1
|
Maqsood S, Damaševičius R, Maskeliūnas R, Forkert ND, Haider S, Latif S. Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification. Health Inf Sci Syst 2025; 13:9. [PMID: 39736875 PMCID: PMC11682032 DOI: 10.1007/s13755-024-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Leukemia, a life-threatening form of cancer, poses a significant global health challenge affecting individuals of all age groups, including both children and adults. Currently, the diagnostic process relies on manual analysis of microscopic images of blood samples. In recent years, machine learning employing deep learning approaches has emerged as cutting-edge solutions for image classification problems. Thus, the aim of this work was to develop and evaluate deep learning methods to enable a computer-aided leukemia diagnosis. The proposed method is composed of multiple stages: Firstly, the given dataset images undergo preprocessing. Secondly, five pre-trained convolutional neural network models, namely MobileNetV2, EfficientNetB0, ConvNeXt-V2, EfficientNetV2, and DarkNet-19, are modified and transfer learning is used for training. Thirdly, deep feature vectors are extracted from each of the convolutional neural network and combined using a convolutional sparse image decomposition fusion strategy. Fourthly, the proposed approach employs an entropy-controlled firefly feature selection technique, which selects the most optimal features for subsequent classification. Finally, the selected features are fed into a multi-class support vector machine for the final classification. The proposed algorithm was applied to a total of 15562 images having four datasets, namely ALLID_B1, ALLID_B2, C_NMC 2019, and ASH and demonstrated superior accuracies of 99.64%, 98.96%, 96.67%, and 98.89%, respectively, surpassing the performance of previous works in the field.
Collapse
Affiliation(s)
- Sarmad Maqsood
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Robertas Damaševičius
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
| | - Nils D. Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Shahab Haider
- Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640 Pakistan
| | - Shahid Latif
- Department of Electrical Engineering, Iqra National University, Peshawar, 25000 Pakistan
| |
Collapse
|
2
|
Becht DC, Selvam K, Lachance C, Côté V, Li K, Nguyen MC, Pareek A, Shi X, Wen H, Blanco MA, Côté J, Kutateladze TG. A multivalent engagement of ENL with MOZ. Nat Struct Mol Biol 2025:10.1038/s41594-024-01455-8. [PMID: 39794553 DOI: 10.1038/s41594-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025]
Abstract
The epigenetic cofactor ENL (eleven-nineteen-leukemia) and the acetyltransferase MOZ (monocytic leukemia zinc finger) have vital roles in transcriptional regulation and are implicated in aggressive forms of leukemia. Here, we describe the mechanistic basis for the intertwined association of ENL and MOZ. Genomic analysis shows that ENL and MOZ co-occupy active promoters and that MOZ recruits ENL to its gene targets. Structural studies reveal a multivalent assembly of ENL at the intrinsically disordered region (IDR) of MOZ. While the extraterminal (ET) domain of ENL recognizes the canonical ET-binding motif in IDR, the YEATS domains of ENL and homologous AF9 bind to a set of acetylation sites in the MOZ IDR that are generated by the acetyltransferase CBP (CREB-binding protein). Our findings suggest a multifaceted acetylation-dependent and independent coupling of ENL, MOZ and CBP/p300, which may contribute to leukemogenic activities of the ENL-MOZ assembly and chromosomal translocations of ENL, MOZ and CBP/p300.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karthik Selvam
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Akshay Pareek
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - M Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
Coker JA, Stauffer SR. WD repeat domain 5 (WDR5) inhibitors: a patent review (2016-present). Expert Opin Ther Pat 2025; 35:31-45. [PMID: 39706200 DOI: 10.1080/13543776.2024.2441658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5. AREAS COVERED Based on an international survey of the patent literature using SciFinder from 2016-2024, herein we provide a comprehensive account of the chemical matter targeting WDR5, with a particular focus on proprietary compounds that are underreported in the existing academic literature. Our survey illuminates challenges for the field to overcome: a broad lack of chemical diversity, confusion about the molecular mechanism of WIN-site inhibitors, a paucity of brain-penetrant scaffolds despite emerging evidence of activity in brain cancers, sparse pharmacokinetic, metabolic, and disposition characterization, and the absence of safety or efficacy data in humans. EXPERT OPINION It is our opinion that the best-in-class WIN-site inhibitors (from the imidazole class) merit advancement into clinical testing, likely against leukemia, which should provide much-needed clarity about the exciting but unproven potential of WDR5 as a next-generation therapeutic target.
Collapse
Affiliation(s)
- Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Lopez-Millan B, Rubio-Gayarre A, Vinyoles M, Trincado JL, Fraga MF, Fernandez-Fuentes N, Guerrero-Murillo M, Martinez A, Velasco-Hernandez T, Falgàs A, Panisello C, Valcarcel G, Sardina JL, López-Martí P, Javierre BM, Del Valle-Pérez B, García de Herreros A, Locatelli F, Pieters R, Bardini M, Cazzaniga G, Rodríguez-Manzaneque JC, Hanewald T, Marschalek R, Milne TA, Stam RW, Tejedor JR, Menendez P, Bueno C. NG2 is a target gene of MLL-AF4 and underlies glucocorticoid resistance in MLLr B-ALL by regulating NR3C1 expression. Blood 2024; 144:2002-2017. [PMID: 39093982 DOI: 10.1182/blood.2023022050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)-mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.
Collapse
Affiliation(s)
- Belén Lopez-Millan
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Rubio-Gayarre
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Vinyoles
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan L Trincado
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Universidad de Oviedo, Oviedo, Spain
| | - Narcís Fernandez-Fuentes
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Guerrero-Murillo
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Martinez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Talia Velasco-Hernandez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Aïda Falgàs
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Panisello
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Valcarcel
- Epigenetic Control of Hematopoiesis Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - José Luis Sardina
- Epigenetic Control of Hematopoiesis Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Paula López-Martí
- 3D Chromatin Organization Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Beatriz Del Valle-Pérez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Unitat Associada al Consejo Superior de Investigaciones Científicas, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Unitat Associada al Consejo Superior de Investigaciones Científicas, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rob Pieters
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michela Bardini
- Tettamanti Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | | | - Thomas Hanewald
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | - Thomas A Milne
- Medical Research Council, Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health and Care Research, Oxford Biomedical Research Center Hematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ronald W Stam
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Universidad de Oviedo, Oviedo, Spain
| | - Pablo Menendez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
5
|
Biswas J, Abdel-Wahab O. A new SAGA for AML: targeting SGF29 in AML. Blood 2024; 143:657-658. [PMID: 38386429 DOI: 10.1182/blood.2023023442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
|
6
|
Barone C, Orsenigo R, Cazzola A, D'Errico E, Patelli A, Quattrini G, Vergani B, Bombelli S, De Marco S, D'Orlando C, Bianchi C, Leone BE, Meneveri R, Biondi A, Cazzaniga G, Rabbitts TH, Brunelli S, Azzoni E. Hematopoietic Stem Cell (HSC)-Independent Progenitors Are Susceptible to Mll-Af9-Induced Leukemic Transformation. Cancers (Basel) 2023; 15:3624. [PMID: 37509285 PMCID: PMC10377085 DOI: 10.3390/cancers15143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Infant acute myeloid leukemia (AML) is a heterogeneous disease, genetically distinct from its adult counterpart. Chromosomal translocations involving the KMT2A gene (MLL) are especially common in affected infants of less than 1 year of age, and are associated with a dismal prognosis. While these rearrangements are likely to arise in utero, the cell of origin has not been conclusively identified. This knowledge could lead to a better understanding of the biology of the disease and support the identification of new therapeutic vulnerabilities. Over the last few years, important progress in understanding the dynamics of fetal hematopoiesis has been made. Several reports have highlighted how hematopoietic stem cells (HSC) provide little contribution to fetal hematopoiesis, which is instead largely sustained by HSC-independent progenitors. Here, we used conditional Cre-Lox transgenic mouse models to engineer the Mll-Af9 translocation in defined subsets of embryonic hematopoietic progenitors. We show that embryonic hematopoiesis is generally permissive for Mll-Af9-induced leukemic transformation. Surprisingly, the selective introduction of Mll-Af9 in HSC-independent progenitors generated a transplantable myeloid leukemia, whereas it did not when introduced in embryonic HSC-derived cells. Ex vivo engineering of the Mll-Af9 rearrangement in HSC-independent progenitors using a CRISPR/Cas9-based approach resulted in the activation of an aberrant myeloid-biased self-renewal program. Overall, our results demonstrate that HSC-independent hematopoietic progenitors represent a permissive environment for Mll-Af9-induced leukemic transformation, and can likely act as cells of origin of infant AML.
Collapse
Affiliation(s)
- Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Orsenigo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisabetta D'Errico
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Quattrini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina D'Orlando
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Centro Tettamanti, IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Terence Howard Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
7
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
8
|
Liu L, Guo X, Wang Y, Li G, Yu Y, Song Y, Zeng C, Ding Z, Qiu Y, Yan F, Zhang YX, Zhao C, Zhang Y, Dou Y, Atadja P, Li E, Wang H. Loss of Wdr5 attenuates MLL-rearranged leukemogenesis by suppressing Myc targets. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166600. [PMID: 36402263 DOI: 10.1016/j.bbadis.2022.166600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
WD repeat domain 5 (WDR5) is a prominent target for pharmacological inhibition in cancer through its scaffolding role with various oncogenic partners such as MLL and MYC. WDR5-related drug discovery efforts center on blocking these binding interfaces or degradation have been devoted to developing small-molecule inhibitors or degraders of WDR5 for cancer treatment. Nevertheless, the precise role of WDR5 in these cancer cells has not been well elucidated genetically. Here, by using an MLL-AF9 murine leukemia model, we found that genetically deletion of Wdr5 impairs cell growth and colony forming ability of MLL-AF9 leukemia cells in vitro or ex vivo and attenuates the leukemogenesis in vivo as well, which acts through direct regulation of ribosomal genes. Pharmacological inhibition of Wdr5 recapitulates genetic study results in the same model. In conclusion, our current study demonstrated the first genetic evidence for the indispensable role of Wdr5 in MLL-r leukemogenesis in vivo, which supports therapeutically targeting WDR5 in MLL-rearranged leukemia by strengthening its disease linkage genetically and deepening insights into its mechanism of action.
