1
|
Wang X, Wan W, Zhang J, Lu J, Liu P. Efficient pulmonary fibrosis therapy via regulating macrophage polarization using respirable cryptotanshinone-loaded liposomal microparticles. J Control Release 2024; 366:1-17. [PMID: 38154539 DOI: 10.1016/j.jconrel.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Lung inflammation and fibrogenesis are the two main characteristics during the development of pulmonary fibrosis (PF), which are particularly associated with pulmonary macrophages. In this context, whether cryptotanshinone (CTS) could alleviate PF through regulating macrophage polarization were preliminarily demonstrated in vitro. Then the time course of PF and its relationship with macrophage polarization was determined in BLM-induced mice based on cytokine levels in bronchoalveolar lavage fluid (BALF), lung histopathology, flow cytometric analysis, mRNA and protein expression. CTS was loaded into macrophage-targeted and responsively released mannose-modified liposomes (Man-lipo), and the liposomes were then embedded into mannitol microparticles (M-MPs) using spray drying to achieve efficient pulmonary delivery. Afterwards, how CTS regulates macrophage polarization in vivo during different time courses of PF was probed. Furthermore, the molecular mechanisms of CTS against PF by regulating macrophage polarization were elucidated in vivo and in vitro. The full-course therapy group could achieve comparable therapeutic effects compared with the positive control drug PFD group. CTS can alleviate PF through regulating macrophage polarization, mainly by inhibiting NLRP3/TGF-β1 pathway during the inflammation course and modulating MMP-9/TIMP-1 balance during the fibrosis development course, providing new insights into chronic PF treatment.
Collapse
Affiliation(s)
- Xiuhua Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiguo Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Jing Lu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.
| |
Collapse
|
2
|
Hocquigny A, Hugerot H, Ghanem R, Haute T, Laurent V, Cogulet V, Montier T. Mucoactive drugs and multiple applications in pulmonary disease therapy. Eur J Pharm Biopharm 2024; 194:110-117. [PMID: 38048888 DOI: 10.1016/j.ejpb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Mucus is a complex polymeric hydrogel that serves as a critical defense in several organs. In the lungs, it provides a formidable barrier against inhaled particles such as microorganisms. In addition, mucus is essential for normal lung physiology, as it promotes immune tolerance and facilitates a normal commensal pulmonary microbiome. Hypersecretion of airway mucus is a characteristic of numerous respiratory diseases, such as Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF), and creates pulmonary obstruction, limiting the effectiveness of inhaled therapies. Due to those alterations, therapeutic strategies must be optimal to limit airway obstruction and restore pulmonary function. Mucoactive drugs are common therapeutic options and are classified into different groups depending on their modes of action, i.e., expectorants, mucokinetics, mucoregulators and mucolytics. This review focuses on mucoactive drugs and their modes of action. A special focus will be made on two challenging pulmonary pathologies: COPD and CF, and on their clinical studies conducted with mucoactive drugs.
Collapse
Affiliation(s)
| | - Hélène Hugerot
- CHU de Brest, Pharmacie hospitalière, Brest, 5 avenue du Maréchal Foch, France
| | - Rosy Ghanem
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, 29200 Brest, France
| | - Tanguy Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Véronique Laurent
- CHU de Brest, Pharmacie hospitalière, Brest, 5 avenue du Maréchal Foch, France
| | - Virginie Cogulet
- CHU de Brest, Pharmacie hospitalière, Brest, 5 avenue du Maréchal Foch, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, 29200 Brest, France; CHU de Brest, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest France.
| |
Collapse
|
3
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
4
|
Han X, Li D, Reyes-Ortega F, Schneider-Futschik EK. Dry Powder Inhalation for Lung Delivery in Cystic Fibrosis. Pharmaceutics 2023; 15:1488. [PMID: 37242730 PMCID: PMC10223735 DOI: 10.3390/pharmaceutics15051488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary drug delivery has long been used for local and systemic administration of different medications used in acute and chronic respiratory diseases. Certain lung diseases, such as cystic fibrosis, rely heavily on chronic treatments, including targeted lung delivery. Pulmonary drug delivery possesses various physiological advantages compared to other delivery methods and is also convenient for the patient to use. However, the formulation of dry powder for pulmonary delivery proves challenging due to aerodynamic restrictions and the lower tolerance of the lung. The aim of this review is to provide an overview of the respiratory tract structure in patients with cystic fibrosis, including during acute and chronic lung infections and exacerbations. Furthermore, this review discusses the advantages of targeted lung delivery, including the physicochemical properties of dry powder and factors affecting clinical efficacy. Current inhalable drug treatments and drugs currently under development will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Elena K. Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Howe C, Momin MAM, Aladwani G, Hindle M, Longest PW. Development of a High-Dose Infant Air-Jet Dry Powder Inhaler (DPI) with Passive Cyclic Loading of the Formulation. Pharm Res 2022; 39:3317-3330. [PMID: 36253630 PMCID: PMC10561662 DOI: 10.1007/s11095-022-03409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The objective of this study was to incorporate a passive cyclic loading strategy into the infant air-jet dry powder inhaler (DPI) in a manner that provides high efficiency aerosol lung delivery and is insensitive to powder mass loadings and the presence of downstream pulmonary mechanics. METHODS Four unique air-jet DPIs were initially compared and the best performing passive design (PD) was selected for sensitivity analyses. A single preterm in vitro nose-throat (NT) model, air source, and nasal interface were utilized throughout. While the majority of analyses were evaluated with a model spray-dried excipient enhanced growth (EEG) formulation, performance of a Surfactant-EEG formulation was also explored for the lead DPI design. RESULTS Two devices, PD-2 and PD-3, evaluated in the preterm model achieved an estimated lung delivery efficiency of 60% with the model EEG formulation, and were not sensitive to the loaded dose (10-30 mg of powder). The PD-3 device was also unaffected by the presence of downstream pulmonary mechanics (infant lung model) and had only a minor sensitivity to tripling the volume of the powder reservoir. When using the Surfactant-EEG formulation, increasing the actuation flow rate from 1.7 to 4.0 L/min improved lung delivery by nearly 10%. CONCLUSIONS The infant air-jet DPI platform was successfully modified with a passive cyclic loading strategy and capable of providing an estimated > 60% lung delivery efficiency of a model spray-dried formulation with negligible sensitivity to powder mass loading in the range of 10-30 mg and could be scaled to deliver much higher doses.
Collapse
Affiliation(s)
- Connor Howe
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA, 23284, USA
| | - Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA, 23284, USA
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA.
- Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th Street, PO Box 980533, Richmond, VA, 23284, USA.
| |
Collapse
|
6
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
7
|
Figueira MF, Ribeiro CMP, Button B. Mucus-targeting therapies of defective mucus clearance for cystic fibrosis: A short review. Curr Opin Pharmacol 2022; 65:102248. [PMID: 35689870 PMCID: PMC9891491 DOI: 10.1016/j.coph.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
In the lungs, defective CFTR associated with cystic fibrosis (CF) represents the nidus for abnormal mucus clearance in the airways and consequently a progressive lung disease. Defective CFTR-mediated Cl- secretion results in altered mucus properties, including concentration, viscoelasticity, and the ratio of the two mucins, MUC5B and MUC5AC. In the past decades, therapies targeting the CF mucus defect, directly or indirectly, have been developed; nevertheless, better treatments to prevent the disease progression are still needed. This review summarizes the existing knowledge on the defective mucus in CF disease and highlights it as a barrier to the development of future inhaled genetic therapies. The use of new mucus-targeting treatments is also discussed, focusing on their potential role to halt the progress of CF lung disease.
Collapse
Affiliation(s)
- Miriam Frankenthal Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | - Brian Button
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| |
Collapse
|
8
|
Duman I, Ünal G, Yilmaz AI, Güney AY, Durduran Y, Pekcan S. Inhaled Dry Powder Mannitol Treatment in Pediatric Patients with Cystic Fibrosis: Evaluation of Clinical Data in a Real-World Setting. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2022; 35:19-26. [PMID: 35285672 DOI: 10.1089/ped.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Background: Cystic fibrosis (CF) is a genetic disorder, in which defective clearance of airway secretions leads to progressive lung function loss. Inhaled mannitol is used to increase sputum and mucociliary clearance. There are little data from real-world studies on the effectiveness of mannitol in children. Our objective was to evaluate the spirometry and clinical results of mannitol in pediatric patients. Methods: We retrospectively reviewed the records of 30 children and adolescents with CF receiving inhaled mannitol who were already on recombinant human deoxyribonuclease (rhDNase) treatment. The change in forced expiratory volume in 1 second (FEV1) from baseline at 2-4 months was the primary outcome. Secondary measures were other spirometry results, body mass index (BMI), hospital admissions, sputum characteristics, and positive bacterial colonization. Results: Compared to baseline, we found significant improvement in percent predicted FEV1 at 2-4 months of treatment; 84.50 (58.00-99.00) vs. 96.00 (66.00-106.00) (P = 0.0007). The absolute change in FEV1 was +11.5% at 2-4 months, +6.5% at 5-7 months, and +4% at 8-12 months. Also, significant improvements in other spirometry results were observed. Adolescents had significantly lower FEV1 results, but the improvement in their lung function was sustained for a more extended period than children. Mannitol provided easier sputum removal, increased sputum volume, significant decline in hospitalizations, and significantly fewer patients with positive sputum cultures. A significant increase in BMI at 8-12 months was observed. Cough was the most frequent adverse effect. Conclusion: In a real-world setting, our results demonstrated that adding mannitol to rhDNase therapy is tolerable in pediatric patients with CF and may provide improved spirometry and clinical outcomes. In addition, our results showed that mannitol provided recovery in overall lung function at 2-4 months, which was sustained up to 12 months together with improved BMI, easier sputum removal, and a decline in bacterial colonization and hospital admissions. However, cough was the most frequent side effect.
