1
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
2
|
Lin GL, Chang HH, Lin WT, Liou YS, Lai YL, Hsieh MH, Chen PK, Liao CY, Tsai CC, Wang TF, Chu SC, Kau JH, Huang HH, Hsu HL, Sun DS. Dachshund Homolog 1: Unveiling Its Potential Role in Megakaryopoiesis and Bacillus anthracis Lethal Toxin-Induced Thrombocytopenia. Int J Mol Sci 2024; 25:3102. [PMID: 38542074 PMCID: PMC10970148 DOI: 10.3390/ijms25063102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Wei-Ting Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Min-Hua Hsieh
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Po-Kong Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Chi-Chih Tsai
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| |
Collapse
|
3
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Yalcin BH, Macas J, Wiercinska E, Harter PN, Fawaz M, Schmachtel T, Ghiro I, Bieniek E, Kosanovic D, Thom S, Fruttiger M, Taketo MM, Schermuly RT, Rieger MA, Plate KH, Bonig H, Liebner S. Wnt/β-Catenin-Signaling Modulates Megakaryopoiesis at the Megakaryocyte-Erythrocyte Progenitor Stage in the Hematopoietic System. Cells 2023; 12:2765. [PMID: 38067194 PMCID: PMC10706863 DOI: 10.3390/cells12232765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/β-catenin for MK and RBC differentiation, we activated β-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, β-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production.
Collapse
Affiliation(s)
- Burak H. Yalcin
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Eliza Wiercinska
- Institute for Transfusion Medicine and Immunohaematology, and DRK-Blutspendedienst BaWüHe, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Malak Fawaz
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (M.A.R.)
| | - Tessa Schmachtel
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (M.A.R.)
| | - Ilaria Ghiro
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Ewa Bieniek
- German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (E.B.); (D.K.)
| | - Djuro Kosanovic
- German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (E.B.); (D.K.)
| | - Sonja Thom
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | | | - Makoto M. Taketo
- Kyoto University Hospital-iACT Graduate School of Medicine, Kyoto University, Kyoto 06-8501, Japan
| | - Ralph T. Schermuly
- German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (E.B.); (D.K.)
| | - Michael A. Rieger
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (M.A.R.)
- German Cancer Consortium (DKTK) at the German Cancer Research Center, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - Karl H. Plate
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohaematology, and DRK-Blutspendedienst BaWüHe, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Reichard A, Wanner N, Farha S, Asosingh K. Hematopoietic stem cells and extramedullary hematopoiesis in the lungs. Cytometry A 2023; 103:967-977. [PMID: 37807901 PMCID: PMC10841540 DOI: 10.1002/cyto.a.24804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Hematopoietic stem cells are key players in hematopoiesis as the body maintains a physiologic steady state, and the signaling pathways and control mechanisms of these dynamic cells are implicated in processes from inflammation to cancer. Although the bone marrow is commonly regarded as the site of hematopoiesis and hematopoietic stem cell residence, these cells also circulate in the blood and reside in extramedullary tissues, including the lungs. Flow cytometry is an invaluable tool in evaluating hematopoietic stem cells, revealing their phenotypes and relative abundances in both healthy and diseased states. This review outlines current protocols and cell markers used in flow cytometric analysis of hematopoietic stem and progenitor cell populations. Specific niches within the bone marrow are discussed, as are metabolic processes that contribute to stem cell self-renewal and differentiation, as well as the role of hematopoietic stem cells outside of the bone marrow at physiologic steady state. Finally, pulmonary extramedullary hematopoiesis and its associated disease states are outlined. Hematopoiesis in the lungs is a new and emerging concept, and discovering ways in which the study of lung-resident hematopoietic stem cells can be translated from murine models to patients will impact clinical treatment.
Collapse
Affiliation(s)
- Andrew Reichard
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Samar Farha
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
- Respiratory Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
- Flow Cytometry Shared Laboratory Resource, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Ogata K, Mochimaru Y, Sei K, Kawahara N, Ogata M, Yamamoto Y. Myeloblasts transition to megakaryoblastic immunophenotypes over time in some patients with myelodysplastic syndromes. PLoS One 2023; 18:e0291662. [PMID: 37729123 PMCID: PMC10511088 DOI: 10.1371/journal.pone.0291662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVES In myelodysplastic syndromes (MDS), neoplastic myeloblast (CD34+CD13+CD33+ cells) numbers often increase over time, leading to secondary acute myeloid leukemia (AML). In recent studies, blasts in some MDS patients have been found to express a megakaryocyte-lineage molecule, CD41, and such patients show extremely poor prognosis. This is the first study to evaluate whether myeloblasts transition to CD41+ blasts over time and to investigate the detailed immunophenotypic features of CD41+ blasts in MDS. METHODS We performed a retrospective cohort study, in which time-dependent changes in blast immunophenotypes were analyzed using multidimensional flow cytometry (MDF) in 74 patients with MDS and AML (which progressed from MDS). RESULTS CD41+ blasts (at least 20% of CD34+ blasts expressing CD41) were detected in 12 patients. In five of these 12 patients, blasts were CD41+ from the first MDF analysis. In the other seven patients, myeloblasts (CD34+CD33+CD41- cells) transitioned to megakaryoblasts (CD34+CD41+ cells) over time, which was often accompanied by disease progression (including leukemic transformation). These CD41+ patients were more frequently observed among patients with monosomal and complex karyotypes. CD41+ blasts were negative for the erythroid antigen, CD235a, and positive for CD33 in all cases, but CD33 expression levels were lower in three cases when compared with CD34+CD41- blasts. Among the five CD41+ patients who underwent extensive immunophenotyping, CD41+ blasts all expressed CD61, but two cases had reduced CD42b expression, three had reduced/absent CD13 expression, and three also expressed CD7. CONCLUSIONS Myeloblasts become megakaryoblastic over time in some MDS patients, and examining the megakaryocyte lineage (not only as a diagnostic work-up but also as follow-up) is needed to detect CD41+ MDS. The immunophenotypic features revealed in this study may have diagnostic relevance for CD41+ MDS patients.
Collapse
Affiliation(s)
- Kiyoyuki Ogata
- Department of Hematology, Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Yuto Mochimaru
- Department of Hematology, Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Kazuma Sei
- Department of Hematology, Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Naoya Kawahara
- Department of Hematology, Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Mika Ogata
- Department of Hematology, Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Yumi Yamamoto
- Department of Hematology, Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| |
Collapse
|
7
|
Zhang H, Li F, Yang M, Zhang W, He M, Xu H, Wang C, Zhang Y, Wang W, Gao Y, Du X, Li Y. MCL-1 Inhibitor S63845 Distinctively Affects Intramedullary and Extramedullary Hematopoiesis. Pharmaceutics 2023; 15:pharmaceutics15041085. [PMID: 37111571 PMCID: PMC10144179 DOI: 10.3390/pharmaceutics15041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Conventional chemotherapy for killing cancer cells using cytotoxic drugs suffers from low selectivity, significant toxicity, and a narrow therapeutic index. Hyper-specific targeted drugs achieve precise destruction of tumors by inhibiting molecular pathways that are critical to tumor growth. Myeloid cell leukemia 1 (MCL-1), an important pro-survival protein in the BCL-2 family, is a promising antitumor target. In this study, we chose to investigate the effects of S63845, a small-molecule inhibitor that targets MCL-1, on the normal hematopoietic system. A mouse model of hematopoietic injury was constructed, and the effects of the inhibitor on the hematopoietic system of mice were evaluated via routine blood tests and flow cytometry. The results showed that S63845 affected the hematopoiesis of various lineages in the early stage of action, causing extramedullary compensatory hematopoiesis in the myeloid and megakaryocytic lineages. The maturation of the erythroid lineage in the intramedullary and extramedullary segments was blocked to varying degrees, and both the intramedullary and extramedullary lymphoid lineages were inhibited. This study provides a complete description of the effects of MCL-1 inhibitor on the intramedullary and extramedullary hematopoietic lineages, which is important for the selection of combinations of antitumor drugs and the prevention of adverse hematopoiesis-related effects.
Collapse
Affiliation(s)
- Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Fei Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xue Du
- Department of Gynecology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin 300121, China
- Correspondence: (X.D.); (Y.L.)
