1
|
Mahdifar M, Boostani R, Taylor GP, Rezaee SA, Rafatpanah H. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol 2024; 61:7877-7889. [PMID: 38436833 DOI: 10.1007/s12035-024-03999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.
Collapse
Affiliation(s)
- Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graham P Taylor
- Section of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Enose-Akahata Y, Ngouth N, Ohayon J, Mandel M, Chavin J, Turner TJ, Jacobson S. Effect of Teriflunomide on Cells From Patients With Human T-cell Lymphotropic Virus Type 1-Associated Neurologic Disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e986. [PMID: 33837058 PMCID: PMC8054963 DOI: 10.1212/nxi.0000000000000986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Objective To test the hypothesis that teriflunomide can reduce ex vivo spontaneous proliferation of peripheral blood mononuclear cells (PBMCs) from patients with human T-cell lymphotropic virus type 1 (HTLV-1)–associated myelopathy/tropical spastic paraparesis (HAM/TSP). Methods PBMCs from patients with HAM/TSP were cultured in the presence and absence of teriflunomide and assessed for cell viability, lymphocyte proliferation, activation markers, HTLV-1 tax and HTLV-1 hbz messenger ribonucleic acid (mRNA) expression, and HTLV-1 Tax protein expression. Results In culture, teriflunomide did not affect cell viability. A concentration-dependent reduction in spontaneous proliferation of PBMCs was observed with 25 μM (38.3% inhibition), 50 μM (65.8% inhibition), and 100 μM (90.7% inhibition) teriflunomide. The inhibitory effects of teriflunomide were detected in both CD8+ and CD4+ T-cell subsets, which are involved in the immune response to HTLV-1 infection and the pathogenesis of HAM/TSP. There was no significant change in HTLV-1 proviral load (PVL) or tax mRNA/Tax protein expression in these short-term cultures, but there was a significant reduction of HTLV-1 PVL due to inhibition of proliferation of CD4+ T cells obtained from a subset of patients with HAM/TSP. Conclusions These results suggest that teriflunomide inhibits abnormal T-cell proliferation associated with HTLV-1 infection and may have potential as a therapeutic option in patients with HAM/TSP.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA
| | - Nyater Ngouth
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA
| | - Joan Ohayon
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA
| | - Matt Mandel
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA
| | - Jeffrey Chavin
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA
| | - Timothy J Turner
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA
| | - Steven Jacobson
- From the Viral Immunology Section (Y.E.-A., N.N., S.J.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Joan Ohayon, Neuroimmunology Clinic (J.O.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; and Sanofi (M.M., J.C., T.J.T.), Cambridge, MA.
| |
Collapse
|
3
|
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, Branscome H, Kashanchi F. Extracellular Vesicles in HTLV-1 Communication: The Story of an Invisible Messenger. Viruses 2020; 12:E1422. [PMID: 33322043 PMCID: PMC7763366 DOI: 10.3390/v12121422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (S.A.S.); (D.O.P.); (G.A.M.); (F.D.); (P.K.); (Y.K.); (H.B.)
| |
Collapse
|
4
|
Prates G, Assone T, Corral M, Baldassin MPM, Mitiko T, Silva Sales FC, Haziot ME, Smid J, Fonseca LAM, de Toledo Gonçalves F, Penalva de Oliveira AC, Casseb J. Prognosis Markers for Monitoring HTLV-1 Neurologic Disease. Neurol Clin Pract 2020; 11:134-140. [PMID: 33842066 DOI: 10.1212/cpj.0000000000000866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
Background Human T-cell lymphotropic virus type 1 (HTLV-1) infection is associated not only with some severe manifestations, such as HTLV-1-associated myelopathy (HAM) and ATLL, but also with other, less severe conditions. Some studies have reported neurologic manifestations that did not meet all the criteria for the diagnosis of HAM in individuals infected with HTLV-1; these conditions may later progress to HAM or constitute an intermediate clinical form, between asymptomatic HTLV-1 carriers and those with full myelopathy. This study evaluated the prognostic value and looked for a possible association of those parameters with the intermediate syndrome (IS) status and HAM status. Methods Proviral load (PVL), spontaneous lymphoproliferation, interferon (IFN)-γ spontaneous production was quantified in samples of asymptomatic and HAM patients, as well as patients with IS. Results The critical age range was 50-60 years for IS outcome and more of 60 years for HAM outcome, with an increased risk of 2.5-fold for IS and 6.8-fold for HAM. IFN-γ was increased in patients with IS compared with asymptomatic carriers (ACs) (p = 0.007) and in patients with HAM compared with ACs (p = 0.03). Lymphoproliferation was increased in patients with HAM vs ACs (p = 0.0001) and patients with IS (p = 0.0001). PVL was similar between groups. Conclusion IFN-γ has high specificity of prediction of subject remain asymptomatic compared with PVL and lymphoproliferation assay tests. IFN-γ has been shown to be a biomarker of progression to intermediate stage and to HAM. The association of other markers with manifestations associated with HTLV-1 infection that does not meet the HAM criteria should be verified.
Collapse
Affiliation(s)
- Gabriela Prates
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Tatiane Assone
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Marcelo Corral
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Maíra P M Baldassin
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Tatiane Mitiko
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Flávia C Silva Sales
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Michel E Haziot
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Jerusa Smid
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Luiz A M Fonseca
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Fernanda de Toledo Gonçalves
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Augusto C Penalva de Oliveira
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| | - Jorge Casseb
- Faculty of Medicine-University of São Paulo (GP, TA, MC, MPMB, TM, FCSS, LAMF, JC); Institute of Infectious Diseases "Emilio Ribas" (MEH, JS, ACPdO); and Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina FMUSP (FdTG), University of São Paulo, Brazil
| |
Collapse
|
5
|
Sarkis S, Galli V, Moles R, Yurick D, Khoury G, Purcell DFJ, Franchini G, Pise-Masison CA. Role of HTLV-1 orf-I encoded proteins in viral transmission and persistence. Retrovirology 2019; 16:43. [PMID: 31852543 PMCID: PMC6921521 DOI: 10.1186/s12977-019-0502-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTVL-1), first reported in 1980 by Robert Gallo's group, is the etiologic agent of both cancer and inflammatory diseases. Despite approximately 40 years of investigation, the prognosis for afflicted patients remains poor with no effective treatments. The virus persists in the infected host by evading the host immune response and inducing proliferation of infected CD4+ T-cells. Here, we will review the role that viral orf-I protein products play in altering intracellular signaling, protein expression and cell-cell communication in order to escape immune recognition and promote T-cell proliferation. We will also review studies of orf-I mutations found in infected patients and their potential impact on viral load, transmission and persistence. Finally, we will compare the orf-I gene in HTLV-1 subtypes as well as related STLV-1.
Collapse
Affiliation(s)
- Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Nozuma S, Jacobson S. Neuroimmunology of Human T-Lymphotropic Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2019; 10:885. [PMID: 31105674 PMCID: PMC6492533 DOI: 10.3389/fmicb.2019.00885] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent of both adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is clinically characterized by chronic progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. Given its well-characterized clinical presentation and pathophysiology, which is similar to the progressive forms of multiple sclerosis (MS), HAM/TSP is an ideal system to better understand other neuroimmunological disorders such as MS. Since the discovery of HAM/TSP, large numbers of clinical, virological, molecular, and immunological studies have been published. The host-virus interaction and host immune response play an important role for the development with HAM/TSP. HTLV-1-infected circulating T-cells invade the central nervous system (CNS) and cause an immunopathogenic response against virus and possibly components of the CNS. Neural damage and subsequent degeneration can cause severe disability in patients with HAM/TSP. Little progress has been made in the discovery of objective biomarkers for grading stages and predicting progression of disease and the development of molecular targeted therapy based on the underlying pathological mechanisms. We review the recent understanding of immunopathological mechanism of HAM/TSP and discuss the unmet need for research on this disease.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
do Vale DA, Andrade NS, Casseb J, de Oliveira AP, Bussolotti Filho I, Trierveiler M, Ortega KL. Morphological alterations in minor salivary glands of HTLV1+ patients: A pilot study. J Oral Pathol Med 2018; 47:985-990. [PMID: 30175867 DOI: 10.1111/jop.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Among the complex of HTLV-associated diseases, Sjögren's syndrome (SS) is one of the most controversial. This work aims to detect morphological and inflammatory alterations, including clues of the presence of HTLV-1, in minor salivary glands of patients with dryness symptoms. METHODS We have assessed HTLV-1-seropositive patients (HTLV-1 group) and patients with SS (SS group). We used formalin-fixed, paraffin-embedded minor salivary gland tissue to evaluate the morphological aspects and, by means of immunohistochemistry, the presence of Tax protein, CD4, CD8 and CD20 cells. Additionally, viral particles and proviral load were analysed by PCR. RESULTS The HTLV-1 group had the highest prevalence of non-specific chronic sialadenitis (85.71%; P = 0.017) and greater amount of T CD8+ cells. In the SS group, focal lymphocytic sialadenitis (80%; P = 0.017) prevailed, with a greater amount of B CD20+ . Both immunohistochemistry and PCR identified the Tax protein and its gene in the salivary glands of both groups and in similar proportions. CONCLUSION The results indicate that HTLV-1-seropositive patients have different patterns of morphological/inflammatory alterations, suggesting a likely difference in the process of immune activation.