Collapse
Affiliation(s)
- Ipek Duman
- Department of Medical Pharmacology, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Gokcen Ünal
- Department of Pediatric Pulmonology, and Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Asli Imran Yilmaz
- Department of Pediatric Pulmonology, and Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Yasin Güney
- Department of Pediatric Pulmonology, and Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yasemin Durduran
- Department of Public Health, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, and Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
9
|
Anderson S, Atkins P, Bäckman P, Cipolla D, Clark A, Daviskas E, Disse B, Entcheva-Dimitrov P, Fuller R, Gonda I, Lundbäck H, Olsson B, Weers J. Inhaled Medicines: Past, Present, and Future. Pharmacol Rev 2022; 74:48-118. [PMID: 34987088 DOI: 10.1124/pharmrev.120.000108] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories. Products for asthma and chronic obstructive pulmonary disease include β -2 receptor agonists, muscarinic acetylcholine receptor antagonists, glucocorticosteroids, and cromones as well as their combinations. The antiviral and antibacterial inhaled products to treat respiratory tract infections are then presented. Two "mucoactive" products-dornase α and mannitol, which are both approved for patients with cystic fibrosis-are reviewed. These are followed by sections on inhaled prostacyclins for pulmonary arterial hypertension and the challenging field of aerosol surfactant inhalation delivery, especially for prematurely born infants on ventilation support. The approved products for systemic delivery via the lungs for diseases of the central nervous system and insulin for diabetes are also discussed. New technologies for drug delivery by inhalation are analyzed, with the emphasis on those that would likely yield significant improvements over the technologies in current use or would expand the range of drugs and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of approved orally inhaled drug products for a variety of respiratory diseases and for systemic administration should be helpful in making judicious decisions about the development of new or improved inhaled drugs. These aspects include the choices of the active ingredients, formulations, delivery systems suitable for the target patient populations, and, to some extent, meaningful safety and efficacy endpoints in clinical trials.
Collapse
Affiliation(s)
- Sandra Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Paul Atkins
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Per Bäckman
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - David Cipolla
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Andrew Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Evangelia Daviskas
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bernd Disse
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Plamena Entcheva-Dimitrov
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Rick Fuller
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Igor Gonda
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Hans Lundbäck
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bo Olsson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Jeffry Weers
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| |
Collapse
|
10
|
Ademhan Tural D, Yalçın E, Emiralioglu N, Ozsezen B, Sunman B, Nayir Buyuksahin H, Guzelkas I, Dogru D, Ozcelik U, Kiper N. Comparison of inhaled mannitol/dornase alfa combination and daily dornase alfa alone in children with cystic fibrosis. Pediatr Pulmonol 2022; 57:142-151. [PMID: 34687284 DOI: 10.1002/ppul.25740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Inhaled recombinant human deoxyribonuclease (dornase alfa) and osmotic agents such as inhaled mannitol are used for improving the clearance of secretions of cystic fibrosis (CF) patients. We aimed to evaluate the long-term clinical effects of adding dry powder inhaled (DPI) mannitol in subjects with CF who are taking daily dornase alfa. METHOD We conducted a retrospective case-control study on subjects with CF. The effect of DPI mannitol was assessed by comparing DPI mannitol and dornase alfa combination with daily dornase alfa alone in children with CF during a 12-month period. The primary outcome measures of the study were absolute changes in percent predicted forced expiratory volume in 1 s (FEV1) and FEV1 z-scores and the secondary outcomes included other spirometry indices, body mass index, frequency of pulmonary exacerbations, SPO2 , and sputum microbiology. RESULT Of a total of 28 patients who committed to use DPI mannitol treatments during the study period, five had a positive challenge with DPI mannitol and two were aged over 18 years. Therefore, the mannitol treatment group consisted of 21 patients. However, the effect of DPI mannitol was analyzed using 15 patients in the mannitol treatment group who received DPI mannitol for at least 12 months, and 18 patients who only used dornase alfa constituted the control group. The median absolute change in FEV1 between baseline and the third month; and baseline and the 12th month were significantly higher in the mannitol treatment group (p = 0.038, p = 0.004, respectively). When the groups are compared with respect to absolute z-score changes, all spirometry indices, except FVC at the end of 3 months, showed statistically significant improvements in the mannitol treatment group. Some secondary outcomes like pulmonary exacerbation frequency during the study year and median absolute body mass index z-score changes from baseline to the end of the study showed no significant differences between the groups (p = 0.735, p = 0.161, respectively). No colonization changes were observed in the treatment group. CONCLUSIONS This study showed that in those patients who tolerated long-term (12 months) treatment with DPI mannitol and dornase alfa made greater improvements in FEV1, FVC, FEV1/FVC, FEF25-75 z-scores than treatment with dornase alfa alone in children with CF.
Collapse
Affiliation(s)
- Dilber Ademhan Tural
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ebru Yalçın
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Beste Ozsezen
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Birce Sunman
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Halime Nayir Buyuksahin
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ismail Guzelkas
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ugur Ozcelik
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, Ihsan Dogramaci Children's Hospital, School of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Liu M, Zaman R, Sawczak V, Periasamy A, Sun F, Zaman K. S-nitrosothiols signaling in cystic fibrosis airways. J Biosci 2021. [DOI: 10.1007/s12038-021-00223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Malani M, Salunke P, Kulkarni S, Jain GK, Sheikh A, Kesharwani P, Nirmal J. Repurposing pharmaceutical excipients as an antiviral agent against SARS-CoV-2. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:110-136. [PMID: 34464232 DOI: 10.1080/09205063.2021.1975020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The limited time indorsed to face the COVID-19 emergency and large number of deaths across the globe, poses an unrelenting challenge to find apt therapeutic approaches. However, lead candidate selection to phase III trials of new chemical entity is a time-consuming procedure, and not feasible in pandemic, such as the one we are facing. Drug repositioning, an exploration of existing drug for new therapeutic use, could be an effective alternative as it allows fast-track estimation in phase II-III trials, or even forthright compassionate use. Although, drugs repurposed for COVID-19 pandemic are commercially available, yet the evaluation of their safety and efficacy is tiresome and painstaking. In absence of any specific treatment the easy alternatives such as over the counter products, phytotherapies and home remedies have been largely adopted for prophylaxis and therapy as well. In recent years, it has been demonstrated that several pharmaceutical excipients possess antiviral properties making them prospective candidates against SARS-CoV-2. This review highlights the mechanism of action of various antiviral excipients and their propensity to act against SARs-CoV2. Though, repurposing of pharmaceutical excipients against COVID-19 has the edge over therapeutic agents in terms of safety, cost and fast-track approval trial burdened, this hypothesis needs to be experimentally verified for COVID-19 patients.
Collapse
Affiliation(s)
- Manisha Malani
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Prerana Salunke
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Shraddha Kulkarni
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| |
Collapse
|
13
|
Lipp MM, Hickey AJ, Langer R, LeWitt PA. A technology evaluation of CVT-301 (Inbrija): an inhalable therapy for treatment of Parkinson's disease. Expert Opin Drug Deliv 2021; 18:1559-1569. [PMID: 34311641 DOI: 10.1080/17425247.2021.1960820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The most widely used pharmacological treatment for Parkinson's disease is levodopa, the precursor for dopamine formation in the brain. Over time, the effectiveness of levodopa declines, and patients experience motor fluctuations, or OFF periods. A levodopa formulation administered via a capsule-based oral inhaler provides a new delivery mechanism for levodopa that provides rapid relief of OFF periods.Areas covered: CVT-301 is a dry powder formulation designed to supply levodopa to the systemic circulation via pulmonary absorption. The technology, pharmacokinetics, efficacy, and safety data of this formulation are presented.Expert opinion: Oral inhalation is a novel method of administration for levodopa that bypasses the gastrointestinal tract, allowing levodopa to enter the systemic circulation rapidly and more reliably than oral medications. Gastrointestinal dysfunction, a common feature of Parkinson's disease, can lead to impaired absorption of oral medications. Pulmonary delivery rapidly elevates levodopa plasma concentrations to provide relief of OFF periods for patients receiving oral levodopa.