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China (Y.G.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Correspondence: (X.D.); (Y.L.)
| |
Collapse
|
8
|
Frydman GH, Ellett F, Jorgensen J, Marand AL, Zukerberg L, Selig MK, Tessier SN, Wong KHK, Olaleye D, Vanderburg CR, Fox JG, Tompkins RG, Irimia D. Megakaryocytes respond during sepsis and display innate immune cell behaviors. Front Immunol 2023; 14:1083339. [PMID: 36936945 PMCID: PMC10019826 DOI: 10.3389/fimmu.2023.1083339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Megakaryocytes (MKs) are precursors to platelets, the second most abundant cells in the peripheral circulation. However, while platelets are known to participate in immune responses and play significant functions during infections, the role of MKs within the immune system remains largely unexplored. Histological studies of sepsis patients identified increased nucleated CD61+ cells (MKs) in the lungs, and CD61+ staining (likely platelets within microthrombi) in the kidneys, which correlated with the development of organ dysfunction. Detailed imaging cytometry of peripheral blood from patients with sepsis found significantly higher MK counts, which we predict would likely be misclassified by automated hematology analyzers as leukocytes. Utilizing in vitro techniques, we show that both stem cell derived MKs (SC MKs) and cells from the human megakaryoblastic leukemia cell line, Meg-01, undergo chemotaxis, interact with bacteria, and are capable of releasing chromatin webs in response to various pathogenic stimuli. Together, our observations suggest that MK cells display some basic innate immune cell behaviors and may actively respond and play functional roles in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- Galit H. Frydman
- Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Felix Ellett
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Julianne Jorgensen
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Anika L. Marand
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Shannon N. Tessier
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Keith H. K. Wong
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - David Olaleye
- Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - James G. Fox
- Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ronald G. Tompkins
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Daniel Irimia
- BioMEMS Resource Center and Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Purton LE. Adult murine hematopoietic stem cells and progenitors: an update on their identities, functions, and assays. Exp Hematol 2022; 116:1-14. [PMID: 36283572 DOI: 10.1016/j.exphem.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
The founder of all blood cells are hematopoietic stem cells (HSCs), which are rare stem cells that undergo key cell fate decisions to self-renew to generate more HSCs or to differentiate progressively into a hierarchy of different immature hematopoietic cell types to ultimately produce mature blood cells. These decisions are influenced both intrinsically and extrinsically, the latter by microenvironment cells in the bone marrow (BM). In recent decades, notable progress in our ability to identify, isolate, and study key properties of adult murine HSCs and multipotent progenitor (MPP) cells has challenged our prior understanding of the hierarchy of these primitive hematopoietic cells. These studies have revealed the existence of at least two distinct HSC types in adults: one that generates all hematopoietic cell lineages with almost equal potency and one that is platelet/myeloid-biased and increases with aging. These studies have also revealed distinct MPP cell types that have different functional potential. This review provides an update to these murine HSCs and MPP cells, their key functional properties, and the assays that have been used to assess their potential.
Collapse
Affiliation(s)
- Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Li B, Wu Z, Xu W, Han W, Liu J, Wang D, Zhang G. Treatment of a Hemophilia B Mouse Model with Platelet-Targeted Expression of Factor IX Padua. Hum Gene Ther 2021; 32:506-516. [PMID: 33764159 DOI: 10.1089/hum.2020.309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeting the coagulation factor IX (FIX) expression in platelets has been shown to be effective in ameliorating bleeding in hemophilia B (HB) mice. To improve the therapeutic effects and evaluate the safety of this gene therapy strategy, we generated a transgenic mouse model on an HB background with FIX Padua target expressed in platelets. The transgenic mice exhibited stable expression and storage of FIX Padua in platelets. The platelet-stored FIX Padua could be released with the activation of platelets, and the proportion of platelet-stored FIX Padua in whole blood was the same as that of platelet-stored wild-type human FIX. The platelet-derived FIX Padua showed substantially increased specific activity compared with wild-type FIX. Reduced bleeding volume in the FIX Padua transgenic mice demonstrated that bleeding in the mice was improved. Levels of thrombin-antithrombin complex, fibrinogen, D-Dimer, and blood cell counts were normal in the transgenic mice, suggesting that thrombotic risk was not increased in this mouse model. However, the leakage and failure to overcome the presence of inhibitor to wild-type FIX is also observed with FIX Padua, as expected. Taken together, our results support the conclusion that targeting FIX Padua expression in platelets may be an effective and safe gene therapy strategy for HB, and could provide an ideal model to evaluate the safety of platelet-targeted gene therapy for treating hemophilia.
Collapse
Affiliation(s)
- Binbin Li
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zhihan Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Wenjue Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Wenwen Han
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jiayu Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Dawei Wang
- National Research Center for Translational Medicine, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guowei Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Kelly KL, Reagan WJ, Sonnenberg GE, Clasquin M, Hales K, Asano S, Amor PA, Carvajal-Gonzalez S, Shirai N, Matthews MD, Li KW, Hellerstein MK, Vera NB, Ross TT, Cappon G, Bergman A, Buckeridge C, Sun Z, Qejvanaj EZ, Schmahai T, Beebe D, Pfefferkorn JA, Esler WP. De novo lipogenesis is essential for platelet production in humans. Nat Metab 2020; 2:1163-1178. [PMID: 32929234 DOI: 10.1038/s42255-020-00272-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first step of de novo lipogenesis (DNL). Pharmacologic inhibition of ACC has been of interest for therapeutic intervention in a wide range of diseases. We demonstrate here that ACC and DNL are essential for platelet production in humans and monkeys, but in not rodents or dogs. During clinical evaluation of a systemically distributed ACC inhibitor, unexpected dose-dependent reductions in platelet count were observed. While platelet count reductions were not observed in rat and dog toxicology studies, subsequent studies in cynomolgus monkeys recapitulated these platelet count reductions with a similar concentration response to that in humans. These studies, along with ex vivo human megakaryocyte maturation studies, demonstrate that platelet lowering is a consequence of DNL inhibition likely to result in impaired megakaryocyte demarcation membrane formation. These observations demonstrate that while DNL is a minor quantitative contributor to global lipid balance in humans, DNL is essential to specific lipid pools of physiological importance.
Collapse
Affiliation(s)
- Kenneth L Kelly
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - William J Reagan
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Gabriele E Sonnenberg
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michelle Clasquin
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shoh Asano
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Paul A Amor
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - Norimitsu Shirai
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Marcy D Matthews
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin W Li
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Nicholas B Vera
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Gregg Cappon
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Arthur Bergman
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Clare Buckeridge
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Zhongyuan Sun
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Enida Ziso Qejvanaj
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - David Beebe
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
12
|
Manshouri T, Verstovsek S, Harris DM, Veletic I, Zhang X, Post SM, Bueso-Ramos CE, Estrov Z. Primary myelofibrosis marrow-derived CD14+/CD34- monocytes induce myelofibrosis-like phenotype in immunodeficient mice and give rise to megakaryocytes. PLoS One 2019; 14:e0222912. [PMID: 31569199 PMCID: PMC6768666 DOI: 10.1371/journal.pone.0222912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023] Open
Abstract
To confirm that neoplastic monocyte-derived collagen- and fibronectin-producing fibrocytes induce bone marrow (BM) fibrosis in primary myelofibrosis (PMF), we injected PMF BM-derived fibrocyte-precursor CD14+/CD34- monocytes into the tail vein of NOD-SCID-γ (NSG) mice. PMF BM-derived CD14+/CD34- monocytes engrafted and induced a PMF-like phenotype with splenomegaly, myeloid hyperplasia with clusters of atypical megakaryocytes, persistence of the JAK2V617F mutation, and BM and spleen fibrosis. As control we used normal human BM-derived CD14+/CD34- monocytes. These monocytes also engrafted and gave rise to normal megakaryocytes that, like PMF CD14+/CD34--derived megakaryocytes, expressed HLA-ABC and human CD42b antigens. Using 2 clonogenic assays we confirmed that PMF and normal BM-derived CD14+/CD34- monocytes give rise to megakaryocyte colony-forming cells, suggesting that a subpopulation BM monocytes harbors megakaryocyte progenitor capacity. Taken together, our data suggest that PMF monocytes induce myelofibrosis-like phenotype in immunodeficient mice and that PMF and normal BM-derived CD14+/CD34- monocytes give rise to megakaryocyte progenitor cells.
Collapse
Affiliation(s)
- Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - David M. Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sean M. Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
13
|
Fu W, Wang J, Jiang H, Hu X. Myocardial infarction induces bone marrow megakaryocyte proliferation, maturation and platelet production. Biochem Biophys Res Commun 2019; 510:456-461. [PMID: 30732856 DOI: 10.1016/j.bbrc.2019.01.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023]
Abstract
Platelet, apart from its classic role of homeostasis, serves also as a crucial immune cell component that contributes to the aggravation of atherosclerosis. It has been reported that myocardial infarction (MI) triggers leukocytosis in the bone marrow and spleen, which accelerates post-MI atherosclerosis. However, it remains unclear whether thrombopoiesis is also enhanced after MI. Here, using flow cytometry and bone marrow whole-mount immunofluorescence staining combined with three-dimensional (3D) reconstruction, we for the first time demonstrated an enhanced thrombopoiesis and megakaryopoiesis in a mouse model of coronary artery ligation as a mimic of MI. We showed that MI leads to increasing number of peripheral platelets, as well as elevating number and larger size of bone marrow MKs. We also observed more proplatelets and fragmented MKs, and a closer spatial distribution of MK populations to the bone marrow vascular niche after MI. This study provides direct evidence that MI induces bone marrow megakaryocyte proliferation, maturation and platelet production. It opens a new scope that targeting platelet production might become a novel therapeutic approach for attenuating post-MI atherosclerosis.
