1
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Van Buren E, Radicioni G, Lester S, O’Neal WK, Dang H, Kasela S, Garudadri S, Curtis JL, Han MK, Krishnan JA, Wan ES, Silverman EK, Hastie A, Ortega VE, Lappalainen T, Nawijn MC, van den Berge M, Christenson SA, Li Y, Cho MH, Kesimer M, Kelada SNP. Genetic regulators of sputum mucin concentration and their associations with COPD phenotypes. PLoS Genet 2023; 19:e1010445. [PMID: 37352370 PMCID: PMC10325042 DOI: 10.1371/journal.pgen.1010445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/06/2023] [Accepted: 04/26/2023] [Indexed: 06/25/2023] Open
Abstract
Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.
Collapse
Affiliation(s)
- Eric Van Buren
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Giorgia Radicioni
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah Lester
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Silva Kasela
- New York Genome Center, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Suresh Garudadri
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey L. Curtis
- Pulmonary & Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan, United States of America
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - MeiLan K. Han
- Pulmonary & Critical Care Medicine Division, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jerry A. Krishnan
- Breathe Chicago Center, University of Illinois, Chicago, Illinois, United States of America
| | - Emily S. Wan
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annette Hastie
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Victor E. Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, the Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Samir N. P. Kelada
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Packer RJ, Shrine N, Hall R, Melbourne CA, Thompson R, Williams AT, Paynton ML, Guyatt AL, Allen RJ, Lee PH, John C, Campbell A, Hayward C, de Vries M, Vonk JM, Davitte J, Hessel E, Michalovich D, Betts JC, Sayers I, Yeo A, Hall IP, Tobin MD, Wain LV. Genome-wide association study of chronic sputum production implicates loci involved in mucus production and infection. Eur Respir J 2023; 61:2201667. [PMID: 37263751 PMCID: PMC10284065 DOI: 10.1183/13993003.01667-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Chronic sputum production impacts on quality of life and is a feature of many respiratory diseases. Identification of the genetic variants associated with chronic sputum production in a disease agnostic sample could improve understanding of its causes and identify new molecular targets for treatment. METHODS We conducted a genome-wide association study (GWAS) of chronic sputum production in UK Biobank. Signals meeting genome-wide significance (p<5×10-8) were investigated in additional independent studies, were fine-mapped and putative causal genes identified by gene expression analysis. GWASs of respiratory traits were interrogated to identify whether the signals were driven by existing respiratory disease among the cases and variants were further investigated for wider pleiotropic effects using phenome-wide association studies (PheWASs). RESULTS From a GWAS of 9714 cases and 48 471 controls, we identified six novel genome-wide significant signals for chronic sputum production including signals in the human leukocyte antigen (HLA) locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and FUT2 locus. The four common variant associations were supported by independent studies with a combined sample size of up to 2203 cases and 17 627 controls. The mucin locus signal had previously been reported for association with moderate-to-severe asthma. The HLA signal was fine-mapped to an amino acid change of threonine to arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated with expression of several genes including FUT2, for which the direction of effect was tissue dependent. Our PheWAS identified a wide range of associations including blood cell traits, liver biomarkers, infections, gastrointestinal and thyroid-associated diseases, and respiratory disease. CONCLUSIONS Novel signals at the FUT2 and mucin loci suggest that mucin fucosylation may be a driver of chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic support for this pathway as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Richard J Packer
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nick Shrine
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert Hall
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Carl A Melbourne
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Rebecca Thompson
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Alex T Williams
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Megan L Paynton
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Anna L Guyatt
