-MSCs expand a lineage restricted progenitor population (Lin-Sca1+C-kit+CD150-CD48+) in the bone marrow, which corresponded to a doubling in the myeloid proliferation and differentiation potential in response to infection compared with control. Despite increased neutrophils, no reduction in organ bacterial count was observed between experimental groups. However, the second effect exerted by CpG-MSCs is to attenuate organ damage, particularly in the lungs. Neutrophils obtained from irradiated mice and cocultured with CpG-MSCs had decreased neutrophil extracellular trap formation, which was associated with decreased citrullinated H3 staining in the lungs of mice given CpG-MSCs in vivo. Thus, this preclinical study provides evidence for the therapeutic potential of MSCs in neutropenic sepsis.
Collapse
Affiliation(s)
- Julie Ng
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | | | | | - Min-Young Kwon
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | - Xiaoli Liu
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Pediatric Newborn Medicine, and
| | - Kyle T Wright
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | - Mark A Perrella
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Pediatric Newborn Medicine, and
| | | |
Collapse
|
8
|
Yang X, Chen D, Long H, Zhu B. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell Mol Life Sci 2020; 77:2723-2738. [PMID: 31974657 PMCID: PMC11104806 DOI: 10.1007/s00018-020-03450-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Extramedullary hematopoiesis (EMH) is the expansion and differentiation of hematopoietic stem and progenitor cells outside of the bone marrow. In postnatal life, as a compensatory mechanism for ineffective hematopoiesis of the bone marrow, pathological EMH is triggered by hematopoietic disorders, insufficient hematopoietic compensation, and other pathological stress conditions, such as infection, advanced tumors, anemia, and metabolic stress. Pathological EMH has been reported in many organs, and the sites of pathological EMH may be related to reactivation of the embryonic hematopoietic structure in these organs. As a double-edged sword (blood and immune cell supplementation as well as clinical complications), pathological EMH has been widely studied in recent years. In particular, pathological EMH induced by late-stage tumors contributes to tumor immunosuppression. Thus, a deeper understanding of the mechanism of pathological EMH may be conducive to the development of therapies against the pathological processes that induce EMH. This article reviews the recent progress of research on the cellular and molecular mechanisms of pathological EMH in specific diseases.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
9
|
Märklin M, Bugl S, Wirths S, Frick JS, Müller MR, Kopp HG, Schneidawind D. Oral intake of lipopolysaccharide regulates toll-like receptor 4-dependent granulopoiesis. Exp Biol Med (Maywood) 2020; 245:1254-1259. [PMID: 32515223 DOI: 10.1177/1535370220931043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT In our present study, we investigated the impact of LPS on neutrophil homeostasis and found that oral intake is sufficient to induce hematopoietic stem and progenitor cell fate decisions towards the neutrophil lineage independent of G-CSF. In addition, TLR4 has been identified as the indispensable sensor for oral LPS-modulated steady-state granulopoiesis. We provide evidence that the gastrointestinal microbiome is critical for neutrophil homeostasis, which has implications for patients being treated with chemotherapy or antimicrobial therapy, since both are significantly influencing the composition of the intestinal microbiome.
Collapse
Affiliation(s)
- Melanie Märklin
- Germany Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (iFIT), Eberhard Karls University, Tuebingen 72076, Germany
| | - Stefanie Bugl
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Stefan Wirths
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen 72076, Germany
| | - Julia-Stefanie Frick
- Institute of Medical Microbiology and Hygiene, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Martin R Müller
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen 72076, Germany.,Department of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hannover 30459, Germany
| | - Hans-Georg Kopp
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen 72076, Germany.,Department of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart 70376, Germany
| | - Dominik Schneidawind
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (iFIT), Eberhard Karls University, Tuebingen 72076, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
10
|
Mignard X, Biard L, Lemiale V, Mokart D, Pène F, Kouatchet A, Mayaux J, Vincent F, Nyunga M, Bruneel F, Rabbat A, Lebert C, Perez P, Meert AP, Benoit D, Hamidfar R, Darmon M, Azoulay E, Zafrani L. Granulocyte colony-stimulating factor and respiratory status of critically ill neutropenic patients with hematologic malignancies. Leuk Lymphoma 2018; 60:1156-1163. [PMID: 30277108 DOI: 10.1080/10428194.2018.1516874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In patients with hematologic malignancies, respiratory status may deteriorate during neutropenia recovery. This multicenter, observational study aims to evaluate granulocyte colony-stimulating factor (G-CSF) impact on respiratory status in critically ill neutropenic patients. Among 1011 critically ill patients with hematologic malignancies, 288 were neutropenic and included in this study. 201 (70%) did not receive G-CSF at day 1 or 2. After propensity score matching for the probability of receiving G-CSF at day 1 or 2, there was no association between G-CSF and respiratory deterioration at day 14 (OR =1.19; 95%CI (0.57-2.51); p = .64). Additional sensitivity analysis in patients admitted for acute respiratory failure showed similar results (OR =1.34; 95%CI (0.5-3.59); p = .57). Among patients who recovered from neutropenia, 75% experienced respiratory deterioration during neutropenia recovery. This study confirms that neutropenia recovery is a situation at risk of respiratory deterioration. However, whether G-CSF is an aggravating factor cannot be supported by our results.
Collapse
Affiliation(s)
- Xavier Mignard
- a Medical ICU , Saint-Louis Teaching Hospital , Paris , France
| | - Lucie Biard
- b Department of Biostatistics , Saint-Louis Teaching Hospital , Paris , France
| | | | - Djamel Mokart
- c ICU , Paoli Calmette Institute , Marseille , France
| | | | | | - Julien Mayaux
- f Medical ICU , Pitié-Salpétrière Teaching Hospital , Paris , France
| | | | | | | | - Antoine Rabbat
- j Respiratory Unit , Cochin Teaching Hospital , Paris , France
| | | | - Pierre Perez
- l ICU , Brabois Teaching Hospital , Nancy , France
| | - Anne-Pascale Meert
- m Service soins intensifs et urgences oncologiques , Institut Jules Bordet , Brussels , Belgium
| | | | - Rebecca Hamidfar
- o ICU , Albert Michallon University Hospital , Grenoble , France
| | - Michael Darmon
- p ICU , Saint-Etienne University Hospital , Saint-Etienne , France
| | - Elie Azoulay
- a Medical ICU , Saint-Louis Teaching Hospital , Paris , France
| | - Lara Zafrani
- a Medical ICU , Saint-Louis Teaching Hospital , Paris , France
| |
Collapse
|
11
|
Abstract
Neutrophils are essential to the homeostatic mission of safeguarding host tissues, responding rapidly and diversely to breaches of the host's barriers to infection, and returning tissues to a sterile state. In response to specific stimuli, neutrophils extrude modified chromatin structures decorated with specific cytoplasmic and granular proteins called neutrophil extracellular traps (NETs). Several pathways lead to this unique form of cell death (NETosis). Extracellular chromatin may have evolved to defend eukaryotic organisms against infection, and its release has at least three functions: trapping and killing of microbes, amplifying immune responses, and inducing coagulation. Here we review neutrophil development and heterogeneity with a focus on NETs, NET formation, and their relevance in host defense and disease.