Collapse
Affiliation(s)
- Wenwen Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
14
|
Da Q, Derry PJ, Lam FW, Rumbaut RE. Fluorescent labeling of endogenous platelets for intravital microscopy: Effects on platelet function. Microcirculation 2018; 25:e12457. [PMID: 29701894 DOI: 10.1111/micc.12457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/18/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Monitoring endogenous platelets during intravital microscopy often involves two approaches: fluorescently labeled antibodies or genetic models of platelet-specific fluorescent protein expression. Due to limited data available on platelet functional changes induced by these methods, we compared functional effects of these methods on platelets. METHODS Platelet aggregation to collagen and thrombin, and collagen matrix-mediated platelet adhesion/aggregation under flow were tested. We assessed platelets from mice expressing EYFP on platelets (Cre(+)), littermate controls (Cre(-)), C57BL/6 mice, and platelets from vehicle control and x-488 treatment. We utilized intravital microscopy to monitor platelets in vivo using Cre(+) mice and x-488 treatment. RESULTS Both genetic and antibody-based approaches yielded substantial platelet-specific fluorescence. Platelets from Cre(+) and Cre(-) mice behaved similarly in aggregation and adhesion/aggregation under flow. However, they exhibited significantly enhanced aggregation and higher adhesion/aggregation as compared to platelets from C57BL/6 mice. Compared to vehicle control, x-488 platelet labeling did not induce significant functional changes in vitro. Both methods of platelet labeling provided satisfactory platelet detectability in vivo. CONCLUSIONS x-488 antibody labeling of platelets induced less alteration of platelet function than genetic approaches under our experimental conditions and seems more suitable for monitoring of endogenous platelets.
Collapse
Affiliation(s)
- Qi Da
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul J Derry
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fong W Lam
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Gertz JM, McLean KC, Bouchard BA. Endocytosed factor V is trafficked to CD42b + proplatelet extensions during differentiation of human umbilical cord blood-derived megakaryocytes. J Cell Physiol 2018; 233:8691-8700. [PMID: 29761851 DOI: 10.1002/jcp.26749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023]
Abstract
Plasma- and platelet-derived factor Va are essential for thrombin generation catalyzed by the prothrombinase complex; however, several observations demonstrate that the platelet-derived cofactor, which is formed following megakaryocyte endocytosis and modification of the plasma procofactor, factor V, is more hemostatically relevant. Factor V endocytosis, as a function of megakaryocyte differentiation and proplatelet formation, was assessed by flow cytometry and microscopy in CD34+ hematopoietic progenitor cells isolated from human umbilical cord blood and cultured for 12 days in the presence of cytokines to induce ex vivo differentiation into megakaryocytes. Expression of an early marker of megakaryocyte differentiation, CD41, endocytosis of factor V, and the percentage of CD41+ cells that endocytosed factor V increased from days 6 to 12 of differentiation. In contrast, statistically significant decreases in expression of the stem cell marker, CD34, and in the percentage of CD34+ cells that endocytosed factor V were observed. A statistically significant increase in the expression of CD42b, a late marker of megakaryocyte differentiation, was also observed over time, such that by Day 12, all CD42b+ cells endocytosed factor V and expressed CD41. This endocytosed factor V was trafficked to proplatelet extensions and was localized in a punctate pattern in the cytoplasm consistent with its storage in α-granules. In conclusion, loss of CD34 and expression of CD42b define cells capable of factor V endocytosis and trafficking to proplatelet extensions during differentiation of megakaryocytes ex vivo from progenitor cells isolated from umbilical cord blood.
Collapse
Affiliation(s)
- Jacqueline M Gertz
- Department of Biochemistry, The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Kelley C McLean
- Department of Obstetrics, Gynecology and Reproductive Sciences, The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Beth A Bouchard
- Department of Biochemistry, The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| |
Collapse
|
16
|
Cooper TT, Sherman SE, Kuljanin M, Bell GI, Lajoie GA, Hess DA. Inhibition of Aldehyde Dehydrogenase-Activity Expands Multipotent Myeloid Progenitor Cells with Vascular Regenerative Function. Stem Cells 2018; 36:723-736. [DOI: 10.1002/stem.2790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Tyler T. Cooper
- Department of Physiology and Pharmacology, Western University; London Ontario Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute; London Ontario Canada
| | - Stephen E. Sherman
- Department of Physiology and Pharmacology, Western University; London Ontario Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute; London Ontario Canada
| | - Miljan Kuljanin
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute; London Ontario Canada
- Don Rix Protein Identification Facility, Department of Biochemistry; Western University; London Ontario Canada
| | - Gillian I. Bell
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute; London Ontario Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry; Western University; London Ontario Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Western University; London Ontario Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute; London Ontario Canada
| |
Collapse
|
17
|
Attatippaholkun N, Kosaisawe N, U-Pratya Y, Supraditaporn P, Lorthongpanich C, Pattanapanyasat K, Issaragrisil S. Selective Tropism of Dengue Virus for Human Glycoprotein Ib. Sci Rep 2018; 8:2688. [PMID: 29426910 PMCID: PMC5807543 DOI: 10.1038/s41598-018-20914-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 11/10/2022] Open
Abstract
Since the hemorrhage in severe dengue seems to be primarily related to the defect of the platelet, the possibility that dengue virus (DENV) is selectively tropic for one of its surface receptors was investigated. Flow cytometric data of DENV-infected megakaryocytic cell line superficially expressing human glycoprotein Ib (CD42b) and glycoprotein IIb/IIIa (CD41 and CD41a) were analyzed by our custom-written software in MATLAB. In two-dimensional analyses, intracellular DENV was detected in CD42b+, CD41+ and CD41a+ cells. In three-dimensional analyses, the DENV was exclusively detected in CD42b+ cells but not in CD42b- cells regardless of the other expressions. In single-cell virus-protein analyses, the amount of DENV was directly correlated with those of CD42b at the Pearson correlation coefficient of 0.9. Moreover, RT- PCR and apoptosis assays showed that DENV was able to replicate itself and release its new progeny from the infected CD42b+ cells and eventually killed those cells. These results provide evidence for the involvement of CD42b in DENV infection.
Collapse
Affiliation(s)
- Nattapol Attatippaholkun
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Laboratory for System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Nont Kosaisawe
- Siriraj Laboratory for System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panthipa Supraditaporn
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Sabaghi F, Shamsasenjan K, Movasaghpour AA, Amirizadeh N, Nikougoftar M, Bagheri N. Evaluation of human cord blood CD34+ hematopoietic stem cell differentiation to megakaryocyte on aminated PES nanofiber scaffold compare to 2-D culture system. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2016; 44:1062-8. [PMID: 25761536 DOI: 10.3109/21691401.2015.1011800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Recently, umbilical cord blood (UCB) has been recognized as a suitable potential source of hematopoietic stem/progenitor cells (HSPCs) for transplantation. Lengthy thrombocytopenia after UCB transplantation is a major problem because of insufficient megakaryocyte (Mk) progenitors, which results in delayed platelet recovery. Frequent allogenic platelet transfusion leads to resistance to platelet units and higher risk of transmission of pathogenic agent. OBJECTIVE Ex vivo expansion of HSPCs and their differentiation to Mk progenitors on aminated PES nanofiber could lead to faster platelet recovery after UCB transplantation. MATERIALS AND METHODS CD34 cells were positively enriched using the MidiMACS system. CD34(+) cells were seeded onto conventional culture and aminated PES scaffold. The proliferation of CD34(+) cells, and also their differentiation into Mk progenitors, were evaluated. We used the flow cytometric method for analyzing CD41 and CD61 markers and real-time PCR for the expression level of transcription factors, as NF-E2 and GATA-1. RESULTS This study indicated increased CD34(+) cell population in aminated PES compared to the conventional system. After differentiation, the amount of CD41/CD61-expressing cells and the quantity of NF-E2 expression level increased in the aminated PES versus the 2-D system. The quantity of GATA-1 expression level was reduced on CD41/CD61(+) cells compared to CD34(+) cells, with no difference between the aminated PES and the conventional system. DISCUSSION Aminated PES nanofiber could have more effect on the proliferation of CD34(+) cells and Mk differentiation than the conventional culture. CONCLUSION Injection of the expanded cells and differentiated Mk progenitors, along with the transplantation of UCB stem cells might accelerate recovery of platelets and decrease the period of thrombocytopenia after transplantation.
Collapse
Affiliation(s)
- Fatemeh Sabaghi
- a Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| | - Karim Shamsasenjan
- b Hematology Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Akbari Movasaghpour
- a Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| | - Naser Amirizadeh
- b Hematology Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mahin Nikougoftar
- a Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| | - Nadia Bagheri
- a Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
19
|
Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, Teichmann SA, Cvejic A. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells. Cell Rep 2016; 14:966-977. [PMID: 26804912 PMCID: PMC4742565 DOI: 10.1016/j.celrep.2015.12.082] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.
