1
|
Mohsenizadeh SA, Rajaeinejad M, Khoshfetrat M, Arefizadeh R, Mousavi SH, Mosaed R, Kazemi-Galougahi MH, Jalaeikhoo H, Faridfar A, Nikandish M, Alavi-Moghadam S, Arjmand B. Anthracycline-Induced Cardiomyopathy in Cancer Survivors: Management and Long-Term Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:179-199. [PMID: 38842787 DOI: 10.1007/5584_2024_804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent advancements in personalized treatments, such as anthracycline chemotherapy, coupled with timely diagnoses, have contributed to a decrease in cancer-specific mortality rates and an improvement in cancer prognosis. Anthracyclines, a potent class of antibiotics, are extensively used as anticancer medications to treat a broad spectrum of tumors. Despite these advancements, a considerable number of cancer survivors face increased risks of treatment complications, particularly the cardiotoxic effects of chemotherapeutic drugs like anthracyclines. These effects can range from subclinical manifestations to severe consequences such as irreversible heart failure and death, highlighting the need for effective management of chemotherapy side effects for improved cancer care outcomes. Given the lack of specific treatments, early detection of subclinical cardiac events post-anthracycline therapy and the implementation of preventive strategies are vital. An interdisciplinary approach involving cardiovascular teams is crucial for the prevention and efficient management of anthracycline-induced cardiotoxicity. Various factors, such as age, gender, duration of treatment, and comorbidities, should be considered significant risk factors for developing chemotherapy-related cardiotoxicity. Tools such as electrocardiography, echocardiography, nuclear imaging, magnetic resonance imaging, histopathologic evaluations, and serum biomarkers should be appropriately used for the early detection of anthracycline-related cardiotoxicity. Furthermore, understanding the underlying biological mechanisms is key to developing preventive measures and personalized treatment strategies to mitigate anthracycline-induced cardiotoxicity. Exploring specific cardiotoxic mechanisms and identifying genetic variations can offer fresh perspectives on innovative, personalized treatments. This chapter aims to discuss cardiomyopathy following anthracycline therapy, with a focus on molecular mechanisms, preventive strategies, and emerging treatments.
Collapse
Affiliation(s)
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Arefizadeh
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Muraki Y, Shioyasono A, Nishii M, Takeda D, Kusumoto J, Akashi M. Dental dysplasia in childhood cancer survivors: a case series of permanent tooth abnormalities. Oral Maxillofac Surg 2024; 29:9. [PMID: 39537873 DOI: 10.1007/s10006-024-01304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study was performed to investigate the association of dental dysplasia with childhood cancer. We examined the occurrence of agenesis, microdontia, and enamel changes of permanent teeth in pediatric cancer survivors. METHODS Seventy-six patients with pediatric cancer and hematologic diseases were referred to our department for the first time from October 2005 to December 2019. Of these, 17 patients who presented for a checkup in our department fulfilled the study criteria and were analyzed. Clinical examinations and panoramic radiographs were performed to investigate dental dysplasia of permanent teeth. A total of 34 developmental abnormalities (18 missing teeth, 16 cases of microdontia) occurred in 5 patients. The patients' medical records were also analyzed to assess the relationships of specific types of dysplasia with the treatment duration and cumulative drug dose administered. RESULTS All five pediatric cancer survivors had dental dysplasia; all five had tooth agenesis, and four had microdontia. All five patients were < 4 years of age and had undergone high-dose chemotherapy. CONCLUSION In this study, childhood cancer survivors who received high-dose chemotherapy before age 4 years experienced the dental dysplasia, including tooth agenesis, microdontia. These findings highlight the need for careful dental monitoring and early intervention in pediatric patients undergoing high-dose chemotherapy. CLINICAL TRIAL NUMBER This research was conducted in accordance with the Declaration of Helsinki and approved by the Medical Ethics Committee of the Medical University of Kobe (protocol code No. B230066, 1 September 2023).
Collapse
Affiliation(s)
- Yumi Muraki
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Atsushi Shioyasono
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mika Nishii
- Department of Medical Technology, Division of Dentistry and Rehabilitation, Kobe-University Hospital, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junya Kusumoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Boulanger M, Aqrouq M, Tempé D, Kifagi C, Ristic M, Akl D, Hallal R, Carusi A, Gabellier L, de Toledo M, Sigurdsson JO, Kaoma T, Andrieu-Soler C, Forné T, Soler E, Hicheri Y, Gueret E, Vallar L, Olsen JV, Cartron G, Piechaczyk M, Bossis G. DeSUMOylation of chromatin-bound proteins limits the rapid transcriptional reprogramming induced by daunorubicin in acute myeloid leukemias. Nucleic Acids Res 2023; 51:8413-8433. [PMID: 37462077 PMCID: PMC10484680 DOI: 10.1093/nar/gkad581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 09/09/2023] Open
Abstract
Genotoxicants have been used for decades as front-line therapies against cancer on the basis of their DNA-damaging actions. However, some of their non-DNA-damaging effects are also instrumental for killing dividing cells. We report here that the anthracycline Daunorubicin (DNR), one of the main drugs used to treat Acute Myeloid Leukemia (AML), induces rapid (3 h) and broad transcriptional changes in AML cells. The regulated genes are particularly enriched in genes controlling cell proliferation and death, as well as inflammation and immunity. These transcriptional changes are preceded by DNR-dependent deSUMOylation of chromatin proteins, in particular at active promoters and enhancers. Surprisingly, inhibition of SUMOylation with ML-792 (SUMO E1 inhibitor), dampens DNR-induced transcriptional reprogramming. Quantitative proteomics shows that the proteins deSUMOylated in response to DNR are mostly transcription factors, transcriptional co-regulators and chromatin organizers. Among them, the CCCTC-binding factor CTCF is highly enriched at SUMO-binding sites found in cis-regulatory regions. This is notably the case at the promoter of the DNR-induced NFKB2 gene. DNR leads to a reconfiguration of chromatin loops engaging CTCF- and SUMO-bound NFKB2 promoter with a distal cis-regulatory region and inhibition of SUMOylation with ML-792 prevents these changes.
Collapse
Affiliation(s)
| | - Mays Aqrouq
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Denis Tempé
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Marko Ristic
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Dana Akl
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Rawan Hallal
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Aude Carusi
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Ludovic Gabellier
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Service d’Hématologie Clinique, CHU de Montpellier, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | | | - Jon-Otti Sigurdsson
- Proteomics Program, Novo Nordisk Foundation Center For Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tony Kaoma
- Genomics Research Unit, Luxembourg Institute of Health, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Charlotte Andrieu-Soler
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | | | - Eric Soler
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Yosr Hicheri
- Service d’Hématologie Clinique, CHU de Montpellier, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Elise Gueret
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Vallar
- Genomics Research Unit, Luxembourg Institute of Health, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center For Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Guillaume Cartron
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Service d’Hématologie Clinique, CHU de Montpellier, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | | | | |
Collapse
|
4
|
More P, Ngaffo JAM, Goedtel-Armbrust U, Hähnel PS, Hartwig UF, Kindler T, Wojnowski L. Transcriptional Response to Standard AML Drugs Identifies Synergistic Combinations. Int J Mol Sci 2023; 24:12926. [PMID: 37629110 PMCID: PMC10455220 DOI: 10.3390/ijms241612926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike genomic alterations, gene expression profiles have not been widely used to refine cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequencing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes. Those genes were associated with drug response-specific pathways, including calcium ion-dependent exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity. The synergistic response was observed even in the cell lines beyond those used for the discovery, including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes to formulate rational drug combinations. This approach could improve the standard AML therapy, especially in older patients.