Collapse
|
12
|
Kamran N, Li Y, Sierra M, Alghamri MS, Kadiyala P, Appelman HD, Edwards M, Lowenstein PR, Castro MG. Melanoma induced immunosuppression is mediated by hematopoietic dysregulation. Oncoimmunology 2017; 7:e1408750. [PMID: 29399415 PMCID: PMC5790391 DOI: 10.1080/2162402x.2017.1408750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
Tumors are associated with expansion of immunosuppressive cells such as tumor associated macrophages (TAMs), regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs). These cells promote tumor growth, angiogenesis, metastasis and immune escape. Cancer patients frequently present symptoms such as anemia, leukocytosis and/or cytopenia; associated with poor prognosis. To uncover tumor-mediated hematopoietic abnormalities and identify novel targets that can be harnessed to improve tumor-specific immune responses, we investigated the hematopoietic stem and progenitor cell compartment in melanoma bearing mice. We show that melanoma growth results in expansion of myeloid lineages such as MDSCs, macrophages and DCs along with a reduction in mature RBCs and platelets. Mature B lymphocytes in the blood and BM of melanoma mice were also reduced. Mice bearing melanoma showed extramedullary hematopoiesis in the spleen. Increased expansion of myeloid lineages occurred directly at the level of stem and progenitor cells. The reduction in mature B lymphocytes resulted from a block at the Pro-B cell stage in the bone marrow. Addition of recombinant IL-3 to bone marrow cells resulted in the expansion of committed myeloid progenitors including common myeloid precursors, granulocyte-monocyte precursors and megakaryocyte-erythrocyte precursors. In vivo, IL-3 receptor stimulation in melanoma bearing mice using an IL-3 antibody also resulted in a robust expansion of committed myeloid progenitors and hematopoietic stem cells. Collectively our findings demonstrate that tumor growth plays a pivotal role in reprogramming the host immune system by impacting hematopoiesis directly at the level of stem cell compartment.
Collapse
Affiliation(s)
- Neha Kamran
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Youping Li
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Maria Sierra
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Henry D. Appelman
- Department of Pathology, University of Michigan Medical School, 5220 Med Sci I, Ann Arbor, MI, USA
| | - Marta Edwards
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, RM 4570 C, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Granulocyte-Monocyte Progenitors and Monocyte-Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes. Immunity 2017; 47:890-902.e4. [PMID: 29166589 DOI: 10.1016/j.immuni.2017.10.021] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) produce monocytes during homeostasis and in response to increased demand during infection. Both progenitor populations are thought to derive from common myeloid progenitors (CMPs), and a hierarchical relationship (CMP-GMP-MDP-monocyte) is presumed to underlie monocyte differentiation. Here, however, we demonstrate that mouse MDPs arose from CMPs independently of GMPs, and that GMPs and MDPs produced monocytes via similar but distinct monocyte-committed progenitors. GMPs and MDPs yielded classical (Ly6Chi) monocytes with gene expression signatures that were defined by their origins and impacted their function. GMPs produced a subset of "neutrophil-like" monocytes, whereas MDPs gave rise to a subset of monocytes that yielded monocyte-derived dendritic cells. GMPs and MDPs were also independently mobilized to produce specific combinations of myeloid cell types following the injection of microbial components. Thus, the balance of GMP and MDP differentiation shapes the myeloid cell repertoire during homeostasis and following infection.
Collapse
|
14
|
Chen Y, Gong FY, Li ZJ, Gong Z, Zhou Z, Ma SY, Gao XM. A study on the risk of fungal infection with tofacitinib (CP-690550), a novel oral agent for rheumatoid arthritis. Sci Rep 2017; 7:6779. [PMID: 28754958 PMCID: PMC5533717 DOI: 10.1038/s41598-017-07261-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Tofacitinib (CP-690550), an oral Janus kinase inhibitor, has shown significant efficacy in the treatment of rheumatoid arthritis through blocking the signaling pathways of pro-inflammatory cytokines. However, recent evidence suggests that long-term tofacitinib treatment is associated with increased risk of infection (e.g. tuberculosis) in patients. In the present study, we illustrate that tofacitinib administration significantly reduced the survival rate of mice given lethal or sub-lethal dose challenge with Candida albicans. This was related to the ability of tofacitinib to reverse TNFα- and IFNγ-enhanced candidacidal activity of murine polymorph nuclear cells (PMNs) and also to suppress chemokine CXCL5 expression and PMN infiltration in the infected tissues of mice. More importantly, tofacitinib significantly antagonized the ability of TNFα, IFNγ and GM-CSF to boost human PMNs in phagocytosis and direct killing of C. albicans in vitro. It also down-regulated reactive oxygen production and neutrophil extracellular trap formation by human PMNs stimulated with yeast-derived β-glucans in the presence of TNFα, IFNγ or GM-CSF. Our data emphasizes a significantly increased risk for opportunistic fungal infection associated long-term tofacitinib treatment in humans, likely through antagonizing the PMN-boosting effect of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Zhen-Jun Li
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhe Zhou
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shu-Yan Ma
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Regulation of Inflammation- and Infection-Driven Hematopoiesis. Trends Immunol 2017; 38:345-357. [DOI: 10.1016/j.it.2017.01.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
|
16
|
Montoya AM, González GM, Martinez-Castilla AM, Aguilar SA, Franco-Molina MA, Coronado-Cerda E, Rosas-Taraco AG. Cytokines profile in immunocompetent mice during Trichosporon asahii infection. Med Mycol 2017; 56:103-109. [DOI: 10.1093/mmy/myx018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 01/25/2023] Open
|
17
|
Zhu H, Kwak HJ, Liu P, Bajrami B, Xu Y, Park SY, Nombela-Arrieta C, Mondal S, Kambara H, Yu H, Chai L, Silberstein LE, Cheng T, Luo HR. Reactive Oxygen Species-Producing Myeloid Cells Act as a Bone Marrow Niche for Sterile Inflammation-Induced Reactive Granulopoiesis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2854-2864. [PMID: 28235862 DOI: 10.4049/jimmunol.1602006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022]
Abstract
Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation.