Collapse
Affiliation(s)
- Lulu Liu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Ave., Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Xin Guo
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yao Wang
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Guo Li
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yanyan Yu
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yang Song
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Chenhui Zeng
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Zhilou Ding
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yuanjun Qiu
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Feifei Yan
- Novartis Institutes for BioMedical Research, 181 Massachusetts Ave., Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yi-Xiang Zhang
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Caiqi Zhao
- Institut Pasteur of Shanghai, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital affiliated to Shanghai Jiao Tong University, No. 650 Songjiang Road, Shanghai 201620, China
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave., Los Angeles, CA 90007, USA
| | - Peter Atadja
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - En Li
- Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - He Wang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Ave., Cambridge, MA 02139, USA; Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China.
| |
Collapse
|
9
|
Tibout P, Ledjiar O, Athale U, Rayar M, Kulkarni K, Truong T, Cellot S, Bittencourt H, Pelland-Marcotte MC, Tran TH. Prognostic factors and outcomes of infant acute lymphoblastic leukemia (ALL), hypodiploid ALL, and mixed-phenotype acute leukemia (MPAL) in Canada: a report from CYP-C. Leuk Lymphoma 2022; 63:3208-3216. [PMID: 36067507 DOI: 10.1080/10428194.2022.2118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The epidemiology of infant acute lymphoblastic leukemia (ALL), hypodiploid ALL, and mixed-phenotype acute leukemia (MPAL) in Canada is unknown. The main objective was to describe the prevalence, prognostic factors, and outcomes of three rare and high-risk ALL subtypes in Canada. This is a retrospective study using the Cancer in Young People-Canada (CYP-C) database. Event-free survival (EFS) and overall survival (OS) were described by the Kaplan-Meier method and compared using the log-rank test. Among 2626 children aged 0-14 years diagnosed with B-cell acute lymphoblastic leukemia (B-ALL) between 2001 and 2018, 227 (8.6%) patients were identified to be infant ALL (n = 139), hypodiploid ALL (n = 43), or MPAL (n = 45). The 5-year EFS/OS was significantly worse in the infant ALL subgroup compared to that of hypodiploid ALL and MPAL. For the entire cohort, presenting White blood cells (WBCs) ≥50 × 109/L was independently associated with worse EFS/OS.
Collapse
Affiliation(s)
- Pauline Tibout
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Omar Ledjiar
- Unité de recherche clinique appliquée, Research Centre, CHU Sainte-Justine, Montreal, Canada
| | - Uma Athale
- Division of Pediatric Hematology-Oncology, McMaster Children's Hospital, Hamilton, Canada
| | - Meera Rayar
- Division of Pediatric Hematology-Oncology, B.C. Children's Hospital, Vancouver, Canada
| | - Ketan Kulkarni
- Division of Pediatric Hematology-Oncology, IWK Health Centre and Dalhousie University, Halifax, Canada
| | - Tony Truong
- Division of Pediatric Hematology-Oncology, Alberta Children's Hospital, Calgary, Canada
| | - Sonia Cellot
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Henrique Bittencourt
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| |
Collapse
|
10
|
Park J, Ondusko DS, Chang BH, Edwards EA, Doan S, Gatter K, Hajjali I, Kim A. Fetal Hepatomegaly. Neoreviews 2022; 23:e861-e868. [PMID: 36450648 DOI: 10.1542/neo.23-12-e861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jina Park
- Division of Neonatology, Oregon Health & Science University, Portland, OR
| | | | - Bill H Chang
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR
| | - Emily A Edwards
- Division of Diagnostic Radiology, Oregon Health & Science University, Portland, OR
| | - Sylvia Doan
- Division of Pediatric Gastroenterology, Oregon Health & Science University, Portland, OR
| | - Ken Gatter
- Division of Pathology, Oregon Health & Science University, Portland, OR
| | - Ibrahim Hajjali
- Division of Pathology, Oregon Health & Science University, Portland, OR
| | - Amanda Kim
- Division of Neonatology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
11
|
Rice S, Jackson T, Crump NT, Fordham N, Elliott N, O'Byrne S, Fanego MDML, Addy D, Crabb T, Dryden C, Inglott S, Ladon D, Wright G, Bartram J, Ancliff P, Mead AJ, Halsey C, Roberts I, Milne TA, Roy A. A human fetal liver-derived infant MLL-AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nat Commun 2021; 12:6905. [PMID: 34824279 PMCID: PMC8616957 DOI: 10.1038/s41467-021-27270-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although 90% of children with acute lymphoblastic leukemia (ALL) are now cured, the prognosis for infant-ALL remains dismal. Infant-ALL is usually caused by a single genetic hit that arises in utero: an MLL/KMT2A gene rearrangement (MLL-r). This is sufficient to induce a uniquely aggressive and treatment-refractory leukemia compared to older children. The reasons for disparate outcomes in patients of different ages with identical driver mutations are unknown. Using the most common MLL-r in infant-ALL, MLL-AF4, as a disease model, we show that fetal-specific gene expression programs are maintained in MLL-AF4 infant-ALL but not in MLL-AF4 childhood-ALL. We use CRISPR-Cas9 gene editing of primary human fetal liver hematopoietic cells to produce a t(4;11)/MLL-AF4 translocation, which replicates the clinical features of infant-ALL and drives infant-ALL-specific and fetal-specific gene expression programs. These data support the hypothesis that fetal-specific gene expression programs cooperate with MLL-AF4 to initiate and maintain the distinct biology of infant-ALL.
Collapse
Affiliation(s)
- Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas Jackson
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas Fordham
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Natalina Elliott
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Sorcha O'Byrne
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | | | - Dilys Addy
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Trisevgeni Crabb
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Carryl Dryden
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Sarah Inglott
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Dariusz Ladon
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Gary Wright
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Paediatric Haematology, Royal Hospital for Children, Glasgow, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Wertheim G. Infant Acute Leukemia. Clin Lab Med 2021; 41:541-550. [PMID: 34304781 DOI: 10.1016/j.cll.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Infant acute leukemia is a rare but aggressive disease. Although infant acute leukemia is cytologically and histologically similar to acute leukemia seen in older children and adults, it displays unique and characteristic clinical and genetic characteristics. The features, as well as the extremely young age of the patients, present multiple challenges for treatment. This review focuses on the unique pathology of acute leukemia of infancy, including the genetic characteristics that are specific for these diseases.
Collapse
Affiliation(s)
- Gerald Wertheim
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 5199b Main Building, 3401 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
13
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
14
|
On the Effectiveness of Leukocytes Classification Methods in a Real Application Scenario. AI 2021. [DOI: 10.3390/ai2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Automating the analysis of digital microscopic images to identify the cell sub-types or the presence of illness has assumed a great importance since it aids the laborious manual process of review and diagnosis. In this paper, we have focused on the analysis of white blood cells. They are the body’s main defence against infections and diseases and, therefore, their reliable classification is very important. Current systems for leukocyte analysis are mainly dedicated to: counting, sub-types classification, disease detection or classification. Although these tasks seem very different, they share many steps in the analysis process, especially those dedicated to the detection of cells in blood smears. A very accurate detection step gives accurate results in the classification of white blood cells. Conversely, when detection is not accurate, it can adversely affect classification performance. However, it is very common in real-world applications that work on inaccurate or non-accurate regions. Many problems can affect detection results. They can be related to the quality of the blood smear images, e.g., colour and lighting conditions, absence of standards, or even density and presence of overlapping cells. To this end, we performed an in-depth investigation of the above scenario, simulating the regions produced by detection-based systems. We exploit various image descriptors combined with different classifiers, including CNNs, in order to evaluate which is the most suitable in such a scenario, when performing two different tasks: Classification of WBC subtypes and Leukaemia detection. Experimental results have shown that Convolutional Neural Networks are very robust in such a scenario, outperforming common machine learning techniques combined with hand-crafted descriptors. However, when exploiting appropriate images for model training, even simpler approaches can lead to accurate results in both tasks.
Collapse
|
15
|
Tejedor JR, Bueno C, Vinyoles M, Petazzi P, Agraz-Doblas A, Cobo I, Torres-Ruiz R, Bayón GF, Pérez RF, López-Tamargo S, Gutierrez-Agüera F, Santamarina-Ojeda P, Ramírez-Orellana M, Bardini M, Cazzaniga G, Ballerini P, Schneider P, Stam RW, Varela I, Fraga MF, Fernández AF, Menéndez P. Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia. J Clin Invest 2021; 131:138833. [PMID: 33983906 DOI: 10.1172/jci138833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Paolo Petazzi
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Isabel Cobo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Raúl Torres-Ruiz
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gustavo F Bayón
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Raúl F Pérez
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Manuel Ramírez-Orellana
- RICORS-TERAV Network, ISCIII, Madrid, Spain.,Hematology Diagnostic Laboratory, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Michela Bardini
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Paola Ballerini
- Pediatric Hematology, Armand Trousseau Hospital, Paris, France
| | - Pauline Schneider
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ronald W Stam
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
16
|
Ibrahimova A, Winestone LE, Miller TP, Kettler K, Seif AE, Huang YS, Elgarten CW, Myers RM, Fisher BT, Aplenc R, Getz KD. Presentation acuity, induction mortality, and resource utilization in infants with acute leukemia. Pediatr Blood Cancer 2021; 68:e28940. [PMID: 33704911 PMCID: PMC8283996 DOI: 10.1002/pbc.28940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Treatment of infants with acute leukemia remains challenging, especially for acute lymphocytic leukemia (ALL). Infants have shown markedly higher rates of induction mortality compared with noninfants. There are limited data on presentation acuity and supportive care utilization in this age group. METHODS In retrospective analyses of patients treated for new onset ALL or acute myeloid leukemia (AML) at pediatric hospitals contributing to the Pediatric Health Information System, we compared presentation acuity, induction mortality, and resource utilization in infants relative to noninfants less than 10 years at diagnosis. RESULTS Analyses included 10 359 children with ALL (405 infants, 9954 noninfants) and 871 AML (189 infants, 682 noninfants). Infants were more likely to present with multisystem organ failure compared to noninfants for both ALL (12% and 1%, PR = 10.8, 95% CI: 7.4, 15.7) and AML (6% vs. 3%; PR = 2.0, 95% CI: 1.0, 3.7). Infants with ALL had higher induction mortality compared to noninfants, even after accounting for differences in anthracycline exposure and presentation acuity (2.7% vs. 0.5%, HR = 2.1, 95% CI: 1.0, 4.8). Conversely, infants and noninfants with AML had similar rates of induction mortality (3.2% vs. 2.1%, HR = 1.2, 95% CI: 0.3, 3.9), which were comparable to rates among infants with ALL. Infants with ALL and AML had greater requirements for blood products, diuretics, supplemental oxygen, and ventilation during induction relative to noninfants. CONCLUSIONS Infants with leukemia present with higher acuity compared with noninfants. Induction mortality and supportive care requirements for infants with ALL were similar to all children with AML, and significantly higher than those for noninfants with ALL.