Collapse
Affiliation(s)
- Iain C Macaulay
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Valentine Svensson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Charlotte Labalette
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Lauren Ferreira
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Fiona Hamey
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Thierry Voet
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK.
| |
Collapse
|
20
|
Epigenetic Control of Haematopoietic Stem Cell Aging and Its Clinical Implications. Stem Cells Int 2015; 2016:5797521. [PMID: 26681950 PMCID: PMC4670691 DOI: 10.1155/2016/5797521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023] Open
Abstract
Aging, chronic inflammation, and environmental insults play an important role in a number of disease processes through alterations of the epigenome. In this review we explore how age-related changes in the epigenetic landscape can affect heterogeneity within the haematopoietic stem cell (HSC) compartment and the deriving clinical implications.
Collapse
|
21
|
Kellner J, Li S, Zweidler-McKay PA, Shpall EJ, McNiece I. Phenotypic and functional comparison of mobilized peripheral blood versus umbilical cord blood megakaryocyte populations. Cytotherapy 2014; 17:418-27. [PMID: 25532425 DOI: 10.1016/j.jcyt.2014.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND AIMS Hematopoietic stem cell transplantation of mobilized peripheral blood progenitor cell (PBPC) products results in rapid platelet engraftment, whereas the use of cord blood (CB) shows significant delays. The difference in the quality and number of megakaryocyte (MK) progenitors that may be responsible for the delay in platelet engraftment has not been fully defined. The objective of this study was to quantify the cells of the MK lineage in PBPC and CB products to determine whether potential differences exist. METHODS We examined PBPC or CB for differences in surface markers and subpopulations as well as polyploidization status within the MK lineage. Colony-forming assays were used to determine whether differences exist in the clonogenic MK progenitor cell. Finally, we transplanted PBPC and CB mononuclear cells into NOD/SCID/IL2Rγ-/- (NSG) mice to study platelet engraftment rates. RESULTS Equivalent MK populations and polyploidization was observed in PBPCs and CB. MK progenitors were present only in CD34+ cells and had little difference in colony growth between PBPC and CB. Additionally, MK subpopulations were similar in either product with a slightly more progenitor-enriched phenotype in CB. Finally, when PBPC or CB was transplanted at similar doses, equivalent platelet engraftment rates were observed. CONCLUSIONS PBPC and CB contain similar frequencies of MK populations, and, when transplanted in comparable doses, CB is as effective as PBPCs in producing platelet engraftment in vivo. Understanding the differences in MK populations between PBPC and CB could help generate protocols to improve platelet engraftment after CB transplantation.
Collapse
Affiliation(s)
- Joshua Kellner
- Division of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sufang Li
- Division of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick A Zweidler-McKay
- Division of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J Shpall
- Division of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ian McNiece
- Division of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
22
|
Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:927619. [PMID: 24803988 PMCID: PMC3997986 DOI: 10.1155/2014/927619] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 01/01/2023]
Abstract
Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.
Collapse
|
23
|
Lu H, Kojima K, Battula VL, Korchin B, Shi Y, Chen Y, Spong S, Thomas DA, Kantarjian H, Lock RB, Andreeff M, Konopleva M. Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth. Ann Hematol 2013; 93:485-492. [PMID: 24154679 DOI: 10.1007/s00277-013-1939-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knockdown CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA. Silencing of CTGF resulted in significant suppression of leukemia cell growth compared to control vector, which was associated with AKT/mTOR inactivation and increased levels of cyclin-dependent kinase inhibitor p27. CTGF knockdown sensitized ALL cells to vincristine and methotrexate. Treatment with an anti-CTGF monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with primary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine, L-asparaginase and dexamethasone). Data suggest that CTGF represents a targetable molecular aberration in B-ALL, and blocking CTGF signaling in conjunction with administration of chemotherapy may represent a novel therapeutic approach for ALL patients.
Collapse
Affiliation(s)
- Hongbo Lu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Borys Korchin
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Yuexi Shi
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Ye Chen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | | | - Deborah A Thomas
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Richard B Lock
- Leukemia Biology, Children's Cancer Institute Australia, Randwick, Australia
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 2013; 121:4463-72. [PMID: 23564910 DOI: 10.1182/blood-2012-09-457929] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hematopoietic stem cell (HSC) compartment is heterogeneous, yet our understanding of the identities of different HSC subtypes is limited. Here we show that platelet integrin CD41 (αIIb), currently thought to only transiently mark fetal HSCs, is expressed on an adult HSC subtype that accumulates with age. CD41+ HSCs were largely quiescent and exhibited myeloerythroid and megakaryocyte gene priming, governed by Gata1, whereas CD41- HSCs were more proliferative and exhibited lymphoid gene priming. When isolated without the use of blocking antibodies, CD41+ HSCs possessed long-term repopulation capacity on serial transplantations and showed a marked myeloid bias compared with CD41- HSCs, which yielded a more lymphoid-biased progeny. CD41-knockout (KO) mice displayed multilineage hematopoietic defects coupled with decreased quiescence and survival of HSCs, suggesting that CD41 is functionally relevant for HSC maintenance and hematopoietic homeostasis. Transplantation experiments indicated that CD41-KO-associated defects are long-term transplantable, HSC-derived and, in part, mediated through the loss of platelet mass leading to decreases in HSC exposure to important platelet released cytokines, such as transforming growth factor β1. In summary, our data provide a novel marker to identify a myeloid-biased HSC subtype that becomes prevalent with age and highlights the dogma of HSC regulation by their progeny.
Collapse
|
25
|
VEGFR-3 is expressed on megakaryocyte precursors in the murine bone marrow and plays a regulatory role in megakaryopoiesis. Blood 2012; 120:1899-907. [PMID: 22797697 DOI: 10.1182/blood-2011-09-376657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
VEGFR-3 is a transmembrane receptor tyrosine kinase that is activated by its ligands VEGF-C and VEGF-D. Although VEGFR-3 has been linked primarily to the regulation of lymphangiogenesis, in the present study, we demonstrate a role for VEGFR-3 in megakaryopoiesis. Using a human erythroleukemia cell line and primary murine BM cells, we show that VEGFR-3 is expressed on megakaryocytic progenitor cells through to the promegakaryoblast stage. Functionally, specific activation of VEGFR-3 impaired the transition to polyploidy of CD41+ cells in primary BM cultures. Blockade of VEGFR-3 promoted endoreplication consistently. In vivo, long-term activation or blockade of VEGFR-3 did not affect steady-state murine megakaryopoiesis or platelet counts significantly. However, activation of VEGFR-3 in sublethally irradiated mice resulted in significantly elevated numbers of CD41+ cells in the BM and a significant increase in diploid CD41+ cells, whereas the number of polyploid CD41+ cells was reduced significantly. Moreover, activation of VEGFR-3 increased platelet counts in thrombopoietin-treated mice significantly and modulated 5-fluorouracil-induced thrombocytosis strongly, suggesting a regulatory role for VEGFR-3 in megakaryopoiesis.
Collapse
|
26
|
Celebi B, Mantovani D, Pineault N. Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells. Biomed Mater 2011; 6:055011. [PMID: 21931196 DOI: 10.1088/1748-6041/6/5/055011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Umbilical cord blood (UCB) transplantation and haematological recovery are currently limited by the amount of haematopoietic progenitor cells (HPCs) present in each unit. HPCs and haematopoietic stem cells (HSCs) normally interact with cells and extracellular matrix (ECM) proteins present within the endosteal and vascular niches. Hence, we investigated whether coating of culture surfaces with ECM proteins normally present in the marrow microenvironment could benefit the ex vivo expansion of HPCs. Towards this, collagen types I and IV (COL I and IV), laminin (LN) and fibronectin (FN) were tested individually or as component of two ECM-mix complexes. Individually, ECM proteins had both common and unique properties on the growth and differentiation of UCB CD34+ cells; some ECM proteins favoured the differentiation of some lineages over that of others (e.g. FN for erythroids), some the expansion of HPCs (e.g. LN and megakaryocyte (MK) progenitor) while others had less effects. Next, two ECM-mix complexes were tested; the first one contained all four ECM proteins (4ECMp), while the second 'basement membrane-like structure' was without COL I (3ECMp). Removal of COL I led to strong reductions in cell growth and HPCs expansion. Interestingly, the 4ECMp-mix complex reproducibly increased CD34+ (1.3-fold) and CD41+ (1.2-fold) cell expansions at day 6 (P < 0.05) versus control, and induced greater myeloid progenitor expansion (P < 0.05) than 3ECMp. In conclusion, these results suggest that optimization of BM ECM protein complexes could provide a better environment for the ex vivo expansion of haematopoietic progenitors than individual ECM protein.
Collapse
Affiliation(s)
- Betül Celebi
- Hema-Quebec, Research & Development Department, Quebec City, PQ, Canada
| | | | | |
Collapse
|
27
|
Robin C, Ottersbach K, Boisset JC, Oziemlak A, Dzierzak E. CD41 is developmentally regulated and differentially expressed on mouse hematopoietic stem cells. Blood 2011; 117:5088-91. [PMID: 21415271 PMCID: PMC3109535 DOI: 10.1182/blood-2011-01-329516] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/21/2011] [Indexed: 02/02/2023] Open
Abstract
CD41 expression is associated with the earliest stages of mouse hematopoiesis. It is notably expressed on some cells of the intra-aortic hematopoietic clusters, an area where the first adult-repopulating hematopoietic stem cells (HSCs) are generated. Although it is generally accepted that CD41 expression marks the onset of primitive/definitive hematopoiesis, there are few published data concerning its expression on HSCs. It is as yet uncertain whether HSCs express CD41 throughout development, and if so, to what level. We performed a complete in vivo transplantation analysis with yolk sac, aorta, placenta, and fetal liver cells, sorted based on CD41 expression level. Our data show that the earliest emerging HSCs in the aorta express CD41 in a time-dependent manner. In contrast, placenta and liver HSCs are CD41⁻. Thus, differential and temporal expression of CD41 by HSCs in the distinct hematopoietic territories suggests a developmental/dynamic regulation of this marker throughout development.