Collapse
Affiliation(s)
- Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hyun-Jeong Kwak
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Besnik Bajrami
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shin-Young Park
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | | | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Hiroto Kambara
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Hongbo Yu
- Department of Hematopathology, VA Boston Healthcare System, West Roxbury, MA 02132
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 and.,Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
18
|
A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci Rep 2017; 7:39804. [PMID: 28059162 PMCID: PMC5216372 DOI: 10.1038/srep39804] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Homeostasis of neutrophils—the blood cells that respond first to infection and tissue injury—is critical for the regulation of immune responses and regulated through granulopoiesis, a multi-stage process by which neutrophils differentiate from hematopoietic stem cells. Granulopoiesis is a highly dynamic process and altered in certain clinical conditions, such as pathologic and iatrogenic neutropenia, described as demand-adapted granulopoiesis. The regulation of granulopoiesis under stress is not completely understood because studies of granulopoiesis dynamics have been hampered by technical limitations in defining neutrophil precursors. Here, we define a population of neutrophil precursor cells in the bone marrow with unprecedented purity, characterized by the lineage−CD11b+Ly6GloLy6BintCD115−, which we call NeuPs (Neutrophil Precursors). We demonstrated that NeuPs differentiate into mature and functional neutrophils both in vitro and in vivo. By analyzing the gene expression profiles of NeuPs, we also identified NeuP stage-specific genes and characterized patterns of gene regulation throughout granulopoiesis. Importantly, we found that NeuPs have the potential to proliferate, but the proliferation decreased in multiple different hematopoietic stress settings, indicating that proliferating NeuPs are poised at a critical step to regulate granulopoiesis. Our findings will facilitate understanding how the hematopoietic system maintains homeostasis and copes with the demands of granulopoiesis.
Collapse
|
19
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Abstract
PURPOSE OF REVIEW During severe systemic infection, steady-state hematopoiesis is switched to demand-adapted myelopoiesis, leading to increased myeloid progenitor proliferation and, depending on the context and type of pathogen, enhanced granulocytic or monocytic differentiation, respectively. We will review the recent advances in understanding direct and indirect mechanisms by which different pathogen signals are detected and subsequently translated into demand-adapted myelopoiesis. RECENT FINDINGS Enhanced myeloid progenitor proliferation and neutrophil differentiation following infection with prototypic Gram-negative bacterium Escherichia coli is mediated by granulocyte colony-stimulating factor, and reactive oxygen species released from endothelial cells and mature myeloid cells, respectively. Furthermore, hematopoietic stem and progenitor cells directly sense pathogen signals via Toll-like receptors and contribute to emergency granulopoiesis via release and subsequent autocrine and paracrine action of myelopoietic cytokines including IL-6. Moreover, emergency monocytopoiesis upon viral infection depends on T cell-derived IFNγ and release of IL-6 from bone marrow stromal cells. SUMMARY A complex picture is evolving in which various hematopoietic and nonhematopoietic cell types interact with the hematopoietic system in an intricate manner to shape an appropriate hematopoietic response to specific infectious stimuli.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells can self-renew and also give rise to the entire repertoire of hematopoietic cells. During acute infectious and inflammatory stresses, the hematopoietic system can quickly adapt to demand by increasing output of innate immune cells many-fold, often at the expense of lymphopoiesis and erythropoiesis. We review recent advances in understanding the regulation of stress-induced hematopoiesis with a specific focus on the direct effects of inflammatory signaling on hematopoietic stem and progenitor cells (HSPCs). RECENT FINDINGS Recent studies have highlighted several areas of exciting new developments in the field, including the complex interaction and crosstalk within HSPCs and between bone marrow mesenchymal stem cells and endothelial cells needed to achieve regulated myelopoiesis, identification of increased number of inflammatory and infectious molecules with direct effects on HSPCs, the critical role of inflammatory signaling on embryonic specification of hematopoietic stem cells, and the ability of cytokines to instruct lineage choice at the HSPC level. SUMMARY These exciting new findings will shape our fundamental understanding of how inflammatory signaling regulates hematopoiesis in health and disease, and facilitate the development of potential interventions to treat hematologic diseases associated with altered inflammatory signaling.
Collapse
|
22
|
Meshkibaf S, Martins AJ, Henry GT, Kim SO. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages. Cytokine 2015; 78:69-78. [PMID: 26687628 DOI: 10.1016/j.cyto.2015.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/19/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine.
Collapse
Affiliation(s)
- Shahab Meshkibaf
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada; Center for Human Immunology, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Andrew J Martins
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Garth T Henry
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada; Center for Human Immunology, University of Western Ontario, London, Ontario N6G 2V4, Canada.
| |
Collapse
|
23
|
Taki M, Tsuboi I, Harada T, Naito M, Hara H, Inoue T, Aizawa S. Lipopolysaccharide reciprocally alters the stromal cell-regulated positive and negative balance between myelopoiesis and B lymphopoiesis in C57BL/6 mice. Biol Pharm Bull 2015; 37:1872-81. [PMID: 25451836 DOI: 10.1248/bpb.b14-00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hematopoiesis in the bone marrow (BM) and spleen is controlled by stromal cells. Inflammation promotes myelopoiesis and simultaneously suppresses B lymphopoiesis. However, the role of the reciprocal regulation of myelopoiesis and B lymphopoiesis by stromal cells during inflammation is not fully understood. We investigated inflammation-induced alteration of hematopoietic regulation in lipopolysaccharide (LPS)-treated mice. C57BL/6 female mice were intravenously injected with a single, 5-µg dose of LPS, which induced a rapid decrease in the number of granulocyte-macrophage progenitors (colony-forming unit granulocyte-macrophage; CFU-GM) and B cell progenitors (CFU-preB) in BM. The CFU-GM count rapidly recovered, whereas the recovery of CFU-preB was delayed. LPS induced a marked increase in the number of CFU-GM but not in the number of CFU-preB in spleen. After LPS treatment, gene expression levels of positive regulators of myelopoiesis such as granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF) in BM and spleen were markedly upregulated whereas levels of positive regulators for B lymphopoiesis such as stromal cell-derived factor (SDF)-1, stem cell factor (SCF), and IL-7 remained unchanged. Meanwhile, the negative regulator of B lymphopoiesis tumor necrosis factor (TNF)-α was markedly up-regulated. The number of CFU-GM in S-phase in BM increased after LPS treatment, whereas the number of CFU-preB in S-phase decreased. These results suggest that LPS-activated stromal cells induce positive-dominant regulation of myelopoiesis and negative-dominant regulation of B lymphopoiesis, which facilitates emergency myelopoiesis during inflammation by suppressing B lymphopoiesis, thereby contributing to the host defense against infection.