Collapse
Affiliation(s)
- Daniela Assis do Vale
- Department of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Silva Andrade
- Department of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Casseb
- Institute of Tropical Medicine of Sao Paulo, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ivo Bussolotti Filho
- Department of Otorhinolaryngology, Irmandade da Santa Casa de Misericórdia, Sao Paulo, Brazil
| | - Marilia Trierveiler
- Department of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Karem López Ortega
- Department of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Anderson MR, Pleet ML, Enose-Akahata Y, Erickson J, Monaco MC, Akpamagbo Y, Velluci A, Tanaka Y, Azodi S, Lepene B, Jones J, Kashanchi F, Jacobson S. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clin Transl Med 2018; 7:24. [PMID: 30146667 PMCID: PMC6110307 DOI: 10.1186/s40169-018-0204-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types. It is now understood that several viruses take advantage of this mode of intercellular communication for packaging of viral components as well. We sought to understand if this is the case in HTLV-1 infection, and specifically if HTLV-1 proteins can be found in the CSF of HAM/TSP patients where we know free virus is absent, and furthermore, if exosomes containing HTLV-1 Tax have functional consequences. RESULTS Exosomes that were positive for HTLV-1 Tax by Western blot were isolated from HAM/TSP patient PBMCs (25/36) in ex vivo cultures by trapping exosomes from culture supernatants. HTLV-1 seronegative PBMCs did not have exosomes with Tax (0/12), (Fisher exact test, p = 0.0001). We were able to observe HAM/TSP patient CSF (12/20) containing Tax+ exosomes but not in HTLV-1 seronegative MS donors (0/5), despite the absence of viral detection in the CSF supernatant (Fisher exact test p = 0.0391). Furthermore, exosomes cultivated from HAM/TSP PBMCs were capable of sensitizing target cells for HTLV-1 specific CTL lysis. CONCLUSION Cumulatively, these results show that there are HTLV-1 proteins present in exosomes found in virus-free CSF. HAM/TSP PBMCs, particularly CD4+CD25+ T cells, can excrete these exosomes containing HTLV-1 Tax and may be a source of the exosomes found in patient CSF. Importantly, these exosomes are capable of sensitizing an HTLV-1 specific immune response, suggesting that they may play a role in the immunopathology observed in HAM/TSP. Given the infiltration of HTLV-1 Tax-specific CTLs into the CNS of HAM/TSP patients, it is likely that exosomes may also contribute to the continuous activation and inflammation observed in HAM/TSP, and may suggest future targeted therapies in this disorder.
Collapse
Affiliation(s)
- Monique R Anderson
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22901, USA.,Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - James Erickson
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Maria Chiara Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institutes for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yao Akpamagbo
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Ashley Velluci
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Yuetsu Tanaka
- Department of Immunology, University of the Ryukyus Graduate School of Medicine, Okinawa, 903-0125, Japan
| | - Shila Azodi
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Ben Lepene
- Ceres Nanosciences, Manassas, VA, 20109, USA
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Kubota R. Pathogenesis of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryuji Kubota
- Division of Molecular Pathology; Center for Chronic Viral Diseases; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima Japan
| |
Collapse
|
10
|
Human T Cell Leukemia Virus Type 1 Infection of the Three Monocyte Subsets Contributes to Viral Burden in Humans. J Virol 2015; 90:2195-207. [PMID: 26608313 DOI: 10.1128/jvi.02735-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Because the viral DNA burden correlates with disease development, we investigated the contribution of monocyte subsets (classical, intermediate, and nonclassical monocytes) to the total viral burden in 22 human T cell leukemia virus type 1 (HTLV-1)-infected individuals by assessing their infectivity status, frequency, as well as chemotactic and phagocytic functions. All three monocyte subsets sorted from HTLV-1-infected individuals were positive for viral DNA, and the frequency of classical monocytes was lower in the blood of HTLV-1-infected individuals than in that of uninfected individuals, while the expression levels of the chemokine receptors CCR5, CXCR3, and CX3CR1 in classical monocytes were higher in HTLV-1-infected individuals than uninfected individuals; the percentage of intermediate monocytes and their levels of chemokine receptor expression did not differ between HTLV-1-infected and uninfected individuals. However, the capacity of intermediate monocytes to migrate to CCL5, the ligand for CCR5, was higher, and a higher proportion of nonclassical monocytes expressed CCR1, CXCR3, and CX3CR1. The level of viral DNA in the monocyte subsets correlated with the capacity to migrate to CCL2, CCL5, and CX3CL1 for classical monocytes, with lower levels of phagocytosis for intermediate monocytes, and with the level of viral DNA in CD8(+) and CD4(+) T cells for nonclassical monocytes. These data suggest a model whereby HTLV-1 infection augments the number of classical monocytes that migrate to tissues and become infected and the number of infected nonclassical monocytes that transmit virus to CD4(+) and CD8(+) T cells. These results, together with prior findings in a macaque model of HTLV-1 infection, support the notion that infection of monocytes by HTLV-1 is likely a requisite for viral persistence in humans. IMPORTANCE Monocytes have been implicated in immune regulation and disease progression in patients with HTLV-1-associated inflammatory diseases. We detected HTLV-1 DNA in all three monocyte subsets and found that infection impacts surface receptor expression, migratory function, and subset frequency. The frequency of nonclassical patrolling monocytes is increased in HTLV-1-infected individuals, and they have increased expression of CCR1, CXCR3, and CX3CR1. The viral DNA level in nonclassical monocytes correlated with the viral DNA level in CD4(+) and CD8(+) T cells. Altogether, these data suggest an increased recruitment of classical monocytes to inflammation sites that may result in virus acquisition and, in turn, facilitate virus dissemination and viral persistence. Our findings thus provide new insight into the importance of monocyte infection in viral spread and suggest targeting of monocytes for therapeutic intervention.
Collapse
|
11
|
Common γ-chain blocking peptide reduces in vitro immune activation markers in HTLV-1-associated myelopathy/tropical spastic paraparesis. Proc Natl Acad Sci U S A 2015; 112:11030-5. [PMID: 26283355 DOI: 10.1073/pnas.1412626112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive inflammatory myelopathy occurring in a subset of HTLV-1-infected individuals. Despite advances in understanding its immunopathogenesis, an effective treatment remains to be found. IL-2 and IL-15, members of the gamma chain (γc) family of cytokines, are prominently deregulated in HAM/TSP and underlie many of the characteristic immune abnormalities, such as spontaneous lymphocyte proliferation (SP), increased STAT5 phosphorylation in the lymphocytes, and increased frequency and cytotoxicity of virus-specific cytotoxic CD8(+) T lymphocytes (CTLs). In this study, we describe a novel immunomodulatory strategy consisting of selective blockade of certain γc family cytokines, including IL-2 and IL-15, with a γc antagonistic peptide. In vitro, a PEGylated form of the peptide, named BNZ132-1-40, reduced multiple immune activation markers such as SP, STAT5 phosphorylation, spontaneous degranulation of CD8(+) T cells, and the frequency of transactivator protein (Tax)-specific CD8(+) CTLs, thought to be major players in the immunopathogenesis of the disease. This strategy is thus a promising therapeutic approach to HAM/TSP with the potential of being more effective than single monoclonal antibodies targeting either IL-2 or IL-15 receptors and safer than inhibitors of downstream signaling molecules such as JAK1 inhibitors. Finally, selective cytokine blockade with antagonistic peptides might be applicable to multiple other conditions in which cytokines are pathogenic.