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Richard J Allen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Paul H Lee
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | | | | | | | | | - Ian Sayers
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | | | - Ian P Hall
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
4
|
Lee DF, Lethem MI, Lansley AB. A comparison of three mucus-secreting airway cell lines (Calu-3, SPOC1 and UNCN3T) for use as biopharmaceutical models of the nose and lung. Eur J Pharm Biopharm 2021; 167:159-174. [PMID: 34332033 PMCID: PMC8422164 DOI: 10.1016/j.ejpb.2021.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
The aim of this work was to compare three existing mucus-secreting airway cell lines for use as models of the airways to study drug transport in the presence of mucus. Each cell line secreted mature, glycosylated mucins, evidenced by the enzyme-linked lectin assay. The secretagogue, adenylyl-imidodiphosphate, increased mucin secretion in SPOC1 (3.5-fold) and UNCN3T (1.5-fold) cells but not in Calu-3 cells. In a novel mucus-depleted (MD) model the amount of mucus in the non-depleted wells was 3-, 8- and 4-fold higher than in the mucus-depleted wells of the Calu-3, SPOC1 and UNCN3T cells respectively. The permeability of 'high mucus' cells to testosterone was significantly less in SPOC1 and UNCN3T cells (P < 0.05) but not Calu-3 cells. Mucin secretion and cytokine release were investigated as indicators of drug irritancy in the SPOC1 and UNCN3T cell lines. A number of inhaled drugs significantly increased mucin secretion at high concentrations and the release of IL-6 and IL-8 from SPOC1 or UNCN3T cells (P < 0.05). SPOC1 and UNCN3T cell lines are better able to model the effect of mucus on drug absorption than the Calu-3 cell line and are proposed for use in assessing drug-mucus interactions in inhaled drug and formulation development.
Collapse
Affiliation(s)
- Diane F Lee
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK(1).
| | - Michael I Lethem
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Alison B Lansley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
5
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Cho HY, Park S, Miller L, Lee HC, Langenbach R, Kleeberger SR. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol Pathol 2021; 49:1077-1099. [PMID: 33938323 DOI: 10.1177/01926233211004433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucin-5AC (MUC5AC) is a major secreted mucin in pathogenic airways. To determine its role in mucus-related airway disorders, Muc5ac-deficient (Muc5ac-/-) and wild-type (Muc5ac+/+) mice were compared in bleomycin-induced pulmonary fibrosis, respiratory syncytial virus (RSV) disease, and ozone toxicity. Significantly greater inflammation and fibrosis by bleomycin were developed in Muc5ac-/- lungs compared to Muc5ac+/+ lungs. More severe mucous cell metaplasia in fibrotic Muc5ac-/- lungs coincided with bronchial Muc2, Muc4, and Muc5b overexpression. Airway RSV replication was higher in Muc5ac-/- than in Muc5ac+/+ during early infection. RSV-caused pulmonary epithelial death, bronchial smooth muscle thickening, and syncytia formation were more severe in Muc5ac-/- compared to Muc5ac+/+. Nasal septal damage and subepithelial mucoserous gland enrichment by RSV were greater in Muc5ac-/- than in Muc5ac+/+. Ozone exposure developed more severe nasal airway injury accompanying submucosal gland hyperplasia and pulmonary proliferation in Muc5ac-/- than in Muc5ac+/+. Ozone caused periodic acid-Schiff-positive secretion only in Muc5ac-/- nasal airways. Lung E-cadherin level was relatively lower in Muc5ac-/- than in Muc5ac+/+ basally and after bleomycin, RSV, and ozone exposure. Results indicate that MUC5AC is an essential mucosal component in acute phase airway injury protection. Subepithelial gland hyperplasia and adaptive increase of other epithelial mucins may compensate airway defense in Muc5ac-/- mice.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Soojung Park
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Laura Miller
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Huei-Chen Lee
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Robert Langenbach
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| |
Collapse
|
7
|