Collapse
Affiliation(s)
- Masafumi Taki
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Wang H, Bei L, Shah CA, Hu L, Eklund EA. HoxA10 Terminates Emergency Granulopoiesis by Increasing Expression of Triad1. THE JOURNAL OF IMMUNOLOGY 2015; 194:5375-87. [PMID: 25895533 DOI: 10.4049/jimmunol.1401909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Expression of the E3 ubiquitin ligase Triad1 is greater in mature granulocytes than in myeloid progenitor cells. HoxA10 actives transcription of the gene encoding Triad1 (ARIH2) during myeloid differentiation, but the contribution of increased Triad1 expression to granulocyte production or function is unknown. Mice with bone marrow-specific disruption of the ARIH2 gene exhibit constitutive inflammation with tissue infiltration by granulocytes and B cells. In contrast, disruption of the HOXA10 gene in mice neither constitutively activates the innate immune response nor significantly alters steady-state granulopoiesis. This study explores the impact of HoxA10-induced Triad1 expression on emergency (stress) granulopoiesis. We found that mice with HOXA10 gene disruption exhibited an overwhelming and fatal emergency granulopoiesis response that was characterized by tissue infiltration with granulocytes, but reversed by re-expression of Triad1 in the bone marrow. We determined that HoxA9 repressed ARIH2 transcription in myeloid progenitor cells, antagonizing the effect of HoxA10 on Triad1 expression. Also, we found that differentiation-stage-specific ARIH2 transcription was regulated by the tyrosine phosphorylation states of HoxA9 and HoxA10. Our studies demonstrate a previously undescribed role for HoxA10 in terminating emergency granulopoiesis, suggesting an important contribution by Hox proteins to the innate immune response.
Collapse
Affiliation(s)
- Hao Wang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Ling Bei
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612
| | - Chirag A Shah
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and
| | - Elizabeth A Eklund
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611; and Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612
| |
Collapse
|
26
|
Pathak R, Shao L, Ghosh SP, Zhou D, Boerma M, Weiler H, Hauer-Jensen M. Thrombomodulin contributes to gamma tocotrienol-mediated lethality protection and hematopoietic cell recovery in irradiated mice. PLoS One 2015; 10:e0122511. [PMID: 25860286 PMCID: PMC4393275 DOI: 10.1371/journal.pone.0122511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/12/2015] [Indexed: 01/09/2023] Open
Abstract
Systemic administration of recombinant thrombomodulin (TM) confers radiation protection partly by accelerating hematopoietic recovery. The uniquely potent radioprotector gamma tocotrienol (GT3), in addition to being a strong antioxidant, inhibits the enzyme hydroxy-methyl-glutaryl-coenzyme A reductase (HMGCR) and thereby likely modulates the expression of TM. We hypothesized that the mechanism underlying the exceptional radioprotective properties of GT3 partly depends on the presence of endothelial TM. In vitro studies confirmed that ionizing radiation suppresses endothelial TM (about 40% at 4 hr after 5 Gy γ-irradiation) and that GT3 induces TM expression (about 2 fold at the mRNA level after 5 μM GT3 treatment for 4 hr). In vivo survival studies showed that GT3 was significantly more effective as a radioprotector in TM wild type (TM+/+) mice than in mice with low TM function (TMPro/-). After exposure to 9 Gy TBI, GT3 pre-treatment conferred 85% survival in TM+/+ mice compared to only 50% in TMPro/-. Thus, GT3-mediated radiation lethality protection is partly dependent on endothelial TM. Significant post-TBI recovery of hematopoietic cells, particularly leukocytes, was observed in TM+/+ mice (p = 0.003), but not in TMPro/- mice, despite the fact that GT3 induced higher levels of granulocyte colony stimulating factor (G-CSF) in TMPro/- mice (p = 0.0001). These data demonstrate a critical, G-CSF-independent, role for endothelial TM in GT3-mediated lethality protection and hematopoietic recovery after exposure to TBI and may point to new strategies to enhance the efficacy of current medical countermeasures in radiological/nuclear emergencies.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD, United States of America
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America
| |
Collapse
|
27
|
Abstract
Neutrophils are endowed with a plethora of toxic molecules that are mobilized in immune responses. These cells evolved to fight infections, but when deployed at the wrong time and in the wrong place, they cause damage to the host. Here, we review the generalities of these cells as well as the difficulties encountered when trying to unravel them mechanistically. We then focus on how neutrophils develop and their function in infection. We center our attention on human neutrophils and what we learn from clinical immunodeficiencies. Finally, we use autoimmune disease to illustrate the harmful potential of dysregulated neutrophil responses.
Collapse
Affiliation(s)
- Bart W Bardoel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Elaine F Kenny
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gabriel Sollberger
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
28
|
Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 2015; 42:159-71. [PMID: 25579427 DOI: 10.1016/j.immuni.2014.12.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/23/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022]
Abstract
The cellular mechanisms controlling infection-induced emergency granulopoiesis are poorly defined. Here we found that reactive oxygen species (ROS) concentrations in the bone marrow (BM) were elevated during acute infection in a phagocytic NADPH oxidase-dependent manner in myeloid cells. Gr1(+) myeloid cells were uniformly distributed in the BM, and all c-kit(+) progenitor cells were adjacent to Gr1(+) myeloid cells. Inflammation-induced ROS production in the BM played a critical role in myeloid progenitor expansion during emergency granulopoiesis. ROS elicited oxidation and deactivation of phosphatase and tensin homolog (PTEN), resulting in upregulation of PtdIns(3,4,5)P3 signaling in BM myeloid progenitors. We further revealed that BM myeloid cell-produced ROS stimulated proliferation of myeloid progenitors via a paracrine mechanism. Taken together, our results establish that phagocytic NADPH oxidase-mediated ROS production by BM myeloid cells plays a critical role in mediating emergency granulopoiesis during acute infection.