Collapse
Affiliation(s)
- Piyush More
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Joëlle Aurelie Mekontso Ngaffo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Ute Goedtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Patricia S. Hähnel
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Udo F. Hartwig
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
- Research Center of Immunotherapy, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| |
Collapse
|
5
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
6
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
7
|
da Costa KM, Freire-de-Lima L, da Fonseca LM, Previato JO, Mendonça-Previato L, Valente RDC. ABCB1 and ABCC1 Function during TGF-β-Induced Epithelial-Mesenchymal Transition: Relationship between Multidrug Resistance and Tumor Progression. Int J Mol Sci 2023; 24:ijms24076046. [PMID: 37047018 PMCID: PMC10093952 DOI: 10.3390/ijms24076046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-β-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Biologia Celular de Glicoconjugados, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25250-470, Brazil
| |
Collapse
|
8
|
OZKOK F, BOĞA M, TUNEG M, ENİSOĞLU ATALAY V, ONUL N, ASGAROVA K, TIĞLI R, ARSLAN S, AKAGÜNDÜZ D, CEBECİOĞLU R, ÇATAL T. Evaluation of Acetyl- and Butyrylcholinesterase Enzyme Inhibitory Activities and Cytotoxic Activities of Anthraquinone Derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.963290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Tranchita E, Murri A, Grazioli E, Cerulli C, Emerenziani GP, Ceci R, Caporossi D, Dimauro I, Parisi A. The Beneficial Role of Physical Exercise on Anthracyclines Induced Cardiotoxicity in Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14092288. [PMID: 35565417 PMCID: PMC9104319 DOI: 10.3390/cancers14092288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in breast cancer (BC) survival has determined a growing survivor population that seems to develop several comorbidities and, specifically, treatment-induced cardiovascular disease (CVD), especially those patients treated with anthracyclines. Indeed, it is known that these compounds act through the induction of supraphysiological production of reactive oxygen species (ROS), which appear to be central mediators of numerous direct and indirect cardiac adverse consequences. Evidence suggests that physical exercise (PE) practised before, during or after BC treatments could represent a viable non-pharmacological strategy as it increases heart tolerance against many cardiotoxic agents, and therefore improves several functional, subclinical, and clinical parameters. At molecular level, the cardioprotective effects are mainly associated with an exercise-induced increase of stress response proteins (HSP60 and HSP70) and antioxidant (SOD activity, GSH), as well as a decrease in lipid peroxidation, and pro-apoptotic proteins such as Bax, Bax-to-Bcl-2 ratio. Moreover, this protection can potentially be explained by a preservation of myosin heavy chain (MHC) isoform distribution. Despite this knowledge, it is not clear which type of exercise should be suggested in BC patient undergoing anthracycline treatment. This highlights the lack of special guidelines on how affected patients should be managed more efficiently. This review offers a general framework for the role of anthracyclines in the physio-pathological mechanisms of cardiotoxicity and the potential protective role of PE. Finally, potential exercise-based strategies are discussed on the basis of scientific findings.
Collapse
Affiliation(s)
- Eliana Tranchita
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Arianna Murri
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Elisa Grazioli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-06-3673-3532
| | - Claudia Cerulli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Attilio Parisi
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| |
Collapse
|
10
|
Chiou JT, Huang CH, Wu TH, Wang LJ, Lee YC, Huang PW, Chang LS. CREB/Sp1-mediated MCL1 expression and NFκB-mediated ABCB1 expression modulate the cytotoxicity of daunorubicin in chronic myeloid leukemia cells. Toxicol Appl Pharmacol 2022; 435:115847. [PMID: 34963561 DOI: 10.1016/j.taap.2021.115847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Although some studies have hinted at the therapeutic potential of daunorubicin (DNR) in chronic myeloid leukemia (CML), the mechanism by which DNR induces CML cell death is unclear. Therefore, this study aimed to investigate DNR-induced cell death signaling pathways in CML cell lines K562 and KU812. DNR-triggered apoptosis in K562 cells was characterized by inhibition of MCL1 expression, while restoration of MCL1 expression protected K562 cells from DNR-mediated cytotoxicity. In addition, DNR induced NOX4-dependent ROS production, leading to the activation of p38 MAPK and inactivation of Akt and ERK. Activated p38 MAPK stimulated protein phosphatase 2A-dependent dephosphorylation of CREB. Since Akt-mediated activation of ERK reduced β-TrCP mRNA stability, the inactivation of Akt-ERK axis increased β-TrCP expression, which in turn promoted proteasomal degradation of Sp1. Inhibition of CREB phosphorylation and Sp1 expression simultaneously reduced MCL1 transcription and protein expression. DNR-induced MCL1 suppression was not reliant on its ability to induce DNA damage. In addition, DNR induced the expression of drug exporter ABCB1 in K562 cells through the p38 MAPK/NFκB-mediated pathway, while imatinib or ABT-199 inhibited the DNR-induced effect. The combination of imatinib or ABT-199 with DNR showed synergistic cytotoxicity in K562 cells by increasing intracellular DNR retention. Cumulatively, our data indicate that DNR induces MCL1 downregulation in K562 cells by promoting p38 MAPK-mediated dephosphorylation of CREB and inhibiting the Akt-ERK axis-mediated Sp1 protein stabilization. Furthermore, experimental evidence indicates that DNR-induced death of KU812 cells occurs through a similar pathway.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cyclic AMP Response Element-Binding Protein/metabolism
- Daunorubicin/therapeutic use
- Drug Synergism
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- MAP Kinase Signaling System/drug effects
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- NADPH Oxidase 4/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Reactive Oxygen Species/metabolism
- Sp1 Transcription Factor/metabolism
- Sulfonamides/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ti-Hsiao Wu
- Department of Cardiovascular Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Po-Wei Huang
- Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
11
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Pukhov SA, Semakov AV, Globa AA, Anikina LV, Afanasyeva SV, Yandulova EY, Aleksandrova YR, Neganova ME, Klochkov SG. New Conjugates of Daunorubicin with Sesquiterpene Lactones and Their Biological Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202102244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sergey A. Pukhov
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Alexey V. Semakov
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Anastasiya A. Globa
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Lada V. Anikina
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Svetlana V. Afanasyeva
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Ekaterina Y. Yandulova
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Yulia R. Aleksandrova
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Margarita E. Neganova
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Sergey G. Klochkov
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| |
Collapse
|
13
|
Zhang Y, Zhou Q, Ding X, Wang H, Tan G. HILIC-MS-based metabolomics reveal that Astragalus polysaccharide alleviates doxorubicin-induced cardiomyopathy by regulating sphingolipid and glycerophospholipid homeostasis. J Pharm Biomed Anal 2021; 203:114177. [PMID: 34198197 DOI: 10.1016/j.jpba.2021.114177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Doxorubicin (DOX) is widely used against cancer but carries the risk of a progressive cardiomyopathy. Astragalus polysaccharides (ASP) is the main active ingredient of Astragalus membranaceus Bunge. It has been proved to be effective against DOX-induced cardiomyopathy. However, its therapeutic mechanism is not yet well explored. In this study, a metabolomics approach based on hydrophilic interaction liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HILIC-Q-TOFMS) was developed to characterize the metabolic fluctuations associated with DOX cardiomyopathy and elucidate the underlying mechanisms of the protective effects of ASP. By the combination of HILIC-Q-TOFMS and multivariate and univariate data analysis, we identified 22 polar serum metabolites associated with DOX cardiomyopathy, 12 of which were significantly reversed when the animals were co-treated with ASP through two main metabolic pathways, i.e., sphingolipid and glycerophospholipid metabolism. Furthermore, it was found that ASP could alleviate DOX-induced cardiomyopathy by decreasing the levels of acid sphingomyelinase, acid ceramidase and phospholipase A2 and increasing the levels of sphingomyelin synthase to regulate the sphingolipid and glycerophospholipid metabolic disorder. These results revealed that sphingolipid and glycerophospholipid metabolism may be significantly responsible for DOX cardiomyopathy, which is also a major mechanism for the action of ASP against DOX cardiomyopathy.