Lee S, Lasky-Su JA, Lange C, Kim W, Kumar PL, McDonald MLN, Vaz Fragoso CA, Laurie C, Raby BA, Celedón JC, Cho MH, Won S, Weiss ST, Hecker J. A novel locus for exertional dyspnoea in childhood asthma. Eur Respir J 2021; 57:2001224. [PMID: 32855217 PMCID: PMC8185954 DOI: 10.1183/13993003.01224-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Most children diagnosed with asthma have respiratory symptoms such as cough, dyspnoea and wheezing, which are also important markers of overall respiratory function. A decade of genome-wide association studies (GWAS) have investigated genetic susceptibility to asthma itself, but few have focused on important respiratory symptoms that characterise childhood asthma.Using whole-genome sequencing (WGS) data for 894 asthmatic trios from a Costa Rican cohort, we performed family-based association tests (FBATs) to assess the association between genetic variants and multiple asthma-relevant respiratory phenotypes: cough, phlegm, wheezing, exertional dyspnoea and exertional chest tightness. We tested whether genome-wide significant associations were replicated in two additional studies: 1) 286 asthmatic trios from the Childhood Asthma Management Program (CAMP), and 2) 2691 African American current or former smokers from the COPDGene study.In the 894 Costa Rican trios, we identified a genome-wide significant association (p=2.16×10-9) between exertional dyspnoea and the single nucleotide polymorphism (SNP) rs10165869, located on chromosome 2q37.3, that was replicated in the CAMP cohort (p=0.023) with the same direction of association (combined p=3.28×10-10). This association was not found in the African American participants from COPDGene. We also found suggestive evidence for an association between SNP rs10165869 and the atypical chemokine receptor 3 (ACKR3).Our finding encourages the secondary association analysis of a wider range of phenotypes that characterise respiratory symptoms in other airway diseases/studies.
Collapse
Affiliation(s)
- Sanghun Lee
- Dept of Medical Consilience, Division of Medicine, Graduate
School, Dankook University, Yongin, South Korea
- Dept of Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, MA, USA
| | - Jessica Ann Lasky-Su
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Christoph Lange
- Dept of Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Preeti Lakshman Kumar
- Division of Pulmonary, Allergy and Critical Care Medicine,
University of Alabama at Birmingham, Birmingham, AL, USA
| | - Merry-Lynn N. McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine,
University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Cecelia Laurie
- Dept of Biostatistics, University of Washington, Seattle,
WA, USA
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC
Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA,
USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Sungho Won
- Dept of Public Health Science, Seoul National University,
Seoul, South Korea
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Genetic regulation of gene expression of MIF family members in lung tissue. Sci Rep 2020; 10:16980. [PMID: 33046825 PMCID: PMC7552402 DOI: 10.1038/s41598-020-74121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease.
Collapse
|
10
|
Tasena H, Faiz A, Timens W, Noordhoek J, Hylkema MN, Gosens R, Hiemstra PS, Spira A, Postma DS, Tew GW, Grimbaldeston MA, van den Berge M, Heijink IH, Brandsma CA. microRNA-mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. Eur Respir J 2018; 52:13993003.01556-2017. [PMID: 30072506 DOI: 10.1183/13993003.01556-2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 07/07/2018] [Indexed: 02/03/2023]
Abstract
Chronic mucus hypersecretion (CMH) is a common feature in chronic obstructive pulmonary disease (COPD) and is associated with worse prognosis and quality of life. This study aimed to identify microRNA (miRNA)-mRNA regulatory networks underlying CMH.The expression profiles of miRNA and mRNA in bronchial biopsies from 63 COPD patients were associated with CMH using linear regression. Potential mRNA targets of each CMH-associated miRNA were identified using Pearson correlations. Gene set enrichment analysis (GSEA) and STRING (search tool for the retrieval of interacting genes/proteins) analysis were used to identify key genes and pathways.20 miRNAs and 539 mRNAs were differentially expressed with CMH in COPD. The expression of 10 miRNAs was significantly correlated with the expression of one or more mRNAs. Of these, miR-134-5p, miR-146a-5p and the let-7 family had the highest representation of CMH-associated mRNAs among their negatively correlated predicted targets. KRAS and EDN1 were identified as key regulators of CMH and were negatively correlated predicted targets of miR-134-5p and let-7a-5p, let-7d-5p, and let-7f-5p, respectively. GSEA suggested involvement of MUC5AC-related genes and several other relevant gene sets in CMH. The lower expression of miR-134-5p was confirmed in primary airway fibroblasts from COPD patients with CMH.We identified miR-134-5p, miR-146a-5p and let-7 family, along with their potential target genes including KRAS and EDN1, as potential key miRNA-mRNA networks regulating CMH in COPD.