Collapse
|
29
|
Rumble JM, Huber AK, Krishnamoorthy G, Srinivasan A, Giles DA, Zhang X, Wang L, Segal BM. Neutrophil-related factors as biomarkers in EAE and MS. ACTA ACUST UNITED AC 2015; 212:23-35. [PMID: 25559893 PMCID: PMC4291533 DOI: 10.1084/jem.20141015] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using a mouse model of multiple sclerosis (MS), the authors show that neutrophils expand in the bone marrow and accumulate in the circulation before clinical onset of disease. Early in disease development, neutrophils infiltrate the CNS, which is suppressed by G-CSF receptor deficiency and blockade of CXCL1 to ameliorate disease. In patients with MS, systemic expression of neutrophil-related mediators correlates with new lesion formation, lesion burden, and clinical disability. A major function of T helper (Th) 17 cells is to induce the production of factors that activate and mobilize neutrophils. Although Th17 cells have been implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE), little attention has been focused on the role of granulocytes in those disorders. We show that neutrophils, as well as monocytes, expand in the bone marrow and accumulate in the circulation before the clinical onset of EAE, in response to systemic up-regulation of granulocyte colony-stimulating factor (G-CSF) and the ELR+ CXC chemokine CXCL1. Neutrophils comprised a relatively high percentage of leukocytes infiltrating the central nervous system (CNS) early in disease development. G-CSF receptor deficiency and CXCL1 blockade suppressed myeloid cell accumulation in the blood and ameliorated the clinical course of mice that were injected with myelin-reactive Th17 cells. In relapsing MS patients, plasma levels of CXCL5, another ELR+ CXC chemokine, were elevated during acute lesion formation. Systemic expression of CXCL1, CXCL5, and neutrophil elastase correlated with measures of MS lesion burden and clinical disability. Based on these results, we advocate that neutrophil-related molecules be further investigated as novel biomarkers and therapeutic targets in MS.
Collapse
Affiliation(s)
- Julie M Rumble
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | | | - Ashok Srinivasan
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Xu Zhang
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Lu Wang
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109 Holtom-Garrett Program in Neuroimmunology, Department of Neurology,Department of Radiology, Department of Biostatistics, and Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109 Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| |
Collapse
|
30
|
Kim S, Park K, Choi J, Jang E, Paik DJ, Seong RH, Youn J. Foxp3+ regulatory T cells ensure B lymphopoiesis by inhibiting the granulopoietic activity of effector T cells in mouse bone marrow. Eur J Immunol 2014; 45:167-79. [PMID: 25348202 DOI: 10.1002/eji.201444532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/28/2014] [Accepted: 10/22/2014] [Indexed: 11/09/2022]
Abstract
Foxp3(+) Treg cells are crucial for maintaining T-cell homeostasis, but their role in B-cell homeostasis remains unclear. Here, we found that Foxp3 mutant scurfy mice had fewer B-lineage cells and progenitors, including common lymphoid progenitors and lymphoid-primed multipotent progenitors, but higher myeloid-lineage cell numbers in BM compared with WT littermates. Homeostasis within the HSC compartment was also compromised with apparent expansion of long- and short-term HSCs. This abnormality was due to the lack of Treg cells, but not to the Treg-cell extrinsic functions of Foxp3 or cell-autonomous defects. Among cytokines enriched in the BM of scurfy mice, IFN-γ affected only B lymphopoiesis, but GM-CSF, TNF, and IL-6 collectively promoted granulopoiesis at the expense of B lymphopoiesis. Neutralization of these three cytokines reversed the hematopoietic defects on early B-cell progenitors in scurfy mice. Treg cells ensured B lymphopoiesis by reducing the production of these cytokines by effector T cells, but not by directly affecting B lymphopoiesis. These results suggest that Treg cells occupy an important niche in the BM to protect B-lineage progenitor cells from excessive exposure to a lymphopoiesis-regulating milieu.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Biomedical Sciences, Hanyang University Graduate School, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Goody MF, Sullivan C, Kim CH. Studying the immune response to human viral infections using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:84-95. [PMID: 24718256 PMCID: PMC4067600 DOI: 10.1016/j.dci.2014.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 05/24/2023]
Abstract
Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines. These animal models must support the replication of human viruses, recapitulate aspects of human viral illnesses, and respond with conserved immune signaling cascades. The zebrafish is perhaps the simplest, most commonly used laboratory model organism in which innate and/or adaptive immunity can be studied. Herein, we will discuss the current zebrafish models of human viral illnesses and the insights they have provided. We will highlight advantages of early life stage zebrafish and the importance of innate immunity in human viral illnesses. We will also discuss viral characteristics to consider before infecting zebrafish with human viruses as well as predict other human viruses that may be able to infect zebrafish.
Collapse
Affiliation(s)
- Michelle F Goody
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Carol H Kim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
32
|
Sahakian E, Powers JJ, Chen J, Deng SL, Cheng F, Distler A, Woods DM, Rock-Klotz J, Sodre AL, Youn JI, Woan KV, Villagra A, Gabrilovich D, Sotomayor EM, Pinilla-Ibarz J. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol Immunol 2014; 63:579-85. [PMID: 25155994 DOI: 10.1016/j.molimm.2014.08.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - David M Woods
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jennifer Rock-Klotz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Andressa L Sodre
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Je-In Youn
- The Wistar Institute, Philadelphia, PA, United States
| | - Karrune V Woan
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | | | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| |
Collapse
|
33
|
Abstract
Systemic bacterial infection induces a hematopoietic response program termed "emergency granulopoiesis" that is characterized by increased de novo bone marrow (BM) neutrophil production. How loss of local immune control and bacterial dissemination is sensed and subsequently translated into the switch from steady-state to emergency granulopoiesis is, however, unknown. Using tissue-specific myeloid differentiation primary response gene 88 (Myd88)-deficient mice and in vivo lipopolysaccharide (LPS) administration to model severe bacterial infection, we here show that endothelial cells (ECs) but not hematopoietic cells, hepatocytes, pericytes, or BM stromal cells, are essential cells for this process. Indeed, ECs from multiple tissues including BM express high levels of Tlr4 and Myd88 and are the primary source of granulocyte colony-stimulating factor (G-CSF), the key granulopoietic cytokine, after LPS challenge or infection with Escherichia coli. EC-intrinsic MYD88 signaling and subsequent G-CSF production by ECs is required for myeloid progenitor lineage skewing toward granulocyte-macrophage progenitors, increased colony-forming unit granulocyte activity in BM, and accelerated BM neutrophil generation after LPS stimulation. Thus, ECs catalyze the detection of systemic infection into demand-adapted granulopoiesis.
Collapse
|
34
|
Abstract
Hematopoiesis in general is demand driven and adaptive, but in contrast to erythropoiesis or thrombocytopoiesis, our knowledge on how neutrophil production is adapted to individual needs remains incomplete. Recently, neutrophil homeostasis has been shown to depend on danger receptors, macrophages, and even circadian rhythms. Puzzle pieces for a broader view of neutrophil homeostasis accumulate, and we will herein try to put seemingly contradictory evidence in a perspective of neutrophil homeostasis and emergency granulopoiesis determined by innate immunologic signaling.