Collapse
Affiliation(s)
- Azada Ibrahimova
- Department of Pediatrics and Adolescent Medicine, Einstein Healthcare Network Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lena E. Winestone
- Division of AIBMT, Department of Pediatrics, UCSF Benioff Children’s Hospital, San Francisco, California, USA
| | - Tamara P. Miller
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kyle Kettler
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alix E. Seif
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yuan-Shung Huang
- Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Caitlin W. Elgarten
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Regina M. Myers
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brian T. Fisher
- Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA,Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Richard Aplenc
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelly D. Getz
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
An Original Complex Rearrangement Involving Chromosomes 9, 11, and 14, Harboring a Complex KMT2A Gene Rearrangement in an Infant With Mixed-phenotype Acute Leukemia. J Pediatr Hematol Oncol 2021; 43:e371-e374. [PMID: 32134839 DOI: 10.1097/mph.0000000000001776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
Abstract
KMT2A gene rearrangements represent the most frequent group of abnormalities in childhood leukemia (~70% of cases), with over 120 rearrangements described. The investigation of KMT2A rearrangements is still a vast field to be explored. Several studies have been characterizing different outcomes and leukemogenic mechanisms, depending on the translocation partner gene involved in childhood KMT2A-r leukemias. Therefore, the detection of the translocation partner gene, including in the context of complex rearrangements, may help to better delineate the disease. Here, we describe clinical and molecular cytogenetic data of a new complex variant translocation, involving chromosomes 9, 11, and 14, presenting a KMT2A gene extra copy and rearrangements, in an infant with de novo mixed-phenotype acute leukemia.
Collapse
|
18
|
Abstract
PURPOSE OF THE REVIEW Infant leukemia is a rare, distinct subgroup of pediatric acute leukemias diagnosed in children under 1 year of age and characterized by unique, aggressive biology. Here, we review its clinical presentation, underlying molecular biology, current treatment strategies, and novel therapeutic approaches. RECENT FINDINGS Infant leukemias are associated with high-risk molecular features and high rates of chemotherapy resistance. International collaborative clinical trials have led to better understanding of the underlying molecular biology, refined risk-based stratification, and investigated the use of hematopoietic stem cell transplantation. However, intensification of chemotherapy has failed to improve outcomes, and current regimens are associated with significant treatment-related and long-term toxicities. Infants with leukemia remain a challenging group to treat. We must continue collaborative efforts to move beyond traditional cytotoxic chemotherapy, incorporate molecularly targeted strategies and immunotherapy, and increase access to clinical trials to improve outcomes for this high-risk group of patients.
Collapse
|
19
|
Abstract
AbstractWhite Blood Cell (WBC) Leukaemia is caused by excessive production of leukocytes in the bone marrow, and image-based detection of malignant WBCs is important for its detection. Convolutional Neural Networks (CNNs) present the current state-of-the-art for this type of image classification, but their computational cost for training and deployment can be high. We here present an improved hybrid approach for efficient classification of WBC Leukemia. We first extract features from WBC images using VGGNet, a powerful CNN architecture, pre-trained on ImageNet. The extracted features are then filtered using a statistically enhanced Salp Swarm Algorithm (SESSA). This bio-inspired optimization algorithm selects the most relevant features and removes highly correlated and noisy features. We applied the proposed approach to two public WBC Leukemia reference datasets and achieve both high accuracy and reduced computational complexity. The SESSA optimization selected only 1 K out of 25 K features extracted with VGGNet, while improving accuracy at the same time. The results are among the best achieved on these datasets and outperform several convolutional network models. We expect that the combination of CNN feature extraction and SESSA feature optimization could be useful for many other image classification tasks.
Collapse
|
20
|
Pennella CL, Deu MA, Rossi JG, Baialardo EM, Alonso CN, Rubio P, Guitter MR, La Rosa CGS, Alfaro EM, Zubizarreta PA, Felice MS. No benefit of Interfant protocols compared to BFM-based protocols for infants with acute lymphoblastic leukemia. Results from an institution in Argentina. Pediatr Blood Cancer 2020; 67:e28624. [PMID: 32729239 DOI: 10.1002/pbc.28624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Infant acute lymphoblastic leukemia (ALL) is an infrequent disease characterized by clinical and biological features related to poor prognosis. Adapted therapies were designed without a clear consensus regarding the best treatment options. We aimed to compare the outcome between infant ALL cases receiving Interfant versus BFM-based protocols. PROCEDURE This is a retrospective observational study. From April 1990 to June 2018, infant ALL cases were enrolled in one of the five consecutive treatment protocols. Clinical, demographic, and biological features and outcome were evaluated. A comparative analysis was performed between Interfant protocols and BFM-based protocols. RESULTS During the studied period, 1913 ALL patients were admitted and 116 (6%) were infants. Treatment administered was: ALL-BFM'90 (n = 16), 1-ALL96-BFM/HPG (n = 7), Interfant-99 (n = 39), Interfant-06 (n = 35), and ALLIC-BFM'2009 (n = 19). The 5-year event-free survival probability (EFSp) was 31.9(standard error [SE] 4.6)% for the entire population, with a significant difference among risk groups according to Interfant-06 criteria (P = .0029). KMT2A-rearrangement status was the strongest prognostic factor (P = .048), independently of the protocol strategy. The median time for relapse was 24.1 months for patients with minimal residual disease (MRD)-negative versus 11.5 months for those with MRD-positive (P = .0386). EFSp and cumulative relapse risk probability (CRRp) were similar. Interfant protocols showed comparable induction (8.1% vs 7.1%, P = .852) and complete remission mortality (21.6% vs 28.6%, P = .438), failing to reduce the relapse rate (48.5% vs 30.7%, P = .149). CONCLUSIONS Interfant protocols and BFM-based protocols presented comparable results. The risk group stratification proposed by Interfant-06 was validated by our results, and MRD seems useful to identify patients with an increased risk of early relapse.
Collapse
Affiliation(s)
- Carla L Pennella
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - María A Deu
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Jorge G Rossi
- Department of Immunology and Rheumatology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Edgardo M Baialardo
- Department of Genetics, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Cristina N Alonso
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Patricia Rubio
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Myriam R Guitter
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Cristian G Sánchez La Rosa
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Elizabeth M Alfaro
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Pedro A Zubizarreta
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - María S Felice
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
21
|
Pearson AD, Stegmaier K, Bourdeaut F, Reaman G, Heenen D, Meyers ML, Armstrong SA, Brown P, De Carvalho D, Jabado N, Marshall L, Rivera M, Smith M, Adamson PC, Barone A, Baumann C, Blackman S, Buenger V, Donoghue M, Duncan AD, Fox E, Gadbaw B, Hattersley M, Ho P, Jacobs I, Kelly MJ, Kieran M, Lesa G, Ligas F, Ludwinski D, McDonough J, Nikolova Z, Norga K, Senderowicz A, Taube T, Weiner S, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2020; 139:135-148. [PMID: 32992153 DOI: 10.1016/j.ejca.2020.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
The fifth multistakeholder Paediatric Strategy Forum focussed on epigenetic modifier therapies for children and adolescents with cancer. As most mutations in paediatric malignancies influence chromatin-associated proteins or transcription and paediatric cancers are driven by developmental gene expression programs, targeting epigenetic mechanisms is predicted to be a very important therapeutic approach in paediatric cancer. The Research to Accelerate Cures and Equity (RACE) for Children Act FDARA amendments to section 505B of the FD&C Act was implemented in August 2020, and as there are many epigenetic targets on the FDA Paediatric Molecular Targets List, clinical evaluation of epigenetic modifiers in paediatric cancers should be considered early in drug development. Companies are also required to submit to the EMA paediatric investigation plans aiming to ensure that the necessary data to support the authorisation of a medicine for children in EU are of high quality and ethically researched. The specific aims of the forum were i) to identify epigenetic targets or mechanisms of action associated with epigenetic modification relevant to paediatric cancers and ii) to define the landscape for paediatric drug development of epigenetic modifier therapies. DNA methyltransferase inhibitors/hypomethylating agents and histone deacetylase inhibitors were largely excluded from discussion as the aim was to discuss those targets for which therapeutic agents are currently in early paediatric and adult development. Epigenetics is an evolving field and could be highly relevant to many paediatric cancers; the biology is multifaceted and new targets are frequently emerging. Targeting epigenetic mechanisms in paediatric malignancy has in most circumstances yet to reach or extend beyond clinical proof of concept, as many targets do not yet have available investigational drugs developed. Eight classes of medicinal products were discussed and prioritised based on the existing level of science to support early evaluation in children: inhibitors of menin, DOT1L, EZH2, EED, BET, PRMT5 and LSD1 and a retinoic acid receptor alpha agonist. Menin inhibitors should be moved rapidly into paediatric development, in view of their biological rationale, strong preclinical activity and ability to fulfil an unmet clinical need. A combination approach is critical for successful utilisation of any epigenetic modifiers (e.g. EZH2 and EED) and exploration of the optimum combination(s) should be supported by preclinical research and, where possible, molecular biomarker validation in advance of clinical translation. A follow-up multistakeholder meeting focussing on BET inhibitors will be held to define how to prioritise the multiple compounds in clinical development that could be evaluated in children with cancer. As epigenetic modifiers are relatively early in development in paediatrics, there is a clear opportunity to shape the landscape of therapies targeting the epigenome in order that efficient and optimum plans for their evaluation in children and adolescents are developed in a timely manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lynley Marshall
- Royal Marsden NHS Foundation Trust/Institute of Cancer Research, UK
| | | | | | - Peter C Adamson
- Sanofi US, Emeritus Professor of Paediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | | | - Koen Norga
- Antwerp University Hospital, Paediatric Committee of the European Medicines Agency, Federal Agency for Medicines and Health Products, Belgium
| | | | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | |
Collapse
|
22
|
Tandon S, Shago M, Davidson S, Kanwar N, Fuligni F, Shlien A, Whitlock J, Villani A, Abla O. First report of t(5;11) KMT2A-MAML1 fusion in de novo infant acute lymphoblastic leukemia. Cancer Genet 2020; 248-249:31-33. [PMID: 32992102 DOI: 10.1016/j.cancergen.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022]
Abstract
Infant acute lymphoblastic leukemia (ALL) comprises 2.5%-5% of pediatric ALL with inferior survival compared to older children. A majority of infants (80%) with ALL harbor KMT2A gene rearrangement, which portends a poor prognosis. Approximately 94 different partner genes have been identified to date. The common rearrangements include t(4;11)(q21;q23)KMT2A-AFF1,t(11;19) (q23;p13.3)KMT2A-MLLT1 and t(9;11)(p22;q23)KMT2A-MLLT3. We report a novel translocation t(5;11)(q35;q23)KMT2A-MAML1 in newly diagnosed infant precursor B-ALL. Long-term follow-up and a larger number of patients are needed to better understand its prognostic significance.