Collapse
|
12
|
Yamauchi J, Coler-Reilly A, Sato T, Araya N, Yagishita N, Ando H, Kunitomo Y, Takahashi K, Tanaka Y, Shibagaki Y, Nishioka K, Nakajima T, Hasegawa Y, Utsunomiya A, Kimura K, Yamano Y. Mogamulizumab, an anti-CCR4 antibody, targets human T-lymphotropic virus type 1-infected CD8+ and CD4+ T cells to treat associated myelopathy. J Infect Dis 2014; 211:238-48. [PMID: 25104771 DOI: 10.1093/infdis/jiu438] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human T-lymphotropic virus type 1 (HTLV-1) can cause chronic spinal cord inflammation, known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Since CD4(+)CCR4(+) T cells are the main HTLV-1 reservoir, we evaluated the defucosylated humanized anti-CCR4 antibody mogamulizumab as a treatment for HAM/TSP. METHODS We assessed the effects of mogamulizumab on peripheral blood mononuclear cells from 11 patients with HAM/TSP. We also studied how CD8(+) T cells, namely CD8(+) CCR4(+) T cells and cytotoxic T lymphocytes, are involved in HTLV-1 infection and HAM/TSP pathogenesis and how they would be affected by mogamulizumab. RESULTS Mogamulizumab effectively reduced the HTLV-1 proviral load (56.4% mean reduction at a minimum effective concentration of 0.01 µg/mL), spontaneous proliferation, and production of proinflammatory cytokines, including interferon γ (IFN-γ). Like CD4(+)CCR4(+) T cells, CD8(+)CCR4(+) T cells from patients with HAM/TSP exhibited high proviral loads and spontaneous IFN-γ production, unlike their CCR4(-) counterparts. CD8(+)CCR4(+) T cells from patients with HAM/TSP contained more IFN-γ-expressing cells and fewer interleukin 4-expressing cells than those from healthy donors. Notably, Tax-specific cytotoxic T lymphocytes that may help control the HTLV-1 infection were overwhelmingly CCR4(-). CONCLUSIONS We determined that CD8(+)CCR4(+) T cells and CD4(+)CCR4(+) T cells are prime therapeutic targets for treating HAM/TSP and propose mogamulizumab as a new treatment.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science Division of Nephrology and Hypertension
| | | | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science
| | - Hitoshi Ando
- Department of Rare Diseases Research, Institute of Medical Science
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science
| | | | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa
| | | | | | | | - Yasuhiro Hasegawa
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki
| | - Atae Utsunomiya
- Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan
| | | | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science
| |
Collapse
|
13
|
Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J Neurovirol 2014; 20:341-51. [PMID: 24781526 PMCID: PMC4085507 DOI: 10.1007/s13365-014-0249-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 11/24/2022]
Abstract
An elevated human T cell lymphotropic virus 1 (HTLV)-1 proviral load (PVL) is the main risk factor for developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-1 infected subjects, and a high cerebrospinal fluid (CSF) to peripheral blood mononuclear cell (PBMC) PVL ratio may be diagnostic of the condition. However, the standard method for quantification of HTLV-1 PVL—real-time PCR—has multiple limitations, including increased inter-assay variability in compartments with low cell numbers, such as CSF. Therefore, in this study, we evaluated a novel technique for HTVL-1 PVL quantification, digital droplet PCR (ddPCR). In ddPCR, PCR samples are partitioned into thousands of nanoliter-sized droplets, amplified on a thermocycler, and queried for fluorescent signal. Due to the high number of independent events (droplets), Poisson algorithms are used to determine absolute copy numbers independently of a standard curve, which enables highly precise quantitation. This assay has low intra-assay variability allowing for reliable PVL measurement in PBMC and CSF compartments of both asymptomatic carriers (AC) and HAM/TSP patients. It is also useful for HTLV-1-related clinical applications, such as longitudinal monitoring of PVL and identification of viral mutations within the region targeted by the primers and probe.
Collapse
|
14
|
Ohsugi T, Wakamiya M, Morikawa S, Matsuura K, Kumar JM, Kumasaka T, Yamaguchi K. Invasion of histiocytic sarcoma into the spinal cord of HTLV-1 tax transgenic mice with HTLV-1-associated myelopathy/tropical spastic paraparesis-like disease. Oncol Res 2013; 20:403-10. [PMID: 23924924 DOI: 10.3727/096504013x13657689383058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATLL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Transgenic (Tg) mice expressing HTLV-1 Tax also develop T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. We found that 8 of 297 Tax-Tg mice developed HAM/TSP-like disease with symmetrical paraparesis of the hind limbs, but these symptoms were absent in non-Tg littermates and in other mice strains at our animal facilities. We could perform detailed evaluations for five of these mice. These evaluations showed that the disease was not inflammatory, unlike that in HAM/TSP patients, but instead involved the invasion of histiocytic sarcoma cells into the lumbar spinal cord from the bone marrow where they had undergone extensive proliferation.
Collapse
Affiliation(s)
- Takeo Ohsugi
- Division of Microbiology and Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Tamai Y, Hasegawa A, Takamori A, Sasada A, Tanosaki R, Choi I, Utsunomiya A, Maeda Y, Yamano Y, Eto T, Koh KR, Nakamae H, Suehiro Y, Kato K, Takemoto S, Okamura J, Uike N, Kannagi M. Potential Contribution of a Novel Tax Epitope–Specific CD4+T Cells to Graft-versus-Tax Effect in Adult T Cell Leukemia Patients after Allogeneic Hematopoietic Stem Cell Transplantation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4382-92. [DOI: 10.4049/jimmunol.1202971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Ohsugi T. A transgenic mouse model of human T cell leukemia virus type 1-associated diseases. Front Microbiol 2013; 4:49. [PMID: 23483782 PMCID: PMC3592262 DOI: 10.3389/fmicb.2013.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/21/2013] [Indexed: 01/10/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia/lymphoma (ATLL) and several inflammatory diseases. Tax, the protein encoded by HTLV-1, may be responsible for the development of the diseases caused by this virus. To investigate the pathogenic role of Tax, several transgenic mouse strains expressing Tax have been developed in recent years. These mice develop various tumors including large granular lymphocytic leukemia, as well as inflammatory diseases such as arthritis. These results suggest that Tax expression alone is sufficient to cause both malignant neoplastic diseases and inflammatory diseases. However, until recently, there were no tax transgenic mice that develop T cell leukemia and lymphoma resembling ATLL. The first successful induction of leukemia in T cells was pre-T cell leukemia generated in transgenic mice in which a mouse lymphocyte-specific protein tyrosine kinase p56lck (lck)-proximal promoter was used to express the tax gene in immature T cells. Subsequently, transgenic mice were established in which the lck-distal promoter was used to express Tax in mature T cells; these mice developed mature T cell leukemia and lymphoma that more closely resembled ATLL than did earlier mouse models.