Collapse
Affiliation(s)
- Ya Zhang
- School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Qian Zhou
- Department of Traditional Chinese Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Xin Ding
- School of Pharmacy, Air Force Medical University, Xi'an, 710032, China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Haibo Wang
- School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Guangguo Tan
- School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
14
|
Chiou JT, Huang NC, Huang CH, Wang LJ, Lee YC, Shi YJ, Chang LS. NOXA-mediated degradation of MCL1 and BCL2L1 causes apoptosis of daunorubicin-treated human acute myeloid leukemia cells. J Cell Physiol 2021; 236:7356-7375. [PMID: 33982799 DOI: 10.1002/jcp.30407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Daunorubicin (DNR) is used clinically to treat acute myeloid leukemia (AML), while the signaling pathways associated with its cytotoxicity are not fully elucidated. Thus, we investigated the DNR-induced death pathway in the human AML cell lines U937 and HL-60. DNR-induced apoptosis in U937 cells accompanied by downregulation of MCL1 and BCL2L1, upregulation of Phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), and mitochondrial depolarization. DNR induced NOX4-mediated reactive reactive oxygen species (ROS) production, which in turn inactivated Akt and simultaneously activated p38 mitogen-activated protein kinase (MAPK). Activated p38 MAPK and inactivated Akt coordinately increased GSK3β-mediated cAMP response element-binding protein (CREB) phosphorylation, which promoted NOXA transcription. NOXA upregulation critically increased the proteasomal degradation of MCL1 and BCL2L1. The same pathway was also responsible for the DNR-induced death of HL-60 cells. Restoration of MCL1 or BCL2L1 expression alleviated DNR-induced mitochondrial depolarization and cell death. Furthermore, ABT-199 (a BCL2 inhibitor) synergistically enhanced the cytotoxicity of DNR in AML cell lines. Notably, DNR-induced DNA damage was not related to NOXA-mediated degradation of MCL1 and BCL2L1. Collectively, these results indicate that the upregulation of NOXA expression through the NOX4-ROS-p38 MAPK-GSK3β-CREB axis results in the degradation of MCL1 and BCL2L1 in DNR-treated U937 and HL-60 cells. This signaling pathway may provide insights into the mechanism underlying DNR-triggered apoptosis in AML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Nan-Chieh Huang
- Department of Family Medicine, Zuoying Branched of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Mouchel PL, Serhan N, Betous R, Farge T, Saland E, De Medina P, Hoffmann JS, Sarry JE, Poirot M, Silvente-Poirot S, Récher C. Dendrogenin A Enhances Anti-Leukemic Effect of Anthracycline in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102933. [PMID: 33053669 PMCID: PMC7601603 DOI: 10.3390/cancers12102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Recently, several molecules have improved the clinical outcome of acute myeloid leukemia (AML) patients. Despite these recent advances, their prognosis remains poor and new strategies to improve the standard anthracycline and Ara-C-based chemotherapy are needed. We recently published that dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor-suppressor properties, can potentiate the effect of Ara-C to kill AML cells. In this study, we find that DDA can also potentiate anthracycline against AML. The potentiation of Ara-C by DDA is due to a switch from a protective autophagy to a deadly autophagy. Regarding anthracyclines, the potentiation of daunorubicin is caused by the modulation of the efflux by the PgP pump, and that of idarubicin, to an increase in DNA damage and to the induction of a rapid and lethal autophagy. This is caused by rapid modulation of AKT/mTOR and JNK activity, two major pathways involved both in DNA repair and lethal autophagy. Abstract Dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines. This was confirmed in vivo using immunodeficient mice engrafted with MOLM-14 cells as well as in a panel of 20 genetically diverse AML patient samples. This effect was dependent on Liver X Receptor β, a major target of DDA. Furthermore, DDA plus idarubicin strongly increased p53BP1 expression and the number of DNA strand breaks in alkaline comet assays as compared to idarubicin alone, whereas DDA alone was non-genotoxic. Mechanistically, DDA induced JNK phosphorylation and the inhibition of AKT phosphorylation, thereby maximizing DNA damage induced by idarubicin and decreasing DNA repair. This activated autophagic cell death machinery in AML cells. Overall, this study shows that the combination of DDA and idarubicin is highly promising and supports clinical trials of dendrogenin A in AML patients.
Collapse
Affiliation(s)
- Pierre-Luc Mouchel
- Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, 31059 Toulouse, France;
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | - Nizar Serhan
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
- Team “Cholesterol Metabolism and Therapeutic Innovations”, Cancer Research Center of Toulouse (CRCT), UMR 1037, Inserm-Université de Toulouse 3, Equipe labellisée par la ligue contre le cancer, 31037 Toulouse, France;
| | - Rémy Betous
- CRCT, Université de Toulouse, Inserm, CNRS, UPS, 31000 Toulouse, France;
- Equipe Labellisée Ligue Contre le Cancer, Laboratoire d’Excellence Toulouse Cancer, 31037 Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | | | - Jean-Sébastien Hoffmann
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 31037 Toulouse, France;
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
| | - Marc Poirot
- Team “Cholesterol Metabolism and Therapeutic Innovations”, Cancer Research Center of Toulouse (CRCT), UMR 1037, Inserm-Université de Toulouse 3, Equipe labellisée par la ligue contre le cancer, 31037 Toulouse, France;
- Correspondence: (M.P.); (C.R.)
| | - Sandrine Silvente-Poirot
- Team “Cholesterol Metabolism and Therapeutic Innovations”, Cancer Research Center of Toulouse (CRCT), UMR 1037, Inserm-Université de Toulouse 3, Equipe labellisée par la ligue contre le cancer, 31037 Toulouse, France;
| | - Christian Récher
- Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, 31059 Toulouse, France;
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037 Toulouse, France; (N.S.); (T.F.); (E.S.); (J.-E.S.)
- Correspondence: (M.P.); (C.R.)
| |
Collapse
|
16
|
Zhang X, Liu Z, Wu S, Sun M, Wei J, Qin Q. Fish RIP1 Mediates Innate Antiviral Immune Responses Induced by SGIV and RGNNV Infection. Front Immunol 2020; 11:1718. [PMID: 32849607 PMCID: PMC7417445 DOI: 10.3389/fimmu.2020.01718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Receptor interacting protein 1 (RIP1) is an essential sensor of cellular stress, which may respond to apoptosis or cell survival and participate in antiviral pathways. To investigate the roles of fish RIP1 in Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection, a RIP1 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP1) was cloned and characterized. EcRIP1 encoded a 679 amino acid protein that shares 83.28% identity with that of Perca flavescens and contained a homologous N-terminal kinase (S-TKc) domain, a RIP isotype interaction motif (RHIM), and a C-terminal domain (DD). EcRIP1 was predominantly detected in immune tissues, and its expression was induced by RGNNV or SGIV infection in vitro. Subcellular localization showed that EcRIP1 was distributed in the cytoplasm with point-like uniform and dot-like aggregation forms. Overexpression of EcRIP1 inhibited SGIV and RGNNV replication and positively regulated the expression levels of interferon (IFN) and IFN-stimulated genes and pro-inflammatory factors. EcRIP1 may interact with grouper tumor necrosis factor receptor type 1-associated DEATH domain protein (EcTRADD) to promote SGIV-induced apoptosis, and interact with grouper Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-β (EcTRIF) and participate in Myeloid Differentiation Factor 88 (MyD88)-independent toll-like receptor (TLR) signaling. EcRIP1 may also interact with grouper tumor necrosis factor receptor-associated factors (TRAFs) as intracellular linker proteins and mediate the signaling of various downstream signaling pathways, including NF-κB and IFN. These results suggest that EcRIP1 may inhibit SGIV and RGNNV infection by regulating apoptosis and various signaling molecules. Our study offers new insights into the regulatory mechanism of RIP1-related signaling, and provides a novel perspective on fish diseases mediated by RIP1.
Collapse
Affiliation(s)
- Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mengshi Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Pourrajab F, Zare-Khormizi MR, Hekmatimoghaddam S, Hashemi AS. Molecular Targeting and Rational Chemotherapy in Acute Myeloid Leukemia. J Exp Pharmacol 2020; 12:107-128. [PMID: 32581600 PMCID: PMC7269636 DOI: 10.2147/jep.s254334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a molecularly complex disease with multiple aberrant genetic pathways involved in its pathogenesis. Approximately one-third to one-half of patients with AML would relapse, and no standard therapy is established for relapsing and/or refractory AML (RR-AML) yet. It is unlikely that blockage of only one specific pathway will lead to prolonged remissions and cures in all fractions of the AML patients population. Nowadays, novel therapeutic agents with rational combination are being recognized which improve the cure rate for relapsed AML. These drugs and their metabolites impart unique properties in the interaction with each of the intracellular targets and metabolic enzymes whereby resulting in unique clinical activity. To date, most of the combinations have used a targeted agent combined with standard agents such as anthracyclines, cytarabine, or hypomethylating agents to improve the outcome. Rational combinations of DNA damage-inducing therapies with DNA methyltransferase and histone deacetylase inhibitors synergistically enhance the DNA damage, growth inhibition and apoptosis of myeloid cells. This review makes a thorough look at current antineoplastic agents for AML with emphasis on its genetics and molecular mechanisms of action and the role of combination regimens.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyedhossein Hekmatimoghaddam
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azam Sadat Hashemi
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Pediatrics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy. Cell Death Dis 2020; 11:247. [PMID: 32312983 PMCID: PMC7170900 DOI: 10.1038/s41419-020-2454-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2) ion channel has an essential function in maintaining cell survival following oxidant injury. Here, we show that TRPM2 is highly expressed in acute myeloid leukemia (AML). The role of TRPM2 in AML was studied following depletion with CRISPR/Cas9 technology in U937 cells. In in vitro experiments and in xenografts, depletion of TRPM2 in AML inhibited leukemia proliferation, and doxorubicin sensitivity was increased. Mitochondrial function including oxygen consumption rate and ATP production was reduced, impairing cellular bioenergetics. Mitochondrial membrane potential and mitochondrial calcium uptake were significantly decreased in depleted cells. Mitochondrial reactive oxygen species (ROS) were significantly increased, and Nrf2 was decreased, reducing the antioxidant response. In TRPM2-depleted cells, ULK1, Atg7, and Atg5 protein levels were decreased, leading to autophagy inhibition. Consistently, ATF4 and CREB, two master transcription factors for autophagosome biogenesis, were reduced in TRPM2-depleted cells. In addition, Atg13 and FIP200, which are known to stabilize ULK1 protein, were decreased. Reconstitution with TRPM2 fully restored proliferation, viability, and autophagy; ATF4 and CREB fully restored proliferation and viability but only partially restored autophagy. TRPM2 expression reduced the elevated ROS found in depleted cells. These data show that TRPM2 has an important role in AML proliferation and survival through regulation of key transcription factors and target genes involved in mitochondrial function, bioenergetics, the antioxidant response, and autophagy. Targeting TRPM2 may represent a novel therapeutic approach to inhibit myeloid leukemia growth and enhance susceptibility to chemotherapeutic agents through multiple pathways.