Collapse
|
35
|
Abstract
Neutrophils are a key cell type of the innate immune system. They are short-lived and need to be continuously generated in steady-state conditions from haematopoietic stem and progenitor cells in the bone marrow to ensure their immediate availability for the containment of invading pathogens. However, if microbial infection cannot be controlled locally, and consequently develops into a life-threatening condition, neutrophils are used up in large quantities and the haematopoietic system has to rapidly adapt to the increased demand by switching from steady-state to emergency granulopoiesis. This involves the markedly increased de novo production of neutrophils, which results from enhanced myeloid precursor cell proliferation in the bone marrow. In this Review, we discuss the molecular and cellular events that regulate emergency granulopoiesis, a process that is crucial for host survival.
Collapse
|
36
|
Abstract
BACKGROUND Myeloid cells are the most abundant and heterogeneous population of leukocytes. They are rapidly recruited from the blood to areas of inflammation and perform a number of important biological functions. Chronic inflammatory conditions contribute to generation of myeloid-derived suppressor cells (MDSCs). These pathologically activated cells are increasingly recognized as important players in cancer, transplantation, and autoimmunity for their abilities to modulate innate and adaptive immune responses. METHODS Since clinical data on MDSC accumulation in human patients affected with inflammatory bowel diseases (IBD) are relatively scarce, most of the information described in this review came from studies using experimental mouse models of IBD. RESULTS In this review, we discuss possible roles of these cells in chronic immune-mediated disorders focusing on studies conducted in IBD. We will review the available evidence on how MDSCs are involved in modulating T cell responses and look into the complex relationship between Th1, Th17 cells, and myeloid cells. Finally, we will review some recent successes and failures resulted from therapies aimed at manipulating myeloid cell numbers and/or their function. CONCLUSIONS Although MDSCs have been described in animal models of experimental colitis and in patients with IBD, their exact role in IBD pathogenesis is unclear and needs to be studied further. Information obtained from these studies will be useful to better understand the cross talk between myeloid cells in T cells during chronic inflammation and may identify novel pathways to be targeted therapeutically.
Collapse
|
37
|
Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:181-218. [PMID: 24050624 DOI: 10.1146/annurev-pathol-020712-164023] [Citation(s) in RCA: 867] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 20115;
| | | | | |
Collapse
|
38
|
Hu L, Huang W, Hjort E, Eklund EA. Increased Fanconi C expression contributes to the emergency granulopoiesis response. J Clin Invest 2013; 123:3952-66. [PMID: 23925293 DOI: 10.1172/jci69032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023] Open
Abstract
Emergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells. Moreover, IRF8-induced Fancc transcription was augmented by treatment with IL-1β, an essential cytokine for emergency granulopoiesis. The Fanconi pathway participates in repair of stalled or collapsed replication forks during DNA replication, leading us to hypothesize that the Fanconi pathway contributes to genomic stability during emergency granulopoiesis. In support of this hypothesis, Fancc(-/-) mice developed anemia and neutropenia during repeated, failed episodes of emergency granulopoiesis. Failed emergency granulopoiesis in Fancc(-/-) mice was associated with excess apoptosis of HSCs and progenitor cells in the bone marrow and impaired HSC function. These studies have implications for understanding the pathogenesis of bone marrow failure in Fanconi anemia and suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
39
|
Hirai H, Kamio N, Huang G, Matsusue A, Ogino S, Kimura N, Satake S, Ashihara E, Imanishi J, Tenen DG, Maekawa T. Cyclic AMP responsive element binding proteins are involved in 'emergency' granulopoiesis through the upregulation of CCAAT/enhancer binding protein β. PLoS One 2013; 8:e54862. [PMID: 23382991 PMCID: PMC3559830 DOI: 10.1371/journal.pone.0054862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
In contrast to the definitive role of the transcription factor, CCAAT/Enhancer binding protein α (C/EBPα), in steady-state granulopoiesis, previous findings have suggested that granulopoiesis during emergency situations, such as infection, is dependent on C/EBPβ. In this study, a novel lentivirus-based reporter system was developed to elucidate the molecular switch required for C/EBPβ-dependency. The results demonstrated that two cyclic AMP responsive elements (CREs) in the proximal promoter region of C/EBPβ were involved in the positive regulation of C/EBPβ transcription during granulocyte-macrophage colony-stimulating factor (GM-CSF)–induced differentiation of bone marrow cells. In addition, the transcripts of CRE binding (CREB) family proteins were readily detected in hematopoietic stem/progenitor cells. CREB was upregulated, phosphorylated and bound to the CREs in response to GM-CSF stimulation. Retroviral transduction of a dominant negative CREB mutant reduced C/EBPβ mRNA levels and significantly impaired the proliferation/differentiation of granulocyte precursors, while a constitutively active form of CREB facilitated C/EBPβ transcription. These data suggest that CREB proteins are involved in the regulation of granulopoiesis via C/EBPβ upregulation.
Collapse
Affiliation(s)
- Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bugl S, Wirths S, Müller MR, Radsak MP, Kopp HG. Current insights into neutrophil homeostasis. Ann N Y Acad Sci 2012; 1266:171-8. [PMID: 22901268 DOI: 10.1111/j.1749-6632.2012.06607.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutrophil granulocytes represent the first immunologic barrier against invading pathogens, and neutropenia predisposes to infection. However, neutrophils may also cause significant collateral inflammatory damage. Therefore, neutrophil numbers are tightly regulated by an incompletely understood homeostatic feedback loop adjusting the marrow's supply to peripheral needs. Granulocyte colony-stimulating factor (G-CSF) is accepted to be the major determinant of neutrophil production, and G-CSF levels have, soon after its discovery, been described to be inversely correlated with neutrophil counts. A neutrophil sensor, or "neutrostat," has, therefore, been postulated. The prevailing feedback hypothesis was established in adhesion molecule-deficient mice; it includes macrophages and Th17 cells, which determine G-CSF levels in response to the number of peripherally transmigrated, apoptosing neutrophils. Recent work has deepened our understanding of homeostatic regulation of neutrophil granulopoiesis, but there are still inconsistent findings and unresolved questions when it comes to a plausible hypothesis, similar to the feedback control models of red cell or platelet homeostasis.
