1
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024. [PMID: 39048534 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| |
Collapse
|
2
|
Edtmayer S, Witalisz-Siepracka A, Zdársky B, Heindl K, Weiss S, Eder T, Dutta S, Graichen U, Klee S, Sharif O, Wieser R, Győrffy B, Poli V, Casanova E, Sill H, Grebien F, Stoiber D. A novel function of STAT3β in suppressing interferon response improves outcome in acute myeloid leukemia. Cell Death Dis 2024; 15:369. [PMID: 38806478 PMCID: PMC11133483 DOI: 10.1038/s41419-024-06749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3β. While STAT3α is predominantly described as an oncogenic driver, STAT3β has been suggested to act as a tumor suppressor. To elucidate the role of STAT3β in AML, we established a mouse model of STAT3β-deficient, MLL-AF9-driven AML. STAT3β deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3β. Accordingly, STAT3β-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3β expression. Together, our data corroborate the tumor suppressive role of STAT3β in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3β/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3β/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- STAT3 Transcription Factor/metabolism
- Mice
- Signal Transduction
- Interferons/metabolism
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Mice, Inbred C57BL
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- Cell Line, Tumor
- Nitriles
- Pyrazoles
- Pyrimidines
Collapse
Affiliation(s)
- Sophie Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Agnieszka Witalisz-Siepracka
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Zdársky
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kerstin Heindl
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Stefanie Weiss
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Uwe Graichen
- Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sascha Klee
- Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dagmar Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
3
|
Panda SP, Kesharwani A, Datta S, Prasanth DSNBK, Panda SK, Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur J Pharmacol 2024; 970:176490. [PMID: 38492876 DOI: 10.1016/j.ejphar.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Birbhum, West Bengal, India
| | - D S N B K Prasanth
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
6
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
7
|
Zhang W, Li D, Li B, Chu X, Kong B. STAT3 as a therapeutic target in the metformin-related treatment. Int Immunopharmacol 2023; 116:109770. [PMID: 36746021 DOI: 10.1016/j.intimp.2023.109770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Signal transducers and activators of transcription 3 (STAT3) signaling plays an important role in mediating tumor progression, inflammation, cardiovascular disease, and other pathological processes.In recent years, STAT3 as a therapeutic target has received extensive attention. It is well known that metformin can play the role of hypoglycemia by activating AMP-activated protein kinase (AMPK) through inhibition of mitochondrial ATP production.However, AMPK is not required for metformin activity.Although the application of STAT3 as a therapeutic target of metformin is still in the initial research stage, the importance of STAT3 in the mechanism of metformin is gradually being recognizedand further studies are needed to demonstrate the important role of the STAT3 regulatory network in the regulation of diseases by metformin. Here, we reviewed in detail that metformin inhibits the progression of various diseases like tumors, autoimmune diseases and hormone-related diseases by regulating multiple signaling pathways such as JAK/STAT3 and mTOR/STAT3 signaling centered on STAT3. We also summarized recent advances of STAT3 inhibitors combined with metformin in the treatment of diseases.We emphasized that STAT3 signaling, as an AMPK-independent signaling pathway, may be an important target for metformin in clinical therapy.
Collapse
Affiliation(s)
- Weiran Zhang
- Qingdao University, Qingdao, Shandong 266100, China.
| | - Daisong Li
- Qingdao University, Qingdao, Shandong 266100, China.
| | - Bing Li
- Qingdao University, Qingdao, Shandong 266100, China.
| | - Xianming Chu
- the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266100, China.
| | - Bin Kong
- the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266100, China.
| |
Collapse
|
8
|
Yang H, Zhang P, Wang Q, Cheng K, Zhao Y. The research development of STAT3 in hepatic ischemia-reperfusion injury. Front Immunol 2023; 14:1066222. [PMID: 36761734 PMCID: PMC9902876 DOI: 10.3389/fimmu.2023.1066222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common complication of surgery, which can cause rapid deterioration of the liver function, increase the risk of graft rejection, and seriously affect the prognosis of patients. The signal transducer and activator of transcription 3 (STAT3) protein has been implicated in pathogenesis of IRI. STAT3 influences the mitochondria through multiple pathways and is also involved in apoptosis and other forms of programmed cell death. STAT3 is associated with Janus kinase (JAK), phosphoinositide-3 kinase (PI3K), and heme oxygenase-1 (HO-1) in liver IRI. The STAT3 pathway plays a dual role in IRI as it can also regulate lipid metabolism which may have potential for treating IRI fatty liver. In this review, we summarize research on the function of STAT3 in liver IRI to provide references for its application in the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Yujun Zhao
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Xia T, Zhang M, Lei W, Yang R, Fu S, Fan Z, Yang Y, Zhang T. Advances in the role of STAT3 in macrophage polarization. Front Immunol 2023; 14:1160719. [PMID: 37081874 PMCID: PMC10110879 DOI: 10.3389/fimmu.2023.1160719] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
The physiological processes of cell growth, proliferation, differentiation, and apoptosis are closely related to STAT3, and it has been demonstrated that aberrant STAT3 expression has an impact on the onset and progression of a number of inflammatory immunological disorders, fibrotic diseases, and malignancies. In order to produce the necessary biological effects, macrophages (M0) can be polarized into pro-inflammatory (M1) and anti-inflammatory (M2) types in response to various microenvironmental stimuli. STAT3 signaling is involved in macrophage polarization, and the research of the effect of STAT3 on macrophage polarization has gained attention in recent years. In order to provide references for the treatment and investigation of disorders related to macrophage polarization, this review compiles the pertinent signaling pathways associated with STAT3 and macrophage polarization from many fundamental studies.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Lei
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruilin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Yang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Tao Zhang,
| |
Collapse
|
10
|
Abousaad S, Ahmed F, Abouzeid A, Ongeri EM. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep 2022; 10:e15468. [PMID: 36117389 PMCID: PMC9483619 DOI: 10.14814/phy2.15468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Meprin metalloproteinases have been implicated in the pathophysiology of ischemia/reperfusion (IR)-induced kidney injury. Previous in vitro data showed that meprin β proteolytically processes interleukin-6 (IL-6) resulting in its inactivation. Recently, meprin-β was also shown to cleave the IL-6 receptor. The goal of this study was to determine how meprin β expression impacts IL-6 and downstream modulators of the JAK2-STAT3-mediated signaling pathway in IR-induced kidney injury. IR was induced in 12-week-old male wild-type (WT) and meprin β knockout (βKO) mice and kidneys obtained at 24 h post-IR. Real-time PCR, western blot, and immunostaining/microscopy approaches were used to quantify mRNA and protein levels respectively, and immunofluorescence counterstaining with proximal tubule (PT) markers to determine protein localization. The mRNA levels for IL-6, CASP3 and BCL-2 increased significantly in both genotypes. Interestingly, western blot data showed increases in protein levels for IL-6, CASP3, and BCL-2 in the βKO but not in WT kidneys. However, immunohistochemical data showed increases in IL-6, CASP3, and BCL-2 proteins in select kidney tubules in both genotypes, shown to be PTs by immunofluorescence counterstaining. IR-induced increases in p-STAT-3 and p-JAK-2 in βKO at a global level but immunoflourescence counterstaining demonstrated p-JAK2 and p-STAT3 increases in select PT for both genotypes. BCL-2 increased only in the renal corpuscle of WT kidneys, suggesting a role for meprins expressed in leukocytes. Immunohistochemical analysis confirmed higher levels of leukocyte infiltration in WT kidneys when compared to βKO kidneys. The present data demonstrate that meprin β modulates IR-induced kidney injury in part via IL-6/JAK2/STAT3-mediated signaling.