Collapse
|
19
|
Li D, Yu Z, Wang T, Li Y, Chen X, Wu L. The role of the novel LincRNA uc002jit.1 in NF-kB-mediated DNA damage repair in acute myeloid leukemia cells. Exp Cell Res 2020; 391:111985. [PMID: 32259522 DOI: 10.1016/j.yexcr.2020.111985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 01/07/2023]
Abstract
The roles and therapeutic potential of long noncoding RNAs (lncRNAs) in acute myeloid leukemia (AML) have attracted increased attention. However, many lncRNAs have not been annotated in AML, and their predictive value for AML therapy remains unclear. In this study, we identified a novel large intergenic noncoding RNA uc002jit.1 (D43770) from a lncRNA microarray. We first proved uc002jit.1 is a target gene of nuclear factor kappa B/RELA, RELA regulated uc002jit.1 transcription by binding to its promoter. Additionally, uc002jit.1 knockdown impaired the stability of poly (ADP-ribose) polymerase 1 (PARP1) mRNA, and then reduced PARP1 protein content and PARylation level upon DNA damage, thus inhibiting DNA damage repair in AML cells. Moreover, uc002jit.1 knockdown significantly inhibited AML cells proliferation and increased the sensitivity to chemotherapeutic drugs in vitro as well as in a mouse model in vivo. Overall, our study indicated that uc002jit.1 may be associated with the occurrence and prognosis of AML and could be a new diagnostic/prognostic biomarker and therapeutic target for AML.
Collapse
Affiliation(s)
- Ding Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, PR China; Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Zelei Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Tingting Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Yi Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xianling Chen
- Fujian Institute of Hematology, Union Hospital, Fuzhou, 350001, PR China
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; Institute of Materia Medicine, Fuzhou, 350108, PR China; Fuijan Key Laboratory of Natural Medicine Pharmacology, Fuzhou, 350108, PR China.
| |
Collapse
|
20
|
Mai NXD, Birault A, Matsumoto K, Ta HKT, Intasa‐ard SG, Morrison K, Thang PB, Doan TLH, Tamanoi F. Biodegradable Periodic Mesoporous Organosilica (BPMO) Loaded with Daunorubicin: A Promising Nanoparticle-Based Anticancer Drug. ChemMedChem 2020; 15:593-599. [PMID: 32020745 PMCID: PMC7187469 DOI: 10.1002/cmdc.201900595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/30/2020] [Indexed: 11/28/2022]
Abstract
Biodegradable periodic mesoporous organosilica (BPMO) nanoparticles have emerged as a promising type of nanocarrier for drug delivery, given the biodegradable feature is advantageous for clinical translation. In this paper, we report synthesis and characterization of daunorubicin (DNR) loaded BPMO. DNR was loaded onto rhodamine B-labeled BPMO that contain tetrasulfide bonds. Tumor spheroids and chicken egg tumor models were used to characterize the activity in biological settings. In the first experiment we examined the uptake of BPMO into tumor spheroids prepared from ovarian cancer cells. BPMO were efficiently taken up into tumor spheroids and inhibited their growth. In the chicken egg tumor model, intravenous injection of DNR-loaded BPMO led to the elimination of ovarian tumor. Lack of adverse effect on organs such as lung appears to be due to excellent tumor accumulation of BPMO. Thus, DNR-loaded BPMO represents a promising nanodrug compared with free DNR currently used in cancer therapy. OK.
Collapse
Affiliation(s)
- Ngoc Xuan Dat Mai
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
- Faculty of Physics and Engineering Physics, University of ScienceVietnam National UniversityHo Chi Minh City700000Vietnam
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| | - Hanh Kieu Thi Ta
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
- Faculty of Materials Science and Technology, University of ScienceVietnam National UniversityHo Chi Minh City700000Vietnam
| | - Soontaree Grace Intasa‐ard
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| | - Kendall Morrison
- TAE Life SciencesDrug Development DivisionSanta Monica, CA90404USA
| | - Phan Bach Thang
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| |
Collapse
|
21
|
Li Y, Xie J, Li X, Fang J. Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells. Oncol Lett 2019; 19:368-378. [PMID: 31897149 PMCID: PMC6924101 DOI: 10.3892/ol.2019.11116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is one of the most common and curable types of cancer in paediatric patients. However, chemotherapeutic resistance is a difficult but common obstacle when treating leukaemia in the clinical setting. Studies have demonstrated that drug resistance is partly attributable to autophagy induced by multiple chemotherapeutic agents. As an evolutionarily conserved non-histone chromatin-binding protein, high mobility group box protein 1 (HMGB1) is considered to be an important factor in autophagy, and regulates autophagy at multiple levels via different subcellular localisations. In the present study, it was revealed that chemotherapeutic drugs induced autophagy in leukaemia cells and that translocation of HMGB1 from the nucleus to the cytoplasm is an important molecular event in this process. It was further demonstrated that poly (ADP-ribosylation) of HMGB1 facilitates its acetylation, thereby inducing HMGB1 translocation and ultimately promoting chemotherapy-induced autophagy in leukaemic cells. Targeted HMGB1 translocation may overcome chemotherapy-induced autophagy in leukaemia.
Collapse
Affiliation(s)
- Yunyao Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jianwei Xie
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinyu Li
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jianpei Fang
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
22
|
Brennan L, Narendran A. Cancer Stem Cells in the Development of Novel Therapeutics for Refractory Pediatric Leukemia. Stem Cells Dev 2019; 28:1277-1287. [PMID: 31364487 DOI: 10.1089/scd.2019.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although treatment strategies for pediatric leukemia have improved overall survival rates in the recent past, relapse rates in certain subgroups such as infant leukemia remain unacceptably high. Despite undergoing extensive chemotherapy designed to target the rapidly proliferating leukemia cells, many of these children experience relapse. In refractory leukemia, the existence of cell populations with stemness characteristics, termed leukemia stem cells (LSCs), which remain quiescent and subsequently replenish the blast population, has been described. A significant body of evidence exists, derived largely from xenograft models of adult acute myeloid leukemia, to support the idea that LSCs may play a fundamental role in refractory disease. In addition, clinical studies have also linked LSCs with increased minimal residual disease, higher relapse rate, and decreased survival rates in these patients. Recently, a number of reports have addressed effective ways to utilize new-generation genomic sequencing and transcriptomic analyses to identify targeted therapeutic agents aimed at LSCs, while sparing normal hematopoietic stem cells. These data underscore the value of timely translation of knowledge from adult studies to the unique molecular and physiological characteristics seen in pediatric leukemia. We aim to summarize this article in the rapidly expanding field of stem cell biology in hematopoietic malignancies, focusing particularly on relevant preclinical models and novel targeted therapeutics, and their applicability to childhood leukemia.