Collapse
Affiliation(s)
| | | | - Robert Langer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter A LeWitt
- Department of Neurology, Henry Ford Hospital and Wayne State University School of Medicine, West Bloomfield, MI, USA
| |
Collapse
|
14
|
Mannitol Polymorphs as Carrier in DPIs Formulations: Isolation Characterization and Performance. Pharmaceutics 2021; 13:pharmaceutics13081113. [PMID: 34452073 PMCID: PMC8401007 DOI: 10.3390/pharmaceutics13081113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
The search for best performing carriers for dry powder inhalers is getting a great deal of interest to overcome the limitations posed by lactose. The aerosolization of adhesive mixtures between a carrier and a micronized drug is strongly influenced by the carrier solid-state properties. This work aimed at crystallizing kinetically stable D-mannitol polymorphs and at investigating their aerosolization performance when used in adhesive mixtures with two model drugs (salbutamol sulphate, SS, and budesonide, BUD) using a median and median/high resistance inhaler. A further goal was to assess in vitro the cytocompatibility of the produced polymer-doped mannitol polymorphs toward two lung epithelial cell lines. Kinetically stable (up to 12 months under accelerate conditions) α, and δ mannitol forms were crystallized in the presence of 2% w/w PVA and 1% w/w PVP respectively. These solid phases were compared with the β form and lactose as references. The solid-state properties of crystallized mannitol significantly affected aerosolization behavior, with the δ form affording the worst fine particle fraction with both the hydrophilic (9.3 and 6.5%) and the lipophilic (19.6 and 32%) model drugs, while α and β forms behaved in the same manner (11–13% for SS; 53–58% for BUD) and better than lactose (8 and 13% for SS; 26 and 39% for BUD). Recrystallized mannitol, but also PVA and PVP, proved to be safe excipients toward lung cell lines. We concluded that, also for mannitol, the physicochemical properties stemming from different crystal structures represent a tool for modulating carrier-drug interaction and, in turn, aerosolization performance.
Collapse
|
15
|
Abstract
BACKGROUND Dornase alfa is currently used as a mucolytic to treat pulmonary disease (the major cause of morbidity and mortality) in cystic fibrosis. It reduces mucus viscosity in the lungs, promoting improved clearance of secretions. This is an update of a previously published review. OBJECTIVES To determine whether the use of dornase alfa in cystic fibrosis is associated with improved mortality and morbidity compared to placebo or other medications that improve airway clearance, and to identify any adverse events associated with its use. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches, handsearching relevant journals and abstracts from conferences. Date of the most recent search of the Group's Cystic Fibrosis Register: 12 October 2020. Clinicaltrials.gov and the International Clinical Trials Registry Platform were also searched to identify unpublished or ongoing trials. Date of most recent search: 08 February 2021. SELECTION CRITERIA All randomised and quasi-randomised controlled trials comparing dornase alfa to placebo, standard therapy or other medications that improve airway clearance. DATA COLLECTION AND ANALYSIS Authors independently assessed trials against the inclusion criteria; two authors carried out analysis of methodological quality and data extraction. GRADE was used to assess the level of evidence. MAIN RESULTS The searches identified 74 trials, of which 19 (2565 participants) met our inclusion criteria. 15 trials compared dornase alfa to placebo or no dornase alfa (2447 participants); two compared daily dornase to hypertonic saline (32 participants); one compared daily dornase alfa to hypertonic saline and alternate day dornase alfa (48 participants); one compared dornase alfa to mannitol and the combination of both drugs (38 participants). Trial duration varied from six days to three years. Dornase alfa compared to placebo or no treatment Dornase alfa probably improved forced expiratory volume at one second (FEV1) at one month (four trials, 248 participants), three months (one trial, 320 participants; moderate-quality evidence), six months (one trial, 647 participants; high-quality evidence) and two years (one trial, 410 participants). Limited low-quality evidence showed treatment may make little or no difference in quality of life. Dornase alfa probably reduced the number of pulmonary exacerbations in trials of up to two years (moderate-quality evidence). One trial that examined the cost of care, including the cost of dornase alfa, found that the cost savings from dornase alfa offset 18% to 38% of the medication costs. Dornase alfa: daily versus alternate day One cross-over trial (43 children) found little or no difference between treatment regimens for lung function, quality of life or pulmonary exacerbations (low-quality evidence). Dornase alfa compared to other medications that improve airway clearance Results for these comparisons were mixed. One trial (43 children) showed dornase alfa may lead to a greater improvement in FEV1 compared to hypertonic saline (low-quality evidence), and one trial (23 participants) reported little or no differences in lung function between dornase alfa and mannitol or dornase alfa and dornase alfa plus mannitol (low-quality evidence). One trial (23 participants) found dornase alfa may improve quality of life compared to dornase alfa plus mannitol (low-quality evidence); other comparisons found little or no difference in this outcome (low-quality evidence). No trials in any comparison reported any difference between groups in the number of pulmonary exacerbations (low-quality evidence). When all comparisons are assessed, dornase alfa did not cause significantly more adverse effects than other treatments, except voice alteration and rash. AUTHORS' CONCLUSIONS There is evidence to show that, compared with placebo, therapy with dornase alfa may improve lung function in people with cystic fibrosis in trials lasting from one month to two years. There was a decrease in pulmonary exacerbations in trials of six months or longer, probably due to treatment. Voice alteration and rash appear to be the only adverse events reported with increased frequency in randomised controlled trials. There is not enough evidence to firmly conclude if dornase alfa is superior to other hyperosmolar agents in improving lung function.
Collapse
Affiliation(s)
- Connie Yang
- Department of Pediatrics, Division of Respiratory Medicine, BC Children's Hospital, Vancouver, Canada
| | - Mark Montgomery
- Pediatrics and Child Health, Alberta Children's Hospital, Calgary, Canada
| |
Collapse
|
16
|
Flume PA, Amelina E, Daines CL, Charlton B, Leadbetter J, Guasconi A, Aitken ML. Efficacy and safety of inhaled dry-powder mannitol in adults with cystic fibrosis: An international, randomized controlled study. J Cyst Fibros 2021; 20:1003-1009. [PMID: 33715994 DOI: 10.1016/j.jcf.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Mannitol is a mucoactive hyperosmotic agent used as add-on therapy in patients with cystic fibrosis (CF), administered twice-daily (BID) via a small, portable, breath-actuated dry-powder inhaler. This study was conducted to provide confirmatory evidence of mannitol's efficacy and safety in adults. METHODS This multicenter, double-blind, randomized, parallel-group, controlled clinical trial recruited adults (aged ≥18 years) with CF, and forced expiratory volume in 1 second (FEV1) 40-90% predicted. Subjects received either mannitol 400 mg or mannitol 50 mg (control), BID via dry-powder inhaler for 26 weeks. Primary endpoint: FEV1 averaged over the 26-week treatment period. RESULTS Of 423 subjects randomized (209 or 214 receiving mannitol 400 mg BID or control, respectively), 373 (88.2%) completed the study, with a similar proportion completing in the two groups. For FEV1 averaged over 26 weeks, mannitol 400 mg BID was statistically superior to control (adjusted mean difference 54 mL [95% CI 8, 100 mL]; p = 0.020). This was supported by sensitivity analyses of the primary endpoint, and by observed improvements in secondary pulmonary function endpoints (eg, absolute adjusted mean difference in percent predicted FEV1 averaged over 26 weeks 1.21% [0.07%, 2.36%]; p = 0.037). Adverse events were mainly mild or moderate in severity, with treatment-related adverse events in 15.5 and 12.2% of subjects receiving mannitol 400 mg BID and control, respectively. CONCLUSIONS In adults with CF, mannitol 400 mg BID inhaled as a dry-powder statistically significantly improved lung function (FEV1) compared with control, with this improvement supported by sensitivity analyses and secondary pulmonary function endpoints. Mannitol had a good overall safety and tolerability profile. ClinicalTrials.gov: NCT02134353.
Collapse
Affiliation(s)
- Patrick A Flume
- Medical University of South Carolina, Charleston, SC, United States.
| | - Elena Amelina
- Pulmonary Research Institute, Moscow, Russian Federation
| | - Cori L Daines
- University of Arizona Department of Pediatrics, Arizona, United States
| | | | | | | | - Moira L Aitken
- University of Washington Medical Center, Seattle, Washington, United States
| |
Collapse
|
17
|
Chang RYK, Kwok PCL, Ghassabian S, Brannan JD, Koskela HO, Chan H. Cough as an adverse effect on inhalation pharmaceutical products. Br J Pharmacol 2020; 177:4096-4112. [PMID: 32668011 PMCID: PMC7443471 DOI: 10.1111/bph.15197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Cough is an adverse effect that may hinder the delivery of drugs into the lungs. Chemical or mechanical stimulants activate the transient receptor potential in some airway afferent nerves (C-fibres or A-fibres) to trigger cough. Types of inhaler device and drug, dose, excipients and formulation characteristics, including pH, tonicity, aerosol output and particle size may trigger cough by stimulating the cough receptors. Release of inflammatory mediators may increase the sensitivity of the cough receptors to stimulants. The cough-provoking effect of aerosols is enhanced by bronchoconstriction in diseased airways and reduces drug deposition in the target pulmonary regions. In this article, we review the factors by which inhalation products may cause cough.