Collapse
Affiliation(s)
- Shaymaa Abousaad
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Faihaa Ahmed
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Ayman Abouzeid
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Elimelda Moige Ongeri
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
11
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5-year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non-canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p-STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl-xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non-coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
12
|
Ngwa DN, Pathak A, Agrawal A. IL-6 regulates induction of C-reactive protein gene expression by activating STAT3 isoforms. Mol Immunol 2022; 146:50-56. [PMID: 35430542 PMCID: PMC9811655 DOI: 10.1016/j.molimm.2022.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
C-reactive protein (CRP) is synthesized in hepatocytes. The serum concentration of CRP increases dramatically during the acute phase response. In human hepatoma Hep3B cells, maximal CRP expression occurs in cells treated with the combination of IL-6 and IL-1β. IL-6 induces transcription of the CRP gene and IL-1β synergistically enhances the effects of IL-6. We investigated the role of IL-6-activated transcription factor STAT3, also known as STAT3α, in inducing CRP expression since we identified four consensus STAT3-binding sites centered at positions - 72, - 108, - 134 and - 164 on the CRP promoter. It has been shown previously that STAT3 binds to the site at - 108 and induces CRP expression. We found that STAT3 also bound to the other three sites, and several STAT3-containing complexes were formed at each site, suggesting the presence of STAT3 isoforms and additional transcription factors in the complexes. Mutation of the STAT3 sites at - 108, - 134 or - 164 resulted in decreased CRP expression in response to IL-6 and IL-1β treatment, although the synergy between IL-6 and IL-1β was not affected by the mutations. The STAT3 site at - 72 could not be investigated employing mutagenesis. We also found that IL-6 activated two isoforms of STAT3 in Hep3B cells: STAT3α which contains both a DNA-binding domain and a transactivation domain and STAT3β which contains only the DNA-binding domain. Taken together, these findings raise the possibility that IL-6 not only induces CRP expression but also regulates the induction of CRP expression by activating STAT3 isoforms and by utilizing all four STAT3 sites.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Asmita Pathak
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Alok Agrawal
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
13
|
Li J, Yin Z, Huang B, Xu K, Su J. Stat3 Signaling Pathway: A Future Therapeutic Target for Bone-Related Diseases. Front Pharmacol 2022; 13:897539. [PMID: 35548357 PMCID: PMC9081430 DOI: 10.3389/fphar.2022.897539] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Signal transducer and activator of transcription 3 (Stat3) is activated by phosphorylation and translocated to the nucleus to participate in the transcriptional regulation of DNA. Increasing evidences point that aberrant activation or deletion of the Stat3 plays a critical role in a broad range of pathological processes including immune escape, tumorigenesis, and inflammation. In the bone microenvironment, Stat3 acts as a common downstream response protein for multiple cytokines and is engaged in the modulation of cellular proliferation and intercellular interactions. Stat3 has direct impacts on disease progression by regulating mesenchymal stem cells differentiation, osteoclast activation, macrophage polarization, angiogenesis, and cartilage degradation. Here, we describe the theoretical basis and key roles of Stat3 in different bone-related diseases in combination with in vitro experiments and animal models. Then, we summarize and categorize the drugs that target Stat3, providing potential therapeutic strategies for their use in bone-related diseases. In conclusion, Stat3 could be a future target for bone-related diseases.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Biaotong Huang, ; Ke Xu, ; Jiacan Su,
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Biaotong Huang, ; Ke Xu, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Biaotong Huang, ; Ke Xu, ; Jiacan Su,
| |
Collapse
|
14
|
Wang F, Cao XY, Lin GQ, Tian P, Gao D. Novel inhibitors of the STAT3 signaling pathway: an updated patent review (2014-present). Expert Opin Ther Pat 2022; 32:667-688. [PMID: 35313119 DOI: 10.1080/13543776.2022.2056013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION STAT3 is a critical transcription factor that transmits signals from the cell surface to the nucleus, thus influencing the transcriptional regulation of some oncogenes. The inhibition of the activation of STAT3 is considered a promising strategy for cancer therapy. Numerous STAT3 inhibitors bearing different scaffolds have been reported to date, with a few of them having been considered in clinical trials. AREAS COVERED This review summarizes the advances on STAT3 inhibitors with different structural skeletons, focusing on the structure-activity relationships in the related patent literature published from 2014 to date. EXPERT OPINION Since the X-ray crystal structure of STAT3β homo dimer bound to DNA was solved in 1998, the development of STAT3 inhibitors has gone through a boom in recent years. However, none of them have been approved for marketing, probably due to the complex biological functions of the STAT3 signaling pathway, including its character and the poor drug-like physicochemical properties of its inhibitors. Nonetheless, targeting STAT3 continues to be an exciting field for the development of anti-tumor agents along with the emergence of new STAT3 inhibitors with unique mechanisms of action.