Collapse
Affiliation(s)
| | - Aru Narendran
- Division of Pediatric Hematology, Oncology and Transplant, POETIC Laboratory for Novel Therapeutics Discovery in Pediatric Oncology, Alberta Children's Hospital, Calgary, Canada
| |
Collapse
|
23
|
Redah Alassaif F, Redah Alassaif E, Rani Chavali S, Dhanapal J. Suppressing the growth of HL-60 acute myeloid leukemia cells by chitosan coated anthraquinone nanoparticles in vitro. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1509340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fatimah Redah Alassaif
- Department of Central Military Laboratory & Blood bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Eman Redah Alassaif
- Department of Clinical Biochemistry, Almana General Hospital, Dammam, Saudi Arabia
| | - Santosh Rani Chavali
- Genetics Laboratory, Pediatrics Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jeevitha Dhanapal
- Biologicals Department, Labmate (Asia) Private Limited, Chennai, India
| |
Collapse
|
24
|
Apoptotic Effects of Drug Targeting Conjugates Containing Different GnRH Analogs on Colon Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20184421. [PMID: 31500399 PMCID: PMC6769516 DOI: 10.3390/ijms20184421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
The wide range of cellular target reactions (e.g., antitumor) of gonadotropin-releasing hormone (GnRH) variants provides the possibility to develop multifunctional GnRH conjugates. The aim of our work was to compare the cytotoxic/apoptotic activity of different GnRH-based, daunorubicin (Dau)-linked conjugates with or without butyrated Lys in position 4 (4Lys(Bu)) at a molecular level in a human colorectal carcinoma cell line. Cell viability was measured by impedimetry, cellular uptake and apoptosis were studied by flow cytometry, and the expression of apoptosis-related genes was analyzed by qRT-PCR. The modification with 4Lys(Bu) resulted in an increased cytotoxic and apoptotic effects and cellular uptake of the GnRH-I and GnRH-III conjugates. Depending on the GnRH isoform and the presence of 4Lys(Bu), the conjugates could regulate the expression of several apoptosis-related genes, especially tumor necrosis factor (TNF), tumor protein p53 (TP53) and the members of growth-factor signaling. The stronger cytotoxicity of GnRH-I and GnRH-III conjugates containing 4Lys(Bu) was associated with a stronger inhibitory effect on the expression of growth-factor signaling elements in comparison with their 4Ser counterparts, in which the upregulation of TP53 and caspases (e.g., CASP9) seemed to play a more important role. We were able to provide further evidence that targeting the GnRH receptor could serve as a successful therapeutic approach in colon cancer, and GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] proved to be the best candidate for this purpose.
Collapse
|
25
|
Suematsu N, Ninomiya M, Sugiyama H, Udagawa T, Tanaka K, Koketsu M. Synthesis of carbazoloquinone derivatives and their antileukemic activity via modulating cellular reactive oxygen species. Bioorg Med Chem Lett 2019; 29:2243-2247. [DOI: 10.1016/j.bmcl.2019.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/29/2023]
|
26
|
Snider JM, Trayssac M, Clarke CJ, Schwartz N, Snider AJ, Obeid LM, Luberto C, Hannun YA. Multiple actions of doxorubicin on the sphingolipid network revealed by flux analysis. J Lipid Res 2019; 60:819-831. [PMID: 30573560 PMCID: PMC6446699 DOI: 10.1194/jlr.m089714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.
Collapse
Affiliation(s)
- Justin M Snider
- Molecular and Cellular Biology and Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY; Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Magali Trayssac
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Christopher J Clarke
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Nicholas Schwartz
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Lina M Obeid
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Physiology and Biophysics, Stony Brook University, Stony Brook, NY.
| | - Yusuf A Hannun
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Biochemistry, Stony Brook University, Stony Brook, NY; Departments of Pharmacology, Stony Brook University, Stony Brook, NY; Departments of Pathology, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
27
|
Verma K, Zang T, Penning TM, Trippier PC. Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2019; 62:3590-3616. [PMID: 30836001 DOI: 10.1021/acs.jmedchem.9b00090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) catalyzes the synthesis of 9α,11β-prostaglandin (PG) F2α and PGF2α prostanoids that sustain the growth of myeloid precursors in the bone marrow. The enzyme is overexpressed in acute myeloid leukemia (AML) and T-cell acute lymphoblastic leukemia (T-ALL). Moreover, AKR1C3 confers chemotherapeutic resistance to the anthracyclines: first-line agents for the treatment of leukemias. The highly homologous isoforms AKR1C1 and AKR1C2 inactivate 5α-dihydrotestosterone, and their inhibition would be undesirable. We report herein the identification of AKR1C3 inhibitors that demonstrate exquisite isoform selectivity for AKR1C3 over the other closely related isoforms to the order of >2800-fold. Biological evaluation of our isoform-selective inhibitors revealed a high degree of synergistic drug action in combination with the clinical leukemia therapeutics daunorubicin and cytarabine in in vitro cellular models of AML and primary patient-derived T-ALL cells. Our developed compounds exhibited >100-fold dose reduction index that results in complete resensitization of a daunorubicin-resistant AML cell line to the chemotherapeutic and >100-fold dose reduction of cytarabine in both AML cell lines and primary T-ALL cells.
Collapse
Affiliation(s)
- Kshitij Verma
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center, School of Pharmacy , Amarillo , Texas 79106 , United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
28
|
Codini M, Conte C, Cataldi S, Arcuri C, Lazzarini A, Ceccarini MR, Patria F, Floridi A, Mecca C, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E. Nuclear Lipid Microdomains Regulate Daunorubicin Resistance in Hepatoma Cells. Int J Mol Sci 2018; 19:ijms19113424. [PMID: 30388783 PMCID: PMC6274808 DOI: 10.3390/ijms19113424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Daunorubicin is an anticancer drug, and cholesterol is involved in cancer progression, but their relationship has not been defined. In this study, we developed a novel experimental model that utilizes daunorubicin, cholesterol, and daunorubicin plus cholesterol in the same cells (H35) to search for the role of nuclear lipid microdomains, rich in cholesterol and sphingomyelin, in drug resistance. We find that the daunorubicin induces perturbation of nuclear lipid microdomains, localized in the inner nuclear membrane, where active chromatin is anchored. As changes of sphingomyelin species in nuclear lipid microdomains depend on neutral sphingomyelinase activity, we extended our studies to investigate whether the enzyme is modulated by daunorubicin. Indeed the drug stimulated the sphingomyelinase activity that induced reduction of saturated long chain fatty acid sphingomyelin species in nuclear lipid microdomains. Incubation of untreated-drug cells with high levels of cholesterol resulted in the inhibition of sphingomyelinase activity with increased saturated fatty acid sphingomyelin species. In daunodubicin-treated cells, incubation with cholesterol reversed the action of the drug by acting via neutral sphingomyelinase. In conclusion, we suggest that cholesterol and sphingomyelin-forming nuclear lipid microdomains are involved in the drug resistance.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06122 Perugia, Italy.
| | | | - Federica Patria
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Alessandro Floridi
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06122 Perugia, Italy.
| | - Carmen Mecca
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Francesco Curcio
- Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy.
| | - Elisabetta Albi
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
29
|
Evaluation of the Gene Expression of the Cytoprotective Proteins in Response to Daunorubicin in U937 Cells. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Bouvy C, Wannez A, Laloy J, Chatelain C, Dogné JM. Transfer of multidrug resistance among acute myeloid leukemia cells via extracellular vesicles and their microRNA cargo. Leuk Res 2017; 62:70-76. [DOI: 10.1016/j.leukres.2017.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 09/24/2017] [Indexed: 12/29/2022]
|
31
|
Ben Mabrouk H, Nejia S, Maram M, Naziha M, Soufia CE. A New Protein Extract Inhibitor from Hypobranchial Purple Gland of Hexaplex trunculus, a Mediterranean Mollusk, Impairs the Motility of Human Glioblastoma U87 and the HeLa Cell Line of Cervical Carcinoma Cells. Nutr Cancer 2017; 69:1028-1035. [PMID: 29083237 DOI: 10.1080/01635581.2017.1359315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study is to evaluate the effect of hypobranchial gland protein extracts (HGPEs) of Hexaplex trunculus on the viability, cell adhesion, and migration of human U87 glioblastoma cells and the HeLa cell line obtained from epithelial cervical carcinoma cells. Analysis of the HGPE on polyacrylamide gel (12%) shows a variety of proteins whose molecular weights vary between 12 and 1OO kDa. Chromatographic analysis shows 16 peaks obtained at various retention times. Cytotoxic effect was observed after 24 hours of incubation at the concentrations 20, 40, and 60 μg/ml in a dose-dependent manner. Concentrations giving 50% inhibition (IC50) are 22 μg/ml for U87 and 15 μg/ml for HeLa cells. Our results show inhibition of U87 and HeLa cancer cell adhesion at concentrations of 10 and 20 µg/ml, respectively. High-pressure liquid chromatography fractions did not show antiadhesive effect on both cancer cell lines. The presence of HGPEs completely blocked the migration of the two cancer cell lines at 10 µg/ml. This inhibition is dose-dependent. IC50 is about 2.5 μg/ml for both cancer cells. The HGPE of Hexaplex trunculus may have the potential to serve as a model for future anticancer drug development with probably a synergistic activity of the proteins of this extract.