Collapse
Affiliation(s)
- Sneha Tandon
- Division of Hematology and Oncology, University Hospital Southampton, United Kingdom.
| | - Mary Shago
- The Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Nisha Kanwar
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fabio Fuligni
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Adam Shlien
- The Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - James Whitlock
- Division of Pediatrics Hematology/Oncology, The Hospital for Sick Children; Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Anita Villani
- Division of Pediatrics Hematology/Oncology, The Hospital for Sick Children; Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Oussama Abla
- Division of Pediatrics Hematology/Oncology, The Hospital for Sick Children; Department of Pediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Matsukawa T, Aplan PD. Clinical and molecular consequences of fusion genes in myeloid malignancies. Stem Cells 2020; 38:1366-1374. [PMID: 32745287 DOI: 10.1002/stem.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/07/2022]
Abstract
Leukemias are heterogeneous diseases characterized by aberrant hematopoietic stem and progenitor cells (HSPCs). Oncogenic fusion genes and proteins, produced via gross chromosomal rearrangements, such as chromosomal translocation, insertion, and inversion, play important roles in hematologic malignancies. These oncoproteins alter fundamental cellular properties, such as self-renewal, differentiation, and proliferation, and confer leukemogenic potential to HSPCs. In addition to providing fundamental insights into the process of leukemic transformation, these fusion genes provide targets for treatment and monitoring of myeloid leukemias. Furthermore, new technologies such as next-generation sequencing have allowed additional insights into the nature of leukemic fusion genes. In this review, we discuss the history, biologic effect, and clinical impact of fusion genes in the field of myeloid leukemias.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
The efficiency of murine MLL-ENL-driven leukemia initiation changes with age and peaks during neonatal development. Blood Adv 2020; 3:2388-2399. [PMID: 31405949 DOI: 10.1182/bloodadvances.2019000554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
MLL rearrangements are translocation mutations that cause both acute lymphoblastic leukemia and acute myeloid leukemia (AML). These translocations can occur as sole clonal driver mutations in infant leukemias, suggesting that fetal or neonatal hematopoietic progenitors may be exquisitely sensitive to transformation by MLL fusion proteins. To test this possibility, we used transgenic mice to induce one translocation product, MLL-ENL, during fetal, neonatal, juvenile and adult stages of life. When MLL-ENL was induced in fetal or neonatal mice, almost all died of AML. In contrast, when MLL-ENL was induced in adult mice, most survived for >1 year despite sustained transgene expression. AML initiation was most efficient when MLL-ENL was induced in neonates, and even transient suppression of MLL-ENL in neonates could prevent AML in most mice. MLL-ENL target genes were induced more efficiently in neonatal progenitors than in adult progenitors, consistent with the distinct AML initiation efficiencies. Interestingly, transplantation stress mitigated the developmental barrier to leukemogenesis. Since fetal/neonatal progenitors were highly competent to initiate MLL-ENL-driven AML, we tested whether Lin28b, a fetal master regulator, could accelerate leukemogenesis. Surprisingly, Lin28b suppressed AML initiation rather than accelerating it. This may explain why MLL rearrangements often occur before birth in human infant leukemia patients, but transformation usually does not occur until after birth, when Lin28b levels decline. Our findings show that the efficiency of MLL-ENL-driven AML initiation changes through the course of pre- and postnatal development, and developmental programs can be manipulated to impede transformation.
Collapse
|
25
|
Praveena S, Singh SP. Sparse-FCM and Deep Convolutional Neural Network for the segmentation and classification of acute lymphoblastic leukaemia. BIOMED ENG-BIOMED TE 2020; 65:/j/bmte.ahead-of-print/bmt-2018-0213/bmt-2018-0213.xml. [PMID: 32706747 DOI: 10.1515/bmt-2018-0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/13/2020] [Indexed: 02/28/2024]
Abstract
Leukaemia detection and diagnosis in advance is the trending topic in the medical applications for reducing the death toll of patients with acute lymphoblastic leukaemia (ALL). For the detection of ALL, it is essential to analyse the white blood cells (WBCs) for which the blood smear images are employed. This paper proposes a new technique for the segmentation and classification of the acute lymphoblastic leukaemia. The proposed method of automatic leukaemia detection is based on the Deep Convolutional Neural Network (Deep CNN) that is trained using an optimization algorithm, named Grey wolf-based Jaya Optimization Algorithm (GreyJOA), which is developed using the Grey Wolf Optimizer (GWO) and Jaya Optimization Algorithm (JOA) that improves the global convergence. Initially, the input image is applied to pre-processing and the segmentation is performed using the Sparse Fuzzy C-Means (Sparse FCM) clustering algorithm. Then, the features, such as Local Directional Patterns (LDP) and colour histogram-based features, are extracted from the segments of the pre-processed input image. Finally, the extracted features are applied to the Deep CNN for the classification. The experimentation evaluation of the method using the images of the ALL IDB2 database reveals that the proposed method acquired a maximal accuracy, sensitivity, and specificity of 0.9350, 0.9528, and 0.9389, respectively.
Collapse
Affiliation(s)
- Segu Praveena
- Department of Electronics and Communication Engineering, Mahatma Gandhi Institute of Technology, Kokapet, Hyderabad, Telangana, India
| | - Sohan Pal Singh
- Department of Electronics and Communication Engineering, Mahatma Gandhi Institute of Technology, Kokapet, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, Huang W, Sun LY, Fang K, Chen YQ, Luo XQ, Wang WT. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis 2020; 11:566. [PMID: 32703936 PMCID: PMC7378249 DOI: 10.1038/s41419-020-02795-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Aberrant chromosomal translocations leading to tumorigenesis have been ascribed to the heterogeneously oncogenic functions. However, how fusion transcripts exporting remains to be declared. Here, we showed that the nuclear speckle-specific long noncoding RNA MALAT1 controls chimeric mRNA export processes and regulates myeloid progenitor cell differentiation in malignant hematopoiesis. We demonstrated that MALAT1 regulates chimeric mRNAs export in an m6A-dependent manner and thus controls hematopoietic cell differentiation. Specifically, reducing MALAT1 or m6A methyltransferases and the 'reader' YTHDC1 result in the universal retention of distinct oncogenic gene mRNAs in nucleus. Mechanically, MALAT1 hijacks both the chimeric mRNAs and fusion proteins in nuclear speckles during chromosomal translocations and mediates the colocalization of oncogenic fusion proteins with METTL14. MALAT1 and fusion protein complexes serve as a functional loading bridge for the interaction of chimeric mRNA and METTL14. This study demonstrated a universal mechanism of chimeric mRNA transport that involves lncRNA-fusion protein-m6A autoregulatory loop for controlling myeloid cell differentiation. Targeting the lncRNA-triggered autoregulatory loop to disrupt chimeric mRNA transport might represent a new common paradigm for treating blood malignancies.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
27
|
Merli P, Algeri M, Del Bufalo F, Locatelli F. Hematopoietic Stem Cell Transplantation in Pediatric Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2020; 14:94-105. [PMID: 30806963 DOI: 10.1007/s11899-019-00502-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The remarkable improvement in the prognosis of children with acute lymphoblastic leukemia (ALL) has been mainly achieved through the administration of risk-adapted therapy, including allogeneic hematopoietic stem cell transplantation (HSCT). This paper reviews the current indications to HSCT in ALL children, as well as the type of donor and conditioning regimens commonly used. Finally, it will focus on future challenges in immunotherapy. RECENT FINDINGS As our comprehension of disease-specific risk factors improves, indications to HSCT continue to evolve. Future studies will answer the year-old question on the best conditioning regimen to be used in this setting, while a recent randomized controlled study fixed the optimal anti-thymocyte globulin dose in unrelated donor HSCT. HSCT, the oldest immunotherapy used in clinical practice, still represents the gold standard consolidation treatment for a number of pediatric patients with high-risk/relapsed ALL. New immunotherapies hold the promise of further improving outcomes in this setting.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy. .,Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
28
|
Popov A, Buldini B, De Lorenzo P, Disarò S, Verzhbitskaya T, Movchan L, Giarin E, Shorikov E, Di Meglio A, Tsaur G, Parasole R, Miakova N, Boichenko E, Kondratchik K, Aleinikova O, Karachunskiy A, Roumiantsev A, Locatelli F, Biondi A, Pieters R, Valsecchi MG, Fechina L, Basso G. Prognostic value of minimal residual disease measured by flow-cytometry in two cohorts of infants with acute lymphoblastic leukemia treated according to either MLL-Baby or Interfant protocols. Leukemia 2020; 34:3042-3046. [PMID: 32533093 DOI: 10.1038/s41375-020-0912-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.