Collapse
Affiliation(s)
- Catherine Robin
- Department of Cell Biology, Erasmus Medical Center, Erasmus MC Stem Cell Institute, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Abstract
The effects of Notch signaling on human megakaryocytic and erythroid differentiation were investigated by exposing human CD34(+) progenitor cells to an immobilized chimeric form of the Notch ligand, Delta-like4 (Dll4Fc). Exposure of human cord blood CD34(+) cells to Dll4Fc induced a modest enhancement of erythroid cell production. Conversely, under megakaryocytic culture conditions, Dll4Fc strongly impaired platelet production by reducing the generation of mature CD41a(+)CD42b(+) megakaryocytes (MKs) and platelet-forming cells. The inhibitory activity of Dll4 on terminal MK differentiation was confirmed by culturing CD34(+) cells onto Dll-4-expressing stroma cells (engineered to express the membrane-anchored form of Dll4). The reduced production of mature CD41a(+)CD42(+) cells was rescued by inhibiting Notch signaling either with the N-N-(3,5-difluorophenacetyl-L-alanyl)-S-phenylglycine t-butyl ester γ-secretase inhibitor or the dominant-negative version of Mastermind. Dll4 impaired the generation of mature CD41a(+)CD42b(+) cells and proplatelet formation without affecting earlier steps of MK differentiation, such as production of megakaryocytic/erythroid progenitors and colony-forming units-MKs. This blockade was accompanied by a modulation of the transcriptional program of megakaryocytic differentiation. All these results indicate that Dll4/Notch signaling inhibits human terminal MK differentiation.
Collapse
|
29
|
Katsman Y, Foo AH, Leontyev D, Branch DR. Improved mouse models for the study of treatment modalities for immune-mediated platelet destruction. Transfusion 2010; 50:1285-94. [DOI: 10.1111/j.1537-2995.2009.02558.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Huang H, Cantor AB. Common features of megakaryocytes and hematopoietic stem cells: what's the connection? J Cell Biochem 2009; 107:857-64. [PMID: 19492306 DOI: 10.1002/jcb.22184] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Megakaryocytes (Mks) are rare polyploid bone marrow cells whose function is to produce blood platelets. Since the purification and cloning of the major Mk cytokine, thrombopoietin, in 1994, considerable progress has been made in understanding the biology of Mk development. Remarkably, these advances have revealed a number of key features of Mks that are shared with hematopoietic stem cells (HSCs), such as common surface receptors, lineage-specific transcription factors, and specialized signaling pathways. Why there should be such a close connection between these two cell types remains unclear. In this Prospect article, we summarize the data supporting these shared features and speculate on possible teleological bases. In particular, we focus on common links involving developmental hierarchy, endothelial cells, and bone marrow niche interactions. This discussion highlights new data showing close ontologic relationship between HSCs and specialized "hemogenic" endothelial cells during development, and functional overlap between Mks/platelets and endothelial cells. Overall, these findings may be of relevance in the development of techniques for HSC ex vivo culture and/or possible generation of HSCs via somatic cell reprogramming.
Collapse
Affiliation(s)
- Hui Huang
- Division of Pediatric Hematology-Oncology, Children's Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
31
|
Mercher T, Raffel GD, Moore SA, Cornejo MG, Baudry-Bluteau D, Cagnard N, Jesneck JL, Pikman Y, Cullen D, Williams IR, Akashi K, Shigematsu H, Bourquin JP, Giovannini M, Vainchenker W, Levine RL, Lee BH, Bernard OA, Gilliland DG. The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Invest 2009; 119:852-64. [PMID: 19287095 DOI: 10.1172/jci35901] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 02/04/2009] [Indexed: 12/30/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a form of acute myeloid leukemia (AML) associated with a poor prognosis. The genetics and pathophysiology of AMKL are not well understood. We generated a knockin mouse model of the one twenty-two-megakaryocytic acute leukemia (OTT-MAL) fusion oncogene that results from the t(1;22)(p13;q13) translocation specifically associated with a subtype of pediatric AMKL. We report here that OTT-MAL expression deregulated transcriptional activity of the canonical Notch signaling pathway transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and caused abnormal fetal megakaryopoiesis. Furthermore, cooperation between OTT-MAL and an activating mutation of the thrombopoietin receptor myeloproliferative leukemia virus oncogene (MPL) efficiently induced a short-latency AMKL that recapitulated all the features of human AMKL, including megakaryoblast hyperproliferation and maturation block, thrombocytopenia, organomegaly, and extensive fibrosis. Our results establish that concomitant activation of RBPJ (Notch signaling) and MPL (cytokine signaling) transforms cells of the megakaryocytic lineage and suggest that specific targeting of these pathways could be of therapeutic value for human AMKL.
Collapse
Affiliation(s)
- Thomas Mercher
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Riley RS, Williams D, Ross M, Zhao S, Chesney A, Clark BD, Ben-Ezra JM. Bone marrow aspirate and biopsy: a pathologist's perspective. II. interpretation of the bone marrow aspirate and biopsy. J Clin Lab Anal 2009; 23:259-307. [PMID: 19774631 PMCID: PMC6648980 DOI: 10.1002/jcla.20305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/19/2009] [Indexed: 12/11/2022] Open
Abstract
Bone marrow examination has become increasingly important for the diagnosis and treatment of hematologic and other illnesses. Morphologic evaluation of the bone marrow aspirate and biopsy has recently been supplemented by increasingly sophisticated ancillary assays, including immunocytochemistry, cytogenetic analysis, flow cytometry, and molecular assays. With our rapidly expanding knowledge of the clinical and biologic diversity of leukemia and other hematologic neoplasms, and an increasing variety of therapeutic options, the bone marrow examination has became more critical for therapeutic monitoring and planning optimal therapy. Sensitive molecular techniques, in vitro drug sensitivity testing, and a number of other special assays are available to provide valuable data to assist these endeavors. Fortunately, improvements in bone marrow aspirate and needle technology has made the procurement of adequate specimens more reliable and efficient, while the use of conscious sedation has improved patient comfort. The procurement of bone marrow specimens was reviewed in the first part of this series. This paper specifically addresses the diagnostic interpretation of bone marrow specimens and the use of ancillary techniques.
Collapse
Affiliation(s)
- Roger S Riley
- Medical College of Virginia Hospitals of Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Saito H. Progress in allergy signal research on mast cells: systemic approach to mast cell biology in allergic diseases. J Pharmacol Sci 2008; 106:341-6. [PMID: 18360090 DOI: 10.1254/jphs.fm0070192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
At the end of the last century, microarray technology that examines the total genes and transcripts present in a cell became available as a laboratory tool. Mast cells are known to play a pivotal role in initiating allergic inflammation by releasing various mediators and cytokines. According to the recent microarray-based studies, mast cells have been found to be much more versatile functional molecules than we ever thought. Also, genes that are exclusively expressed in mast cells have been identified in comparison with other cell types. In this article, the outcome of microarray-based analyses on the role of mast cells in allergic inflammation will be reviewed by focusing on the mast cell-specific genes as drug targets.
Collapse
Affiliation(s)
- Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health & Development, Japan.
| |
Collapse
|
34
|
Mattia G, Milazzo L, Vulcano F, Pascuccio M, Macioce G, Hassan HJ, Giampaolo A. Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Exp Hematol 2007; 36:244-52. [PMID: 18023520 DOI: 10.1016/j.exphem.2007.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/05/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Delayed platelet recovery post-cord blood (CB) transplantation might be due to CB characteristics: low maturity of stem cell compartment, poor production of CD34+/CD41+ cells when induced to differentiate along the megakaryocytic (MK) lineage, retention of a low ploidy in the expanded MKs. Ex vivo expansion of CB hematopoietic progenitor cells for reconstitution of different human hematopoietic lineages has already been developed in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. However, optimal conditions for MK-progenitor engraftment to reduce hemorrhaging risk still to be developed. This study assesses the hypothesis that CB-CD34+ amplification with thrombopoietin (TPO) can be applied to a portion of a CB transplant unit to stimulate recovery along MK differentiation program. MATERIALS AND METHODS Human CB-CD34+ cells were amplified in a serum-free, clinical grade medium with 100 ng/mL TPO alone and in addition to other cytokines (Kit ligand, interleukin-6, and Flt-3 ligand). Seven-day cultured cells were transplanted into irradiated NOD/SCID mice and engraftment, megakaryocytopoiesis, and platelet production were assessed. RESULTS Platelet release was successful and continuously present for at least 8 weeks in NOD/SCID mice transplanted with CB cells stimulated by TPO. Thrombocytopoiesis was more effective with transplanted TPO-amplified cells than with the cytokine cocktails. CONCLUSION Platelet number obtained is within the minimum level considered sufficient for hemostasis. Furthermore, amplified cells maintain their self-renewal capacity and multilineage potential differentiation. Thus, transplantation of TPO-expanded CB cells has the potential favoring both platelet recovery and human engraftment.