Collapse
Affiliation(s)
- Hazem Ben Mabrouk
- a Tunis El Manar University, Pasteur Institute Tunis, Laboratory of Venoms and Therapeutic Biomolecule , Tunis , Tunisia
| | - Sayari Nejia
- a Tunis El Manar University, Pasteur Institute Tunis, Laboratory of Venoms and Therapeutic Biomolecule , Tunis , Tunisia
| | - Morjen Maram
- a Tunis El Manar University, Pasteur Institute Tunis, Laboratory of Venoms and Therapeutic Biomolecule , Tunis , Tunisia
| | - Marrakchi Naziha
- a Tunis El Manar University, Pasteur Institute Tunis, Laboratory of Venoms and Therapeutic Biomolecule , Tunis , Tunisia
| | - Chabchoub-Ellouze Soufia
- a Tunis El Manar University, Pasteur Institute Tunis, Laboratory of Venoms and Therapeutic Biomolecule , Tunis , Tunisia.,b Tunis El Manar University, Higher Institute of Medical Biotechnology Tunis, Laboratory of Biophysical and Medical Technology , Tunis , Tunisia
| |
Collapse
|
32
|
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 2017; 16:13. [PMID: 28137265 PMCID: PMC5282735 DOI: 10.1186/s12943-016-0571-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most commonly diagnosed leukemia in adults (25%) and comprises 15-20% in children. It is a genetically heterogeneous aggressive disease characterized by the accumulation of somatically acquired genetic changes, altering self-renewal, proliferation, and differentiation of hematopoietic progenitor cells, resulting in uncontrolled clonal proliferation of malignant progenitor myeloid cells in the bone marrow, peripheral blood, and occasionally in other body tissues. Treatment with modern chemotherapy regimen (cytarabine and daunorubicin) usually achieves high remission rates, still majority of patients are found to relapse, resulting in only 40-45% overall 5 year survival in young patients and less than 10% in the elderly AML patients. The leukemia stem cells (LSCs) are characterized by their unlimited self-renewal, repopulating potential and long residence in a quiescent state of G0/G1 phase. LSCs are considered to have a pivotal role in the relapse and refractory of AML. Therefore, new therapeutic strategies to target LSCs with limited toxicity towards the normal hematopoietic population is critical for the ultimate curing of AML. Ongoing research works with natural products like parthenolide (a natural plant extract derived compound) and its derivatives, that have the ability to target multiple pathways that regulate the self-renewal, growth and survival of LSCs point to ways for a possible complete remission in AML. In this review article, we will update and discuss various natural products that can target LSCs in AML.
Collapse
Affiliation(s)
- Kodappully Sivaraman Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
33
|
Opydo-Chanek M, Mazur L. Comparison of in vitro antileukemic activity of obatoclax and ABT-737. Tumour Biol 2016; 37:10839-49. [PMID: 26880588 PMCID: PMC4999481 DOI: 10.1007/s13277-016-4943-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
Obatoclax and ABT-737 belong to a new class of anticancer agents known as BH3-mimetics. These agents antagonize the anti-apoptotic members of Bcl-2 family. The Bcl-2 proteins modulate sensitivity of many types of cancer cells to chemotherapy. Therefore, the objective of the present study was to examine and compare the antileukemic activity of obatoclax and ABT-737 applied alone, and in combination with anticancer agent, mafosfamide and daunorubicin. The in vitro cytotoxic effects of the tested agents on human leukemia cells were determined using the spectrophotometric MTT test, Coulter electrical impedance method, flow cytometry annexin V-fluorescein/propidium iodide assay, and light microscopy technique. The combination index analysis was used to quantify the extent of agent interactions. BH3 mimetics significantly decreased the leukemia cell viability and synergistically enhanced the cytotoxic effects induced by mafosfamide and daunorubicin. Obatoclax affected the cell viability to a greater degree than did ABT-737. In addition, various patterns of temporary changes in the cell volume and count, and in the frequency of leukemia cells undergoing apoptosis, were found 24 and 48 h after the tested agent application. ABT-737 combined with anticancer agents induced apoptosis more effectively than obatoclax when given in the same combination regimen. The results of the present study point to the different antileukemic activities of obatoclax and ABT-737, when applied alone, and in combination with anticancer agents. A better understanding of the exact mechanisms of BH3 mimetic action is of key importance for their optional use in cancer therapy.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Lidia Mazur
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
34
|
Nanbakhsh A, Visentin G, Olive D, Janji B, Mussard E, Dessen P, Meurice G, Zhang Y, Louache F, Bourhis JH, Chouaib S. miR-181a modulates acute myeloid leukemia susceptibility to natural killer cells. Oncoimmunology 2015; 4:e996475. [PMID: 26587335 DOI: 10.1080/2162402x.2014.996475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
Although daunorubicin (DNR) is the most widely used anthracycline to treat acute myeloid leukemia (AML), resistance to this drug remains a critical problem. The aim of this study was to investigate the relationship between AML resistance to daunorubicin and susceptibility to natural killer (NK) cell-mediated cell lysis, and the putative expression of miRs. For this purpose, we used the parental AML cell lines U-937 and KG-1 and their equivalent resistant U937(R) and KG-1(R) cell lines. We demonstrate for the first time that the acquisition of resistance to DNR by the parental cell lines resulted in the acquisition of cross-resistance to NK cell-mediated cytotoxicity. miR microarray analysis revealed that this cross-resistance was associated with miR-181a downregulation and the subsequent regulation of MAP3K10 and MAP2K1 tyrosine kinases and the BCL-2 (BCL-2 and MCL-1) family. Overexpression of miR-181a in AML blasts resulted in the attenuation of their resistance to DNR and to NK-cell-mediated killing. These data point to a determinant role of miR-181a in the sensitization of leukemic resistant cells to DNR and NK cells and suggest that miR-181a may provide a promising option for the treatment of immuno- and chemo-resistant blasts.
Collapse
Affiliation(s)
| | | | - Daniel Olive
- Centre de Cancérologie de Marseille; INSERM; Institut Paoli-Calmettes ; Marseille, France
| | - Bassam Janji
- Laboratory of Experimental Hemato-Oncology. CRP-Santé ,; Luxembourg City, Luxembourg
| | | | - Philippe Dessen
- Functional Genomic Unit; Gustave Roussy Campus ; Villejuif, France
| | | | - Yanyan Zhang
- INSERM; Gustave Roussy Campus ; Villejuif, France
| | | | - Jean-Henri Bourhis
- INSERM; Gustave Roussy Campus ; Villejuif, France ; Department of Hematology & Bone Marrow Transplantation, Gustave Roussy Campus ; Villejuif, France
| | | |
Collapse
|
35
|
Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015; 359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023]
Abstract
Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.
Collapse
Affiliation(s)
- Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Paolo N Catalano
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
36
|
Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res 2014; 33:106. [PMID: 25519934 PMCID: PMC4320640 DOI: 10.1186/s13046-014-0106-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) has been characterized by an imbalance between the production of reactive oxygen species (ROS) and a biological system's ability to repair oxidative damage or to neutralize the reactive intermediates including peroxides and free radicals. High ROS production has been associated with significant decrease in antioxidant defense mechanisms leading to protein, lipid and DNA damage and subsequent disruption of cellular functions. In humans, OS has been reported to play a role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Lou Gehrig's disease, multiple sclerosis and Parkinson's disease, as well as atherosclerosis, autism, cancer, heart failure, and myocardial infarction. Although OS has been linked to the etiology and development of chronic diseases, many chemotherapeutic drugs have been shown to exert their biologic activity through induction of OS in affected cells. This review highlights the controversial role of OS in the development and progression of leukemia cancer and the therapeutic application of increased OS and antioxidant approaches to the treatment of leukemia patients.
Collapse
Affiliation(s)
- Udensi K Udensi
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| | - Paul B Tchounwou
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
37
|
Huang L, Zhang T, Li S, Duan J, Ye F, Li H, She Z, Gao G, Yang X. Anthraquinone G503 induces apoptosis in gastric cancer cells through the mitochondrial pathway. PLoS One 2014; 9:e108286. [PMID: 25268882 PMCID: PMC4182468 DOI: 10.1371/journal.pone.0108286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
G503 is an anthraquinone compound isolated from the secondary metabolites of a mangrove endophytic fungus from the South China Sea. The present study elucidates the anti-tumor activity and the underlying mechanism of G503. Cell viability assay performed in nine cancer cell lines and two normal cell lines demonstrated that the gastric cancer cell line SGC7901 is the most G503-sensitive cancer cells. G503 induced SGC7901 cell death via apoptosis. G503 exposure activated caspases-3, -8 and -9. Pretreatment with the pan-caspase inhibitor Z-VAD-FMK and caspase-9 inhibitor Z-LEHD-FMK, but not caspase-8 inbibitor Z-IETD-FMK, attenuated the effect of G503. These results suggested that the intrinsic mitochondrial apoptosis pathway, rather than the extrinsic pathway, was involved in G503-induced apoptosis. Furthermore, G503 increased the ratio of Bax to Bcl-2 in the mitochondria and decreased the ratio in the cytosol. G503 treatment resulted in mitochondrial depolarization, cytochrome c release and the subsequent cleavage of caspase -9 and -3. Moreover, it is reported that the endoplasmic reticulum apoptosis pathway may also be activated by G503 by inducing capase-4 cleavage. In consideration of the lower 50% inhibitory concentration for gastric cancer cells, G503 may serve as a promising candidate for gastric cancer chemotherapy.