Collapse
Affiliation(s)
- Hataitip Tasena
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wim Timens
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jacobien Noordhoek
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Avrum Spira
- Dept of Medicine, Division of Computational Biomedicine, Boston University Medical Centre, Boston, MA, USA
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gaik W Tew
- Research and Early Development, Genentech Inc., San Francisco, CA, USA
| | | | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,These authors contributed equally
| | - Corry-Anke Brandsma
- Dept of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,These authors contributed equally
| |
Collapse
|
11
|
Cong WJ, Li J, Liao YJ, Zhang XF, Jiang CW, Xiang SY, Huang WB, Liu XY, Liu ZB. Effect of electroacupuncture on expressions of acetylcholine and mucin 5AC in the lungs of rats with chronic obstructive pulmonary disease. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2018. [DOI: 10.1007/s11726-018-1038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Shen Y, Huang S, Kang J, Lin J, Lai K, Sun Y, Xiao W, Yang L, Yao W, Cai S, Huang K, Wen F. Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition). Int J Chron Obstruct Pulmon Dis 2018; 13:399-407. [PMID: 29430174 PMCID: PMC5796802 DOI: 10.2147/copd.s144312] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Airway mucus hypersecretion is one of the most important characteristics of chronic airway inflammatory diseases. Evaluating and managing airway mucus hypersecretion is of great importance for patients with chronic airway inflammatory diseases. This consensus statement describes the pathogenesis, clinical features, and the management of airway mucus hypersecretion in patients with chronic airway inflammatory diseases in the People's Republic of China. The statement has been written particularly for respiratory researchers, pulmonary physicians, and patients.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu
| | - Shaoguang Huang
- Department of Pulmonary Disease, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang
| | - Jiangtao Lin
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing
| | - Wei Xiao
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Wanzhen Yao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Kewu Huang
- Division of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu
| |
Collapse
|
13
|
Roos AB, Stampfli MR. Targeting Interleukin-17 signalling in cigarette smoke-induced lung disease: Mechanistic concepts and therapeutic opportunities. Pharmacol Ther 2017; 178:123-131. [PMID: 28438639 DOI: 10.1016/j.pharmthera.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is widely accepted that compromised lung function in chronic obstructive pulmonary disease (COPD) is, at least in part, a consequence of persistent airway inflammation caused by particles and noxious gases present in cigarette smoke and indoor air pollution from burning biomass fuel. Currently, the World Health Organization estimates that 80 million people have moderate or severe COPD worldwide. While there is a global need for effective medical treatment, current therapeutic interventions have shown limited success in preventing disease pathology and progression. This is, in large part, due to the complexity and heterogeneity of COPD, and an incomplete understanding of the molecular mechanisms governing inflammatory processes in individual patients. This review discusses recent discoveries related to the pro-inflammatory cytokine interleukin (IL)-17A, and its potential role in the pathogenesis of COPD. We propose that an intervention strategy targeting IL-17 signalling offers an exciting opportunity to mitigate inflammatory processes, and prevent the progression of tissue pathologies associated with COPD.