Collapse
Affiliation(s)
- Takeo Ohsugi
- Division of Microbiology and Genetics, Institute of Resource Development and Analysis, Kumamoto University Kumamoto, Japan
| |
Collapse
|
17
|
Jones RB, Leal FE, Hasenkrug AM, Segurado AC, Nixon DF, Ostrowski MA, Kallas EG. Human endogenous retrovirus K(HML-2) Gag and Env specific T-cell responses are not detected in HTLV-I-infected subjects using standard peptide screening methods. J Negat Results Biomed 2013; 12:3. [PMID: 23305161 PMCID: PMC3560086 DOI: 10.1186/1477-5751-12-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An estimated 10-20 million individuals are infected with the retrovirus human T-cell leukemia virus type 1 (HTLV-1). While the majority of these individuals remain asymptomatic, 0.3-4% develop a neurodegenerative inflammatory disease, termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP results in the progressive demyelination of the central nervous system and is a differential diagnosis of multiple sclerosis (MS). The etiology of HAM/TSP is unclear, but evidence points to a role for CNS-inflitrating T-cells in pathogenesis. Recently, the HTLV-1-Tax protein has been shown to induce transcription of the human endogenous retrovirus (HERV) families W, H and K. Intriguingly, numerous studies have implicated these same HERV families in MS, though this association remains controversial. RESULTS Here, we explore the hypothesis that HTLV-1-infection results in the induction of HERV antigen expression and the elicitation of HERV-specific T-cells responses which, in turn, may be reactive against neurons and other tissues. PBMC from 15 HTLV-1-infected subjects, 5 of whom presented with HAM/TSP, were comprehensively screened for T-cell responses to overlapping peptides spanning HERV-K(HML-2) Gag and Env. In addition, we screened for responses to peptides derived from diverse HERV families, selected based on predicted binding to predicted optimal epitopes. We observed a lack of responses to each of these peptide sets. CONCLUSIONS Thus, although the limited scope of our screening prevents us from conclusively disproving our hypothesis, the current study does not provide data supporting a role for HERV-specific T-cell responses in HTLV-1 associated immunopathology.
Collapse
Affiliation(s)
- R Brad Jones
- Department of Immunology, University of Toronto, 1 King's College Circle, Rm 6352, Toronto, ON M5S 1A8, Canada.
| | | | | | | | | | | | | |
Collapse
|
18
|
Phase 1 trial of IL-15 trans presentation blockade using humanized Mikβ1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood 2012; 121:476-84. [PMID: 23212516 DOI: 10.1182/blood-2012-08-450585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the present study, Hu-Mikβ1, a humanized mAb directed at the shared IL-2/IL-15Rβ subunit (CD122) was evaluated in patients with T-cell large granular lymphocytic (T-LGL) leukemia. Hu-Mikβ1 blocked the trans presentation of IL-15 to T cells expressing IL-2/IL-15Rβ and the common γ-chain (CD132), but did not block IL-15 action in cells that expressed the heterotrimeric IL-15 receptor in cis. There was no significant toxicity associated with Hu-Mikβ1 administration in patients with T-LGL leukemia, but no major clinical responses were observed. One patient who had previously received murine Mikβ1 developed a measurable Ab response to the infused Ab. Nevertheless, the safety profile of this first in-human study of the humanized mAb to IL-2/IL-15Rβ (CD122) supports its evaluation in disorders such as refractory celiac disease, in which IL-15 and its receptor have been proposed to play a critical role in the pathogenesis and maintenance of disease activity.
Collapse
|
19
|
Immunopathogenesis of human T-cell leukemia virus type-1-associated myelopathy/tropical spastic paraparesis: recent perspectives. LEUKEMIA RESEARCH AND TREATMENT 2012. [PMID: 23198155 PMCID: PMC3505925 DOI: 10.1155/2012/259045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is a replication-competent human retrovirus associated with two distinct types of disease only in a minority of infected individuals: the malignancy known as adult T-cell leukemia (ATL) and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic progressive myelopathy characterized by spastic paraparesis, sphincter dysfunction, and mild sensory disturbance in the lower extremities. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence from host population genetics, viral genetics, DNA expression microarrays, and assays of lymphocyte function suggests that complex virus-host interactions and the host immune response play an important role in the pathogenesis of HAM/TSP. Especially, the efficiency of an individual's cytotoxic T-cell (CTL) response to HTLV-1 limits the HTLV-1 proviral load and the risk of HAM/TSP. This paper focuses on the recent advances in HAM/TSP research with the aim to identify the precise mechanisms of disease, in order to develop effective treatment and prevention.
Collapse
|
20
|
Takamori A, Hasegawa A, Utsunomiya A, Maeda Y, Yamano Y, Masuda M, Shimizu Y, Tamai Y, Sasada A, Zeng N, Choi I, Uike N, Okamura J, Watanabe T, Masuda T, Kannagi M. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers. Retrovirology 2011; 8:100. [PMID: 22151736 PMCID: PMC3261825 DOI: 10.1186/1742-4690-8-100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/07/2011] [Indexed: 12/17/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC) already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23) and 100% of HAM/TSP patients (n = 18/18) tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL) patients (n = 8/21), although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69) and degranulation (CD107a) markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV) pp65-specific CD8+ T-cells that possessed functions upon CMV pp65 peptide stimulation. We further examined additional samples of two smoldering type ATL patients and found that they also showed dysfunctions of Tax-specific but not CMV-specific CD8+ T-cells. Conclusions These findings indicated that Tax-specific CD8+ T-cells were scarce and dysfunctional not only in ATL patients but also in a limited AC population, and that the dysfunction was selective for HTLV-1-specifc CD8+ T-cells in early stages.
Collapse
Affiliation(s)
- Ayako Takamori
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pathogenesis of Metastatic Calcification and Acute Pancreatitis in Adult T-Cell Leukemia under Hypercalcemic State. LEUKEMIA RESEARCH AND TREATMENT 2011. [PMID: 23198151 PMCID: PMC3504271 DOI: 10.1155/2012/128617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL). Hypercalcemia is common in patients with ATL. These patients rarely develop metastatic calcification and acute pancreatitis. The underlying pathogenesis of this condition is osteoclast hyperactivity with associated overproduction of parathyroid hormone-related protein, which results in hypercalcemia in association with bone demineralization. The discovery of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL), its receptor RANK, and its decoy receptor osteoprotegerin (OPG), enhanced our understanding of the mechanisms of ATL-associated hypercalcemia. Macrophage inflammatory protein-1-α, tumor necrosis factor-α, interleukin-1, and interleukin-6 are important molecules that enhance the migration and differentiation of osteoclasts and the associated enhanced production of RANKL for osteoblast formation. In this paper, we focus on metastatic calcification and acute pancreatitis in ATL, highlighting recent advances in the understanding of the molecular role of the RANKL/RANK/OPG system including its interaction with various cytokines and calciotropic hormones in the regulation of osteoclastogenesis for bone resorption in hypercalcemic ATL patients.
Collapse
|
22
|
Ndhlovu LC, Leal FE, Hasenkrug AM, Jha AR, Carvalho KI, Eccles-James IG, Bruno FR, Vieira RGS, York VA, Chew GM, Jones RB, Tanaka Y, Neto WK, Sanabani SS, Ostrowski MA, Segurado AC, Nixon DF, Kallas EG. HTLV-1 tax specific CD8+ T cells express low levels of Tim-3 in HTLV-1 infection: implications for progression to neurological complications. PLoS Negl Trop Dis 2011; 5:e1030. [PMID: 21541358 PMCID: PMC3082508 DOI: 10.1371/journal.pntd.0001030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/27/2011] [Indexed: 11/19/2022] Open
Abstract
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially "exhausted" and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Collapse
Affiliation(s)
- Lishomwa C Ndhlovu
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jacobson S. The NK cell as a new player in the pathogenesis of HTLV-I associated neurologic disease. Virulence 2011; 1:8-9. [PMID: 21178408 DOI: 10.4161/viru.1.1.10327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Norris PJ, Hirschkorn DF, DeVita DA, Lee TH, Murphy EL. Human T cell leukemia virus type 1 infection drives spontaneous proliferation of natural killer cells. Virulence 2011; 1:19-28. [PMID: 20640055 DOI: 10.4161/viru.1.1.9868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most human T cell leukemia virus type 1 (HTLV-1) infected subjects remain asymptomatic throughout their lives, with a few individuals developing HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukemia. Lymphocytes from about half of HTLV-1 infected subjects spontaneously proliferate in vitro, and how this phenomenon relates to symptomatic disease outcome and viral burden is poorly understood. Spontaneous proliferation was measured in lymphocyte subsets, and these findings were correlated with HTLV-1 proviral load and Tax expression in PBMCs. We found that in addition to previously described vigorous CD8+ T cell spontaneous proliferation, natural killer (NK) cells spontaneously proliferated to a similar high level, resulting in expansion of CD56-expressing NK cells. Spontaneous NK cell proliferation positively correlated with HTLV-1 proviral load but not with Tax expression or the presence of HAM/TSP. The strongest correlate with clinical outcome in this cohort was the ability of cells to express Tax, while HTLV-1 proviral load was more closely related to spontaneous NK cell proliferation. These results demonstrate that spontaneous proliferation, Tax expression, and proviral load are inter-related but not equivalent, and that spontaneous lymphocyte proliferation is not restricted to T cells, the targets of HTLV-1 infection.