Collapse
Affiliation(s)
- Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - Sussan Ghassabian
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| | - John D. Brannan
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNewcastleNSWAustralia
| | - Heikki O. Koskela
- Unit for Medicine and Clinical Research, Pulmonary DivisionKuopio University HospitalKuopioFinland
- School of Medicine, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Hak‐Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
18
|
Al-Qahtani W, Abdel Jabar M, Masood A, Jacob M, Nizami I, Dasouki M, Abdel Rahman AM. Dried Blood Spot-Based Metabolomic Profiling in Adults with Cystic Fibrosis. J Proteome Res 2020; 19:2346-2357. [PMID: 32312052 DOI: 10.1021/acs.jproteome.0c00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mucoviscidosis of the respiratory, gastrointestinal, and genitourinary tracts is the major pathology in patients with cystic fibrosis (CF), a lethal monogenic panethnic and multisystemic disease most commonly identified in Caucasians. Currently, the measurement of immuno reactive trypsinogen in dry blood spots (DBSs) is the gold-standard method for initial newborn screening for CF, followed by targeted CF transmembrane regulator (CFTR) mutation analysis, and ultimate confirmation with abnormally elevated sweat chloride. Previous metabolomics studies in patients with CF reported on different biomarkers such as breath 2-aminoacetophenone produced during acute and chronic infection in human tissues, including the lungs of CF patients. Herein, we used liquid and gas chromatography-mass spectrometry-based targeted metabolomics profiling to identify potentially reliable, sensitive, and specific biomarkers in DBSs collected from 69 young and adult people including CF patients (n = 39) and healthy control (n = 30). A distinctive metabolic profile including 26 significantly differentially expressed metabolites involving amino acids, glycolysis, mitochondrial and peroxisomal metabolism, and sorbitol pathways was identified. Specifically, the osmolyte (sorbitol) was remarkably downregulated in CF patients compared to healthy controls indicating perturbation in the sorbitol pathway, which may be responsible for the mucoviscidosis seen in patients with CF. The significance of our findings is supported by the clinical utility of inhaled mannitol and hypertonic saline in patients with CF. The systemic administration of sorbitol in such patients may confer additional benefits beyond the respiratory system, especially in those with misfolded CFTR proteins.
Collapse
Affiliation(s)
- Wafa Al-Qahtani
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Mai Abdel Jabar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
19
|
Abstract
BACKGROUND Several agents are used to clear secretions from the airways of people with cystic fibrosis. Mannitol increases mucociliary clearance, but its exact mechanism of action is unknown. The dry powder formulation of mannitol may be more convenient and easier to use compared with established agents which require delivery via a nebuliser. Phase III trials of inhaled dry powder mannitol for the treatment of cystic fibrosis have been completed and it is now available in Australia and some countries in Europe. This is an update of a previous review. OBJECTIVES To assess whether inhaled dry powder mannitol is well tolerated, whether it improves the quality of life and respiratory function in people with cystic fibrosis and which adverse events are associated with the treatment. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic databases, handsearching relevant journals and abstracts from conferences. Date of last search: 12 December 2019. SELECTION CRITERIA All randomised controlled studies comparing mannitol with placebo, active inhaled comparators (for example, hypertonic saline or dornase alfa) or with no treatment. DATA COLLECTION AND ANALYSIS Authors independently assessed studies for inclusion, carried out data extraction and assessed the risk of bias in included studies. The quality of the evidence was assessed using GRADE. MAIN RESULTS Six studies (reported in 36 unique publications) were included with a total of 784 participants. Duration of treatment in the included studies ranged from 12 days to six months, with open-label treatment for an additional six months in two of the studies. Five studies compared mannitol with control (a very low dose of mannitol or non-respirable mannitol) and the final study compared mannitol to dornase alfa alone and to mannitol plus dornase alfa. Two large studies had a similar parallel design and provided data for 600 participants, which could be pooled where data for a particular outcome and time point were available. The remaining studies had much smaller sample sizes (ranging from 22 to 95) and data could not be pooled due to differences in design, interventions and population. Pooled evidence from the two large parallel studies was judged to be of low to moderate quality and from the smaller studies was judged to be of low to very low quality. In all studies, there was an initial test to see if participants tolerated mannitol, with only those who could tolerate the drug being randomised; therefore, the study results are not applicable to the cystic fibrosis population as a whole. While the published papers did not provide all the data required for our analysis, additional unpublished data were provided by the drug's manufacturer and the author of one of the studies. Pooling the large parallel studies comparing mannitol to control, up to and including six months, lung function (forced expiratory volume at one second) measured in both mL and % predicted was significantly improved in the mannitol group compared to the control group (moderate-quality evidence). Beneficial results were observed in these studies in adults and in both concomitant dornase alfa users and non-users in these studies. In the smaller studies, statistically significant improvements in lung function were also observed in the mannitol groups compared to the non-respirable mannitol groups; however, we judged this evidence to be of low to very low quality. For the comparisons of mannitol and control, we found no consistent differences in health-related quality of life in any of the domains except for burden of treatment, which was less for mannitol up to four months in the two pooled studies of a similar design; this difference was not maintained at six months. It should be noted that the tool used to measure health-related quality of life was not designed to assess mucolytics and pooling of the age-appropriate tools (as done in some of the included studies) may not be valid so results were judged to be low to very low quality and should be interpreted with caution. Cough, haemoptysis, bronchospasm, pharyngolaryngeal pain and post-tussive vomiting were the most commonly reported side effects in both treatment groups. Where rates of adverse events could be compared, statistically no significant differences were found between mannitol and control groups; although some of these events may have clinical relevance for people with CF. For the comparisons of mannitol to dornase alfa alone and to mannitol plus dornase alfa, very low-quality evidence from a 12-week cross-over study of 28 participants showed no statistically significant differences in the recorded domains of health-related quality of life or measures of lung function. Cough was the most common side effect in the mannitol alone arm but there was no occurrence of cough in the dornase alfa alone arm and the most commonly reported reason of withdrawal from the mannitol plus dornase alfa arm was pulmonary exacerbations. In terms of secondary outcomes of the review (pulmonary exacerbations, hospitalisations, symptoms, sputum microbiology), evidence provided by the included studies was more limited. For all comparisons, no consistent statistically significant and clinically meaningful differences were observed between mannitol and control treatments (including dornase alfa). AUTHORS' CONCLUSIONS There is moderate-quality evidence to show that treatment with mannitol over a six-month period is associated with an improvement in some measures of lung function in people with cystic fibrosis compared to control. There is low to very low-quality evidence suggesting no difference in quality of life for participants taking mannitol compared to control. This review provides very low-quality evidence suggesting no difference in lung function or quality of life comparing mannitol to dornase alfa alone and to mannitol plus dornase alfa. The clinical implications from this review suggest that mannitol could be considered as a treatment in cystic fibrosis; but further research is required in order to establish who may benefit most and whether this benefit is sustained in the longer term. Furthermore, studies comparing its efficacy against other (established) mucolytic therapies need to be undertaken before it can be considered for mainstream practice.
Collapse
Affiliation(s)
- Sarah J Nevitt
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Judith Thornton
- Centre for Clinical Practice, National Institute for Health and Care Excellence, Manchester, UK
| | - Clare S Murray
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, UK
| | - Tiffany Dwyer
- Central Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
|
21
|
Non-intrusive high resolution in-vitro measurement of regional drug powder deposition. Int J Pharm 2020; 582:119286. [PMID: 32278719 DOI: 10.1016/j.ijpharm.2020.119286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 01/15/2023]
Abstract
Optical Coherence Tomography (OCT) is a high-resolution and non-invasive cross-sectional imaging technique mainly used for medical imaging and industrial non-destructive testing. However, its feasibility in the quantification of pulmonary drug deposition has not been investigated. In this study, an optically accessible airway model of the upper airway and the tracheobronchial tree was used, and experiments were performed at flow rates of 40 L/min, 60 L/min and 80 L/min. Drug deposition in different regions of the airway cast has been determined and quantified from OCT images of the deposition layer. Regionally resolved measurement of deposition shows that flow rate has a significant effect (p = 0.04) on the average thickness of the deposition layer in the upper airway but not in the tracheobronchial tree under these test conditions. These localized and high-resolution measurements of deposition also demonstrate that the flow rate can influence the spatial uniformity of the deposition layer. The technique is able to provide significant regional drug deposition details, including the thickness, spatial deposition pattern and micro-cavities in the deposition layer, that would potentially serve to assess the efficacy of inhalation drug delivery systems.