Collapse
Affiliation(s)
- Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology and Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Xin-Yu Cao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology and Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology and Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology and Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology and Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| |
Collapse
|
15
|
Shih PC. The role of the STAT3 signaling transduction pathways in radioresistance. Pharmacol Ther 2022; 234:108118. [PMID: 35085605 DOI: 10.1016/j.pharmthera.2022.108118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The efficacy of radiotherapy has long known to be limited by the emergence of resistance. The four Rs of radiotherapy (DNA damage repair, reoxygenation, redistribution of the cell cycle, and repopulation) are generally accepted concepts in radiobioolgy. Recent studies have strongly linked signal transducer and activator of transcription 3 (STAT3) to the regulation of cancer stemness and radioresistance. In particular, a STAT3 pathway inhibitor napabucasin, claimed to be the first cancer stemness antagonist in clinical trials, strengthens the link. However, no reviews connect STAT3 with the four Rs of radiotherapy. Herein, the evidence-based role of STAT3 in radioresistance is discussed in relation to the four Rs of radiotherapy. The proposed mechanisms include upstream and downstream effector proteins of STAT3, including FOXM1, MELK, NEK2, AKT, EZH2, and HIF1α. Downstream transcriptional products of the mechanistically-related proteins are involved in cancer stemness, anti-apoptosis, and the four Rs of radiotherapy. Utilizing selective inhibitors of the mechanistically-related proteins has shown promising antagonism of radioresistance, suggesting that the expression levels of these proteins may be biomarkers for the prediction of radiotherapeutic outcomes, and that this molecular mechanism may provide a rational axis through which to treat radioresistance.
Collapse
Affiliation(s)
- Po-Chang Shih
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
16
|
Lu H, Li ZY, Ding M, Liang C, Weng XQ, Sheng Y, Wu J, Cai X. Trametinib enhances ATRA-induced differentiation in AML cells. Leuk Lymphoma 2021; 62:3361-3372. [PMID: 34355652 DOI: 10.1080/10428194.2021.1961231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
All-trans retinoic acid (ATRA) is only clinically useful in acute promyelocytic leukemia (APL), but not other subtypes of acute myeloid leukemia (AML). In the present study, a clinically achievable concentration of trametinib, a highly selective inhibitor of MEK, enhanced ATRA-induced differentiation in AML cell lines, HL-60 and U937 as well as AML primary cells. Moreover, trametinib-ATRA (tra-ATRA) co-treatment restored ATRA sensitivity in ATRA-resistant AML cell line, HL-60Res. The protein level of STAT3 and the phosphorylation of Akt or JNK were enhanced with tra-ATRA treatment in HL-60, U937, and HL-60Res cells, respectively. Furthermore, tra-ATRA-induced differentiation in HL-60, U937, and HL-60Res cells was inhibited by STAT3, PI3K, and JNK inhibitors, respectively. Therefore, STAT3, Akt, and JNK signaling pathways were involved in tra-ATRA-induced differentiation in HL-60, U937, and HL-60Res cells, respectively. Taken together, our findings may provide novel therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Hao Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Ding
- Department of Hematology Oncology, Central Hospital of Minhang District, Shanghai, China
| | - Cui Liang
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
Lei W, Liu D, Sun M, Lu C, Yang W, Wang C, Cheng Y, Zhang M, Shen M, Yang Z, Chen Y, Deng C, Yang Y. Targeting STAT3: A crucial modulator of sepsis. J Cell Physiol 2021; 236:7814-7831. [PMID: 33885157 DOI: 10.1002/jcp.30394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cellular signal transcription factor that has recently attracted a great deal of attention. It can trigger a variety of genes transcription in response to cytokines and growth factors stimulation, which plays an important role in many cellular biological processes involved in anti/proinflammatory responses. Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. As a converging point of multiple inflammatory responses pathways, accumulating studies have presented the elaborate network of STAT3 in sepsis pathophysiology; these results generally indicate a promising therapeutic application for targeting STAT3 in the treatment of sepsis. In the present review, we evaluated the published literature describing the use of STAT3 in the treatment of experimental and clinical sepsis. The information presented here may be useful for the design of future studies and may highlight the potential of STAT3 as a future biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Dianxiao Liu
- Department of Cardiac Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Department of Cardiology, School of Life Sciences and Medicine, Xi'an No.3 Hospital, Northwest University, Xi'an, China
| | - Ye Cheng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mingzhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, Hainan, China
| | - Zhi Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yin Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
19
|
Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021; 18:39. [PMID: 33849593 PMCID: PMC8045279 DOI: 10.1186/s12986-021-00569-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanism exploitation of energy homeostasis is urgently required because of the worldwide prevailing of obesity-related metabolic disorders in human being. Although it is well known that leptin plays a central role in regulating energy balance by suppressing food intake and promoting energy expenditure, the existence of leptin resistance in majority of obese individuals hampers the utilization of leptin therapy against these disorders. However, the mechanism of leptin resistance is largely unknown in spite of the globally enormous endeavors. Current theories to interpret leptin resistance include the impairment of leptin transport, attenuation of leptin signaling, chronic inflammation, ER tress, deficiency of autophagy, as well as leptin itself. Leptin-activated leptin receptor (LepRb) signals in hypothalamus via several pathways, in which JAK2-STAT3 pathway, the most extensively investigated one, is considered to mediate the major action of leptin in energy regulation. Upon leptin stimulation the phosphorylation of STAT3 is one of the key events in JAK2-STAT3 pathway, followed by the dimerization and nuclear translocation of this molecule. Phosphorylated STAT3 (p-STAT3), as a transcription factor, binds to and regulates its target gene such as POMC gene, playing the physiological function of leptin. Regarding POMC gene in hypothalamus however little is known about the detail of its interaction with STAT3. Moreover the status of p-STAT3 and its significance in hypothalamus of DIO mice needs to be well elucidated. This review comprehends literatures on leptin and leptin resistance and especially discusses what STAT3 phosphorylation would contribute to central leptin resistance.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Tianxin Du
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Chen Li
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Guoqing Yang
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
20
|
Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X, Xu J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif 2020; 54:e12974. [PMID: 33382511 PMCID: PMC7848963 DOI: 10.1111/cpr.12974] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL‐6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto‐oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Haijun Tang
- Department of Orthopedic, Guangxi hospital for nationalities, Nanning, Guangxi, China
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2020; 68:279-290. [PMID: 32437876 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
22
|
Hu YS, Han X, Liu XH. STAT3: A Potential Drug Target for Tumor and Inflammation. Curr Top Med Chem 2019; 19:1305-1317. [PMID: 31218960 DOI: 10.2174/1568026619666190620145052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
STAT (Signal Transducers and Activators of Transcription) is a cellular signal transcription factor involved in the regulation of many cellular activities, such as cell differentiation, proliferation, angiogenesis in normal cells. During the study of the STAT family, STAT3 was found to be involved in many diseases, such as high expression and sustained activation of STAT3 in tumor cells, promoting tumor growth and proliferation. In the study of inflammation, it was found that it plays an important role in the anti-inflammatory and repairing of damage tissues. Because of the important role of STAT3, a large number of studies have been obtained. At the same time, after more than 20 years of development, STAT3 has also been used as a target for drug therapy. And the discovery of small molecule inhibitors also promoted the study of STAT3. Since STAT3 has been extensively studied in inflammation and tumor regulation, this review presents the current state of research on STAT3.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xu Han
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
23
|
Zhang H, Sha J, Feng X, Hu X, Chen Y, Li B, Fan H. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. Int Immunopharmacol 2019; 74:105717. [PMID: 31254953 DOI: 10.1016/j.intimp.2019.105717] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is a serious complication of sepsis and an important cause of death in intensive care. Studies have shown that DEX can inhibit inflammation. However, the anti-inflammatory effect and protective mechanism of DEX in lipopolysaccharide (LPS) induced ALI are still unclear. ALI model was established by intraperitoneal injection of LPS (10 mg/kg) in Sprague-Dawley (SD) male rats. Firstly, at 4, 6, 8, 12 and 24 h after LPS treatment, lung injury including pathologic histology, lung edema, and inflammation were detected. The optimal time point for lung injury was determined to be 12 h, at which time DEX was added to further test. Furthermore, STAT3 inhibitor (NSC74859) and GSK-3β inhibitor (SB216763) were added to verify the role of STAT3, GSK-3β and NF-κB in ameliorated ALI. Our results show that DEX pretreatment significantly decreased lung Wet-to-Dry weight (W/D) ratio and MPO activity and ameliorated LPS induced lung histopathological alterations. In addition, we confirmed that DEX can increased the phosphorylation of STAT3 and GSK-3β, and inhibit the phosphorylation of nuclear factor-κB (NF-κB) p65 in the inflammatory response induced by LPS. What's more, NSC74859 inhibited the phosphorylation of STAT3 and reversed the protect effect of DEX on LPS. SB216763 inhibited the phosphorylation of NF-κB and reversed the damage effect of LPS and plays the same anti-inflammatory effect as DEX. In summary, our data demonstrated that DEX can ameliorate ALI induced by LPS through GSK-3β/STAT3-NF-κB pathway.