Collapse
Affiliation(s)
- Gianfranco Mattia
- Department of Hematology, Oncology and Molecular medicine, Section of Transfusion Methodologies, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Chaligné R, James C, Tonetti C, Besancenot R, Le Couédic JP, Fava F, Mazurier F, Godin I, Maloum K, Larbret F, Lécluse Y, Vainchenker W, Giraudier S. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 2007; 110:3735-43. [PMID: 17709604 DOI: 10.1182/blood-2007-05-089003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The MPL (W515L and W515K) mutations have been detected in granulocytes of patients suffering from certain types of primitive myelofibrosis (PMF). It is still unknown whether this molecular event is also present in lymphoid cells and therefore potentially at the hematopoietic stem cell (HSC) level. Toward this goal, we conducted MPL genotyping of mature myeloid and lymphoid cells and of lymphoid/myeloid progenitors isolated from PMF patients carrying the W515 mutations. We detected both MPL mutations in granulocytes, monocytes, and platelets as well as natural killer (NK) cells but not in T cells. B/NK/myeloid and/or NK/myeloid CD34(+)CD38(-)-derived clones were found to carry the mutations. Long-term reconstitution of MPL W515 CD34(+) cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice was successful for as long as 12 weeks after transplantation, indicating that MPL W515 mutations were present in HSCs. Moreover, the 2 MPL mutations induced a spontaneous megakaryocytic growth in culture with an overall normal response to thrombopoietin (TPO). In contrast, erythroid progenitors remained EPO dependent. These results demonstrate that in PMF, the MPL W515L or K mutation induces a spontaneous megakaryocyte (MK) differentiation and occurs in a multipotent HSCs.
Collapse
Affiliation(s)
- Ronan Chaligné
- Institut National de la Santé et de la Recherche Médicale (INSERM), U790, Université Paris XI, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Megakaryocytopoiesis is the process that leads to the production of platelets. This process involves the commitment of multipotent hematopoietic stem cells toward megakaryocyte (MK) progenitors, the proliferation and differentiation of MK progenitors, the polyploidization of MK precursors and the maturation of MK. Mature MK produce platelets by cytoplasmic fragmentation occurring through a dynamic and regulated process, called proplatelet formation, and consisting of long pseudopodial elongations that break in the blood flow. Recent insights have demonstrated that the MK and erythroid lineages are tightly associated at both the cellular and molecular levels, especially in the transcription factors that regulate their differentiation programs. Megakaryocytopoiesis is regulated by two types of transcription factors, those regulating the differentiation process, such as GATA-1, and those regulating proplatelet formation, such as NF-E2. The humoral factor thrombopoietin (TPO) is the primary regulator of MK differentiation and platelet production through the stimulation of its receptor MPL. Numerous acquired or congenital pathologies of the MK lineage are now explained by molecular abnormalities in the activity of the transcription factors involved in megakaryocytopoiesis, in the Tpo or c-mpl genes, as well as in signaling molecules associated with MPL. The recent development of MPL agonists may provide efficient agents for the treatment of some thrombocytopenias.
Collapse
Affiliation(s)
- Y Chang
- INSERM, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | | | | | | |
Collapse
|
37
|
Kanayasu-Toyoda T, Suzuki T, Oshizawa T, Uchida E, Hayakawa T, Yamaguchi T. Granulocyte colony-stimulating factor promotes the translocation of protein kinase Ciota in neutrophilic differentiation cells. J Cell Physiol 2007; 211:189-96. [PMID: 17133348 DOI: 10.1002/jcp.20930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, we suggested that the phosphatidylinositol 3-kinase (PI3K)-p70 S6 kinase (p70 S6K) pathway plays an important role in granulocyte colony-stimulating factor (G-CSF)-dependent enhancement of the neutrophilic differentiation and proliferation of HL-60 cells. While atypical protein kinase C (PKC) has been reported to be a regulator of p70 S6K, abundant expression of PKCiota was observed in myeloid and lymphoid cells. Therefore, we analyzed the participation of PKCiota in G-CSF-dependent proliferation. The maximum stimulation of PKCiota was observed from 15 to 30 min after the addition of G-CSF. From 5 to 15 min into this lag time, PKCiota was found to translocate from the nucleus to the membrane. At 30 min it re-translocated to the cytosol. This dynamic translocation of PKCiota was also observed in G-CSF-stimulated myeloperoxidase-positive cells differentiated from cord blood cells. Small interfering RNA for PKCiota inhibited G-CSF-induced proliferation and the promotion of neutrophilic differentiation of HL-60 cells. These data indicate that the G-CSF-induced dynamic translocation and activation processes of PKCiota are important to neutrophilic proliferation.
Collapse
Affiliation(s)
- Toshie Kanayasu-Toyoda
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Lavenu-Bombled C, Izac B, Legrand F, Cambot M, Vigier A, Massé JM, Dubart-Kupperschmitt A. Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector. Stem Cells 2007; 25:1571-7. [PMID: 17379771 DOI: 10.1634/stemcells.2006-0321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Megakaryocytic (MK) lineage is an attractive target for cell/gene therapy approaches, aiming at correcting platelet protein deficiencies. However, MK cells are short-lived cells, and their permanent modification requires modification of hematopoietic stem cells with an integrative vector such as a lentiviral vector. Glycoprotein (Gp) IIb promoter, the most studied among the MK regulatory sequences, is also active in stem cells. To strictly limit transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells with a lentiviral vector, we looked for a promoter activated later during MK differentiation. Human cord blood, bone marrow, and peripheral-blood mobilized CD34(+) cells were transduced with a human immunodeficiency virus-derived self-inactivating lentiviral vector encoding the green fluorescent protein (GFP) under the transcriptional control of GpIbalpha, GpIIb, or EF1alpha gene regulatory sequences. Both GpIbalpha and GpIIb promoters restricted GFP expression (analyzed by flow cytometry and immunoelectron microscopy) in MK cells among the maturing progeny of transduced cells. However, only the GpIbalpha promoter was strictly MK-specific, whereas GpIIb promoter was leaky in immature progenitor cells not yet engaged in MK cell lineage differentiation. We thus demonstrate the pertinence of using a 328-base-pair fragment of the human GpIbalpha gene regulatory sequence, in the context of a lentiviral vector, to tightly restrict transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Cécile Lavenu-Bombled
- Institut Cochin, Department of Hematology, Hôpital de Port-Royal, 123 Bd de Port-Royal, Paris 75014, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang J, Varas F, Stadtfeld M, Heck S, Faust N, Graf T. CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation. Exp Hematol 2007; 35:490-499. [PMID: 17309829 DOI: 10.1016/j.exphem.2006.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Development of a mouse line permitting live imaging of cells expressing CD41/GpIIb as a means to study megakaryopoiesis. MATERIALS AND METHODS The gene encoding yellow fluorescent protein (eyfp) was inserted by homologous recombination into embryonic stem cells at the start site of the gpIIb locus. A knockin mouse line, designated CD41-yellow fluorescent protein (YFP), was developed and was characterized by fluorescence microscopy and flow cytometry. Activity of YFP(+) platelets was determined by induction of P-selectin expression in response to thrombin stimulation. RESULTS CD41-YFP mice contained YFP-labeled megakaryocytes and platelets, the proportions of which varied, depending on the genotype and individual animal, while lymphoid, myelomonocytic, and erythroid lineages were negative. In addition, a fraction of hematopoietic stem cells and intermediate progenitors expressed YFP at low levels. Crossing CD41-YFP mice with lysozyme green fluorescent protein and globin cyan fluorescent protein mice, followed by in vivo imaging of fetal liver, revealed megakaryocytic cells as a subset distinct from myeloid and erythroid cells. This experiment is also the first to show the distribution of three hematopoietic lineages in a minimally perturbed organ. Surprisingly, analysis of CD41-YFP platelets showed that the YFP(+) subset is more responsive to thrombin stimulation than the YFP(-) subset. Experiments aimed at determining the stability of the YFP(+) platelets showed that after lethal irradiation of CD41-YFP mice, the proportion of labeled platelets in the blood declines more rapidly than the bulk of the platelets. CONCLUSION The newly developed mouse line should become useful not only for in vivo imaging experiments of megakaryocytes and platelets, but also for studies on platelet aging and function. Our irradiation experiments suggest that the YFP(+) platelets are enriched for newly made cells because YFP has a shorter half-life than platelets. Therefore, the finding that YFP(+) platelets are more responsive to thrombin stimulation raises the possibility that platelet activity decreases rapidly during physiological aging.