| | - Barbara Buldini
- Dipartimento di Salute della Donna e del Bambino, University of Padua, Padua, Italy
| | - Paola De Lorenzo
- Interfant Trial Data Center, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy.,Tettamanti Research Center, Pediatric Clinic, University of Milan-Bicocca, Fondazione MBBM/ S. Gerardo Hospital Monza, Monza, Italy
| | - Silvia Disarò
- Fondazione Città della Speranza - Onlus, Dipartimento di Salute della Donna e del Bambino, University of Padova, Padova, Italy
| | - Tatiana Verzhbitskaya
- Regional Children Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Liudmila Movchan
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Emanuela Giarin
- Fondazione Città della Speranza - Onlus, Dipartimento di Salute della Donna e del Bambino, University of Padova, Padova, Italy
| | - Egor Shorikov
- PET-Technology Center of Nuclear Medicine, Ekaterinburg, Russian Federation
| | - Annamaria Di Meglio
- Fondazione Città della Speranza - Onlus, Dipartimento di Salute della Donna e del Bambino, University of Padova, Padova, Italy
| | - Grigory Tsaur
- Regional Children Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, Naples, Italy
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elmira Boichenko
- City Children's Hospital №1, Saint-Petersburg, Russian Federation
| | | | - Olga Aleinikova
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Roumiantsev
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.,Sapienza, University of Rome, Rome, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Pediatric Clinic, University of Milan-Bicocca, Fondazione MBBM/ S. Gerardo Hospital Monza, Monza, Italy
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Maria Grazia Valsecchi
- Interfant Trial Data Center, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Larisa Fechina
- Regional Children Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, University of Padua, Padua, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
29
|
Savage P. Chemotherapy Curability in Leukemia, Lymphoma, Germ Cell Tumors and Gestational Malignancies: A Reflection of the Unique Physiology of Their Cells of Origin. Front Genet 2020; 11:426. [PMID: 32582272 PMCID: PMC7295948 DOI: 10.3389/fgene.2020.00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic DNA damaging chemotherapy brings clinical benefits in the treatment of many metastatic malignancies. However routine curative treatment remains restricted to a small number of malignancies including acute leukemia, high grade lymphoma, germ cell tumors, gestational malignancies and some of the rare childhood cancers. The detailed explanation for this dramatic divergence in outcomes remains to be elucidated. However, we have previously argued that there is a strong correlation between presence of the unique genetic events of immunoglobulin gene variable/diversity/joining (VDJ) recombination, somatic hypermutation (SHM), meiosis, nuclear fusion and gastrulation occurring in cells of origin of these malignancies and their high sensitivity to DNA damaging chemotherapy. In this study we have reviewed some of the basic physiological information relating to the specialized activity and sensitivity to DNA damage mediated apoptosis of normal cells undergoing these processes. In each of unique genetic events there are dramatic changes in apoptotic sensitivity. In VDJ recombination and somatic hypermutation over 95% of the cells involved undergo apoptosis, whilst in meiosis and nuclear fusion there are dramatic short term increases in the apoptotic sensitivity to DNA damage. It is apparent that each of the malignancies arising during these processes retains some of the unique phenotype associated with it. The impact of the physiological differences is most clearly seen in the two non-mutational malignancies. Gestational choriocarcinoma which arises shortly after nuclear fusion is routinely curable with chemotherapy whilst CIMP-positive ependymomas which is not linked to any of the unique genetic events is highly resistant. A similar pattern is found in a pair of malignancies driven by a single driver mutation. Infantile acute lymphoblastic leukemia (ALL) arises in a cell undergoing the early stages of VDJ recombination and has a 40% cure rate in contrast pediatric rhabdoid malignancy which is not linked to a unique genetic event responds very poorly to chemotherapy treatment. The physiological changes occurring in cancer cells at the time of the malignant transformation appear to have a major impact on the subsequent sensitivity to chemotherapy and curability. New therapies that impact on these pathways may be of therapeutic value.
Collapse
Affiliation(s)
- Philip Savage
- Department of Oncology, Brighton and Sussex University Hospitals, Brighton, United Kingdom
| |
Collapse
|
30
|
Development of embryonic and adult leukemia mouse models driven by MLL-ENL translocation. Exp Hematol 2020; 85:13-19. [PMID: 32437911 DOI: 10.1016/j.exphem.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Rearrangements involving the mixed lineage leukemia gene (MLL) are found in the majority of leukemias that develop within the first year of age, known as infant leukemias, and likely originate during prenatal life. MLL rearrangements are also present in about 10% of other pediatric and adult acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). These translocations and others occurring in early life are associated with a dismal prognosis compared with adult leukemias carrying the same translocations. This observation suggests that infant and adult leukemias are biologically distinct but the underlying molecular mechanisms for these differences are not understood. In this work, we induced the same MLL chromosomal translocation in the embryo at the time of fetal liver hematopoiesis and in the adult hematopoietic tissues to develop disease models in mice that recapitulate human infant and adult leukemias, respectively. We successfully obtained myeloid leukemia in adult mice after MLL-ENL recombination induction using the interferon inducible Mx1-Cre line. Using this same Cre line, we generated embryonic MLL-ENL leukemias, which were more aggressive than the corresponding adult leukemias. In conclusion, we have developed a novel MLL-ENL embryonic leukemia model in mice that can be used to study some aspects of infant leukemia ontogeny.
Collapse
|
31
|
Harada Y, Shingai N, Ding Y, Sadato D, Hayashi Y, Yamaguchi M, Okuyama Y, Shimoyama T, Ohashi K, Harada H. Gene rearrangements of MLL and RUNX1 sporadically occur in normal CD34 + cells under cytokine stimulation. Cancer Sci 2020; 111:1851-1855. [PMID: 32216001 PMCID: PMC7226195 DOI: 10.1111/cas.14392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 12/02/2022] Open
Abstract
Gene rearrangements of MLL/KMT2A or RUNX1 are the major cause of therapy‐related leukemia. Moreover, MLL rearrangements are the major cause of infant leukemia, and RUNX1 rearrangements are frequently detected in cord blood. These genes are sensitive to topoisomerase II inhibitors, and various genes have been identified as potential fusion partners. However, fetal exposure to these inhibitors is rare. Therefore, we postulated that even a proliferation signal itself might induce gene rearrangements in hematopoietic stem cells. To test this hypothesis, we detected gene rearrangements in etoposide‐treated or non–treated CD34+ cells cultured with cytokines using inverse PCR. In the etoposide‐treated cells, variable‐sized rearrangement bands were detected in the RUNX1 and MLL genes at 3 hours of culture, which decreased after 7 days. However, more rearrangement bands were detected in the non–treated cells at 7 days of culture. Such gene rearrangements were also detected in peripheral blood stem cells mobilized by cytokines for transplantation. However, none of these rearranged genes encoded the leukemogenic oncogene, and the cells with rearrangements did not expand. These findings suggest that MLL and RUNX1 rearrangements, which occur with very low frequency in normal hematopoietic progenitor cells, may be induced under cytokine stimulation. Most of the cells with gene rearrangements are likely eliminated, except for leukemia‐associated gene rearrangements, resulting in the low prevalence of leukemia development.
Collapse
Affiliation(s)
- Yuka Harada
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Bunkyo Gakuin University, Tokyo, Japan.,Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Naoki Shingai
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Bunkyo Gakuin University, Tokyo, Japan
| | - Ye Ding
- Division of Oncology and Hematology, Edogawa Hospital, Tokyo, Japan
| | - Daichi Sadato
- Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Yoshiki Okuyama
- Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tatsu Shimoyama
- Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
32
|
Liou A, Van Arnam J, Pillai V, Seif AE, Tasian SK, Phillips CA. Transient atypical monocytosis after α/β T-cell-depleted haploidentical hematopoietic stem cell transplantation. Pediatr Blood Cancer 2020; 67:e28139. [PMID: 31867817 PMCID: PMC7721203 DOI: 10.1002/pbc.28139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Angela Liou
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John Van Arnam
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alix E. Seif
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles A. Phillips
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,Center for Applied Clinical Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Blackburn PR, Smadbeck JB, Znoyko I, Webley MR, Pitel BA, Vasmatzis G, Xu X, Greipp PT, Hoppman NL, Ketterling RP, Baughn LB, Lindsey KG, Schandl CA, Wolff DJ, Peterson JF. Cryptic and atypical KMT2A-USP2 and KMT2A-USP8 rearrangements identified by mate pair sequencing in infant and childhood leukemia. Genes Chromosomes Cancer 2020; 59:422-427. [PMID: 32196814 DOI: 10.1002/gcc.22842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 11/07/2022] Open
Abstract
Infant leukemias are a rare group of neoplasms that are clinically and biologically distinct from their pediatric and adult counterparts. Unlike leukemia in older children where survival rates are generally favorable, infants with leukemia have a 5-year event-free survival rate of <50%. The majority of infant leukemias are characterized by KMT2A (MLL) rearrangements (~70 to 80% in acute lymphoblastic leukemia), which appear to be drivers of early leukemogenesis. In this report, we describe three cases: a 9-month-old female infant with B-acute lymphoblastic leukemia (B-ALL), an 8-month-old female presenting with B/myeloid mixed phenotype acute leukemia (MPAL), and a 16-month-old male with B-ALL. The first case had a normal karyotype and B-ALL FISH results consistent with an atypical KMT2A rearrangement. The second case had trisomy 10 as the sole chromosomal abnormality and a normal KMT2A FISH result. Case 3 had trisomy 8 and a t(11;15)(q23;q21), an atypical KMT2A rearrangement by FISH studies, and a focal deletion of 15q with a breakpoint within the USP8 gene by chromosomal microarray. Mate pair sequencing was performed on all three cases and identified a KMT2A-USP2 rearrangement (cases 1 and 2) or a KMT2A-USP8 rearrangement (case 3). These recently characterized KMT2A fusions have been described exclusively in infant and pediatric leukemia cases where the incidence varies vary according to leukemia subtype, are considered high-risk, with a high incidence of central nervous system involvement, poor response to initial prednisone treatment, and poor event free survival. Additionally, approximately half of cases are unable to be resolved using standard cytogenetic approaches and are likely under recognized. Therefore, targeted molecular approaches are suggested in genetically unresolved infant leukemia cases to characterize these prognostically relevant clones.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota, USA
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew R Webley
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Beth A Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathryn G Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cynthia A Schandl