Collapse
Affiliation(s)
- Huayun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jichen Sha
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
24
|
STAT3 isoforms: Alternative fates in cancer? Cytokine 2019; 118:27-34. [DOI: 10.1016/j.cyto.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/04/2023]
|
25
|
Zhang HX, Yang PL, Li EM, Xu LY. STAT3beta, a distinct isoform from STAT3. Int J Biochem Cell Biol 2019; 110:130-139. [PMID: 30822557 DOI: 10.1016/j.biocel.2019.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 02/05/2023]
Abstract
STAT3β is an isoform of STAT3 (signal transducer and activator of transcription 3) that differs from the STAT3α isoform by the replacement of the C-terminal 55 amino acid residues with 7 specific residues. The constitutive activation of STAT3α plays a pivotal role in the activation of oncogenic pathways, such as cell proliferation, maturation and survival, while STAT3β is often referred to as a dominant-negative regulator of cancer. STAT3β reveals a "spongy cushion" effect through its cooperation with STAT3α or forms a ternary complex with other co-activators. Especially in tumour cells, relatively high levels of STAT3β lead to some favourable changes. However, there are still many mechanisms that have not been clearly explained in contrast to STAT3α, such as STAT3β nuclear retention, more stable heterodimers and the prolonged Y705 phosphorylation. In addition to its transcriptional activities, STAT3β may also function in the cytosol with respect to the mitochondria, cytoskeleton rearrangements and metastasis of cancer cells. In this review, we summarize the mechanisms that underlie the unique roles of STAT3β combined with total STAT3 to enlighten and draw the attention of researchers studying STAT3 and discuss some interesting questions that warrant answers.
Collapse
Affiliation(s)
- Hui-Xiang Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncological Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncological Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncological Pathology, Shantou University Medical College, Shantou, Guangdong, PR China.
| |
Collapse
|
26
|
Wang X, Du L, Wei H, Zhang A, Yang K, Zhou H. Identification of two Stat3 variants lacking a transactivation domain in grass carp: New insights into alternative splicing in the modification of teleost Stat3 signaling. FISH & SHELLFISH IMMUNOLOGY 2018; 77:13-21. [PMID: 29555584 DOI: 10.1016/j.fsi.2018.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family in response to cytokines and growth factors. In mammals, alternative splicing of STAT3 generates STAT3α and STAT3β, which have distinct and overlapping functions. In the previous study, we have identified two spliceforms of Stat3α (Stat3α1 and Stat3α2) possessing all functional domains of Stat3 in grass carp (Ctenopharyngodon idella). In the present study, two Stat3β variants (Stat3β1 and Stat3β2) without C-terminal transactivation domain were isolated from this species, and their transcripts were ubiquitously expressed in all examined tissues with the highest levels in liver. Further studies showed that Stat3β1/2 had the ability to translocate into the nucleus upon activation, indicating their roles in transcriptional regulation. In support of this notion, grass carp Stat3β1 and Stat3β2 displayed the abilities to inhibit Interleukin-10 (Il-10) signaling and competitively impaired the transcriptional activities of Stat3α1/2. In particular, similar to their mammalian counterparts, grass carp Stat3β1 and Stat3β2 could enhance Stat3α1/2 phosphorylation upon cytokine stimulation. Interestingly, stat3β1 and stat3β2 transcripts were also found in zebrafish (Danio rerio) and goldfish (Carassius auratus), and each variant in these teleosts is generated through similar alternative splicing events, including exon skipping and intron retention. This highlights a conserved splicing event of stat3 gene during vertebrate evolution and indicates a potential physiological significance of generating unique Stat3 variants in fish. These results, along with the findings regarding Stat3α1/2, demonstrate the existence of Stat3 isoforms with functional diversity and redundancy in teleosts. It leads to the hypothesis that teleost-specific spliceforms of Stat3 gene may contribute to the complexity of Stat3 signaling in fishes, thereby benefiting them to adapt to evolution and environmental changes.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
27
|
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). Int J Oncol 2018; 53:7-20. [PMID: 29749432 DOI: 10.3892/ijo.2018.4386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Leukemia is a type of hematopoietic malignancy, and the incidence rate in the United States and European Union increases by an average of 0.6 to 0.7% annually. The incidence rate in China is approximately 5.17/100,000 individuals, and the mortality rate is 3.94/100,000 individuals. Leukemia is the most common tumor affecting children and adults under 35 years of age, and is one of the major diseases leading to the death of adolescents. Signal transducer and activator of transcription 3 (STAT3) is a vital regulatory factor of signal transduction and transcriptional activation, and once activated, the phosphorylated form of STAT3 (p-STAT3) is transferred into the nucleus to regulate the transcription of target genes, and plays important roles in cell proliferation, differentiation, apoptosis and other physiological processes. An increasing number of studies have confirmed that the abnormal activation of STAT3 is involved in the development of tumors. In this review, the roles of STAT3 in the pathogenesis, diagnosis, treatment and prognosis of leukemia are discussed in the aspects of cell proliferation, differentiation and apoptosis, with the aim to further clarify the roles of STAT3 in leukemia, and shed light into possible novel targets and strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yin Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xintao Qu
- Department of Bone and Joint Surgery Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
28
|
Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y. STAT3: The art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 2018; 70:17-28. [DOI: 10.1016/j.plipres.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
|
29
|
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018; 23:12. [PMID: 29588647 PMCID: PMC5863838 DOI: 10.1186/s11658-018-0078-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor with many important functions in the biology of normal and transformed cells. Its regulation is highly complex as it is involved in signaling pathways in many different cell types and under a wide variety of conditions. Besides other functions, STAT3 is an important regulator of normal stem cells and cancer stem cells. p63 which is a member of the p53 protein family is also involved in these functions and is both physically and functionally connected with STAT3. This review summarizes STAT3 function and regulation, its role in stem cell and cancer stem cell properties and highlights recent reports about its relationship to p63.