Collapse
Affiliation(s)
- Jinghang Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
40
|
Quesenberry PJ, Dooner G, Dooner M, Colvin G. The stem cell continuum: considerations on the heterogeneity and plasticity of marrow stem cells. ACTA ACUST UNITED AC 2007; 1:29-36. [PMID: 17132872 DOI: 10.1385/scr:1:1:029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditional models of hematopoiesis have been hierarchical. Recent evidence showing that marrow stem cells are a cycling population and that the hematopoietic phenotype of these cells reversibly changes with cycle transit have suggested a continuum model of stem cell regulators. Studies on marrow cell conversion to lung cells have extended this continuum to cycle-related differentiation into nonhematopoietic stem cells. We postulate that stem cells transiting cell cycle continually change their chromatin structure, thus providing different windows of transcriptional opportunity and a continually changing phenotype. Final outcomes with this continuum model would be determined by the specific chromatin state of the cell and the presence of specific differentiation inducers.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Department of Research, The Center for Stem Cell Biology, Roger Williams Medical Center, Providence, RI 02908-4735, USA.
| | | | | | | |
Collapse
|
41
|
Delhommeau F, Dupont S, Tonetti C, Massé A, Godin I, Le Couedic JP, Debili N, Saulnier P, Casadevall N, Vainchenker W, Giraudier S. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2006; 109:71-7. [PMID: 16954506 DOI: 10.1182/blood-2006-03-007146] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The JAK2 V617F mutation has recently been described as an essential oncogenic event associated with polycythemia vera (PV), idiopathic myelofibrosis (IMF), and essential thrombocythemia. This mutation has been detected in all myeloid lineages but has not yet been detected in lymphoid cells. This raises the question whether this molecular event occurs in a true lymphomyeloid progenitor cell. In this work, we studied the presence of the mutation in peripheral blood cells and sorted B, T, and natural killer (NK) cells from PV and IMF. We detected the JAK2 V617F mutation in B and NK cells in approximately half the patients with IMF and a minority of those with PV. Moreover, in a few cases patients with IMF had mutated peripheral T cells. The mutation (homozygous or heterozygous) could be subsequently detected in B/NK/myeloid progenitors from PV and IMF, with a much higher frequency in clones derived from IMF. Using the fetal thymus organ culture (FTOC) assay, the mutation was also detected in all T-cell fractions derived from IMF and PV CD34+ cells. These results demonstrate that myeloproliferative disorders take their origin in a true myeloid/lymphoid progenitor cell but that their phenotype is related to a downstream selective proliferative advantage of the myeloid lineages.
Collapse
Affiliation(s)
- François Delhommeau
- INSERM U790, Université Paris Sud; Institut Gustave Roussy, Pavillon de recherche 1, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Balduini A, d'Apolito M, Arcelli D, Conti V, Pecci A, Pietra D, Danova M, Benvenuto F, Perotti C, Zelante L, Volinia S, Balduini CL, Savoia A. Cord blood in vitro expanded CD41 cells: identification of novel components of megakaryocytopoiesis. J Thromb Haemost 2006; 4:848-60. [PMID: 16634756 DOI: 10.1111/j.1538-7836.2006.01802.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Megakaryopoiesis represents a multi-step, often unclear, process leading to commitment, differentiation, and maturation of megakaryocytes (MKs) that release platelets. AIM To identify the novel genes that might help to clarify the molecular mechanisms of megakaryocytopoiesis and be regarded as potential candidates of inherited platelet defects, global gene expression of hematopoietic lineages was carried out. METHODS Human cord blood was used to purify CD34+ stem cells and in vitro expand CD41+ cells and burst-forming unit-erythroid (BFU-E). We investigated the expression profiles of these three hematopoietic lineages in the Affymetrix system and selected genes specifically expressed in MKs by comparing transcripts of the different lineages using the dchip and pam algorithms. RESULTS A detailed characterization of MK population showed that 99% of cells expressed the CD41 antigen whereas 73% were recognizable as terminally differentiated fetal MKs. The profile of these cells was compared with that of CD34+ cells and BFU-E allowing us to select 70 transcripts (MK-core), which represent not only the genes with a well-known function in MKs, but also novel genes never detected or characterized in these cells. Moreover, the specific expression was confirmed at both RNA and protein levels, thus validating the 'MK-core' isolated by informatics tools. CONCLUSIONS This is a global gene expression that for the first time depicts a well-characterized population of cord blood-derived fetal MKs. Novel genes have been detected, such as those encoding components of the extracellular matrix and basal membrane, which have been found in the cytoplasm of Mks, suggesting that new physiological aspects of MKs should be studied.
Collapse
Affiliation(s)
- A Balduini
- Department of Biochemistry, IRCCS Policlinico S. Matteo, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oki T, Kitaura J, Eto K, Lu Y, Maeda-Yamamoto M, Inagaki N, Nagai H, Yamanishi Y, Nakajima H, Nakajina H, Kumagai H, Kitamura T. Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. THE JOURNAL OF IMMUNOLOGY 2006; 176:52-60. [PMID: 16365395 DOI: 10.4049/jimmunol.176.1.52] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integrin alphaIIb, a well-known marker of megakaryocyte-platelet lineage, has been recently recognized on hemopoietic progenitors. We now demonstrate that integrin alphaIIbbeta3 is highly expressed on mouse and human mast cells including mouse bone marrow-derived mast cells, peritoneal mast cells, and human cord blood-derived mast cells, and that its binding to extracellular matrix proteins leads to enhancement of biological functions of mast cells in concert with various stimuli. With exposure to various stimuli, including cross-linking of FcepsilonRI and stem cell factor, mast cells adhered to extracellular matrix proteins such as fibrinogen and von Willebrand factor in an integrin alphaIIbbeta3-dependent manner. In addition, the binding of mast cells to fibrinogen enhanced proliferation, cytokine production, and migration and induced uptake of soluble fibrinogen in response to stem cell factor stimulation, implicating integrin alphaIIbbeta3 in a variety of mast cell functions. In conclusion, mouse and human mast cells express functional integrin alphaIIbbeta3.
Collapse
Affiliation(s)
- Toshihiko Oki
- Division of Cellular Therapy and Division of Hematopoietic Factors, Advanced Clinical Research Center, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jacquelin B, Kortulewski T, Vaigot P, Pawlik A, Gruel G, Alibert O, Soularue P, Joubert C, Gidrol X, Tronik-Le Roux D. Novel pathway for megakaryocyte production after in vivo conditional eradication of integrin αIIb-expressing cells. Blood 2005; 106:1965-74. [PMID: 15947096 DOI: 10.1182/blood-2004-10-3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Our knowledge of the molecular mechanisms that regulate hematopoiesis in physiologic and pathologic conditions is limited. Using a molecular approach based on cDNA microarrays, we demonstrated the emergence of an alternative pathway for mature bone marrow cell recovery after the programmed and reversible eradication of CD41+ cells in transgenic mice expressing a conditional toxigene targeted by the platelet αIIb promoter. The expression profile of the newly produced CD41+ cells showed high levels of transcripts encoding Ezh2, TdT, Rag2, and various immunoglobulin (Ig) heavy chains. In this context, we identified and characterized a novel population of Lin-Sca-1hic-Kit- cells, with a lymphoid-like expression pattern, potentially involved in the reconstitution process. Our study revealed novel transcriptional cross talk between myeloid and lymphoid lineages and identified gene expression modifications that occur in vivo under these particular stress conditions, opening important prospects for therapeutic applications.
Collapse
Affiliation(s)
- Beatrice Jacquelin
- Laboratoire de Génomique et Radiobiologie de l'Hématopoïèse, Service de Génomique Fonctionnelle, Commissariat à l'Energie Atomique, Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Otani T, Inoue T, Tsuji-Takayama K, Ijiri Y, Nakamura S, Motoda R, Orita K. Progenitor analysis of primitive erythropoiesis generated from in vitro culture of embryonic stem cells. Exp Hematol 2005; 33:632-40. [PMID: 15911087 DOI: 10.1016/j.exphem.2005.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/28/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE A variety of hematopoietic lineage cells have been produced from embryonic stem (ES) cells, but their differentiation processes have not been elucidated well, especially from the point of view of progenitor analysis. In this study, we utilized our coculture system, in which ES-derived Flk-1+ cells differentiated into TER-119+ primitive erythroid (EryP) cells on OP9 cells, and looked for progenitors in primitive erythropoiesis. MATERIALS AND METHODS We studied the kinetics of TER-119+ erythroblast generation from Flk-1+ cells by monitoring the expression of TER-119, CD41, VE-cadherin, CD34, and c-kit antigens. Multicolor analysis was performed to detect CD41+TER-119+ cells and the stained cells were sorted to examine their morphology and EryP-producing potential in colony formation. RESULTS Kinetic studies showed that the CD41+ population appeared early in the coculture and its expression pattern implied a role as an immediate progenitor of TER-119+ EryP cells. Multicolor analysis and colony-formation study supported this notion. Other progenitor markers such as VE-cadherin, CD34, and c-kit did not seem to define an immediate progenitor of EryP cells. One interesting observation is the detection of unique populations, CD41dim and CD41bright, detectable after 48 hours of the coculture. Majority of the CD41dim population progressed to the EryP lineage, whereas the CD41bright population seemingly advanced on a pathway distinct from the CD41dim population. CONCLUSIONS CD41 expression was a useful marker to trace hematopoietic progenitors in ES-derived differentiation system. In particular, the CD41dim but not CD41bright population could serve as immediate precursors of EryP cells.