Collapse
Affiliation(s)
- Lijun Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shuai Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Junting Duan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fang Ye
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hanxiang Li
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Zhigang She
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Induction of aldo-keto reductases (AKR1C1 and AKR1C3) abolishes the efficacy of daunorubicin chemotherapy for leukemic U937 cells. Anticancer Drugs 2014; 25:868-77. [DOI: 10.1097/cad.0000000000000112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Kardeh S, Ashkani-Esfahani S, Alizadeh AM. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol 2014; 735:150-68. [DOI: 10.1016/j.ejphar.2014.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 02/07/2023]
|
40
|
Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood 2014; 123:2691-702. [PMID: 24599548 DOI: 10.1182/blood-2013-06-511527] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leukemia cells are protected from chemotherapy-induced apoptosis by their interactions with bone marrow mesenchymal stromal cells (BM-MSCs). Yet the underlying mechanisms associated with this protective effect remain unclear. Genome-wide gene expression profiling of BM-MSCs revealed that coculture with leukemia cells upregulated the transcription of genes associated with nuclear factor (NF)-κB signaling. Moreover, primary BM-MSCs from leukemia patients expressed NF-κB target genes at higher levels than their normal BM-MSC counterparts. The blockade of NF-κB activation via chemical agents or the overexpression of the mutant form of inhibitor κB-α (IκBα) in BM-MSCs markedly reduced the stromal-mediated drug resistance in leukemia cells in vitro and in vivo. In particular, our unique in vivo model of human leukemia BM microenvironment illustrated a direct link between NF-κB activation and stromal-associated chemoprotection. Mechanistic in vitro studies revealed that the interaction between vascular cell adhesion molecule 1 (VCAM-1) and very late antigen-4 (VLA-4) played an integral role in the activation of NF-κB in the stromal and tumor cell compartments. Together, these results suggest that reciprocal NF-κB activation in BM-MSCs and leukemia cells is essential for promoting chemoresistance in the transformed cells, and targeting NF-κB or VLA-4/VCAM-1 signaling could be a clinically relevant mechanism to overcome stroma-mediated chemoresistance in BM-resident leukemia cells.
Collapse
|
41
|
Anensen N, Øyan AM, Huseby S, Kalland KH, Bruserud Ø, Gjertsen BT. Early gene expression of acute myeloid leukemia in response to chemotherapy. Expert Rev Anticancer Ther 2014; 7:741-51. [PMID: 17492937 DOI: 10.1586/14737140.7.5.741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of gene expression arrays in the evaluation and classification of tumors is becoming increasingly important in a number of malignancies. This is a powerful technique able to disclose interpatient variance in gene expression. Such variation in gene expression may be the cause of different disease outcome and may reflect disease phenotypes or chemoresistance. Acute myeloid leukemia is a malignant disease of the bone marrow where overall long-term disease-free survival is less than 50%. The need for better disease classification and evaluation is consequently evident. Gene expression profiling in acute myeloid leukemia has, in recent years, proven able to distinguish acute myeloid leukemia subclasses and predict clinical outcome and is, as such, a promising technique for improved disease evaluation. The early detection of gene expression in response to chemotherapy may be a novel way of monitoring disease management. The immediate gene response may be an indication of whether the drug of choice is efficient in leukemic cell eradication and may early indicate the need for other therapeutic measures. Furthermore, these early alterations in gene expression could facilitate identification of new treatment targets, thereby enabling better patient care and follow-up in the future.
Collapse
Affiliation(s)
- Nina Anensen
- Institute of Medicine, Hematology Section, University of Bergen, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
42
|
Howard DS, Liesveld J, Phillips GL, Hayslip J, Weiss H, Jordan CT, Guzman ML. A phase I study using bortezomib with weekly idarubicin for treatment of elderly patients with acute myeloid leukemia. Leuk Res 2013; 37:1502-8. [PMID: 24075534 PMCID: PMC4025941 DOI: 10.1016/j.leukres.2013.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 01/28/2023]
Abstract
We report the results of a phase I study with four dose levels of bortezomib in combination with idarubicin. Eligible patients were newly diagnosed with acute myeloid leukemia (AML) age ≥60 years, or any adult with relapsed AML. Bortezomib was given twice weekly at 0.8, 1.0, or 1.2 mg/m(2) with once weekly idarubicin 10 mg/m(2) for four weeks. Twenty patients were treated: 13 newly diagnosed (median age 68, range 61-83) and 7 relapsed (median age 58, range 40-77). Prior myelodysplastic syndrome (MDS) was documented in 10/13 (77%) newly diagnosed and 1/7 (14%) relapsed patients; the three newly diagnosed patients without prior MDS had dyspoietic morphology. Two dose-limiting toxicities occurred at the initial dose level (bortezomib 0.8 mg/m(2) and idarubicin 10 mg/m(2)); idarubicin was reduced to 8 mg/m(2) without observing subsequent dose-limiting toxicities. The maximum tolerated dose in this study was bortezomib 1.2 mg/m(2) and idarubicin 8 mg/m(2). Common adverse events included: neutropenic fever, infections, constitutional symptoms, and gastrointestinal symptoms. No subjects experienced neurotoxicity. Most patients demonstrated hematologic response as evidenced by decreased circulating blasts. Four patients (20%) achieved complete remission. There was one treatment-related death. The combination of bortezomib and idarubicin in this mostly poor-risk, older AML group was well tolerated and did not result in high mortality. This trial was registered at www.clinicaltrials.gov as #NCT00382954.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Boronic Acids/administration & dosage
- Bortezomib
- Female
- Follow-Up Studies
- Humans
- Idarubicin/administration & dosage
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Prognosis
- Pyrazines/administration & dosage
- Remission Induction
- Survival Rate
Collapse
Affiliation(s)
- Dianna S Howard
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| | | | | | | | | | | | | |
Collapse
|
43
|
Stewart HJS, Horne GA, Bastow S, Chevassut TJT. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Med 2013; 2:826-35. [PMID: 24403256 PMCID: PMC3892387 DOI: 10.1002/cam4.146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/17/2013] [Accepted: 09/11/2013] [Indexed: 12/30/2022] Open
Abstract
The bromodomain and extra terminal (BET) family protein bromodomain containing protein 4 (BRD4) is an epigenetic regulator recently identified as a therapeutic target for several hematological cancers, notably mixed lineage leukemia-fusion acute myeloid leukemia (MLL-AML). Here, we show that the BRD4 bromodomain inhibitor JQ1 is highly active against the p53-wild-type Ontario Cancer Institute (OCI)-AML3 cell line which carries mutations in nucleophosmin (NPM1) and DNA methyltransferase 3 (DNMT3A) genes commonly associated with poor prognostic disease. We find that JQ1 causes caspase 3/7-mediated apoptosis and DNA damage response in these cells. In combination studies, we show that histone deacetylase (HDAC) inhibitors, the HDM2 inhibitor Nutlin-3, and the anthracycline daunorubicin all enhance the apoptotic response of JQ1. These compounds all induce activation of p53 suggesting that JQ1 might sensitize AML cells to p53-mediated cell death. In further experiments, we show that BRD4 associates with acetylated p53 but that this association is not inhibited by JQ1 indicating that the protein-protein interaction does not involve bromodomain binding of acetylated lysines. Instead, we propose that JQ1 acts to prevent BRD4-mediated recruitment of p53 to chromatin targets following its activation in OCI-AML3 cells resulting in cell cycle arrest and apoptosis in a c-MYC-independent manner. Our data suggest that BET bromodomain inhibition might enhance current chemotherapy strategies in AML, notably in poor-risk DNMT3A/NPM1-mutated disease.