Collapse
Affiliation(s)
- Stefanie Bugl
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Satake S, Hirai H, Hayashi Y, Shime N, Tamura A, Yao H, Yoshioka S, Miura Y, Inaba T, Fujita N, Ashihara E, Imanishi J, Sawa T, Maekawa T. C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced "emergency" granulopoiesis. THE JOURNAL OF IMMUNOLOGY 2012; 189:4546-55. [PMID: 23024276 DOI: 10.4049/jimmunol.1103007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Granulopoiesis is tightly regulated to meet host demands during both "steady-state" and "emergency" situations, such as infections. The transcription factor CCAAT/enhancer binding protein β (C/EBPβ) plays critical roles in emergency granulopoiesis, but the precise developmental stages in which C/EBPβ is required are unknown. In this study, a novel flow cytometric method was developed that successfully dissected mouse bone marrow cells undergoing granulopoiesis into five distinct subpopulations (#1-5) according to their levels of c-Kit and Ly-6G expression. After the induction of candidemia, rapid mobilization of mature granulocytes and an increase in early granulocyte precursors accompanied by cell cycle acceleration was followed by a gradual increase in granulocytes originating from the immature populations. Upon infection, C/EBPβ was upregulated at the protein level in all the granulopoietic subpopulations. The rapid increase in immature subpopulations #1 and #2 observed in C/EBPβ knockout mice at 1 d postinfection was attenuated. Candidemia-induced cell cycle acceleration and proliferation of hematopoietic stem/progenitors were also impaired. Taken together, these data suggest that C/EBPβ is involved in the efficient amplification of early granulocyte precursors during candidemia-induced emergency granulopoiesis.
Collapse
Affiliation(s)
- Sakiko Satake
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hermesh T, Moran TM, Jain D, López CB. Granulocyte colony-stimulating factor protects mice during respiratory virus infections. PLoS One 2012; 7:e37334. [PMID: 22615983 PMCID: PMC3353936 DOI: 10.1371/journal.pone.0037334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/19/2012] [Indexed: 01/13/2023] Open
Abstract
A burst in the production of pro-inflammatory molecules characterizes the beginning of the host response to infection. Cytokines, chemokines, and growth factors work in concert to control pathogen replication and activate innate and adaptive immune responses. Granulocyte colony-stimulating factor (G-CSF) mobilizes and activates hematopoietic cells from the bone marrow, and it has been shown to mediate the generation of effective immunity against bacterial and fungal infections. G-CSF is produced at high levels in the lungs during infection with influenza and parainfluenza viruses, but its role during these infections is unknown. Here we show that during infection of mice with a non-lethal dose of influenza or Sendai virus, G-CSF promotes the accumulation of activated Ly6G+ granulocytes that control the extent of the lung pro-inflammatory response. Remarkably, these G-CSF-mediated effects facilitate viral clearance and sustain mouse survival.
Collapse
Affiliation(s)
- Tamar Hermesh
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Thomas M. Moran
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Deepika Jain
- Department of Pathobiology School of Veterinary Medicine and Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolina B. López
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pathobiology School of Veterinary Medicine and Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M, Heikenwalder M, Manz MG. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5824-8. [PMID: 22586037 DOI: 10.4049/jimmunol.1103253] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic bacterial infection is rapidly recognized as an emergency state leading to neutrophil release into the circulation and increased myeloid cell production within the bone marrow. However, the mechanisms of sensing infection and subsequent translation into emergency myelopoiesis have not been defined. In this study, we demonstrate in vivo in mice that, surprisingly, selective TLR4 expression within the hematopoietic compartment fails to induce LPS-driven emergency myelopoiesis. In contrast, TLR4-expressing nonhematopoietic cells are indispensable for LPS-induced, G-CSF-mediated myelopoietic responses. Furthermore, LPS-induced emergency myelopoiesis is independent of intact IL-1RI signaling and, thus, does not require inflammasome activation. Collectively, our findings reveal a key and nonredundant role for nonhematopoietic compartment pathogen sensing that is subsequently translated into cytokine release for enhanced, demand-adapted myeloid cell production.
Collapse
|
44
|
Abstract
AbstractSteady-state hematopoiesis is altered on infection, but the cellular and molecular mechanisms driving these changes are largely unknown. Modulation of hematopoiesis is essential to increase the output of the appropriate type of effector cell required to combat the invading pathogen. In the present study, we demonstrate that the pro-inflammatory cytokine IFNγ is involved in orchestrating inflammation-induced myelopoiesis. Using both mouse models and in vitro assays, we show that IFNγ induces the differentiation of monocytes over neutrophils at the level of myeloid progenitors. Infection with lymphocytic choriomeningitis virus induces monopoiesis in wild-type mice, but causes increased neutrophil production in IFNγ−/− mice. We demonstrate that IFNγ enhances the expression of the monopoiesis-inducing transcription factors IRF8 and PU.1 in myeloid progenitor cells, whereas it reduces G-CSF–driven neutrophil differentiation via a SOCS3-dependent inhibition of STAT3 phosphorylation. These results establish a critical role for IFNγ in directing monocyte versus neutrophil development during immune activation.
Collapse
|
45
|
Sodium caseinate induces mouse granulopoiesis. Inflamm Res 2012; 61:367-73. [DOI: 10.1007/s00011-011-0421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/16/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022] Open
|
46
|
Abstract
During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.
Collapse
|
47
|
Ostanin DV, Kurmaeva E, Furr K, Bao R, Hoffman J, Berney S, Grisham MB. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:1491-502. [PMID: 22219329 DOI: 10.4049/jimmunol.1102296] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Active episodes of the inflammatory bowel diseases are associated with the infiltration of large numbers of myeloid cells including neutrophils, monocytes, and macrophages. The objective of this study was to systematically characterize and define the different populations of myeloid cells generated in a mouse model of chronic gut inflammation. Using the T cell transfer model of chronic colitis, we found that induction of disease was associated with enhanced production of myelopoietic cytokines (IL-17 and G-CSF), increased production of neutrophils and monocytes, and infiltration of large numbers of myeloid cells into the mesenteric lymph nodes (MLNs) and colon. Detailed characterization of these myeloid cells revealed three major populations including Mac-1(+)Ly6C(high)Gr-1(low/neg) cells (monocytes), Mac-1(+)Ly6C(int)Gr-1(+) cells (neutrophils), and Mac-1(+)Ly6C(low/neg)Gr-1(low/neg) leukocytes (macrophages, dendritic cells, and eosinophils). In addition, we observed enhanced surface expression of MHC class II and CD86 on neutrophils isolated from the inflamed colon when compared with neutrophils obtained from the blood, the MLNs, and the spleen of colitic mice. Furthermore, we found that colonic neutrophils had acquired APC function that enabled these granulocytes to induce proliferation of OVA-specific CD4(+) T cells in an Ag- and MHC class II-dependent manner. Finally, we observed a synergistic increase in proinflammatory cytokine and chemokine production following coculture of T cells with neutrophils in vitro. Taken together, our data suggest that extravasated neutrophils acquire APC function within the inflamed bowel where they may perpetuate chronic gut inflammation by inducing T cell activation and proliferation as well as by enhancing production of proinflammatory mediators.