Collapse
Affiliation(s)
- Philip J Norris
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
25
|
Talledo M, López G, Huyghe JR, Verdonck K, Adaui V, González E, Best I, Clark D, Vanham G, Gotuzzo E, Van Camp G, Van Laer L. Evaluation of host genetic and viral factors as surrogate markers for HTLV-1-associated myelopathy/tropical spastic paraparesis in Peruvian HTLV-1-infected patients. J Med Virol 2010; 82:460-6. [PMID: 20087941 DOI: 10.1002/jmv.21675] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a complication that affects up to 5% of HTLV-1-infected individuals. Several host genetic and viral factors have been associated with the risk of HAM/TSP. The aim of this study was to evaluate the performance of a prognostic model for HAM/TSP developed in Japan in a Peruvian population of 71 HAM/TSP patients and 94 asymptomatic carriers (ACs). This model included age, proviral load (PVL), the presence of HLA-A*02 and HLA-Cw*08 alleles, SDF-1 +801, and TNF-alpha -863 polymorphisms, and viral subgroup. We describe frequencies for the four host genetic markers and demonstrate the presence of the HTLV-1 tax B subgroup in Peru. Using cross-validation, we show that the predictive ability of the prognostic model, as characterized by the area under the receiver-operating characteristic curve (AUC), does not differ from a model containing PVL only (both AUC = 0.74). We found some suggestive evidence of a protective effect of the HLA-A*02 allele but failed to replicate the associations with the other three genetic markers and with viral subgroup. A logistic model containing PVL, age, gender, and HLA-A*02 provided the best predictive ability in the Peruvian cohort (AUC = 0.79). J. Med. Virol. 82:460-466, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Michael Talledo
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Changes in T cell phenotype and activated MAPKs are correlated to impaired cellular responses to antigens and glucocorticoids during HTLV-I infection. J Neuroimmunol 2009; 216:76-84. [PMID: 19766325 DOI: 10.1016/j.jneuroim.2009.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 11/22/2022]
Abstract
Lymphocytes of human T-lymphotropic virus type-I (HTLV-I) infected patients were previously found tolerant to mitogenic stimuli as well as glucocorticoid treatment. These data suggest that common signaling events are impaired during this infection. The underlying mechanisms of these phenomena may include changes in cellular composition, cytokine milieu and the differential activation of mitogen-activated protein kinases (MAPKs). We investigated the role of (i) p38 and ERK MAPKs, (ii) lymphocyte subpopulations, (iii) and cytokines implicated in antigen or glucocorticoid-induced immunomodulation. Twenty-one asymptomatic carriers (AC), 19 patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and 21 healthy subjects took part in this study. Lymphocytes were isolated and cultured in vitro to assess lymphocyte proliferation and sensitivity to dexamethasone. The expression of phospho-MAPKs, lymphocyte subsets and cytokines were assessed by flow cytometry. Patients with HAM/TSP had a higher p38/ERK ratio (p<0.05) associated with a reduced response to mitogens (phytohaemagglutinin or PMA+ionomycin) (p<0.001) and higher sensitivity to dexamethasone (p<0.05). HAM/TSP patients presented increased frequency of activated T cells and CD8(+)CD28(-) regulatory T cells, being negatively related to the mitogenic response. These data suggest that multiple underlying mechanisms could be involved with HTLV-related changes in cellular response to mitogens and glucocorticoids.
Collapse
|
27
|
Ndhlovu LC, Snyder-Cappione JE, Carvalho KI, Leal FE, Loo CP, Bruno FR, Jha AR, Devita D, Hasenkrug AM, Barbosa HMR, Segurado AC, Nixon DF, Murphy EL, Kallas EG. Lower numbers of circulating Natural Killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease. Clin Exp Immunol 2009; 158:294-9. [PMID: 19778295 DOI: 10.1111/j.1365-2249.2009.04019.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) infects 10-20 million people worldwide. The majority of infected individuals are asymptomatic; however, approximately 3% develop the debilitating neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is also currently no cure, vaccine or effective therapy for HTLV-1 infection, and the mechanisms for progression to HAM/TSP remain unclear. NK T cells are an immunoregulatory T cell subset whose frequencies and effector functions are associated critically with immunity against infectious diseases. We hypothesized that NK T cells are associated with HAM/TSP progression. We measured NK T cell frequencies and absolute numbers in individuals with HAM/TSP infection from two cohorts on two continents: São Paulo, Brazil and San Francisco, CA, USA, and found significantly lower levels when compared with healthy subjects and/or asymptomatic carriers. Also, the circulating NK T cell compartment in HAM/TSP subjects is comprised of significantly more CD4(+) and fewer CD8(+) cells than healthy controls. These findings suggest that lower numbers of circulating NK T cells and enrichment of the CD4(+) NK T subset are associated with HTLV-1 disease progression.
Collapse
Affiliation(s)
- L C Ndhlovu
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takatsuka N, Hasegawa A, Takamori A, Shimizu Y, Kato H, Ohashi T, Amagasa T, Masuda T, Kannagi M. Induction of IL-10- and IFN- -producing T-cell responses by autoreactive T-cells expressing human T-cell leukemia virus type I Tax. Int Immunol 2009; 21:1089-100. [DOI: 10.1093/intimm/dxp074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Shimizu Y, Takamori A, Utsunomiya A, Kurimura M, Yamano Y, Hishizawa M, Hasegawa A, Kondo F, Kurihara K, Harashima N, Watanabe T, Okamura J, Masuda T, Kannagi M. Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci 2009; 100:481-9. [PMID: 19154412 PMCID: PMC11158518 DOI: 10.1111/j.1349-7006.2008.01054.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1)-specific T-cell immunity, a potential antitumor surveillance system in vivo, is impaired in adult T-cell leukemia (ATL). In this study, we aimed to clarify whether the T-cell insufficiency in ATL is present before the disease onset or occurs as a consequence of the disease. We investigated T-cell responses against Tax protein in peripheral blood mononuclear cells (PBMCs) from individuals at earlier stages of HTLV-1-infection, including 21 asymptomatic HTLV-1 carriers (ACs) and four patients with smoldering-type ATL (sATL), whose peripheral lymphocyte count was in normal range. About 30% of samples tested showed clear Tax-specific interferon (IFN)-gamma producing responses. Proviral loads in this group were significantly lower than those in the other less-specific response group. The latter group was further divided to two subgroups with or without emergence of Tax-specific responses following depletion of CC chemokine receptor 4 (CCR4)(+) cells that contained HTLV-1-infected cells. In the PBMCs with Tax-specific responses, CD8(+) cells efficiently suppressed HTLV-1 p19 production in culture. The remaining group without the emergence of Tax-specific response after CCR4(+) cell-depletion included at least two sATL and one AC samples, which spontaneously produced HTLV-1 p19 in culture, where tetramer-binding, Tax-specific cytotoxic T-lymphocytes were either undetectable or unresponsive. Our results indicated that HTLV-1-specific T-cell responsiveness widely differed among HTLV-1 carriers, and that impairment of HTLV-1-specific T-cell responses was observed not only in advanced ATL patients but also in a subpopulation at earlier stages, which was associated with insufficient control of HTLV-1.
Collapse
Affiliation(s)
- Yukiko Shimizu
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lepoutre V, Jain P, Quann K, Wigdahl B, Khan ZK. Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease. Front Biosci (Landmark Ed) 2009; 14:1152-68. [PMID: 19273122 DOI: 10.2741/3300] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.