Collapse
|
22
|
Lommatzsch ST. Infection prevention and chronic disease management in cystic fibrosis and noncystic fibrosis bronchiectasis. Ther Adv Respir Dis 2020; 14:1753466620905272. [PMID: 32160809 PMCID: PMC7068740 DOI: 10.1177/1753466620905272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bronchiectasis is a chronic lung disease (CLD) characterized by irreversible bronchial dilatation noted on computed tomography associated with chronic cough, ongoing viscid sputum production, and recurrent pulmonary infections. Patients with bronchiectasis can be classified into two groups: those with cystic fibrosis and those without cystic fibrosis. Individuals with either cystic fibrosis related bronchiectasis (CFRB) or noncystic fibrosis related bronchiectasis (NCFRB) experience continuous airway inflammation and suffer airway architectural changes that foster the acquisition of a unique polymicrobial community. The presence of microorganisms increases airway inflammation, triggers pulmonary exacerbations (PEx), reduces quality of life (QOL), and, in some cases, is an independent risk factor for increased mortality. As there is no cure for either condition, prevention and control of infection is paramount. Such an undertaking incorporates patient/family and healthcare team education, immunoprophylaxis, microorganism source control, antimicrobial chemoprophylaxis, organism eradication, daily pulmonary disease management, and, in some cases, thoracic surgery. This review is a summary of recommendations aimed to thwart patient acquisition of pathologic organisms, and those therapies known to mitigate the effects of chronic airway infection. A thorough discussion of airway clearance techniques and treatment of or screening for nontuberculous mycobacteria (NTM) is beyond the scope of this discussion.
Collapse
|
23
|
McElvaney OJ, Wade P, Murphy M, Reeves EP, McElvaney NG. Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 2019; 13:1041-1055. [PMID: 31530195 DOI: 10.1080/17476348.2019.1666715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Patricia Wade
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
24
|
Southern KW, Clancy JP, Ranganathan S. Aerosolized agents for airway clearance in cystic fibrosis. Pediatr Pulmonol 2019; 54:858-864. [PMID: 30884217 DOI: 10.1002/ppul.24306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/11/2022]
Abstract
The outlook for people with cystic fibrosis (CF) has improved considerably as a result of conventional therapies including aerosolized agents for airway clearance. These will continue to play a significant role in maintaining well-being and improving survival, even as newer agents emerge that correct the underlying CF defect. In this review, we explore the evidence supporting the use of dornase alfa, hypertonic saline, and mannitol in improving mucus clearance in patients with CF from different age groups with differing disease severity. We also discuss the clinical use of these agents in the context of available international guidelines as well as practical considerations in the clinic, highlighting the importance of a multidisciplinary approach and shared decision-making. Unanswered questions regarding the optimal use of these agents are highlighted.
Collapse
Affiliation(s)
- Kevin W Southern
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - John P Clancy
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sarath Ranganathan
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00443-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Warren E, Morgan K, Toward TJ, Schwenkglenks M, Leadbetter J. Cost Effectiveness of Inhaled Mannitol (Bronchitol ®) in Patients with Cystic Fibrosis. PHARMACOECONOMICS 2019; 37:435-446. [PMID: 30666534 DOI: 10.1007/s40273-019-00767-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Inhaled mannitol (Bronchitol®) is licensed in Australia as a safe and efficacious addition to best supportive care in patients with cystic fibrosis. OBJECTIVE The objective of this study was to assess the cost effectiveness of inhaled mannitol (in addition to best supportive care) in the Australian setting from the perspective of a government-funded national healthcare system. METHODS A probabilistic patient-level simulation Markov model estimated life-time costs and outcomes of mannitol when added to best supportive care, compared with best supportive care alone in patients aged 6 years and older. We estimated treatment-related inputs (initial change in percentage of predicted forced expiratory volume, relative reduction in severe pulmonary exacerbations, and treatment discontinuations) from two phase III trials. Longer term natural history rates of predicted forced expiratory volume decline over time and severe pulmonary exacerbation rates for best supportive care were taken from Australian CF registries. The utility value for the cystic fibrosis health state was as measured in the trials using the Health Utility Index, whereas the impact of pulmonary exacerbations and lung transplantation on utility was ascertained from the published literature. The underlying cost of managing cystic fibrosis, and the cost associated with pulmonary exacerbations and transplantations was taken from published Australian sources. RESULTS The addition of inhaled mannitol to best supportive care resulted in a discounted cost per quality-adjusted life-year of AU$39,165. The result was robust with 77% of probabilistic sensitivity analysis samples below a willingness-to-pay threshold of AU$45,000/quality-adjusted life-year. CONCLUSION Benchmarked against an implicit Australian willingness-to-pay threshold for life-threatening diseases, our model suggests inhaled mannitol provides a cost-effective addition to best supportive care in patients with cystic fibrosis, irrespective of concomitant dornase alfa use.
Collapse
Affiliation(s)
- Emma Warren
- HERA Consulting Australia Pty Ltd, 515 Darling Street, Balmain, NSW, 2041, Australia.
| | | | - Toby J Toward
- Pharmaxis Ltd, Frenchs Forest, Australia
- Henley Health Economics, Henley-on-Thames, UK
| | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Dornase alfa is currently used as a mucolytic to treat pulmonary disease (the major cause of morbidity and mortality) in cystic fibrosis. It reduces mucus viscosity in the lungs, promoting improved clearance of secretions. This is an update of a previously published review. OBJECTIVES To determine whether the use of dornase alfa in cystic fibrosis is associated with improved mortality and morbidity compared to placebo or other medications that improve airway clearance, and to identify any adverse events associated with its use. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches, handsearching relevant journals and abstracts from conferences. Date of the most recent search of the Group's Cystic Fibrosis Register: 23 April 2018.Clinicaltrials.gov and the International Clinical Trials Registry Platform were also searched to identify unpublished or ongoing trials. Date of most recent search: 07 June 2018. SELECTION CRITERIA All randomised and quasi-randomised controlled trials comparing dornase alfa to placebo, standard therapy or other medications that improve airway clearance. DATA COLLECTION AND ANALYSIS Authors independently assessed trials against the inclusion criteria; two authors carried out analysis of methodological quality and data extraction. GRADE was used to assess the level of evidence. MAIN RESULTS The searches identified 69 trials, of which 19 (2565 participants) met our inclusion criteria. Fifteen trials compared dornase alfa to placebo or no dornase alfa (2447 participants); two compared daily dornase to hypertonic saline (32 participants); one compared daily dornase alfa to hypertonic saline and alternate day dornase alfa (48 participants); one compared dornase alfa to mannitol and the combination of both drugs (38 participants). Trial duration varied from six days to three years.Dornase alfa compared to placebo or no treatmentDornase alfa improved forced expiratory volume at one second at one month (four trials, 248 participants), three months (one trial, 320 participants; moderate-quality evidence), six months (one trial, 647 participants; high-quality evidence) and two years (one trial, 410 participants). Limited low-quality evidence showed no difference between groups for changes in quality of life. There was a decrease in pulmonary exacerbations with dornase alfa in trials of up to two years (moderate-quality evidence). One trial that examined the cost of care, including the cost of dornase alfa, found that the cost savings from dornase alfa offset 18% to 38% of the medication costs.Dornase alfa: daily versus alternate dayOne cross-over trial (43 children) found no differences between treatment regimens for lung function, quality of life or pulmonary exacerbations (low-quality evidence).Dornase alfa compared to other medications that improve airway clearanceResults for these comparisons were mixed. One trial (43 children) showed a greater improvement in forced expiratory volume at one second for dornase alfa compared to hypertonic saline (low-quality evidence), and one trial (23 participants) reported no difference in lung function between dornase alfa and mannitol or dornase alfa and dornase alfa plus mannitol (low-quality evidence). One trial (23 participants) found a difference in quality of life favouring dornase alfa when compared to dornase alfa plus mannitol (low-quality evidence); other comparisons found no difference in this outcome (low-quality evidence). No trials in any comparison reported any difference between groups in the number of pulmonary exacerbations (low-quality evidence).When all comparisons are assessed, dornase alfa did not cause significantly more adverse effects than other treatments, except voice alteration and rash. AUTHORS' CONCLUSIONS There is evidence to show that, compared with placebo, therapy with dornase alfa improves lung function in people with cystic fibrosis in trials lasting from one month to two years. There was a decrease in pulmonary exacerbations in trials of six months or longer. Voice alteration and rash appear to be the only adverse events reported with increased frequency in randomised controlled trials. There is not enough evidence to firmly conclude if dornase alfa is superior to other hyperosmolar agents in improving lung function.