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Basilico S, Wang X, Kennedy A, Tzelepis K, Giotopoulos G, Kinston SJ, Quiros PM, Wong K, Adams DJ, Carnevalli LS, Huntly BJP, Vassiliou GS, Calero-Nieto FJ, Göttgens B. Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML. Nat Commun 2020; 11:1407. [PMID: 32179751 PMCID: PMC7075888 DOI: 10.1038/s41467-020-15220-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Leukaemogenic mutations commonly disrupt cellular differentiation and/or enhance proliferation, thus perturbing the regulatory programs that control self-renewal and differentiation of stem and progenitor cells. Translocations involving the Mll1 (Kmt2a) gene generate powerful oncogenic fusion proteins, predominantly affecting infant and paediatric AML and ALL patients. The early stages of leukaemogenic transformation are typically inaccessible from human patients and conventional mouse models. Here, we take advantage of cells conditionally blocked at the multipotent haematopoietic progenitor stage to develop a MLL-r model capturing early cellular and molecular consequences of MLL-ENL expression based on a clear clonal relationship between parental and leukaemic cells. Through a combination of scRNA-seq, ATAC-seq and genome-scale CRISPR-Cas9 screening, we identify pathways and genes likely to drive the early phases of leukaemogenesis. Finally, we demonstrate the broad utility of using matched parental and transformed cells for small molecule inhibitor studies by validating both previously known and other potential therapeutic targets.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Female
- Hematopoietic Stem Cells/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Mice
- Mice, Inbred C57BL
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Silvia Basilico
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Xiaonan Wang
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alison Kennedy
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Milner Therapeutics Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - George Giotopoulos
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sarah J Kinston
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pedro M Quiros
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kim Wong
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Brian J P Huntly
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - George S Vassiliou
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Fernando J Calero-Nieto
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
35
|
Brown LM, Lonsdale A, Zhu A, Davidson NM, Schmidt B, Hawkins A, Wallach E, Martin M, Mechinaud FM, Khaw SL, Bartolo RC, Ludlow LEA, Challis J, Brooks I, Petrovic V, Venn NC, Sutton R, Majewski IJ, Oshlack A, Ekert PG. The application of RNA sequencing for the diagnosis and genomic classification of pediatric acute lymphoblastic leukemia. Blood Adv 2020; 4:930-942. [PMID: 32150610 PMCID: PMC7065479 DOI: 10.1182/bloodadvances.2019001008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/02/2020] [Indexed: 01/23/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, and implementation of risk-adapted therapy has been instrumental in the dramatic improvements in clinical outcomes. A key to risk-adapted therapies includes the identification of genomic features of individual tumors, including chromosome number (for hyper- and hypodiploidy) and gene fusions, notably ETV6-RUNX1, TCF3-PBX1, and BCR-ABL1 in B-cell ALL (B-ALL). RNA-sequencing (RNA-seq) of large ALL cohorts has expanded the number of recurrent gene fusions recognized as drivers in ALL, and identification of these new entities will contribute to refining ALL risk stratification. We used RNA-seq on 126 ALL patients from our clinical service to test the utility of including RNA-seq in standard-of-care diagnostic pipelines to detect gene rearrangements and IKZF1 deletions. RNA-seq identified 86% of rearrangements detected by standard-of-care diagnostics. KMT2A (MLL) rearrangements, although usually identified, were the most commonly missed by RNA-seq as a result of low expression. RNA-seq identified rearrangements that were not detected by standard-of-care testing in 9 patients. These were found in patients who were not classifiable using standard molecular assessment. We developed an approach to detect the most common IKZF1 deletion from RNA-seq data and validated this using an RQ-PCR assay. We applied an expression classifier to identify Philadelphia chromosome-like B-ALL patients. T-ALL proved a rich source of novel gene fusions, which have clinical implications or provide insights into disease biology. Our experience shows that RNA-seq can be implemented within an individual clinical service to enhance the current molecular diagnostic risk classification of ALL.
Collapse
Affiliation(s)
- Lauren M Brown
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Lonsdale
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Andrea Zhu
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Breon Schmidt
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Anthony Hawkins
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Elise Wallach
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | | | | | - Seong Lin Khaw
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Ray C Bartolo
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Louise E A Ludlow
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Jackie Challis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Ian Brooks
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Vida Petrovic
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Nicola C Venn
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ian J Majewski
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, VIC, Australia; and
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul G Ekert
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, Ji P, Chen J, Mizukawa B, Huang Y, Licht JD, Qian Z. FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 2020; 11:928. [PMID: 32066721 PMCID: PMC7026046 DOI: 10.1038/s41467-020-14590-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
FOXM1, a known transcription factor, promotes cell proliferation in a variety of cancer cells. Here we show that Foxm1 is required for survival, quiescence and self-renewal of MLL-AF9 (MA9)-transformed leukemia stem cells (LSCs) in vivo. Mechanistically, Foxm1 upregulation activates the Wnt/β-catenin signaling pathways by directly binding to β-catenin and stabilizing β-catenin protein through inhibiting its degradation, thereby preserving LSC quiescence, and promoting LSC self-renewal in MLL-rearranged AML. More importantly, inhibition of FOXM1 markedly suppresses leukemogenic potential and induces apoptosis of primary LSCs from MLL-rearranged AML patients in vitro and in vivo in xenograft mice. Thus, our study shows a critical role and mechanisms of Foxm1 in MA9-LSCs, and indicates that FOXM1 is a potential therapeutic target for selectively eliminating LSCs in MLL-rearranged AML.
Collapse
Affiliation(s)
- Yue Sheng
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chunjie Yu
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yin Liu
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chao Hu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Jianjun Chen
- Department of System Biology, City of Hope, CA, USA
| | - Benjamin Mizukawa
- Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottestville, VA, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zhijian Qian
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features. Sci Rep 2020; 10:2536. [PMID: 32054876 PMCID: PMC7018965 DOI: 10.1038/s41598-020-59215-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
White Blood Cell (WBC) Leukaemia is caused by excessive production of leukocytes in the bone marrow, and image-based detection of malignant WBCs is important for its detection. Convolutional Neural Networks (CNNs) present the current state-of-the-art for this type of image classification, but their computational cost for training and deployment can be high. We here present an improved hybrid approach for efficient classification of WBC Leukemia. We first extract features from WBC images using VGGNet, a powerful CNN architecture, pre-trained on ImageNet. The extracted features are then filtered using a statistically enhanced Salp Swarm Algorithm (SESSA). This bio-inspired optimization algorithm selects the most relevant features and removes highly correlated and noisy features. We applied the proposed approach to two public WBC Leukemia reference datasets and achieve both high accuracy and reduced computational complexity. The SESSA optimization selected only 1 K out of 25 K features extracted with VGGNet, while improving accuracy at the same time. The results are among the best achieved on these datasets and outperform several convolutional network models. We expect that the combination of CNN feature extraction and SESSA feature optimization could be useful for many other image classification tasks.
Collapse
|
38
|
Gao M, Pang H, Kim YM, Lu X, Wang X, Lee J, Wang M, Meng F, Li S. An extra chromosome 9 derived from either a normal chromosome 9 or a derivative chromosome 9 in a patient with acute myeloid leukemia positive for t(9;11)(p21.3;q23.3): A case report. Oncol Lett 2019; 18:6725-6731. [PMID: 31807181 PMCID: PMC6876330 DOI: 10.3892/ol.2019.11035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/27/2019] [Indexed: 11/15/2022] Open
Abstract
Translocation (9;11)(p21.3;q23.3) is one of the most common lysine methyltransferase 2A (KMT2A)-rearrangements in de novo and therapy-related acute myeloid leukemia (AML). Numerous in vitro and in vivo studies have demonstrated that the KMT2A/MLLT3 super elongation complex subunit (MLLT3) fusion gene on the derivative chromosome 11 serves a crucial role in leukemogenesis. Trisomy 9 as a secondary chromosome change in patients with t(9;11) is relatively rare. The present study reported a unique case of AML with a chromosome 9 trisomy secondary to t(9;11)(p21.3;q23.3) through the cytogenetic analysis of leukemic blood and bone marrow. Further characterization with fluorescence in situ hybridization and array comparative genomic hybridization analysis revealed that this extra chromosome 9 was either a copy of normal chromosome 9 or a derivative chromosome 9. Conversely with the previously reported favorable outcome of AML patients with t(9;11)(p21.3;q23.3), in the present study, the cells with only translocation persisted, whereas the cells with an extra chromosome 9 disappeared following initial chemotherapy. With this unique case, the present study hypothesized that the extra chromosome 9 could serve a crucial role in AML disease progression and contribute to cellular sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Man Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Young Mi Kim
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Xianfu Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Jiyun Lee
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| | - Mingwei Wang
- Clinical Medical College of Beihua University, Jilin City, Jilin 132013, P.R. China
| | - Fanzheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
39
|
Wang F, Li Z, Wang G, Tian X, Zhou J, Yu W, Fan Z, Dong L, Lu J, Xu J, Zhang W, Liang A. Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLL‑AF9 translocation. Mol Med Rep 2019; 21:883-893. [PMID: 31789407 PMCID: PMC6947934 DOI: 10.3892/mmr.2019.10849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Rearrangement of the mixed lineage leukemia (MLL; also known as lysine methyltransferase 2A) gene is a recurrent genomic aberration in acute myeloid leukemia (AML). MLLT3, super elongation complex subunit (AF9) is one of the most common MLL fusion partners in AML. The present study aimed to explore the aberrant expression of genes associated with the MLL-AF9 translocation and identified potential new targets for the therapy of AML with MLL-AF9 translocation. The transcriptomic and epigenetic datasets were downloaded from National Center of Biotechnology Information Gene Expression Omnibus (GEO) database. Differentially expressed genes were obtained from two independent datasets (GSE68643 and GSE73457). Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. MLL-AF9-associated chromatin immunoprecipitation sequencing (ChIP-Seq) data was analyzed and identified binding sites for MLL-AF9 and wild type MLL (MLL WT). The ChIP-Seq of histone modification data was downloaded from the GEO database, including histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 79 dimethylation (H3K79me2) and histone 3 lysine 27 acetylation (H3K27ac), was used for comparing histone modification marks between the MLL-AF9 leukemia cells and normal hematopoietic cells at MLL-AF9 and MLL WT binding sites. The differentially expressed genes with the same trend in H3K79me2, H3K27ac and H3K4me3 alteration were identified as potential MLL-AF9 direct target genes. Upon validation using RNA-Seq data from the Therapeutically Applicable Research to Generate Effective Treatments AML project, eight potential direct target genes of MLL-AF9 were identified and further confirmed in MLL-AF9 mouse model using reverse transcription-quantitative polymerase chain reaction. These genes may have a critical role in AML with MLL-AF9 translocation.