Collapse
Affiliation(s)
- Veronique Lepoutre
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
31
|
Miyano-Kurosaki N, Kira JI, Barnor JS, Maeda N, Misawa N, Kawano Y, Tanaka Y, Yamamoto N, Koyanagi Y. Autonomous proliferation of HTLV-CD4+ T cell clones derived from human T cell leukemia virus type I (HTLV-I)-associated myelopathy patients. Microbiol Immunol 2007; 51:235-42. [PMID: 17310092 DOI: 10.1111/j.1348-0421.2007.tb03895.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
That HTLV-I infects CD4(+) T cells and enhances their cell growth has been shown as successful long-term in vitro proliferation in the presence of IL-2. It is known that T cells isolated from HAM patients possess strong ability for cell proliferation in vitro and mRNA of various cytokines are abundantly expressed in CNS tissues of HAM patients. Hence, the cytokine-induced proliferation could have an important role in pathogenesis and immune responses of HAM. In this study, we examined the relationship between cell proliferation and ability of in vitro cytokine production of CD4(+) T cell clones isolated from HAM patients. We started a culture from a single cell to isolate cell clones immediately after drawing blood from the patients using limiting dilution method, which could allow the cell to avoid in vitro HTLV-I infection after initiation of culture. Many cell clones were obtained and the rate of proliferation efficiency from a single cell was as high as 80%, especially in the 4 weeks' culture cells from HAM patients. These cells were classified as mainly Th0 phenotype that produce both IFN-gamma and IL-4 after CD3-stimulation. However, the frequency of proviral DNA in these cloned cells was significantly low. Our results indicate that the ability of cell proliferation in HAM patients is not restricted in HTLV-I-infected T cells. HTLV-Iuninfected CD4(+) T cells, mainly Th0 cells, also have a strong ability to respond to IL-2-stimulation, showing that unusual immune activation on T cells has been observed in HAM patients.
Collapse
Affiliation(s)
- Naoko Miyano-Kurosaki
- Department of Life and Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, Narashino, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Verdonck K, González E, Van Dooren S, Vandamme AM, Vanham G, Gotuzzo E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. THE LANCET. INFECTIOUS DISEASES 2007; 7:266-81. [PMID: 17376384 DOI: 10.1016/s1473-3099(07)70081-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-lymphotropic virus 1 (HTLV-1) has infected human beings for thousands of years, but knowledge about the infection and its pathogenesis is only recently emerging. The virus can be transmitted from mother to child, through sexual contact, and through contaminated blood products. There are areas in Japan, sub-Saharan Africa, the Caribbean, and South America where more than 1% of the general population is infected. Although the majority of HTLV-1 carriers remain asymptomatic, the virus is associated with severe diseases that can be subdivided into three categories: neoplastic diseases (adult T-cell leukaemia/lymphoma), inflammatory syndromes (HTLV-1-associated myelopathy/tropical spastic paraparesis and uveitis among others), and opportunistic infections (including Strongyloides stercoralis hyperinfection and others). The understanding of the interaction between virus and host response has improved markedly, but there are still no clear surrogate markers for prognosis and there are few treatment options.
Collapse
Affiliation(s)
- Kristien Verdonck
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | |
Collapse
|
33
|
Best I, Adaui V, Verdonck K, González E, Tipismana M, Clark D, Gotuzzo E, Vanham G. Proviral load and immune markers associated with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Peru. Clin Exp Immunol 2006; 146:226-33. [PMID: 17034574 PMCID: PMC1942059 DOI: 10.1111/j.1365-2249.2006.03208.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2006] [Indexed: 11/30/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the aetiological agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The objective of this study is to identify which ex vivo and in vivo markers are associated independently with HAM/TSP in a Peruvian population. Eighty-one subjects (33 men/48 women) were enrolled: 35 presented with HAM/TSP, 33 were asymptomatic HTLV-1 carriers (ACs) and 13 were HTLV-1-seronegative controls (SCs). Ex vivo markers included T cell proliferation and Th1 [interferon (IFN)-gamma], Th2 [interleukin (IL)-4, IL-5], proinflammatory [tumour necrosis factor (TNF)-alpha] and anti-inflammatory (IL-10) cytokine production in non-stimulated peripheral blood mononuclear cell (PBMC) cultures. In vivo CD4(+) T cell count, markers of Th1 [interferon-inducible protein (IP)-10] and Th2 (sCD30) activity in plasma and HTLV-1 proviral load in PBMCs were also evaluated. In univariate analysis, several markers, including T cell proliferation, IFN-gamma, IP-10, sCD30 and proviral load were associated with HAM/TSP, but in a multiple logistic regression analysis only the proviral load remained associated significantly with disease manifestation [adjusted OR 9.10 (1.24-66.91)]. Our findings suggest that HAM/TSP is associated primarily with proviral load, whereas the observed association with some immune markers seems secondary.
Collapse
Affiliation(s)
- I Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Johnson-Nauroth JM, Graber J, Yao K, Jacobson S, Calabresi PA. Memory lineage relationships in HTLV-1-specific CD8+ cytotoxic T cells. J Neuroimmunol 2006; 176:115-24. [PMID: 16740321 PMCID: PMC4988392 DOI: 10.1016/j.jneuroim.2006.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/09/2006] [Accepted: 03/21/2006] [Indexed: 12/31/2022]
Abstract
Cytotoxic memory T cells play a critical role in combating viral infections; however, in some diseases they may contribute to tissue damage. In HAM/TSP, HTLV-1 Tax 11-19+ cells proliferate spontaneously in vitro and can be tracked using the Tax 11-19 MHC Class I tetramer. Immediately ex vivo, these cells were a mix of CD45RA-/CCR7- TEM and CD45RA+/CCR7- TDiff memory CTL. The subsequent proliferating Tax 11-19 tetramer+ population expressed low levels of IL-7Ralpha, failed to respond to IL-7 and IL-15, and did not develop a TCM phenotype. Thus, chronic exposure to viral antigen may result in a sustained pool of TEM cells that home to the CNS and mediate the spinal cord pathology seen in this disease.
Collapse
Affiliation(s)
- Julie M. Johnson-Nauroth
- Department of Neurology, School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, Pathology Building 627, 600 N. Wolfe St., Baltimore, MD 21287-6965, United States
| | - Jerome Graber
- Department of Neurology, School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, Pathology Building 627, 600 N. Wolfe St., Baltimore, MD 21287-6965, United States
| | - Karen Yao
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Steve Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter A. Calabresi
- Department of Neurology, School of Medicine, Johns Hopkins University, Johns Hopkins Hospital, Pathology Building 627, 600 N. Wolfe St., Baltimore, MD 21287-6965, United States
- Corresponding author. Tel.: +1 410 6141522. (P.A. Calabresi)
| |
Collapse
|
35
|
Sibon D, Gabet AS, Zandecki M, Pinatel C, Thête J, Delfau-Larue MH, Rabaaoui S, Gessain A, Gout O, Jacobson S, Mortreux F, Wattel E. HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J Clin Invest 2006; 116:974-83. [PMID: 16585963 PMCID: PMC1421359 DOI: 10.1172/jci27198] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/10/2006] [Indexed: 01/03/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) infects both CD4+ and CD8+ lymphocytes, yet it induces adult T cell leukemia/lymphoma (ATLL) that is regularly of the CD4+ phenotype. Here we show that in vivo infected CD4+ and CD8+ T cells displayed similar patterns of clonal expansion in carriers without malignancy. Cloned infected cells from individuals without malignancy had a dramatic increase in spontaneous proliferation, which predominated in CD8+ lymphocytes and depended on the amount of tax mRNA. In fact, the clonal expansion of HTLV-1-positive CD8+ and CD4+ lymphocytes relied on 2 distinct mechanisms--infection prevented cell death in the former while recruiting the latter into the cell cycle. Cell cycling, but not apoptosis, depended on the level of viral-encoded tax expression. Infected tax-expressing CD4+ lymphocytes accumulated cellular defects characteristic of genetic instability. Therefore, HTLV-1 infection establishes a preleukemic phenotype that is restricted to CD4+ infected clones.