Collapse
Affiliation(s)
- Connie Yang
- BC Children's HospitalDepartment of Pediatrics, Division of Respiratory Medicine4480 Oak StreetVancouverBCCanadaV6H 3V4
| | - Mark Montgomery
- Alberta Children's HospitalPediatrics and Child Health2888 Shaganappi Trail NWCalgaryABCanadaT3B 6A8
| | | |
Collapse
|
28
|
Anderson SD, Daviskas E, Brannan JD, Chan HK. Repurposing excipients as active inhalation agents: The mannitol story. Adv Drug Deliv Rev 2018; 133:45-56. [PMID: 29626547 DOI: 10.1016/j.addr.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
The story of how we came to use inhaled mannitol to diagnose asthma and to treat cystic fibrosis began when we were looking for a surrogate for exercise as a stimulus to identify asthma. We had proposed that exercise-induced asthma was caused by an increase in osmolarity of the periciliary fluid. We found hypertonic saline to be a surrogate for exercise but an ultrasonic nebuliser was required. We produced a dry powder of sodium chloride but it proved unstable. We developed a spray dried preparation of mannitol and found that bronchial responsiveness to inhaling mannitol identified people with currently active asthma. We reasoned that mannitol had potential to replace the 'osmotic' benefits of exercise and could be used as a treatment to enhance mucociliary clearance in patients with cystic fibrosis. These discoveries were the start of a journey to develop several registered products that are in clinical use globally today.
Collapse
|
29
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
30
|
Ponzano S, Nigrelli G, Fregonese L, Eichler I, Bertozzi F, Bandiera T, Galietta LJ, Papaluca M. A European regulatory perspective on cystic fibrosis: current treatments, trends in drug development and translational challenges for CFTR modulators. Eur Respir Rev 2018; 27:170124. [PMID: 29653946 PMCID: PMC9488862 DOI: 10.1183/16000617.0124-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
In this article we analyse the current authorised treatments and trends in early drug development for cystic fibrosis (CF) in the European Union for the time period 2000-2016. The analysis indicates a significant improvement in the innovation and development of new potential medicines for CF, shifting from products that act on the symptoms of the disease towards new therapies targeting the cause of CF. However, within these new innovative medicines, results for CF transmembrane conductance regulator (CFTR) modulators indicate that one major challenge for turning a CF concept product into an actual medicine for the benefit of patients resides in the fact that, although pre-clinical models have shown good predictability for certain mutations, a good correlation to clinical end-points or biomarkers (e.g. forced expiratory volume in 1 s and sweat chloride) for all mutations has not yet been achieved. In this respect, the use of alternative end-points and innovative nonclinical models could be helpful for the understanding of those translational discrepancies. Collaborative endeavours to promote further research and development in these areas as well as early dialogue with the regulatory bodies available at the European competent authorities are recommended.
Collapse
Affiliation(s)
- Stefano Ponzano
- European Medicines Agency, London, UK
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | - Fabio Bertozzi
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
31
|
Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm 2018; 547:489-498. [PMID: 29778822 DOI: 10.1016/j.ijpharm.2018.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
Delivery of drugs to the lungs via dry powder inhaler (DPI) is a promising approach for the treatment of both local pulmonary conditions and systemic diseases. Though DPIs are widely used for the pulmonary deposition of potent bronchodilators, anticholinergics, and corticosteroids, there is growing interest in the utilization of this delivery system for the administration of high drug doses to the lungs, as made evident by recent regulatory approvals for anti-microbial, anti-viral and osmotic agents. However, the formulation of high dose DPIs carries several challenges from both a physiological and physicochemical standpoint. This review describes the various formulation techniques utilized to overcome the barriers associated with the pulmonary delivery of high dose powders.
Collapse
Affiliation(s)
- Ashlee D Brunaugh
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States
| | - Hugh D C Smyth
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States; LaMontagne Center for Infectious Disease, The University of Texas at Austin, United States.
| |
Collapse
|
32
|
Castellani C, Duff AJA, Bell SC, Heijerman HGM, Munck A, Ratjen F, Sermet-Gaudelus I, Southern KW, Barben J, Flume PA, Hodková P, Kashirskaya N, Kirszenbaum MN, Madge S, Oxley H, Plant B, Schwarzenberg SJ, Smyth AR, Taccetti G, Wagner TOF, Wolfe SP, Drevinek P. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018; 17:153-178. [PMID: 29506920 DOI: 10.1016/j.jcf.2018.02.006] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
Developments in managing CF continue to drive dramatic improvements in survival. As newborn screening rolls-out across Europe, CF centres are increasingly caring for cohorts of patients who have minimal lung disease on diagnosis. With the introduction of mutation-specific therapies and the prospect of truly personalised medicine, patients have the potential to enjoy good quality of life in adulthood with ever-increasing life expectancy. The landmark Standards of Care published in 2005 set out what high quality CF care is and how it can be delivered throughout Europe. This underwent a fundamental re-write in 2014, resulting in three documents; center framework, quality management and best practice guidelines. This document is a revision of the latter, updating standards for best practice in key aspects of CF care, in the context of a fast-moving and dynamic field. In continuing to give a broad overview of the standards expected for newborn screening, diagnosis, preventative treatment of lung disease, nutrition, complications, transplant/end of life care and psychological support, this consensus on best practice is expected to prove useful to clinical teams both in countries where CF care is developing and those with established CF centres. The document is an ECFS product and endorsed by the CF Network in ERN LUNG and CF Europe.
Collapse
Affiliation(s)
- Carlo Castellani
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Italy; Cystic Fibrosis Centre, Gaslini Institute, Genoa, Italy
| | - Alistair J A Duff
- Regional Paediatric CF Unit, Leeds General Infirmary Leeds, UK; Department of Clinical & Health Psychology, St James' University Hospital, Leeds, UK.
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Harry G M Heijerman
- Dept of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne Munck
- Hopital Robert Debré Assistante publique-Hôpitaux de Paris, Université Paris 7, Pediatric CF Centre, Paris, France
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Canada
| | - Isabelle Sermet-Gaudelus
- Service de Pneumologie et Allergologie Pédiatriques, Centre de Ressources et de Compétence de la Mucoviscidose, Institut Necker Enfants Malades/INSERM U1151 Hôpital Necker Enfants Malades, P, France
| | - Kevin W Southern
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jurg Barben
- Ostschweizer Kinderspital Sankt Gallen, Claudiusstrasse 6, 9006 St. Gallen, Switzerland
| | - Patrick A Flume
- Division of Pulmonary and Critical Care, Medical University of South Carolina, USA
| | - Pavla Hodková
- Department of Clinical Psychology, University Hospital, Prague, Czech Republic
| | - Nataliya Kashirskaya
- Department of Genetic Epidemiology (Cystic Fibrosis Group), Federal State Budgetary Institution, Research Centre for Medical Genetics, Moscow, Russia
| | - Maya N Kirszenbaum
- Department of Pediatric Pulmunology, CRCM, Hôpital Necker-Enfants Malades, Paris, France
| | - Sue Madge
- Cystic Fibrosis Centre, Royal Brompton Hospital, London, UK
| | - Helen Oxley
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - Barry Plant
- Cork Adult CF Centre, Cork University Hospital, University College, Cork, Republic of Ireland
| | - Sarah Jane Schwarzenberg
- Divison of Pediatric Gastroenterology Hepatology and Nutrition, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology (COG), University of Nottingham, Nottingham, UK
| | - Giovanni Taccetti
- Cystic Fibrosis Centre, Department of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Thomas O F Wagner
- Frankfurter Referenzzentrum für Seltene Erkrankungen (FRZSE), Universitätsklinikum Frankfurt am Main, Wolfgang von Goethe-Universität, Frankfurt am Main, Germany
| | - Susan P Wolfe
- Regional Paediatric CF Unit, The Leeds Children's Hospital, Leeds Teaching Hospitals, Belmont Grove, Leeds, UK
| | - Pavel Drevinek
- Department of Medical Microbiology, Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
33
|
Abstract