Collapse
Affiliation(s)
- Takeshi Otani
- Fujisaki Cell Center, Hayashibara Biochemical Laboratories, Inc., Fujisaki, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kirshenbaum AS, Akin C, Goff JP, Metcalfe DD. Thrombopoietin alone or in the presence of stem cell factor supports the growth of KIT(CD117)low/ MPL(CD110)+ human mast cells from hematopoietic progenitor cells. Exp Hematol 2005; 33:413-21. [PMID: 15781331 DOI: 10.1016/j.exphem.2004.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 12/16/2004] [Accepted: 12/22/2004] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Thrombopoietin (TPO) is known to promote platelet number, have growth-promoting potential for human megakaryocytes (HuMKs), and increase erythrocyte, monocyte, mast cell, and granulocyte numbers in the presence of additional growth factors. We explored the ability of TPO alone or in the presence of stem cell factor (SCF) to support human mast cells (HuMCs). METHODS CD34+ pluripotent and CD34+/CD117+/CD13+ HuMC progenitor cells were cultured in rhTPO and examined for HuMCs. Similarly, we added rhTPO to CD34(+) cells cultured in stem cell factor (SCF), which promotes HuMC development. RESULTS When CD34+ cells were cultured in 10 ng/mL rhTPO and 10 ng/mL rhSCF, TPO enhanced HuMC numbers compared to rhSCF alone. Higher concentrations of rhTPO (50 ng/mL) in the presence of 100 ng/mL rhSCF inhibited the rhSCF-dependent subpopulation of CD117high HuMCs, while promoting CD117low HuMCs. Human CD34+/CD117+/CD13+ cells cultured in rhTPO alone for 1 to 2 weeks differentiated into CD41+/CD110+ HuMKs (85-90%) and FcepsilonRI+/CD117low/CD13+ HuMCs (5-10%). RhTPO-induced HuMCs expressed the TPO (CD110) receptor, tryptase, and chymase and survived when recultured in rhSCF. CONCLUSION The effect of TPO on HuMCs in the presence of rhSCF varies, depending on the relative concentration of each growth factor, while TPO alone or in combination with rhSCF supports a unique population of CD117low/CD110+ HuMCs.
Collapse
Affiliation(s)
- Arnold S Kirshenbaum
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | | | | | |
Collapse
|
47
|
Berlanga O, Emambokus N, Frampton J. GPIIb (CD41) integrin is expressed on mast cells and influences their adhesion properties. Exp Hematol 2005; 33:403-12. [PMID: 15781330 DOI: 10.1016/j.exphem.2005.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/14/2005] [Accepted: 01/18/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVES GPIIb integrin expression has been found on platelets and megakaryocytes, and more recently on immature hematopoietic progenitors. We set out to investigate expression of GPIIb in other hematopoietic cell lineages and, having detected it on mast cells, aimed to determine what possible role it might perform. METHODS We have made use of cultured human and murine bone marrow mast cells (BMMC) in order to characterize the expression of GPIIb. Further, BMMC cultures from wild type and GPIIb deficient (gpIIb-/-) mice were used for comparison of the adhesive properties mediated by this receptor. Finally, peritoneal mast cells were analyzed from both wild type and (gpIIb-/-) mice. RESULTS We demonstrate expression of GPIIb on cultured BMMC. Using cells derived from mice homozygous for a null allele of gbIIb we show that the absence of GPIIb has no effect on mast cells with respect to a number of measures of cell growth and differentiation. However, loss of GPIIb on BMMC results in an increase in surface expression of aV integrin, the alternative partner of GPIIIa. CONCLUSION The results in this study demonstrate that GPIIb is expressed in human and murine mast cells. A function for GPIIb on mast cells is suggested by the altered adhesion of gbIIb-/- BMMC to fibronectin- and vitronectin-coated surfaces. Moreover, comparison of mast cells from the peritoneal cavity of wild type and gbIIb-/- mice indicates that GPIIb could influence the in vivo differentiation or homing of tissue mast cells.
Collapse
Affiliation(s)
- Oscar Berlanga
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
48
|
North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MFTR. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. ACTA ACUST UNITED AC 2004; 22:158-68. [PMID: 14990855 DOI: 10.1634/stemcells.22-2-158] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor Runx1 marks all functional hematopoietic stem cells (HSCs) in the embryo and is required for their generation. Mutations in Runx1 are found in approximately 25% of acute leukemias and in familial platelet disorder, suggesting a role for Runx1 in adult hematopoiesis as well. A comprehensive analysis of Runx1 expression in adult hematopoiesis is lacking. Here we show that Runx1 is expressed in functional HSCs in the adult mouse, as well as in cells with spleen colony-forming unit (CFU) and culture CFU capacities. Additionally, we document Runx1 expression in all hematopoietic lineages at the single cell level. Runx1 is expressed in the majority of myeloid cells and in a smaller proportion of lymphoid cells. Runx1 expression substantially decreases during erythroid differentiation. We also document effects of reduced Runx1 levels on adult hematopoiesis.
Collapse
Affiliation(s)
- Trista E North
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, USA. (Current address for Dr. de Bruijn) MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Paulus JM, Debili N, Larbret F, Levin J, Vainchenker W. Thrombopoietin responsiveness reflects the number of doublings undergone by megakaryocyte progenitors. Blood 2004; 104:2291-8. [PMID: 15172965 DOI: 10.1182/blood-2003-05-1745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo assess the variation of thrombopoietin (TPO) responsiveness associated with megakaryocyte (MK) progenitor amplification, TPO dose-response curves were obtained for normal human, single-cell plated CD34+CD41+ cells. The number of MKs per well was determined in situ and expressed as number of doublings (NbD). Dose-response curves of the mean frequency of clones of each size versus log TPO concentration showed highly significant differences in the TPO concentration needed for half-maximum generation of clones of different sizes (TPO50): 1.89 ± 0.51 pg/mL for 1 MK clones; 7.75 ± 0.81 pg/mL for 2 to 3 MK clones; 38.5 ± 5.04 pg/mL for 4 to 7 MK clones, and 91.8 ± 16.0 pg/mL for 8 to 15 MK clones. These results were consistent with a prediction of the generation-age model, because the number of previous doublings in vivo was inversely correlated with the number of residual doublings in vitro. TPO responsiveness decreased in vitro by a factor of 3.5 per doubling, reflecting the recruitment of progressively more ancestral progenitors. In support of this hypothesis, the more mature CD34+CD41+CD42+ cell fraction had a lower TPO50 (P < .001), underwent fewer NbD (P < .001), and expressed a 2.8-fold greater median Mpl receptor density (P < .001) than the CD34+CD41+CD42– fraction. Progenitors that have completed their proliferative program have maximum factor responsiveness and are preferentially induced to terminal differentiation.
Collapse
|
50
|
Steunou V, Le Bousse-Kerdilès MC, Colin-Micouin A, Clay D, Chevillard S, Martyré MC. Altered transcription of the stem cell leukemia gene in myelofibrosis with myeloid metaplasia. Leukemia 2003; 17:1998-2006. [PMID: 14513050 DOI: 10.1038/sj.leu.2403089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An increased number of circulating CD34+ hematopoietic progenitors with a prominent proliferation of the megakaryocytic (MK) population are the hallmarks of the myeloproliferation in myelofibrosis with myeloid metaplasia (MMM). Analyzing the potential contribution of the stem cell leukemia (SCL) gene in MMM myeloproliferation was doubly interesting for SCL is expressed both in primitive-uncommitted progenitor cells and erythroid/MK cells, its transcription differentially initiating from promoter 1b and 1a, respectively. Our results show that: (i) the expression of SCL transcript is increased in peripheral blood mononuclear cells (PBMCs) from patients; (ii) SCL gene transcription is altered in MMM CD34+ progenitor cells sorted into CD34+CD41+ and CD34+CD41- subpopulations. Actually, in patients, SCL transcription initiated at promoter 1b is restricted to primitive CD34+CD41- progenitor cells, while it is detectable in both cell subsets from healthy subjects; (iii) the full-length isoform of SCL protein is present in patients' CD34+ cells and in PBMC; in the latter the SCL-expressing cells mainly belong to the MK lineage in which its sublocalization is both nuclear and cytoplasmic, which contrasts with the sole nuclear staining observed in normal MK cells. Our demonstration of altered expression and transcription of SCL in patients' hematopoietic cells emphasizes the possible contribution of this regulatory nuclear factor to the hematopoietic dysregulation, which is a feature of myelofibrosis with myeloid metaplasia.
Collapse
Affiliation(s)
- V Steunou
- INSERM U365, Institut Curie, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|