Collapse
Affiliation(s)
- Fangce Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaoxue Tian
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Lin Dong
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jinyuan Lu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jun Xu
- Medical Center for Stem Cell Engineering and Transformation, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
40
|
Barve A, Vega A, Shah PP, Ghare S, Casson L, Wunderlich M, Siskind LJ, Beverly LJ. Perturbation of Methionine/S-adenosylmethionine Metabolism as a Novel Vulnerability in MLL Rearranged Leukemia. Cells 2019; 8:cells8111322. [PMID: 31717699 PMCID: PMC6912509 DOI: 10.3390/cells8111322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Leukemias bearing mixed lineage leukemia (MLL) rearrangement (MLL-R) resulting in expression of oncogenic MLL fusion proteins (MLL-FPs) represent an especially aggressive disease subtype with the worst overall prognoses and chemotherapeutic response. MLL-R leukemias are uniquely dependent on the epigenetic function of the H3K79 methyltransferase DOT1L, which is misdirected by MLL-FPs activating gene expression, driving transformation and leukemogenesis. Given the functional necessity of these leukemias to maintain adequate methylation potential allowing aberrant activating histone methylation to proceed, driving leukemic gene expression, we investigated perturbation of methionine (Met)/S-adenosylmethionine (SAM) metabolism as a novel therapeutic paradigm for MLL-R leukemia. Disruption of Met/SAM metabolism, by either methionine deprivation or pharmacologic inhibition of downstream metabolism, reduced overall cellular methylation potential, reduced relative cell numbers, and induced apoptosis selectively in established MLL-AF4 cell lines or MLL-AF6-expressing patient blasts but not in BCR-ABL-driven K562 cells. Global histone methylation dynamics were altered, with a profound loss of requisite H3K79 methylation, indicating inhibition of DOT1L function. Relative occupancy of the repressive H3K27me3 modification was increased at the DOT1L promoter in MLL-R cells, and DOT1L mRNA and protein expression was reduced. Finally, pharmacologic inhibition of Met/SAM metabolism significantly prolonged survival in an advanced, clinically relevant patient–derived MLL-R leukemia xenograft model, in combination with cytotoxic induction chemotherapy. Our findings provide support for further investigation into the development of highly specific allosteric inhibitors of enzymatic mediators of Met/SAM metabolism or dietary manipulation of methionine levels. Such inhibitors may lead to enhanced treatment outcomes for MLL-R leukemia, along with cytotoxic chemotherapy or DOT1L inhibitors.
Collapse
Affiliation(s)
- Aditya Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (A.B.); (L.J.S.)
| | - Alexis Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
| | - Parag P. Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Smita Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.G.); (L.C.)
| | - Lavona Casson
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.G.); (L.C.)
| | - Mark Wunderlich
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Leah J. Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (A.B.); (L.J.S.)
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Levi J. Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (A.B.); (L.J.S.)
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (S.G.); (L.C.)
- Correspondence: ; Tel.: +01-502-852-8968
| |
Collapse
|
41
|
Pincez T, Landry J, Roussy M, Jouan L, Bilodeau M, Laramée L, Couture F, Sinnett D, Gendron P, Hébert J, Oligny L, Rouette A, Tran TH, Wilhelm BT, Bittencourt H, Cellot S. Cryptic recurrent
ACIN1
‐
NUTM1
fusions in non‐
KMT2A
‐rearranged infant acute lymphoblastic leukemia. Genes Chromosomes Cancer 2019; 59:125-130. [DOI: 10.1002/gcc.22808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thomas Pincez
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
| | - Josette‐Renée Landry
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
- Streamline Genomics Montréal Québec Canada
| | - Mathieu Roussy
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
- Department of Biomedical SciencesUniversité de Montréal Montréal Québec Canada
| | - Loubna Jouan
- Integrated Centre for Pediatric Clinical Genomics, CHU Sainte‐Justine Montréal Québec Canada
| | - Mélanie Bilodeau
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
| | - Louise Laramée
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
| | - Françoise Couture
- Molecular Diagnostic Laboratory, CHU Sainte‐Justine Montréal Québec Canada
| | - Daniel Sinnett
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
| | - Patrick Gendron
- Bioinformatics Core Facility, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal Montréal Québec Canada
| | - Josée Hébert
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
- Division of HematologyMaisonneuve‐Rosemont Hospital Montréal Québec Canada
- Quebec Leukemia Cell Bank, Maisonneuve‐Rosemont Hospital Montréal Québec Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal Montréal Québec Canada
| | - Luc Oligny
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
- Department of PathologyCHU Sainte‐Justine Montréal Québec Canada
| | - Alexandre Rouette
- Integrated Centre for Pediatric Clinical Genomics, CHU Sainte‐Justine Montréal Québec Canada
| | - Thai H. Tran
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
| | - Brian T. Wilhelm
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal Montréal Québec Canada
- Laboratory for High Throughput Biology, IRIC, Université de Montréal Montréal Québec Canada
| | - Henrique Bittencourt
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
| | - Sonia Cellot
- Pediatric Hematology‐Oncology DivisionCharles‐Bruneau Cancer Center, CHU Sainte‐Justine Montréal Québec Canada
- Faculty of MedicineUniversité de Montréal Montréal Québec Canada
- Quebec Leukemia Cell Bank, Maisonneuve‐Rosemont Hospital Montréal Québec Canada
| |
Collapse
|
42
|
Cornet-Masana JM, Banús-Mulet A, Carbó JM, Torrente MÁ, Guijarro F, Cuesta-Casanovas L, Esteve J, Risueño RM. Dual lysosomal-mitochondrial targeting by antihistamines to eradicate leukaemic cells. EBioMedicine 2019; 47:221-234. [PMID: 31473184 PMCID: PMC6796581 DOI: 10.1016/j.ebiom.2019.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Despite great efforts to identify druggable molecular targets for AML, there remains an unmet need for more effective therapies. Methods An in silico screening was performed using Connectivity Maps to identify FDA-approved drugs that may revert an early leukaemic transformation gene signature. Hit compounds were validated in AML cell lines. Cytotoxic effects were assessed both in primary AML patient samples and healthy donor blood cells. Xenotransplantation assays were undertaken to determine the effect on engraftment of hit compounds. The mechanism of action responsible for the antileukaemic effect was studied focussing on lysosomes and mitochondria. Findings We identified a group of antihistamines (termed ANHAs) with distinct physicochemical properties associated with their cationic-amphiphilic nature, that selectively killed leukaemic cells. ANHAs behaved as antileukaemic agents against primary AML samples ex vivo, sparing healthy cells. Moreover, ANHAs severely impaired the in vivo leukaemia regeneration capacity. ANHAs' cytotoxicity relied on simultaneous mitochondrial and lysosomal disruption and induction of autophagy and apoptosis. The pharmacological effect was exerted based on their physicochemical properties that permitted the passive targeting of both organelles, without the involvement of active molecular recognition. Interpretation Dual targeting of lysosomes and mitochondria constitutes a new promising therapeutic approach for leukaemia treatment, supporting the further clinical development. Fund This work was funded by the Fundación Mutua Madrileña (RMR), CaixaImpulse (RMR), the Spanish Ministry of Economy (RMR), the Josep Carreras International Leukaemia Foundation (RMR), l'Obra Social “La Caixa” (RMR), and Generalitat de Catalunya (IJC).
Collapse
Affiliation(s)
- Josep M Cornet-Masana
- Josep Carreras Leukaemia Research Institute (IJC). Barcelona, Spain; Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP). Badalona, Spain; Faculty of Medicine, University of Barcelona, Spain
| | - Antònia Banús-Mulet
- Josep Carreras Leukaemia Research Institute (IJC). Barcelona, Spain; Faculty of Pharmacy, University of Barcelona, Spain
| | - José M Carbó
- Josep Carreras Leukaemia Research Institute (IJC). Barcelona, Spain
| | - Miguel Ángel Torrente
- Faculty of Medicine, University of Barcelona, Spain; Department of Haematology, Hospital Clínic, Barcelona, Spain
| | - Francesca Guijarro
- Faculty of Medicine, University of Barcelona, Spain; Department of Haematology, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC). Barcelona, Spain; Faculty of Biosciences, Autonomous University of Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC). Barcelona, Spain; Faculty of Medicine, University of Barcelona, Spain; Department of Haematology, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruth M Risueño
- Josep Carreras Leukaemia Research Institute (IJC). Barcelona, Spain.
| |
Collapse
|
43
|
A novel hiPSC-derived system for hematoendothelial and myeloid blood toxicity screens identifies compounds promoting and inhibiting endothelial-to-hematopoietic transition. Toxicol In Vitro 2019; 61:104622. [PMID: 31404653 DOI: 10.1016/j.tiv.2019.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/16/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022]
Abstract
The exposure to toxic environmental and pharmaceutical substances can pose a long-term risk to human's health. In this study, we sought to investigate the potential of our recently developed method for induction of myeloid hematoendothelial and blood cells by overexpression of two transcription factors, GATA2 and ETV2, in human induced pluripotent stem cells (hiPSCs) for toxicity screening. For the primary screen in a high-throughput format, we selected twenty-two chemicals with various degrees of cytotoxicity available from the NIEHS National Toxicology Program (Tox21). The compounds were applied during the endothelial-to-hematopoietic transition and to differentiated myeloid progenitors growing in suspension. The system was capable of identifying compounds with both inhibitory and favorable effects on hematopoietic network, changes in expression of hematopoietic markers, and mitochondrial and cytotoxicity. The findings were confirmed and further investigated by secondary screens, colony forming cell assay, and gene expression profiling. The hematoendothelial toxicity of 5-fluorouracil, berberine chloride, and benzo(a)pyrene is characterized by the inhibition of cell division and a shift of hematopoietic programming to non-hemogenic endothelial and mesenchymal fates. This study demonstrates the feasibility of transcription factor (TF)-based differentiation systems to monitor endothelial and hematotoxicity and serves as an informative platform for screening myelosuppressive or stimulatory drugs and mechanistic studies of their action.