Collapse
Affiliation(s)
- Dmitry V Ostanin
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Chaiworapongsa T, Romero R, Berry SM, Hassan SS, Yoon BH, Edwin S, Mazor M. The role of granulocyte colony-stimulating factor in the neutrophilia observed in the fetal inflammatory response syndrome. J Perinat Med 2011; 39:653-66. [PMID: 21801092 PMCID: PMC3382056 DOI: 10.1515/jpm.2011.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Fetal neutrophilia is present in two-thirds of cases with the fetal inflammatory response syndrome (FIRS). The mechanisms responsible for this finding have not been elucidated. Granulocyte colony-stimulating factor (G-CSF) is the primary physiologic regulator of neutrophil production and plays a key role in the rapid generation and release of neutrophils in stressful conditions (i.e., infection). The objective of this study was to determine: 1) whether FIRS was associated with changes in fetal plasma G-CSF concentrations; and 2) if fetal plasma G-CSF concentrations correlated with fetal neutrophil counts, chorioamnionitis, neonatal morbidity/mortality and cordocentesis-to-delivery interval. STUDY DESIGN Percutaneous umbilical cord blood sampling was performed in a population of patients with preterm labor (n=107). A fetal plasma interleukin-6 (IL-6) concentration >11 pg/mL was used to define FIRS. Cord blood G-CSF was measured by a sensitive and specific immunoassay. An absolute neutrophil count was determined and corrected for gestational age. Receiver operating characteristic (ROC) curve, survival analysis and Cox proportional hazard model were employed. RESULTS 1) G-CSF was detected in all fetal blood samples; 2) fetuses with FIRS had a higher median fetal plasma G-CSF concentration than those without FIRS (P<0.001); 3) a fetal plasma G-CSF concentration ≥134 pg/mL (derived from an ROC curve) was associated with a shorter cordocentesis-to-delivery interval, a higher frequency of chorioamnionitis (clinical and histological), intra-amniotic infection, and composite neonatal morbidity/mortality than a fetal plasma concentration below this cut-off; and 4) a fetal plasma G-CSF concentration ≥134 pg/mL was associated with a shorter cordocentesis-to-delivery interval (hazard ratio 3.2; 95% confidence interval 1.8-5.8) after adjusting for confounders. CONCLUSIONS 1) G-CSF concentrations are higher in the peripheral blood of fetuses with FIRS than in fetuses without FIRS; and 2) a subset of fetuses with FIRS with elevated fetal plasma G-CSF concentrations are associated with neutrophilia, a shorter procedure-to-delivery interval, chorio-amnionitis and increased perinatal morbidity and mortality.
Collapse
Affiliation(s)
- Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine/Hutzel Women’s Hospital, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI, USA
| | | | - Sonia S. Hassan
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine/Hutzel Women’s Hospital, Detroit, MI, USA
| | - Bo Hyun Yoon
- Seoul National University College of Medicine, Seoul, Korea
| | | | - Moshe Mazor
- Ben Gurion University, Soroka Medical Center, Beer Sheva, Israel
| |
Collapse
|
49
|
Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling. PLoS One 2011; 6:e24761. [PMID: 21935459 PMCID: PMC3174213 DOI: 10.1371/journal.pone.0024761] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/17/2011] [Indexed: 01/03/2023] Open
Abstract
As TLRs are expressed by haematopoietic stem and progenitor cells (HSPCs), these receptors may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that in in vitro defined conditions inactivated yeasts and hyphae of Candida albicans induce HSPCs proliferation and differentiation towards the myeloid lineage by a TLR2/MyD88 dependent pathway. In this work, we showed that C. albicans invasive infection with a low virulence strain results in a rapid expansion of HSPCs (identified as LKS cells: Lin− c-Kit+ Sca-1+ IL-7Rα−), that reach the maximum at day 3 post-infection. This in vivo expansion of LKS cells in TLR2−/− mice was delayed until day 7 post- infection. Candidiasis was, as expected, accompanied by an increase in granulopoiesis and decreased lymphopoiesis in the bone marrow. These changes were more pronounced in TLR2−/− mice correlating with their higher fungal burden. Accordingly, emigration of Ly6Chigh monocytes and neutrophils to spleen was increased in TLR2−/− mice, although the increase in macrophages and inflammatory macrophages was completely dependent on TLR2. Similarly, we detected for the first time, in the spleen of C. albicans infected control mice, a newly generated population of dendritic cells that have the phenotype of monocyte derived dendritic cells (moDCs) that were not generated in TLR2−/− infected mice. In addition, C. albicans signalling through TLR2/MyD88 and Dectin-1 promotes in vitro the differentiation of Lin− cells towards moDCs that secrete TNF-α and are able to kill the microorganism. Therefore, our results indicate that during infection C. albicans can directly stimulate progenitor cells through TLR2 and Dectin-1 to generate newly formed inflammatory macrophages and moDCs that may fulfill an essential role in defense mechanisms against the pathogen.
Collapse
|
50
|
Delano MJ, Kelly-Scumpia KM, Thayer TC, Winfield RD, Scumpia PO, Cuenca AG, Harrington PB, O'Malley KA, Warner E, Gabrilovich S, Mathews CE, Laface D, Heyworth PG, Ramphal R, Strieter RM, Moldawer LL, Efron PA. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. THE JOURNAL OF IMMUNOLOGY 2011; 187:911-8. [PMID: 21690321 DOI: 10.4049/jimmunol.1100588] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophils are essential for successful host eradication of bacterial pathogens and for survival to polymicrobial sepsis. During inflammation, the bone marrow provides a large reserve of neutrophils that are released into the peripheral circulation where they traverse to sites of infection. Although neutrophils are essential for survival, few studies have investigated the mechanisms responsible for neutrophil mobilization from the bone marrow during polymicrobial sepsis. Using a cecal ligation and puncture model of polymicrobial sepsis, we demonstrated that neutrophil mobilization from the bone marrow is not dependent on TLR4, MyD88, TRIF, IFNARα/β, or CXCR2 pathway signaling during sepsis. In contrast, we observed that bone marrow CXCL12 mRNA abundance and specific CXCL12 levels are sharply reduced, whereas splenic CXCR4 mRNA and cell surface expression are increased during sepsis. Blocking CXCL12 activity significantly reduced blood neutrophilia by inhibiting bone marrow release of granulocytes during sepsis. However, CXCL12 inhibition had no impact on the expansion of bone marrow neutrophil precursors and hematopoietic progenitors. Bone marrow neutrophil retention by CXCL12 blockade prevented blood neutrophilia, inhibited peritoneal neutrophil accumulation, allowed significant peritoneal bacterial invasion, and increased polymicrobial sepsis mortality. We concluded that changes in the pattern of CXCL12 signaling during sepsis are essential for neutrophil bone marrow mobilization and host survival but have little impact on bone marrow granulopoiesis.
Collapse
Affiliation(s)
- Matthew J Delano
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610-0286, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|