Collapse
Affiliation(s)
- Michaela Galoczova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
30
|
Mehta A, Ramachandra CJA, Chitre A, Singh P, Lua CH, Shim W. Acetylated Signal Transducer and Activator of Transcription 3 Functions as Molecular Adaptor Independent of Transcriptional Activity During Human Cardiogenesis. Stem Cells 2017; 35:2129-2137. [DOI: 10.1002/stem.2665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Ashish Mehta
- National Heart Research Institute Singapore; Singapore
- Cardiovascular Academic Clinical Program, DUKE-NUS Medical School; Singapore
| | | | - Anuja Chitre
- National Heart Research Institute Singapore; Singapore
| | - Pritpal Singh
- National Heart Research Institute Singapore; Singapore
| | - Chong Hui Lua
- National Heart Research Institute Singapore; Singapore
| | - Winston Shim
- National Heart Research Institute Singapore; Singapore
- Cardiovascular and Metabolic Disorders Program; DUKE-NUS Medical School; Singapore
| |
Collapse
|
31
|
Meier JA, Hyun M, Cantwell M, Raza A, Mertens C, Raje V, Sisler J, Tracy E, Torres-Odio S, Gispert S, Shaw PE, Baumann H, Bandyopadhyay D, Takabe K, Larner AC. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci Signal 2017; 10:eaag2588. [PMID: 28351946 PMCID: PMC5502128 DOI: 10.1126/scisignal.aag2588] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is associated with various physiological and pathological functions, mainly as a transcription factor that translocates to the nucleus upon tyrosine phosphorylation induced by cytokine stimulation. In addition, a small pool of STAT3 resides in the mitochondria, where it serves as a sensor for various metabolic stressors including reactive oxygen species (ROS). Mitochondrially localized STAT3 largely exerts its effects through direct or indirect regulation of the activity of the electron transport chain (ETC). It has been assumed that the amounts of STAT3 in the mitochondria are static. We showed that various stimuli, including oxidative stress and cytokines, triggered a signaling cascade that resulted in a rapid loss of mitochondrially localized STAT3. Recovery of the mitochondrial pool of STAT3 over time depended on phosphorylation of Ser727 in STAT3 and new protein synthesis. Under these conditions, mitochondrially localized STAT3 also became competent to bind to cyclophilin D (CypD). Binding of STAT3 to CypD was mediated by the amino terminus of STAT3, which was also important for reducing mitochondrial ROS production after oxidative stress. These results outline a role for mitochondrially localized STAT3 in sensing and responding to external stimuli.
Collapse
Affiliation(s)
- Jeremy A Meier
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Moonjung Hyun
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Marc Cantwell
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ali Raza
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Claudia Mertens
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10065, USA
| | - Vidisha Raje
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Sisler
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erin Tracy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Peter E Shaw
- School of Life Sciences, University of Nottingham, Nottingham, U.K
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kazuaki Takabe
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Andrew C Larner
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
32
|
Turton KB, Esnault S, Delain LP, Mosher DF. Merging Absolute and Relative Quantitative PCR Data to Quantify STAT3 Splice Variant Transcripts. J Vis Exp 2016. [PMID: 27768061 PMCID: PMC5092172 DOI: 10.3791/54473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human signal transducer and activator of transcription 3 (STAT3) is one of many genes containing a tandem splicing site. Alternative donor splice sites 3 nucleotides apart result in either the inclusion (S) or exclusion (ΔS) of a single residue, Serine-701. Further downstream, splicing at a pair of alternative acceptor splice sites result in transcripts encoding either the 55 terminal residues of the transactivation domain (α) or a truncated transactivation domain with 7 unique residues (β). As outlined in this manuscript, measuring the proportions of STAT3's four spliced transcripts (Sα, Sβ, ΔSα and ΔSβ) was possible using absolute qPCR (quantitative polymerase chain reaction). The protocol therefore distinguishes and measures highly similar splice variants. Absolute qPCR makes use of calibrator plasmids and thus specificity of detection is not compromised for the sake of efficiency. The protocol necessitates primer validation and optimization of cycling parameters. A combination of absolute qPCR and efficiency-dependent relative qPCR of total STAT3 transcripts allowed a description of the fluctuations of STAT3 splice variants' levels in eosinophils treated with cytokines. The protocol also provided evidence of a co-splicing interdependence between the two STAT3 splicing events. The strategy based on a combination of the two qPCR techniques should be readily adaptable to investigation of co-splicing at other tandem splicing sites.
Collapse
Affiliation(s)
- Keren B Turton
- Department of Biomolecular Chemistry, University of Wisconsin-Madison;
| | | | | | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison; Department of Medicine, University of Wisconsin-Madison
| |
Collapse
|
33
|
Abstract
Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.