Collapse
|
44
|
Pieters R, De Lorenzo P, Ancliffe P, Aversa LA, Brethon B, Biondi A, Campbell M, Escherich G, Ferster A, Gardner RA, Kotecha RS, Lausen B, Li CK, Locatelli F, Attarbaschi A, Peters C, Rubnitz JE, Silverman LB, Stary J, Szczepanski T, Vora A, Schrappe M, Valsecchi MG. Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. J Clin Oncol 2019; 37:2246-2256. [PMID: 31283407 DOI: 10.1200/jco.19.00261] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Infant acute lymphoblastic leukemia (ALL) is characterized by KMT2A (MLL) gene rearrangements and coexpression of myeloid markers. The Interfant-06 study, comprising 18 national and international study groups, tested whether myeloid-style consolidation chemotherapy is superior to lymphoid style, the role of stem-cell transplantation (SCT), and which factors had independent prognostic value. MATERIALS AND METHODS Three risk groups were defined: low risk (LR): KMT2A germline; high risk (HR): KMT2A-rearranged and older than 6 months with WBC count 300 × 109/L or more or a poor prednisone response; and medium risk (MR): all other KMT2A-rearranged cases. Patients in the MR and HR groups were randomly assigned to receive the lymphoid course low-dose cytosine arabinoside [araC], 6-mercaptopurine, cyclophosphamide (IB) or experimental myeloid courses, namely araC, daunorubicin, etoposide (ADE) and mitoxantrone, araC, etoposide (MAE). RESULTS A total of 651 infants were included, with 6-year event-free survival (EFS) and overall survival of 46.1% (SE, 2.1) and 58.2% (SE, 2.0). In West European/North American groups, 6-year EFS and overall survival were 49.4% (SE, 2.5) and 62.1% (SE, 2.4), which were 10% to 12% higher than in other countries. The 6-year probability of disease-free survival was comparable for the randomized arms (ADE+MAE 39.3% [SE 4.0; n = 169] v IB 36.8% [SE, 3.9; n = 161]; log-rank P = .47). The 6-year EFS rate of patients in the HR group was 20.9% (SE, 3.4) with the intention to undergo SCT; only 46% of them received SCT, because many had early events. KMT2A rearrangement was the strongest prognostic factor for EFS, followed by age, WBC count, and prednisone response. CONCLUSION Early intensification with postinduction myeloid-type chemotherapy courses did not significantly improve outcome for infant ALL compared with the lymphoid-type course IB. Outcome for infant ALL in Interfant-06 did not improve compared with that in Interfant-99.
Collapse
Affiliation(s)
- Rob Pieters
- Dutch Childhood Oncology Group, Utrecht, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Philip Ancliffe
- United Kingdom Children Cancer Study Group, London, United Kingdom
| | | | - Benoit Brethon
- French Acute Lymphoblastic Leukemia Study Group, Paris, France
| | - Andrea Biondi
- University of Milano-Bicocca, Monza, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy.,University of Pavia, Pavia, Italy
| | | | - Gabriele Escherich
- German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany
| | - Alina Ferster
- European Organisation for Research and Treatment of Cancer Children Leukemia Group, Brussels, Belgium
| | | | - Rishi Sury Kotecha
- Australian and New Zealand Children's Haematology/Oncology Group, Perth, Australia.,University of Western Australia, Perth, Western Australia, Australia
| | - Birgitte Lausen
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Chi Kong Li
- The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Franco Locatelli
- University of Milano-Bicocca, Monza, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy.,University of Pavia, Pavia, Italy
| | | | | | | | | | - Jan Stary
- Czech Working Group for Pediatric Hematology, Prague, Czech Republic
| | - Tomasz Szczepanski
- Polish Pediatric Leukemia/Lymphoma Study Group, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ajay Vora
- United Kingdom Children Cancer Study Group, London, United Kingdom
| | | | | |
Collapse
|
45
|
Al-Sweedan S, Altahan R. Implications of intrachromosomal amplification of chromosome 21 on outcome in pediatric acute lymphoblastic leukemia: Does it affect our patients too? Hematol Rep 2019; 11:7826. [PMID: 31285807 PMCID: PMC6589538 DOI: 10.4081/hr.2019.7826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/25/2019] [Indexed: 01/09/2023] Open
Abstract
Intrachromosomal amplification (iAMP) of chromosome 21 entity is associated with a dismal outcome in B cell Acute Lymphoblastic Leukemia (B-ALL). This cytogenetic abnormality is caused by a novel mechanism; breakage-fusion-bridge cycles followed by chromothripsis along with major gross rearrangements in chromosome 21. Charts of B-ALL diagnosed at King Faisal Specialist Hospital and Research Center between 2005 and 2015 were reviewed. iAMP is a rare entity occurring at around 2.4% of all pediatrics BALL. No statistically significant difference was found among patients with iAMP21, patients with extra copies of 21 and other patients with B-ALL. The reported adverse prognostic effect of iAMP21 could be due to other coexistent adverse factors, including older age at the time of diagnosis. The most common associated abnormality in our population in addition to the hyperdiploidy was ETV6/RUNX1.
Collapse
Affiliation(s)
- Suleimman Al-Sweedan
- Department of Pediatrics, Jordan University of Science and Technology, Irbid, Jordan
| | - Rahaf Altahan
- Hematology Unit, Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Wang L, Wang Z, Wan C, Cai X, Zhang G, Lai C. Facial paralysis as a presenting symptom of infant leukemia: A case report and literature review. Medicine (Baltimore) 2018; 97:e13673. [PMID: 30572489 PMCID: PMC6320160 DOI: 10.1097/md.0000000000013673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Facial paralysis as the initial clinical presentation of infant leukemia (IL) is rare, and the rate of its misdiagnosis is high. Identifying the clinical characteristics of IL with facial paralysis as the initial symptom is necessary to improve the understanding of the causes of facial paralysis and IL. PATIENT CONCERNS A 10-month-old infant had facial paralysis and recurrent fever. He was misdiagnosed as having bacterial meningitis for >2 months. DIAGNOSES The infant was diagnosed as having acute monocytic leukemia (M5) with central infiltration based on examinations of the bone marrow and cerebrospinal fluid by flow cytometry. INTERVENTIONS Before the diagnosis of leukemia, the patient was given meropenem, ceftriaxone, vancomycin, and ampicillin successively for anti-infective treatment for 2 months, and dexamethasone for several days. But he gave up further treatment after confirmed diagnosis. OUTCOMES Our patient discontinued treatment and discharged. From literature review, there were 6 cases (including this case) of IL with facial paralysis as the initial symptom. 80% of patients were misdiagnosis and treated with a corticosteroid in the early stage, and the mortality was 33.3%. LESSONS The clinical symptoms of IL with facial paralysis are not typical, with a high rate of misdiagnosis. When the cause of facial paralysis is unknown or the advance treatment effect is poor, tumor diseases should be considered. Corticosteroids should be carefully administered to children with facial paralysis.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Zhiling Wang
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Chaomin Wan
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Xiaotang Cai
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Ge Zhang
- Department of Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunqi Lai
- Department of Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Cao H, Liu H, Song E. A novel algorithm for segmentation of leukocytes in peripheral blood. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Sahlol AT, Abdeldaim AM, Hassanien AE. Automatic acute lymphoblastic leukemia classification model using social spider optimization algorithm. Soft comput 2018. [DOI: 10.1007/s00500-018-3288-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Affiliation(s)
- Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine; University of Oxford, Centre for Haematology; Oxford UK
- Oxford BRC Blood Theme, NIHR Oxford Biomedical Centre; Oxford UK
- Department of Paediatrics; University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Nicholas J. Fordham
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine; University of Oxford, Centre for Haematology; Oxford UK
| | - Anupama Rao
- Great Ormond Street Hospital for Children; London UK
| | - Barbara J. Bain
- St Mary's Hospital campus of Imperial College London; St Mary's Hospital; London UK
| |
Collapse
|
50
|
Bardini M, Trentin L, Rizzo F, Vieri M, Savino AM, Garrido Castro P, Fazio G, Van Roon EHJ, Kerstjens M, Smithers N, Prinjha RK, Te Kronnie G, Basso G, Stam RW, Pieters R, Biondi A, Cazzaniga G. Antileukemic Efficacy of BET Inhibitor in a Preclinical Mouse Model of MLL-AF4 + Infant ALL. Mol Cancer Ther 2018; 17:1705-1716. [PMID: 29748211 DOI: 10.1158/1535-7163.mct-17-1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/15/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
MLL-rearranged acute lymphoblastic leukemia (ALL) occurring in infants is a rare but very aggressive leukemia, typically associated with a dismal prognosis. Despite the development of specific therapeutic protocols, infant patients with MLL-rearranged ALL still suffer from a low cure rate. At present, novel therapeutic approaches are urgently needed. Recently, the use of small molecule inhibitors targeting the epigenetic regulators of the MLL complex emerged as a promising strategy for the development of a targeted therapy. Herein, we have investigated the effects of bromodomain and extra-terminal (BET) function abrogation in a preclinical mouse model of MLL-AF4+ infant ALL using the BET inhibitor I-BET151. We reported that I-BET151 is able to arrest the growth of MLL-AF4+ leukemic cells in vitro, by blocking cell division and rapidly inducing apoptosis. Treatment with I-BET151 in vivo impairs the leukemic engraftment of patient-derived primary samples and lower the disease burden in mice. I-BET151 affects the transcriptional profile of MLL-rearranged ALL through the deregulation of BRD4, HOXA7/HOXA9, and RUNX1 gene networks. Moreover, I-BET151 treatment sensitizes glucocorticoid-resistant MLL-rearranged cells to prednisolone in vitro and is more efficient when used in combination with HDAC inhibitors, both in vitro and in vivo Given the aggressiveness of the disease, the failure of the current therapies and the lack of an ultimate cure, this study paves the way for the use of BET inhibitors to treat MLL-rearranged infant ALL for future clinical applications. Mol Cancer Ther; 17(8); 1705-16. ©2018 AACR.
Collapse
Affiliation(s)
- Michela Bardini
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy. .,Department of Medicine, University of Milano-Bicocca, Milano, Italy
| | - Luca Trentin
- Department of Woman and Child Health, University of Padua, Padua, Italy
| | - Francesca Rizzo
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Margherita Vieri
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Angela M Savino
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Patricia Garrido Castro
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy.,Department of Medicine, University of Milano-Bicocca, Milano, Italy
| | - Eddy H J Van Roon
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Mark Kerstjens
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nicholas Smithers
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire, England, United Kingdom
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire, England, United Kingdom
| | | | - Giuseppe Basso
- Department of Woman and Child Health, University of Padua, Padua, Italy
| | - Ronald W Stam
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy.,Department of Medicine, University of Milano-Bicocca, Milano, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| |
Collapse
|