Collapse
Affiliation(s)
- David Sibon
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne-Sophie Gabet
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Zandecki
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Christiane Pinatel
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Julien Thête
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie-Hélène Delfau-Larue
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Samira Rabaaoui
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Antoine Gessain
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivier Gout
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Franck Mortreux
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Wattel
- Oncovirologie et Biothérapies, CNRS UMR5537 — Université Claude Bernard, Centre Léon Bérard, Lyon, France.
Service d’Hématologie, Hôpital Edouard Herriot, Lyon, France.
Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) d’Angers, Angers, France.
Laboratoire d’Immunologie, CHU Henri Mondor, Créteil, France.
Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.
Service de Neurologie, Fondation Rothschild, Paris, France.
Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW, Maric DA, Jacobson S. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest 2005; 115:1361-8. [PMID: 15864353 PMCID: PMC1087174 DOI: 10.1172/jci23913] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/08/2005] [Indexed: 12/11/2022] Open
Abstract
CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.
Collapse
Affiliation(s)
- Yoshihisa Yamano
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kast WM, Levitsky H, Marincola FM. Synopsis of the 6th Walker's Cay Colloquium on Cancer Vaccines and Immunotherapy. J Transl Med 2004; 2:20. [PMID: 15212694 PMCID: PMC441417 DOI: 10.1186/1479-5876-2-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 06/22/2004] [Indexed: 02/07/2023] Open
Abstract
The 6th annual Cancer Vaccines and Immunotherapy Colloquium at Walker's Cay was held under the auspices of the Albert B. Sabin Vaccine Institute on March 10-13, 2004. The Colloquium consisted of a select group of 34 scientists representing academia, biotechnology and pharmaceutical industry. The main goal of this gathering was to promote in a peaceful and comfortable environment exchanges between basic and clinical science. The secondary benefit was to inspire novel bench to bedside ventures and at the same time provide feed back about promising and/or disappointing clinical results that could help re-frame some scientific question or guide the design of future trials. Several topics were covered that included tumor antigen discovery and validation, platforms for vaccine development, tolerance, immune suppression and tumor escape mechanisms, adoptive T cell therapy and dendritic cell-based therapies, clinical trials and assessment of response. Here we report salient points raised by speakers or by the audience during animated discussion that followed each individual presentation.
Collapse
Affiliation(s)
- W Martin Kast
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Hyam Levitsky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, John Hopkins University, Baltimore, MD, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Monsurrò V, Wang E, Yamano Y, Migueles SA, Panelli MC, Smith K, Nagorsen D, Connors M, Jacobson S, Marincola FM. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood 2004; 104:1970-8. [PMID: 15187028 DOI: 10.1182/blood-2004-02-0525] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a human melanoma model of tumor antigen (TA)-based immunization, we tested the functional status of TA-specific CD8+ cytotoxic T lymphocytes. A "quiescent" phenotype lacking direct ex vivo cytotoxic and proliferative potential was identified that was further characterized by comparing its transcriptional profile to that of TA-specific T cells sensitized in vitro by exposure to the same TA and the T-cell growth factor interleukin 2 (IL-2). Quiescent circulating tumor-specific CD8+ T cells were deficient in expression of genes associated with T-cell activation, proliferation, and effector function. This quiescent status may explain the observed lack of correlation between the presence of circulating immunization-induced lymphocytes and tumor regression. In addition, the activation of TA-specific T cells by in vitro antigen recall and IL-2 suggests that a complete effector phenotype might be reinstated in vivo to fulfill the potential of anticancer vaccine protocols.
Collapse
Affiliation(s)
- Vladia Monsurrò
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McGinn TM, Wei Q, Stallworth J, Fultz PN. Immune responses to HTLV-I(ACH) during acute infection of pig-tailed macaques. AIDS Res Hum Retroviruses 2004; 20:443-56. [PMID: 15157363 DOI: 10.1089/088922204323048195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human T cell lymphotropic virus type 1 (HTLV-I) is causally linked to adult T cell leukemia/lymphoma (ATL) and a chronic progressive neurological disease, HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A nonhuman primate model that reproduces disease symptoms seen in HTLV-I-infected humans might facilitate identification of initial immune responses to the virus and an understanding of pathogenic mechanisms in HTLV-I-related disease. Previously, we showed that infection of pig-tailed macaques with HTLV-I(ACH) is associated with multiple signs of disease characteristic of both HAM/TSP and ATL. We report here that within the first few weeks after HTLV-I(ACH) infection of pig-tailed macaques, serum concentrations of interferon (IFN)-alpha increased and interleukin-12 decreased transiently, levels of nitric oxide were elevated, and activation of CD4(+) and CD8(+) lymphocytes and CD16(+) natural killer cells in peripheral blood were observed. HTLV-I(ACH) infection elicited virus-specific antibodies in all four animals within 4 to 6 weeks; however, Tax-specific lymphoproliferative responses were not detected until 25-29 weeks after infection in all four macaques. IFN-gamma production by peripheral blood cells stimulated with a Tax or Gag peptide was detected to varying degrees in all four animals by ELISPOT assay. Peripheral blood lymphocytes from one animal that developed only a marginal antigen-specific cellular response were unresponsive to mitogen stimulation during the last few weeks preceding its death from a rapidly progressive disease syndrome associated with HTLV-I(ACH) infection of pig-tailed macaques. The results show that during the first few months after HTLV-I(ACH) infection, activation of both innate and adaptive immunity, limited virus-specific cellular responses, sustained immune system activation, and, in some cases, immunodeficiency were evident. Thus, this animal model might be valuable for understanding early stages of infection and causes of immune system dysregulation in HTLV-I-infected humans.
Collapse
Affiliation(s)
- Therese M McGinn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | |
Collapse
|
40
|
Santos SB, Porto AF, Muniz AL, de Jesus AR, Magalhães E, Melo A, Dutra WO, Gollob KJ, Carvalho EM. Exacerbated inflammatory cellular immune response characteristics of HAM/TSP is observed in a large proportion of HTLV-I asymptomatic carriers. BMC Infect Dis 2004; 4:7. [PMID: 15070424 PMCID: PMC385233 DOI: 10.1186/1471-2334-4-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 03/02/2004] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A small fraction of Human T cell Leukemia Virus type-1 (HTLV-I) infected subjects develop a severe form of myelopathy. It has been established that patients with HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP) show an exaggerated immune response when compared with the immunological response observed in HTLV-I asymptomatic carriers. In this study the immunological responses in HAM/TSP patients and in HTLV-I asymptomatic carriers were compared using several immunological assays to identify immunological markers associated with progression from infection to disease. METHODS Immunoproliferation assays, cytokine levels of unstimulated cultures, and flow cytometry analysis were used to evaluate the studied groups. Nonparametric tests (Mann-Whitney U test and Wilcoxon matched-pairs signed ranks) were used to compare the difference between the groups. RESULTS Although both groups showed great variability, HAM/TSP patients had higher spontaneous lymphoproliferation as well as higher IFN-gamma levels in unstimulated supernatants when compared with asymptomatic carriers. Flow cytometry studies demonstrated a high frequency of inflammatory cytokine (IFN-gamma and TNF-alpha) producing lymphocytes in HAM/TSP as compared to the asymptomatic group. This difference was accounted for mainly by an increase in CD8 cell production of these cytokines. Moreover, the HAM/TSP patients also expressed an increased frequency of CD28-/CD8+ T cells. Since forty percent of the asymptomatic carriers had spontaneous lymphoproliferation and IFN-gamma production similar to HAM/TSP patients, IFN-gamma levels were measured eight months after the first evaluation in some of these patients to observe if this was a transient or a persistent situation. No significant difference was observed between the means of IFN-gamma levels in the first and second evaluation. CONCLUSIONS The finding that a large proportion of HTLV-I carriers present similar immunological responses to those observed in HAM/TSP, strongly argues for further studies to evaluate these parameters as markers of HAM/TSP progression.