Collapse
Key Words
- ALK, anaplastic lymphoma receptor tyrosine kinase
- ATF4, activating transcription factor 4
- BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3
- CNTF, ciliary neurotrophic factor
- COX8, cytochrome c oxidase subunit VIII
- CTSB, cathepsin B
- CTSL, cathepsin L
- CYCS, cytochrome c, somatic
- ConA, concanavalin A
- CuB, cucurbitacin B
- EGF, epidermal growth factor
- EIF2A, eukaryotic initiation factor 2A, 65kDa
- EIF2AK2, eukaryotic translation initiation factor 2-α kinase 2
- ER, endoplasmic reticulum
- ETC, electron transport chain
- FOXO1/3, forkhead box O1/3
- HDAC3, histone deacetylase 3
- HIF1A, hypoxia inducible factor 1, α subunit (basic helix-loop-helix transcription factor)
- IL6, interleukin 6
- IMM, inner mitochondrial membrane
- KDR, kinase insert domain receptor
- LMP, lysosomal membrane permeabilization
- MAP1LC3A, microtubule-associated protein 1 light chain 3 α
- MAPK1, mitogen-activated protein kinase 1
- MLS, mitochondrial localization sequence
- MMP14, matrix metallopeptidase 14 (membrane-inserted)
- NDUFA13, NADH dehydrogenase (ubiquinone) 1 α subcomplex, 13
- NES, nuclear export signal
- NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- NLS, nuclear localization signal
- PDGFRB, platelet-derived growth factor receptor, β polypeptide
- PRKAA2, protein kinase, AMP-activated, α 2 catalytic subunit
- PTPN11, protein tyrosine phosphatase, non-receptor type 11
- PTPN2, protein tyrosine phosphatase, non-receptor type 2
- PTPN6, protein tyrosine phosphatase, non-receptor type 6
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinases
- SH2, src homology 2
- STAT3
- STAT3, signal transducer and activator of transcription 3 (acute-phase response factor)
- VHL, von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase
- XPO1, exportin 1
- autophagy
- cancer
- miRNA, microRNA
- mitoSTAT3, mitochondrial STAT3
- mitophagy
- receptor tyrosine kinases
- targeted therapy
Collapse
Affiliation(s)
- Liangkun You
- a Department of Medical Oncology; Zhejiang University ; Hangzhou , Zhejiang , China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vogel TP, Milner JD, Cooper MA. The Ying and Yang of STAT3 in Human Disease. J Clin Immunol 2015; 35:615-23. [PMID: 26280891 DOI: 10.1007/s10875-015-0187-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
The transcription factor signal transducer and activator of transcription 3 (STAT3) is a critical regulator of multiple, diverse cellular processes. Heterozgyous, germline, loss-of-function mutations in STAT3 lead to the primary immune deficiency Hyper-IgE syndrome. Heterozygous, somatic, gain-of-function mutations in STAT3 have been reported in malignancy. Recently, germline, heterozygous mutations in STAT3 that confer a gain-of-function have been discovered and result in early-onset, multi-organ autoimmunity. This review summarizes what is known about the role of STAT3 in human disease.
Collapse
Affiliation(s)
- Tiphanie P Vogel
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Wake MS, Watson CJ. STAT3 the oncogene - still eluding therapy? FEBS J 2015; 282:2600-11. [DOI: 10.1111/febs.13285] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/04/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023]
|
36
|
Xiao X, Luo H, Vanek KN, LaRue AC, Schulte BA, Wang GY. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells. Stem Cells Dev 2015; 24:1342-51. [PMID: 25603016 DOI: 10.1089/scd.2014.0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.
Collapse
Affiliation(s)
- Xia Xiao
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,2Department of Hematology, Tianjin First Center Hospital, Tianjin, People's Republic of China
| | - Hongmei Luo
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,3Department of Histology and Embryology, University of South China, Hengyang City, Hunan Province, People's Republic of China
| | - Kenneth N Vanek
- 4Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Amanda C LaRue
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,5Research Services, Ralph H. Johnson VAMC, Charleston, South Carolina.,6Cancer Genes and Molecular Regulation Program of the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Bradley A Schulte
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Gavin Y Wang
- 1Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,6Cancer Genes and Molecular Regulation Program of the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Bharadwaj U, Kasembeli MM, Eckols TK, Kolosov M, Lang P, Christensen K, Edwards DP, Tweardy DJ. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer. Cancers (Basel) 2014; 6:2012-34. [PMID: 25268166 PMCID: PMC4276954 DOI: 10.3390/cancers6042012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/04/2022] Open
Abstract
Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p) Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7) and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Moses M Kasembeli
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - T Kris Eckols
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Mikhail Kolosov
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Paul Lang
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kurt Christensen
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Dean P Edwards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - David J Tweardy
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
STAT3 in Cancer-Friend or Foe? Cancers (Basel) 2014; 6:1408-40. [PMID: 24995504 PMCID: PMC4190548 DOI: 10.3390/cancers6031408] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022] Open
Abstract
The roles and significance of STAT3 in cancer biology have been extensively studied for more than a decade. Mounting evidence has shown that constitutive activation of STAT3 is a frequent biochemical aberrancy in cancer cells, and this abnormality directly contributes to tumorigenesis and shapes many malignant phenotypes in cancer cells. Nevertheless, results from more recent experimental and clinicopathologic studies have suggested that STAT3 also can exert tumor suppressor effects under specific conditions. Importantly, some of these studies have demonstrated that STAT3 can function either as an oncoprotein or a tumor suppressor in the same cell type, depending on the specific genetic background or presence/absence of specific coexisting biochemical defects. Thus, in the context of cancer biology, STAT3 can be a friend or foe. In the first half of this review, we will highlight the “evil” features of STAT3 by summarizing its oncogenic functions and mechanisms. The differences between the canonical and non-canonical pathway will be highlighted. In the second half, we will summarize the evidence supporting that STAT3 can function as a tumor suppressor. To explain how STAT3 may mediate its tumor suppressor effects, we will discuss several possible mechanisms, one of which is linked to the role of STAT3β, one of the two STAT3 splicing isoforms. Taken together, it is clear that the roles of STAT3 in cancer are multi-faceted and far more complicated than one appreciated previously. The new knowledge has provided us with new approaches and strategies when we evaluate STAT3 as a prognostic biomarker or therapeutic target.
Collapse
|
39
|
Sayed D, Badrawy H, Gaber N, Khalaf MR. p-Stat3 and bcr/abl gene expression in chronic myeloid leukemia and their relation to imatinib therapy. Leuk Res 2013; 38:243-50. [PMID: 24374144 DOI: 10.1016/j.leukres.2013.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 10/26/2022]
Abstract
Flowcytometry analysis was carried out to evaluate the expression of the p-Stat3 in 50 CML patients and 20 age-matched healthy controls. p-Stat3 expression was increased in advanced stages of CML. Imatinib treatment was found to suppress the expression of p-Stat3 in bone marrow cells. The level of p-Stat3 was found to be higher in resistant cases than in responsive cases, which suggest the beneficial use of p-Stat3 as an indicator to follow the clinical course and the treatment response.