BACKGROUND Several agents are used to clear secretions from the airways of people with cystic fibrosis. Mannitol increases mucociliary clearance, but its exact mechanism of action is unknown. The dry powder formulation of mannitol may be more convenient and easier to use compared with established agents which require delivery via a nebuliser. Phase III trials of inhaled dry powder mannitol for the treatment of cystic fibrosis have been completed and it is now available in Australia and some countries in Europe. This is an update of a previous review. OBJECTIVES To assess whether inhaled dry powder mannitol is well tolerated, whether it improves the quality of life and respiratory function in people with cystic fibrosis and which adverse events are associated with the treatment. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic databases, handsearching relevant journals and abstracts from conferences.Date of last search: 28 September 2017. SELECTION CRITERIA All randomised controlled studies comparing mannitol with placebo, active inhaled comparators (for example, hypertonic saline or dornase alfa) or with no treatment. DATA COLLECTION AND ANALYSIS Authors independently assessed studies for inclusion, carried out data extraction and assessed the risk of bias in included studies. The quality of the evidence was assessed using GRADE. MAIN RESULTS Six studies (reported in 50 publications) were included with a total of 784 participants.Duration of treatment in the included studies ranged from 12 days to six months, with open-label treatment for an additional six months in two of the studies. Five studies compared mannitol with control (a very low dose of mannitol or non-respirable mannitol) and the final study compared mannitol to dornase alfa alone and to mannitol plus dornase alfa. Two large studies had a similar parallel design and provided data for 600 participants, which could be pooled where data for a particular outcome and time point were available. The remaining studies had much smaller sample sizes (ranging from 22 to 95) and data could not be pooled due to differences in design, interventions and population.Pooled evidence from the two large parallel studies was judged to be of low to moderate quality and from the smaller studies was judged to be of low to very low quality. In all studies, there was an initial test to see if participants tolerated mannitol, with only those who could tolerate the drug being randomised; therefore, the study results are not applicable to the cystic fibrosis population as a whole.While the published papers did not provide all the data required for our analysis, additional unpublished data were provided by the drug's manufacturer and the author of one of the studies.Pooling the large parallel studies comparing mannitol to control, up to and including six months, lung function (forced expiratory volume at one second) measured in both mL and % predicted was significantly improved in the mannitol group compared to the control group (moderate-quality evidence). Beneficial results were observed in these studies in adults and in both concomitant dornase alfa users and non-users in these studies. In the smaller studies, statistically significant improvements in lung function were also observed in the mannitol groups compared to the non-respirable mannitol groups; however, we judged this evidence to be of low to very low quality.For the comparisons of mannitol and control, we found no consistent differences in health-related quality of life in any of the domains except for burden of treatment, which was less for mannitol up to four months in the two pooled studies of a similar design; this difference was not maintained at six months. It should be noted that the tool used to measure health-related quality of life was not designed to assess mucolytics and pooling of the age-appropriate tools (as done in some of the included studies) may not be valid so results were judged to be low to very low quality and should be interpreted with caution. Cough, haemoptysis, bronchospasm, pharyngolaryngeal pain and post-tussive vomiting were the most commonly reported side effects in both treatment groups. Where rates of adverse events could be compared, statistically no significant differences were found between mannitol and control groups; although some of these events may have clinical relevance for people with CF.For the comparisons of mannitol to dornase alfa alone and to mannitol plus dornase alfa, very low-quality evidence from a 12-week cross-over study of 28 participants showed no statistically significant differences in the recorded domains of health-related quality of life or measures of lung function. Cough was the most common side effect in the mannitol alone arm but there was no occurrence of cough in the dornase alfa alone arm and the most commonly reported reason of withdrawal from the mannitol plus dornase alfa arm was pulmonary exacerbations.In terms of secondary outcomes of the review (pulmonary exacerbations, hospitalisations, symptoms, sputum microbiology), evidence provided by the included studies was more limited. For all comparisons, no consistent statistically significant and clinically meaningful differences were observed between mannitol and control treatments (including dornase alfa). AUTHORS' CONCLUSIONS There is moderate-quality evidence to show that treatment with mannitol over a six-month period is associated with an improvement in some measures of lung function in people with cystic fibrosis compared to control. There is low to very low-quality evidence suggesting no difference in quality of life for participants taking mannitol compared to control. This review provides very low-quality evidence suggesting no difference in lung function or quality of life comparing mannitol to dornase alfa alone and to mannitol plus dornase alfa.The clinical implications from this review suggest that mannitol could be considered as a treatment in cystic fibrosis; but further research is required in order to establish who may benefit most and whether this benefit is sustained in the longer term. Furthermore, studies comparing its efficacy against other (established) mucolytic therapies need to be undertaken before it can be considered for mainstream practice.
Collapse
Affiliation(s)
- Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | - Judith Thornton
- National Institute for Health and Care ExcellenceCentre for Clinical PracticeLevel 1A, City Tower, Piccadilly PlazaManchesterUKM1 4BD
| | - Clare S Murray
- University of Manchester and University Hospital of South ManchesterCentre for Respiratory Medicine and Allergy, Institute of Inflammation and RepairManchester Academic Health Sciences Centre46 Grafton StreetManchesterUKM13 9NT
| | - Tiffany Dwyer
- University of SydneyDiscipline of Physiotherapy, Faculty of Health SciencesRm No O156, O BlockSydneyNSWAustralia2141
- University of SydneyCentral Clinical School, Sydney Medical SchoolSydneyAustraliaNSW 2006
| | | |
Collapse
|
34
|
Miller F, Zohar S, Stallard N, Madan J, Posch M, Hee SW, Pearce M, Vågerö M, Day S. Approaches to sample size calculation for clinical trials in rare diseases. Pharm Stat 2018; 17:214-230. [PMID: 29322632 DOI: 10.1002/pst.1848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023]
Abstract
We discuss 3 alternative approaches to sample size calculation: traditional sample size calculation based on power to show a statistically significant effect, sample size calculation based on assurance, and sample size based on a decision-theoretic approach. These approaches are compared head-to-head for clinical trial situations in rare diseases. Specifically, we consider 3 case studies of rare diseases (Lyell disease, adult-onset Still disease, and cystic fibrosis) with the aim to plan the sample size for an upcoming clinical trial. We outline in detail the reasonable choice of parameters for these approaches for each of the 3 case studies and calculate sample sizes. We stress that the influence of the input parameters needs to be investigated in all approaches and recommend investigating different sample size approaches before deciding finally on the trial size. Highly influencing for the sample size are choice of treatment effect parameter in all approaches and the parameter for the additional cost of the new treatment in the decision-theoretic approach. These should therefore be discussed extensively.
Collapse
Affiliation(s)
- Frank Miller
- Department of Statistics, Stockholm University, Stockholm, Sweden
| | - Sarah Zohar
- INSERM, U1138, Team 22, Centre de Recherche des Cordeliers, Université Paris 5, Université Paris 6, Paris, France
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jason Madan
- Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Martin Posch
- Section for Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Siew Wan Hee
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Simon Day
- Clinical Trials Consulting and Training Limited, Buckingham, UK
| |
Collapse
|
35
|
Dhand R. The Rationale and Evidence for Use of Inhaled Antibiotics to Control Pseudomonas aeruginosa Infection in Non-cystic Fibrosis Bronchiectasis. J Aerosol Med Pulm Drug Deliv 2017; 31:121-138. [PMID: 29077527 PMCID: PMC5994662 DOI: 10.1089/jamp.2017.1415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-cystic fibrosis bronchiectasis (NCFBE) is a chronic inflammatory lung disease characterized by irreversible dilation of the bronchi, symptoms of persistent cough and expectoration, and recurrent infective exacerbations. The prevalence of NCFBE is on the increase in the United States and Europe, but no licensed therapies are currently available for its treatment. Although there are many similarities between NCFBE and cystic fibrosis (CF) in terms of respiratory symptoms, airway microbiology, and disease progression, there are key differences, for example, in response to treatment, suggesting differences in pathogenesis. This review discusses possible reasons underlying differences in response to inhaled antibiotics in people with CF and NCFBE. Pseudomonas aeruginosa infections are associated with the most severe forms of bronchiectasis. Suboptimal levels of antibiotics in the lung increase the mutation frequency of P. aeruginosa and lead to the development of mucoid strains characterized by formation of a protective polysaccharide biofilm. Mucoid strains of P. aeruginosa are associated with a chronic infection stage, requiring long-term antibiotic therapy. Inhaled antibiotics provide targeted delivery to the lung with minimal systemic toxicity and adverse events compared with oral/intravenous routes of administration, and they could be alternative treatment options to help address some of the treatment challenges in the management of severe cases of NCFBE. This review provides an overview of completed and ongoing trials that evaluated inhaled antibiotic therapy for NCFBE. Recently, several investigators conducted phase 3 randomized controlled trials with inhaled aztreonam and ciprofloxacin in patients with NCFBE. While the aztreonam trial results were not associated with significant clinical benefit in NCFBE, initial results reported from the inhaled ciprofloxacin (dry powder for inhalation and liposome-encapsulated/dual-release formulations) trials hold promise. A more targeted approach could identify specific populations of NCFBE patients who benefit from inhaled antibiotics.