Collapse
Affiliation(s)
- Abraham B Roos
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden and
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Zeng X, Vonk JM, de Jong K, Xu X, Huo X, Boezen HM. No convincing association between genetic markers and respiratory symptoms: results of a GWA study. Respir Res 2017; 18:11. [PMID: 28073367 PMCID: PMC5223330 DOI: 10.1186/s12931-016-0495-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/17/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Respiratory symptoms are associated with accelerated lung function decline, and increased hospitalization and mortality rates in the general population. Although several environmental risk factors for respiratory symptoms are known, knowledge on genetic risk factors is lacking. We aim to identify genetic variants associated with respiratory symptoms by genome-wide association (GWA) analyses. METHODS We conducted the first GWA study on cough, dyspnea and phlegm among 7,976 participants in the LifeLines I cohort and used the LifeLines II cohort (n = 5,260) and the Vlagtwedde-Vlaardingen cohort (n = 1,529) for replication. RESULTS We identified 50 SNPs that were assessed for replication. Rs16918212, located in the alpha-2-macroglobulin pseudogene 1 (A2MP1), was associated with cough in both the identification (odds ratio (OR) = 0.72, p = 5.41 × 10-5) and the meta-analyzed replication cohorts (OR = 0.83, p = 0.033). No other significant replicated associations were found. CONCLUSIONS Given that only 1 out of 50 SNPs showed significant replication (i.e. 2%) we conclude that we did not find a convincing association between genetic markers and respiratory symptoms. Since, environmental exposures are important risk factors for respiratory symptoms, the next step is to perform a genome-wide interaction (GWI) study to identify genetic susceptibility loci for respiratory symptoms in interaction with known harmful environmental exposures.
Collapse
Grants
- This study was funded by the Groningen Research Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, the Netherlands. The LifeLines Cohort Study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. The Vlagtwedde-Vlaardingen cohort study was supported by the Ministry of Health and Environmental Hygiene of the Netherlands and the Netherlands Asthma Fund (grant 187) and the Netherlands Asthma Fund grant no. 3.2.02.51, the Stichting Astma Bestrijding, BBMRI-NL (Complementiation project), and the European Respiratory Society COPD research award 2011 to H.M. Boezen.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
| | - Kim de Jong
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Xia Huo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, China
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands.
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 1 Hanzeplein, Groningen, 9700RB, The Netherlands.
| |
Collapse
|
15
|
Abstract
In recent years, thousands of publications on chronic obstructive pulmonary disease (COPD) and its related biology have entered the world literature, reflecting the increasing scientific and medical interest in this devastating condition. This article is a selective review of several important emerging themes that offer the hope of creating new classes of COPD medicines. Whereas basic science is parsing molecular pathways in COPD, its comorbidities, and asthma COPD overlap syndrome (ACOS) with unprecedented sophistication, clinical translation is disappointingly slow. The article therefore also considers solutions to current difficulties that are impeding progress in translating insights from basic science into clinically useful treatments.
Collapse
Affiliation(s)
- Gary P Anderson
- Lung Health Research Centre, Faculty of Medicine, University of Melbourne, Parkville, VIC, Australia; Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Translating Lung Function Genome-Wide Association Study (GWAS) Findings. ADVANCES IN GENETICS 2016; 93:57-145. [DOI: 10.1016/bs.adgen.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Meyerholz DK, Lambertz AM, Reznikov LR, Ofori-Amanfo GK, Karp PH, McCray PB, Welsh MJ, Stoltz DA. Immunohistochemical Detection of Markers for Translational Studies of Lung Disease in Pigs and Humans. Toxicol Pathol 2015; 44:434-41. [PMID: 26511846 DOI: 10.1177/0192623315609691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetically engineered pigs are increasingly recognized as valuable models for the study of human disease. Immunohistochemical study of cellular markers of disease is an important tool for the investigation of these novel models so as to evaluate genotype and treatment differences. Even so, there remains a lack of validated markers for pig tissues that can serve as a translational link to human disease in organs such as the lung. Herein, we evaluate markers of cellular inflammation (cluster of differentiation [CD]3, CD79a, B cell lymphoma [BCL] 6, ionized calcium-binding adapter molecule [IBA]1, and myeloperoxidase) and those that may be involved with tissue remodeling (alpha-smooth muscle actin, beta-tubulin-III, lactoferrin, mucin [MUC]5AC, MUC5B, and cystic fibrosis transmembrane conductance regulator [CFTR]) for study of lung tissues. We compare the utility of these markers between pig and human lungs to validate translational relevance of each marker. Our results suggest these markers can be a useful addition in the pathological evaluation of porcine models of human disease.
Collapse
Affiliation(s)
| | | | - Leah R Reznikov
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Phil H Karp
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, USA Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, USA Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|