Collapse
Affiliation(s)
- Douaa Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Egypt.
| | - Hosny Badrawy
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Egypt
| | - Noha Gaber
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Egypt
| | - Muhammed R Khalaf
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Egypt
| |
Collapse
|
40
|
Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 2013; 23:310-22. [PMID: 23726895 DOI: 10.1016/j.semcancer.2013.05.008] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/08/2013] [Accepted: 05/21/2013] [Indexed: 12/28/2022]
Abstract
Autophagy is an evolutionarily conserved process that promotes the lysosomal degradation of intracellular components including organelles and portions of the cytoplasm. Besides operating as a quality control mechanism in steady-state conditions, autophagy is upregulated in response to a variety of homeostatic perturbations. In this setting, autophagy mediates prominent cytoprotective effects as it sustains energetic homeostasis and contributes to the removal of cytotoxic stimuli, thus orchestrating a cell-wide, multipronged adaptive response to stress. In line with the critical role of autophagy in health and disease, defects in the autophagic machinery as well as in autophagy-regulatory signaling pathways have been associated with multiple human pathologies, including neurodegenerative disorders, autoimmune conditions and cancer. Accumulating evidence indicates that the autophagic response to stress may proceed in two phases. Thus, a rapid increase in the autophagic flux, which occurs within minutes or hours of exposure to stressful conditions and is entirely mediated by post-translational protein modifications, is generally followed by a delayed and protracted autophagic response that relies on the activation of specific transcriptional programs. Stress-responsive transcription factors including p53, NF-κB and STAT3 have recently been shown to play a major role in the regulation of both these phases of the autophagic response. Here, we will discuss the molecular mechanisms whereby autophagy is orchestrated by stress-responsive transcription factors.
Collapse
|
41
|
Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. Biochem J 2012; 447:125-36. [PMID: 22799634 PMCID: PMC3441131 DOI: 10.1042/bj20120941] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation of STAT3 (signal transducer and activator of transcription 3) is critical for its nuclear import and transcriptional activity. Although a shorter STAT3β spliceform was initially described as a negative regulator of STAT3α, gene knockout studies have revealed that both forms play critical roles. We have expressed STAT3α and STAT3β at comparable levels to facilitate a direct comparison of their functional effects, and have shown their different cytokine-stimulated kinetics of phosphorylation and nuclear translocation. Notably, the sustained nuclear translocation and phosphorylation of STAT3β following cytokine exposure contrasted with a transient nuclear translocation and phosphorylation of STAT3α. Importantly, co-expression of the spliceforms revealed that STAT3β enhanced and prolonged the phosphorylation and nuclear retention of STAT3α, but a STAT3β R609L mutant, with a disrupted SH2 (Src homology 2) domain, was not tyrosine phosphorylated following cytokine stimulation and could not cross-regulate STAT3α. The physiological importance of prolonged phosphorylation and nuclear retention was indicated by transcriptome profiling of STAT3−/− cells expressing either STAT3α or STAT3β, revealing the complexity of genes that are up- and down-regulated by the STAT3 spliceforms, including a distinct set of STAT3β-specific genes regulated under basal conditions and after cytokine stimulation. These results highlight STAT3β as a significant transcriptional regulator in its own right, with additional actions to cross-regulate STAT3α phosphorylation and nuclear retention after cytokine stimulation.
Collapse
|
42
|
He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, Duan CW, Hong DL, Tanaka T, Chen GQ, Zhao Q. HIF-1α downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ 2012; 20:408-18. [PMID: 23059786 DOI: 10.1038/cdd.2012.130] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a crucial transcription factor for the cellular adaptive response to hypoxia, which contributes to multiple events in cancer biology. MicroRNAs (miRNAs) are involved in almost all cellular activities such as differentiation, proliferation, and apoptosis. In this work, we use miRNA microarrays to profile miRNA expression in acute myeloid leukemia (AML) cells with inducible HIF-1α expression, and identify 19 differentially expressed miRNAs. Our study shows that HIF-1α represses the expression of miR-17 and miR-20a by downregulating c-Myc expression. These two miRNAs alleviate hypoxia and HIF-1α-induced differentiation of AML cells. More intriguingly, miR-17 and miR-20a directly inhibit the p21 and STAT3 (signal transducer and activator of transcription 3) expression, both of which can reverse miR-17/miR-20a-mediated abrogation of HIF-1α-induced differentiation. Moreover, we show in vivo that miR-20a contributes to HIF-1α-induced differentiation of leukemic cells. Taken together, our results suggest that HIF-1α regulates the miRNA network to interfere with AML cell differentiation, representing a novel molecular mechanism for HIF-1-mediated anti-leukemic action.
Collapse
Affiliation(s)
- M He
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yan C, Qu P, Du H. Myeloid-specific expression of Stat3C results in conversion of bone marrow mesenchymal stem cells into alveolar type II epithelial cells in the lung. SCIENCE CHINA-LIFE SCIENCES 2012; 55:576-90. [PMID: 22864832 PMCID: PMC8530440 DOI: 10.1007/s11427-012-4339-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two cell types, the signaling pathway of signal transducer and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly established c-fms-rtTA/(TetO)(7)-CMV-Stat3C bitransgenic mouse model. In this system, Stat3C-Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor cells as a result of Stat3C overexpression. The study supports the concept that activation of the Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, repopulating and converting into residential AT II epithelial cells in the lung.
Collapse
Affiliation(s)
- Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5188, USA.