Collapse
Affiliation(s)
- Helen Jayne Susan Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9PS, U.K; Department of Haematology, Royal Sussex County Hospital, Brighton, East Sussex, BN2 5BE, U.K
| | | | | | | |
Collapse
|
44
|
Gu C, Gonzalez J, Zhang T, Kamel-Reid S, Wells RA. The aryl hydrocarbon receptor nuclear translocator (ARNT) modulates the antioxidant response in AML cells. Leuk Res 2013; 37:1750-6. [PMID: 24220583 DOI: 10.1016/j.leukres.2013.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
We observed AML cell lines vary in their sensitivity to induction of apoptosis by troglitazone (TG), which induces apoptosis through the generation of intracellular reactive oxygen species (ROS). TG-resistant cell lines had increased abundance of ARNT transcripts and protein. Expression of ARNT in TG-sensitive cells made these cells resistant to both TG and daunorubicin. ARNT-expressing cells had increased expression of SOD2 and Nrf2 transcripts and elevated intracellular GSH concentration. Our results indicate that ARNT expression in AML cells augments antioxidant response and confers resistance to ROS inducers. This suggests ARNT may modulate ROS signaling and drug response in AML.
Collapse
Affiliation(s)
- Chunhong Gu
- The J. Douglas Crashley MDS Research Laboratory, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
45
|
Wu KN, Zhao YM, He Y, Wang BS, Du KL, Fu S, Hu KM, Zhang LF, Liu LZ, Hu YX, Wang YJ, Huang H. Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug-resistant microenvironment via Akt/mammalian target of rapamycin and extracellular signal-related kinase signaling pathways. Leuk Lymphoma 2013; 55:668-76. [PMID: 23741975 DOI: 10.3109/10428194.2013.811579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cell acute lymphoblastic leukemias (T-ALLs) are clonal lymphoid malignancies with a poor prognosis, and still a lack of effective treatment. Here we examined the interactions between the mammalian target of rapamycin (mTOR) inhibitor rapamycin and idarubicin (IDA) in a series of human T-ALL cell lines Molt-4, Jurkat, CCRF-CEM and CEM/C1. Co-exposure of cells to rapamycin and IDA synergistically induced T-ALL cell growth inhibition and apoptosis mediated by caspase activation via the intrinsic mitochondrial pathway and extrinsic pathway. Combined treatment with rapamycin and IDA down-regulated Bcl-2 and Mcl-1, and inhibited the activation of phosphoinositide 3-kinase (PI3K)/mTOR and extracellular signal-related kinase (ERK). They also played synergistic pro-apoptotic roles in the drug-resistant microenvironment simulated by mesenchymal stem cells (MSCs) as a feeder layer. In addition, MSCs protected T-ALL cells from IDA cytotoxicity by up-regulating ERK phosphorylation, while rapamycin efficiently reversed this protective effect. Taken together, we confirm the synergistic antitumor effects of rapamycin and IDA, and provide an insight into the potential future clinical applications of combined rapamycin-IDA regimens for treating T-cell malignancies.
Collapse
Affiliation(s)
- Kang-Ni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood 2013; 122:1900-13. [PMID: 23896410 DOI: 10.1182/blood-2012-11-466425] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SRC family kinases (SFKs) and the receptor tyrosine kinase c-Kit are activated in human acute myeloid leukemia (AML) cells. We show here that the SFKs LYN, HCK, or FGR are overexpressed and activated in AML progenitor cells. Treatment with the SFK and c-KIT inhibitor dasatinib selectively inhibits human AML stem/progenitor cell growth in vitro. Importantly, dasatinib markedly increases the elimination of AML stem cells capable of engrafting immunodeficient mice by chemotherapeutic agents. In vivo dasatinib treatment enhances chemotherapy-induced targeting of primary murine AML stem cells capable of regenerating leukemia in secondary recipients. Our studies suggest that enhanced targeting of AML cells by the combination of dasatinib with daunorubicin may be related to inhibition of AKT-mediated human mouse double minute 2 homolog phosphorylation, resulting in enhanced p53 activity in AML cells. Combined treatment using dasatinib and chemotherapy provides a novel approach to increasing p53 activity and enhancing targeting of AML stem cells.
Collapse
|
47
|
|
48
|
Xiao RZ, He CM, Xiong MJ, Ruan XX, Wang LL, Chen Y, Lin DJ. Inhibition of extracellular signal-regulated kinase activity by sorafenib increases sensitivity to DNR in K562 cells. Oncol Rep 2013; 29:1895-901. [PMID: 23467984 DOI: 10.3892/or.2013.2331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway has a protective function on the management of hematologic malignancies. The aim of this study was to assess whether the induction of MAPK-mediated effects contributes to the therapeutic value of combination sorafenib and daunorubicin (DNR) treatment. Herein, we found that DNR increased phosphorylation of extracellular signal-regulated kinases (ERK1/2) in K562 cells. ERK1/2 activity was blocked by either the mitogen-induced extracellular kinase (MEK) inhibitor U0126 or a multi-kinase inhibitor sorafenib. Of note, sorafenib sensitized K562 to DNR by inhibiting proliferation and inducing apoptosis in a dose-dependent manner which was through blocking the RAF/MEK/ERK pathway. Moreover, K562 cells transfected with a constitutively active MEK2DD plasmid showed increasing IC50 values following DNR treatment compared with control cells. Combination of DNR with MEK inhibitor U0126 synergistically inhibited K562 cell growth. In conclusion, our results indicated that sorafenib sensitized K562 cells to DNR-induced cytotoxicity by downregulating p-ERK1/2 expression. DNR in combination with sorafenib may represent a new and potential therapeutic strategy in treating acute leukemia with high p-ERK1/2 levels.
Collapse
Affiliation(s)
- Ruo-Zhi Xiao
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Gausdal G, Wergeland A, Skavland J, Nguyen E, Pendino F, Rouhee N, McCormack E, Herfindal L, Kleppe R, Havemann U, Schwede F, Bruserud O, Gjertsen BT, Lanotte M, Ségal-Bendirdjian E, Døskeland SO. Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis. Cell Death Dis 2013; 4:e516. [PMID: 23449452 PMCID: PMC3734820 DOI: 10.1038/cddis.2013.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We show that cyclic AMP (cAMP) elevating agents protect blasts from patients with acute promyelocytic leukemia (APL) against death induced by first-line anti-leukemic anthracyclines like daunorubicin (DNR). The cAMP effect was reproduced in NB4 APL cells, and shown to depend on activation of the generally cytoplasmic cAMP-kinase type I (PKA-I) rather than the perinuclear PKA-II. The protection of both NB4 cells and APL blasts was associated with (inactivating) phosphorylation of PKA site Ser118 of pro-apoptotic Bad and (activating) phosphorylation of PKA site Ser133 of the AML oncogene CREB. Either event would be expected to protect broadly against cell death, and we found cAMP elevation to protect also against 2-deoxyglucose, rotenone, proteasome inhibitor and a BH3-only mimetic. The in vitro findings were mirrored by the findings in NSG mice with orthotopic NB4 cell leukemia. The mice showed more rapid disease progression when given cAMP-increasing agents (prostaglandin E2 analog and theophylline), both with and without DNR chemotherapy. The all-trans retinoic acid (ATRA)-induced terminal APL cell differentiation is a cornerstone in current APL treatment and is enhanced by cAMP. We show also that ATRA-resistant APL cells, believed to be responsible for treatment failure with current ATRA-based treatment protocols, were protected by cAMP against death. This suggests that the beneficial pro-differentiating and non-beneficial pro-survival APL cell effects of cAMP should be weighed against each other. The results suggest also general awareness toward drugs that can affect bone marrow cAMP levels in leukemia patients.
Collapse
Affiliation(s)
- G Gausdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res Cardiol 2013; 108:334. [PMID: 23411815 DOI: 10.1007/s00395-013-0334-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/07/2013] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
The increasing population of cancer survivors faces considerable morbidity and mortality due to late effects of the antineoplastic therapy. Cardiotoxicity is a major limiting factor of therapy with doxorubicin (DOXO), the most effective anthracycline, and is characterized by a dilated cardiomyopathy that can develop even years after treatment. Studies in animals have proposed the cardiac progenitor cells (CPCs) as the cellular target responsible for DOXO-induced cardiomyopathy but the relevance of these observations to clinical settings is unknown. In this study, the analysis of the DOXO-induced cardiomyopathic human hearts showed that the majority of human CPCs (hCPCs) was senescent. In isolated hCPCs, DOXO triggered DNA damage response leading to apoptosis early after exposure, and telomere shortening and senescence at later time interval. Functional properties of hCPCs, such as migration and differentiation, were also negatively affected. Importantly, the differentiated progeny of DOXO-treated hCPCs prematurely expressed the senescence marker p16(INK4a). In conclusion, DOXO exposure severely affects the population of hCPCs and permanently impairs their function. Premature senescence of hCPCs and their progeny can be responsible for the decline in the regenerative capacity of the heart and may represent the cellular basis of DOXO-induced cardiomyopathy in humans.
Collapse
|