Collapse
Affiliation(s)
- Silvane Braga Santos
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos (HUPES), Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brasil
| | - Aurélia Fonseca Porto
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos (HUPES), Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brasil
| | - André Luiz Muniz
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos (HUPES), Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brasil
| | - Amélia Ribeiro de Jesus
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos (HUPES), Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brasil
| | - Elza Magalhães
- Serviço de Neurologia, HUPES, UFBA, Salvador, Bahia, Brasil
| | - Ailton Melo
- Serviço de Neurologia, HUPES, UFBA, Salvador, Bahia, Brasil
| | - Walderez O Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brasil
| | - Kenneth J Gollob
- Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos (HUPES), Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brasil
- Instituto de Investigação em Imunologia, São Paulo, Brasil
| |
Collapse
|
41
|
Asquith B, Bangham CRM. The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology. J Theor Biol 2003; 222:53-69. [PMID: 12699734 DOI: 10.1016/s0022-5193(03)00013-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fratricide between CD8(+) T lymphocytes is known to occur in HTLV-I and possibly HSV-1 and HIV-1 infection. However it is not known what effect, if any, T-cell fratricide has on the course of infection. Here we present simple mathematical techniques to investigate T-cell fratricide with particular reference to HTLV-I infection. Using a general model we predict the qualitative and quantitative effect of fratricide on HTLV-I equilibrium proviral load. We also investigate the effect of fratricide on the probability of viral clearance. We show that, surprisingly, fratricide can lead either to an increase or a decrease in equilibrium proviral load. We derive the conditions necessary for fratricide to cause a decrease in load and deduce that, for the five HTLV-I-positive patients considered here, fratricide has probably caused an increase in equilibrium load. We also estimate the percentage increase in load that is attributable to fratricide and determine the parameters that should be measured in order to improve this estimate. Finally, we show that fratricide reduces the probability of viral clearance. Mathematical modelling of HTLV-I infection, as is often the case in biology, is severely hampered by a lack of experimental data. Consequently it is difficult to know what functional form a model should take. The behaviour of complex nonlinear systems is highly model-dependent. Predictions based on theoretical models are therefore sensitive to the choice of model; this is a very severe problem that undermines and limits the success of the application of mathematics to immunology. In this paper we reduce the model dependency of the results in two ways-by considering (analytically) a general model with a minimal number of assumptions and, where this is not possible, by checking (numerically) that a wide range of models yield the same results. We therefore begin to develop two practical methods for dealing with the problem of robustness in mathematical models of the immune system.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College Faculty of Medicine, St Mary's, Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
42
|
Nagai M, Osame M. Human T-cell lymphotropic virus type I and neurological diseases. J Neurovirol 2003; 9:228-35. [PMID: 12707853 DOI: 10.1080/13550280390194028] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 12/12/2002] [Indexed: 01/08/2023]
Abstract
Human T-cell lymphotropic virus type I (HTLV-I) infection is associated with a variety of human diseases. In particular, there are two major diseases caused by HTLV-I infection. One is an aggressive neoplastic disease called adult T-cell leukemia (ATL), and another is a chronic progressive inflammatory neurological disease called HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is still unknown why one virus causes these different diseases. With regard to HAM/TSP, virus-host immunological interactions are an considered to be important cause of this disease. Coexisting high HTLV-I proviral load and HTLV-I-specific T cells (CD4+ T cells and CD8+ T cells) is an important feature of HAM/TSP. Histopathological studies indicate the existence of an inflammatory reaction and HTLV-I-infected cells in the affected lesions of HAM/TSP. Therefore, the immune response to HTLV-I probably contributes to the inflammatory process of the central nervous system lesions in HAM/TSP patients.
Collapse
Affiliation(s)
- Masahiro Nagai
- Third Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
43
|
Barmak K, Harhaj E, Grant C, Alefantis T, Wigdahl B. Human T cell leukemia virus type I-induced disease: pathways to cancer and neurodegeneration. Virology 2003; 308:1-12. [PMID: 12706085 DOI: 10.1016/s0042-6822(02)00091-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroviral infection is associated with a number of pathologic abnormalities, including a variety of cancers, immunologic diseases, and neurologic disorders. Shortly after its discovery in 1980, human T cell leukemia virus type I (HTLV-I) was found to be the etiologic agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurologic disease characterized by demyelinating lesions in both the brain and the spinal cord. Approximately 5-10% of HTLV-I-infected individuals develop either ATL or HAM/TSP. Interestingly, the two diseases have vastly different pathologies and have rarely been found to occur within the same individual. While a number of host and viral factors including virus strain, viral load, and HLA haplotype have been hypothesized to influence disease outcome associated with HTLV-I infection, the relative contributions of such factors to disease pathogenesis have not been fully established. Recent research has suggested that the route of primary viral infection may dictate the course of disease pathogenesis associated with HTLV-I infection. Specifically, mucosal exposure to HTLV-I has been associated with cases of ATL, while primary viral infection based in the peripheral blood has been correlated with progression to HAM/TSP. However, the cellular and molecular mechanisms regulating disease progression resulting from primary viral invasion remain to be elucidated. Although a variety of factors likely influence these mechanisms, the differential immune response mounted by the host against the incoming virus initiated in either the peripheral blood or the mucosal compartments likely plays a key role in determining the outcome of HTLV-I infection. It has been proposed that the route of infection and size of the initial viral inoculum allows HTLV-I to infect different target cell populations, in turn influencing the breadth of the immune response mounted against HTLV-I and affecting disease pathogenesis. A model of HTLV-I-induced disease progression is presented, integrating information regarding the role of several host and viral factors in the genesis of both neoplasia and neurologic disease induced following HTLV-I infection, focusing specifically on differential viral invasion into the bone marrow (BM) and the influence of this event on the virus-specific CD8(+) cytotoxic T lymphocyte (CTL) response that is initiated following HTLV-I infection.
Collapse
Affiliation(s)
- Kate Barmak
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
44
|
Jacobson S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J Infect Dis 2002; 186 Suppl 2:S187-92. [PMID: 12424696 DOI: 10.1086/344269] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This review focuses on current approaches to understanding the immunopathogenesis of human T cell lymphotropic virus (HTLV) type I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) based on newly developed molecular and immunologic techniques that have been adapted to studies of HTLV-I proviral load, HTLV-I mRNA, and HTLV-I tax-specific CD8 T cells. These methods enable researchers to study previously inaccessible aspects of this disease and allow a more detailed analysis of virus/host immune responses as they relate to disease specificity in this disorder. The role of HTLV-I-specific CD8 T cell immune responses is highlighted. The elucidation of the immunopathology of HAM/TSP will enhance our understanding of other HTLV-I-associated disorders plus other neurologic, hematologic, and inflammatory diseases for which viral etiologies have been suggested.
Collapse
Affiliation(s)
- Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke/NIH, Bldg. 10, Rm. 5B-16, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Appay V, Rowland-Jones SL. The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining. J Immunol Methods 2002; 268:9-19. [PMID: 12213338 DOI: 10.1016/s0022-1759(02)00195-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide-bound histocompatibility leukocyte antigen (HLA) class I tetramers enable a precise identification of antigen-specific CD8+ T cells using flow cytometry. The combination of this technology with intracellular staining techniques opens up significantly better ways of studying these cells than previously possible, allowing immunologists to look at their life cycle (activation and proliferation), manner of death (aging and apoptosis) and effector function (cytotoxic potential and cytokine production). In this review, we hope to provide an overview of these possibilities, as well as making specific suggestions about the use of intracellular staining techniques in the study of antigen-specific T cells. Understanding how antigen-specific cells develop and function in different circumstances and pathologies will be the key to unravelling the secrets of our cellular immune system.
Collapse
Affiliation(s)
- Victor Appay
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | | |
Collapse
|
46
|
Grant C, Barmak K, Alefantis T, Yao J, Jacobson S, Wigdahl B. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 2002; 190:133-59. [PMID: 11807819 DOI: 10.1002/jcp.10053] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation characteristic of HAM/TSP.
Collapse
Affiliation(s)
- Christian Grant
- Laboratory for Molecular Retrovirology and Viral Neuropathogenesis, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|