| | | | | |
Collapse
|
44
|
Debnath B, Xu S, Neamati N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 2012; 55:6645-68. [PMID: 22650325 DOI: 10.1021/jm300207s] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bikash Debnath
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | | | | |
Collapse
|
45
|
Timofeeva OA, Chasovskikh S, Lonskaya I, Tarasova NI, Khavrutskii L, Tarasov SG, Zhang X, Korostyshevskiy VR, Cheema A, Zhang L, Dakshanamurthy S, Brown ML, Dritschilo A. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem 2012; 287:14192-200. [PMID: 22378781 PMCID: PMC3340179 DOI: 10.1074/jbc.m111.323899] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cui C, Shi Q, Zhang X, Liu X, Bai Y, Li J, Liu S, Hu S, Wei Y. CRP promotes MMP-10 expression via c-Raf/MEK/ERK and JAK1/ERK pathways in cardiomyocytes. Cell Signal 2011; 24:810-8. [PMID: 22142512 DOI: 10.1016/j.cellsig.2011.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/11/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
C-reactive protein (CRP) was reported to be a predictor for left ventricular (LV) remodeling. Matrix metalloproteinase (MMP)-10 participates in the LV remodeling process. However, the intrinsic relationship between CRP and MMP-10 in cardiomyocytes remains unclear. The purpose of this study is to observe whether CRP may promote MMP-10 expression, and if so, to clarify signaling pathways to be involved in CRP-induced MMP-10 expression in cardiomyocytes. We observed in cultured cardiomyocytes that CRP at a dose of 5 μg/ml increased MMP-10 expression and activity in a time-dependent manner, as measured by real-time polymerase chain reaction (PCR), western blots, and casein zymography analysis. We hypothesized that signal pathways of mitogen-activated protein kinases (MAPKs) and Janus kinases (JAKs)/signal transducers and activators of transcription (STATs) might be involved in CRP-induced MMP-10 expression. Our results showed that CRP markedly activated c-Raf/MEK/ERK and JAK1/ERK signaling pathways but not JAK1/STAT3 signaling pathway by using the phosphor-specific antibodies against these pathways, and blockages of c-Raf/MEK/ERK and JAK1/ERK signaling pathways by the specific ERK1/2 inhibitor U0126 and JAK1 inhibitor piceatannol could significantly decrease CRP-induced MMP-10 expression. In addition, we demonstrated that the DNA binding sites of AP-1 and STAT3 in the nucleus of cardiomyocytes mediated CRP-induced MMP-10 expression. In conclusion, we demonstrated that CRP promoted MMP-10 expression and activity in cardiomyocytes, and clarified that c-Raf/MEK/ERK and JAK1/ERK signaling pathways were involved in MMP-10 expression regulation via activation of DNA binding sites for AP-1 and STAT3 in cardiomyocytes. Our findings suggest that CRP acts as a predictor for LV remodeling might be associated with its promotion effect on MMP-10 expression and activity.
Collapse
Affiliation(s)
- Chuanjue Cui
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease & Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Signal transducer and activator of transcription 3β in pancreatic cancer. Open Life Sci 2010. [DOI: 10.2478/s11535-010-0029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSignal transducer and activator of transcription 3 (STAT3) has four isoforms: α, β, γ and δ. STAT3α and STAT3β are the transcriptionally active isoforms, while STAT3γ and STAT3δ are the products of STAT3 proteolytic degradation. STAT3 plays an important role in angiogenesis, cell proliferation and apoptosis. High levels of STAT3β in blood cells from acute leukaemia patients have been reported, suggesting that STAT3β may play an important role in cancerogenesis. Fourteen pancreatic cancer patients and six chronic pancreatitis patients were included in this pilot study. Levels of STAT3 isoforms from samples with pancreatic cancer and in adjacent histologically-normal pancreatic tissue were analysed. Pancreas from chronic pancreatitis patients served as a non-neoplastic tissue. Western-blot analysis of STAT3 proteins with the use of anti-STAT3 antibodies was performed. STAT3α and STAT3β isoforms in both cancerous and in adjacent normal tissues were found in 10 of 14. In chronic pancreatitis patients, only STAT3α and STAT3δ were detected. STAT3β was absent in pancreas from chronic pancreatitis patients, in contrast to pancreatic cancer patients. The presence of STAT3β in pancreatic cancer and in adjacent histologically-normal tissues, but not in inflamed tissues suggests that STAT3β may play a key role in cancer development.
Collapse
|
48
|
Ernst J, Ghanem L, Bar-Joseph Z, McNamara M, Brown J, Steinman RA. IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability. PLoS One 2009; 4:e7469. [PMID: 19829692 PMCID: PMC2758590 DOI: 10.1371/journal.pone.0007469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 05/07/2009] [Indexed: 01/08/2023] Open
Abstract
The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. The degree to which IL-3 acts at the posttranscriptional level is largely unknown. We have conducted global mRNA decay profiling and bioinformatic analyses in 32Dcl3 myeloblasts indicating that IL-3 caused immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Stabilized transcripts were enriched for AU-Response elements (AREs), and an ARE-containing domain from the interleukin-6 (IL-6) 3′-UTR rendered a heterologous gene responsive to IL-3-mediated transcript stabilization. Many IL-3-stabilized transcripts had been associated with leukemic transformation. Deregulated Abl kinase shared with IL-3 the ability to delay turnover of transcripts involved in proliferation or differentiation blockade, relying, in part, on signaling through the Mek/Erk pathway. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of an mRNA network linked to IL-3 contributes to leukemic cell growth.
Collapse
Affiliation(s)
- Jason Ernst
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - Louis Ghanem
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael McNamara
- Regional Oncology Department, The Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jason Brown
- Oncology staff, Meadeville Medical Center, Meadevill, Pennsylvania, United States of America
| | - Richard A. Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
The specificity of a given virus for a cell type, tissue or species - collectively known as viral tropism - is an important factor in determining the outcome of viral infection in any particular host. Owing to the increased prevalence of zoonotic infections and the threat of emerging and re-emerging pathogens, gaining a better understanding of the factors that determine viral tropism has become particularly important. In this Review, we summarize our current understanding of the central role of antiviral and pro-inflammatory cytokines, particularly the interferons and tumour necrosis factor, in dictating viral tropism and how these cytokine pathways can be exploited therapeutically for cancer treatment and to better counter future threats from emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Academic Research Building, Room R4-295, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
50
|
Foshay KM, Gallicano GI. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol 2008; 326:431-43. [PMID: 19073166 DOI: 10.1016/j.ydbio.2008.11.016] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 12/15/2022]
Abstract
MicroRNAs are small non-coding RNAs that regulate protein expression by binding 3'UTRs of target mRNAs, thereby inhibiting translation. Similar to siRNAs, miRNAs are cleaved by Dicer. Mouse and ES cell Dicer mutants demonstrate that microRNAs are necessary for embryonic development and cellular differentiation. However, technical obstacles and the relative infancy of this field have resulted in few data on the functional significance of individual microRNAs. We present evidence that miR-17 family members, miR-17-5p, miR-20a, miR-93, and miR-106a, are differentially expressed in developing mouse embryos and function to control differentiation of stem cells. Specifically, miR-93 localizes to differentiating primitive endoderm and trophectoderm of the blastocyst. We also observe high miR-93 and miR-17-5p expression within the mesoderm of gastrulating embryos. Using an ES cell model system, we demonstrate that modulation of these miRNAs delays or enhances differentiation into the germ layers. Additionally, we demonstrate that these miRNAs regulate STAT3 mRNA in vitro. We suggest that STAT3, a known ES cell regulator, is one target mRNA responsible for the effects of these miRNAs on cellular differentiation.
Collapse
Affiliation(s)
- Kara M Foshay
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | |
Collapse
|