Collapse
Affiliation(s)
- Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine , Knoxville, Tennessee
| |
Collapse
|
36
|
Athanazio RA, Silva Filho LVRFD, Vergara AA, Ribeiro AF, Riedi CA, Procianoy EDFA, Adde FV, Reis FJC, Ribeiro JD, Torres LA, Fuccio MBD, Epifanio M, Firmida MDC, Damaceno N, Ludwig-Neto N, Maróstica PJC, Rached SZ, Melo SFDO. Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. ACTA ACUST UNITED AC 2017; 43:219-245. [PMID: 28746534 PMCID: PMC5687954 DOI: 10.1590/s1806-37562017000000065] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by dysfunction of the CFTR gene. It is a multisystem disease that most often affects White individuals. In recent decades, various advances in the diagnosis and treatment of CF have drastically changed the scenario, resulting in a significant increase in survival and quality of life. In Brazil, the current neonatal screening program for CF has broad coverage, and most of the Brazilian states have referral centers for the follow-up of individuals with the disease. Previously, CF was limited to the pediatric age group. However, an increase in the number of adult CF patients has been observed, because of the greater number of individuals being diagnosed with atypical forms (with milder phenotypic expression) and because of the increase in life expectancy provided by the new treatments. However, there is still great heterogeneity among the different regions of Brazil in terms of the access of CF patients to diagnostic and therapeutic methods. The objective of these guidelines was to aggregate the main scientific evidence to guide the management of these patients. A group of 18 CF specialists devised 82 relevant clinical questions, divided into five categories: characteristics of a referral center; diagnosis; treatment of respiratory disease; gastrointestinal and nutritional treatment; and other aspects. Various professionals working in the area of CF in Brazil were invited to answer the questions devised by the coordinators. We used the PubMed database to search the available literature based on keywords, in order to find the best answers to these questions.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Alberto Andrade Vergara
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | | | | | | | - Fabíola Villac Adde
- . Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Francisco José Caldeira Reis
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - José Dirceu Ribeiro
- . Hospital de Clínicas, Universidade Estadual de Campinas, Campinas (SP) Brasil
| | - Lídia Alice Torres
- . Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (SP) Brasil
| | - Marcelo Bicalho de Fuccio
- . Hospital Júlia Kubitschek, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - Matias Epifanio
- . Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | | | - Neiva Damaceno
- . Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo (SP) Brasil
| | - Norberto Ludwig-Neto
- . Hospital Infantil Joana de Gusmão, Florianópolis (SC) Brasil.,. Serviço de Fibrose Cística e Triagem Neonatal para Fibrose Cística, Secretaria Estadual de Saúde de Santa Catarina, Florianópolis (SC) Brasil
| | - Paulo José Cauduro Maróstica
- . Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil.,. Universidade Federal do Rio Grande do Sul Porto Alegre (RS) Brasil
| | - Samia Zahi Rached
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | | |
Collapse
|
37
|
Al-Jahdali H, Alshimemeri A, Mobeireek A, Albanna AS, Al Shirawi NN, Wali S, Alkattan K, Alrajhi AA, Mobaireek K, Alorainy HS, Al-Hajjaj MS, Chang AB, Aliberti S. The Saudi Thoracic Society guidelines for diagnosis and management of noncystic fibrosis bronchiectasis. Ann Thorac Med 2017; 12:135-161. [PMID: 28808486 PMCID: PMC5541962 DOI: 10.4103/atm.atm_171_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022] Open
Abstract
This is the first guideline developed by the Saudi Thoracic Society for the diagnosis and management of noncystic fibrosis bronchiectasis. Local experts including pulmonologists, infectious disease specialists, thoracic surgeons, respiratory therapists, and others from adult and pediatric departments provided the best practice evidence recommendations based on the available international and local literature. The main objective of this guideline is to utilize the current published evidence to develop recommendations about management of bronchiectasis suitable to our local health-care system and available resources. We aim to provide clinicians with tools to standardize the diagnosis and management of bronchiectasis. This guideline targets primary care physicians, family medicine practitioners, practicing internists and respiratory physicians, and all other health-care providers involved in the care of the patients with bronchiectasis.
Collapse
Affiliation(s)
- Hamdan Al-Jahdali
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah Alshimemeri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah Mobeireek
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Centre, Department of Medicine, Pulmonary Division, Riyadh, Saudi Arabia
| | - Amr S. Albanna
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Department of Medicine, Pulmonary Division, King Abdulaziz Medical City, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | | | - Siraj Wali
- College of Medicine, King Abdulaziz University, Respiratory Unit, Department of Medicine, Jeddah, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Alrajhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- King Faisal Specialist Hospital and Research Centre, Department of Medicine, Infectious Disease Division, Riyadh, Saudi Arabia
| | - Khalid Mobaireek
- College of Medicine, King Saud University, King Khalid University Hospital, Pediatric Pulmonology Division, Riyadh, Saudi Arabia
| | - Hassan S. Alorainy
- King Faisal Specialist Hospital and Research Centre, Respiratory Therapy Services, Riyadh, Saudi Arabia
| | - Mohamed S. Al-Hajjaj
- Department of Clinical Sciences, College of Medicine. University of Sharjah, Sharjah, UAE
| | - Anne B. Chang
- International Reviewer, Children's Centre of Health Research Queensland University of Technology, Queensland
- International Reviewer, Brisbane and Child Health Division, Menzies School of Health Research, Darwin, Australia
| | - Stefano Aliberti
- International Reviewer, Department of Pathophysiology and Transplantation, University of MilanInternal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
38
|
Abstract
INTRODUCTION The prevalence and awareness of bronchiectasis not related to cystic fibrosis (CF) is increasing and it is now recognized as a major cause of respiratory morbidity, mortality and healthcare utilization worldwide. The need to elucidate the early origins of bronchiectasis is increasingly appreciated and has been identified as an important research priority. Current treatments for pediatric bronchiectasis are limited to antimicrobials, airway clearance techniques and vaccination. Several new drugs targeting airway inflammation are currently in development. Areas covered: Current management of pediatric bronchiectasis, including discussion on therapeutics, non-pharmacological interventions and preventative and surveillance strategies are covered in this review. We describe selected adult and pediatric data on bronchiectasis treatments and briefly discuss emerging therapeutics in the field. Expert commentary: Despite the burden of disease, the number of studies evaluating potential treatments for bronchiectasis in children is extremely low and substantially disproportionate to that for CF. Research into the interactions between early life respiratory tract infections and the developing immune system in children is likely to reveal risk factors for bronchiectasis development and inform future preventative and therapeutic strategies. Tailoring interventions to childhood bronchiectasis is imperative to halt the disease in its origins and improve adult outcomes.
Collapse
Affiliation(s)
- Danielle F Wurzel
- a The Royal Children's Hospital , Parkville , Australia.,b Murdoch Childrens Research Institute , Parkville , Australia
| | - Anne B Chang
- c Lady Cilento Children's Hospital , Queensland University of Technology , Brisbane , Australia.,d Menzies School of Health Research , Charles Darwin University , Darwin , Australia
| |
Collapse
|
39
|
Chin M, Aaron SD, Bell SC. The treatment of the pulmonary and extrapulmonary manifestations of cystic fibrosis. Presse Med 2017; 46:e139-e164. [PMID: 28576636 DOI: 10.1016/j.lpm.2016.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/12/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is a complex multisystem disease with considerable between patient variability in its manifestations and severity. In the past several decades, the range of treatments and the evidence to support their use for the pulmonary and extrapulmonary manifestations of CF have increased dramatically, contributing to the improved median survival of patients. As therapy for CF has evolved, new challenges including treatment adherence, medication intolerance and allergy, medical complications and coping with the burden of disease in the context of having a family and managing employment have arisen. While the majority of current therapy focuses primarily on improving symptoms, new therapies (CFTR modulators) target the underlying genetic defect.
Collapse
Affiliation(s)
- Melanie Chin
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia
| | - Shawn D Aaron
- The Ottawa Hospital Research Institute, University of Ottawa, 501, Smyth Road, K1H 8L6 Ottawa, Canada
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia; QIMR Berghofer Medical Research Institute, 300, Herston Road, Herston, QLD 4006, Australia; School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
40
|
De Boeck K, Haarman E, Hull J, Lands LC, Moeller A, Munck A, Riethmüller J, Tiddens H, Volpi S, Leadbetter J, Charlton B, Malfroot A. Inhaled dry powder mannitol in children with cystic fibrosis: A randomised efficacy and safety trial. J Cyst Fibros 2017; 16:380-387. [DOI: 10.1016/j.jcf.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
|
41
|
Jobjörnsson S, Forster M, Pertile P, Burman CF. Late-stage pharmaceutical R&D and pricing policies under two-stage regulation. JOURNAL OF HEALTH ECONOMICS 2016; 50:298-311. [PMID: 27776744 DOI: 10.1016/j.jhealeco.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
We present a model combining the two regulatory stages relevant to the approval of a new health technology: the authorisation of its commercialisation and the insurer's decision about whether to reimburse its cost. We show that the degree of uncertainty concerning the true value of the insurer's maximum willingness to pay for a unit increase in effectiveness has a non-monotonic impact on the optimal price of the innovation, the firm's expected profit and the optimal sample size of the clinical trial. A key result is that there exists a range of values of the uncertainty parameter over which a reduction in uncertainty benefits the firm, the insurer and patients. We consider how different policy parameters may be used as incentive mechanisms, and the incentives to invest in R&D for marginal projects such as those targeting rare diseases. The model is calibrated using data on a new treatment for cystic fibrosis.
Collapse
Affiliation(s)
- Sebastian Jobjörnsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Martin Forster
- Department of Economics and Related Studies, University of York, Heslington, York YO10 5DD, UK
| | - Paolo Pertile
- Department of Economics, University of Verona, 37129 Verona, Italy.
| | - Carl-Fredrik Burman
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden; Advanced Analytics Centre, AstraZeneca R&D, SE-431 83 Mölndal, Sweden
| |
Collapse
|
42
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Edmondson C, Davies JC. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis 2016; 7:170-83. [PMID: 27347364 PMCID: PMC4907071 DOI: 10.1177/2040622316641352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Treatment for cystic fibrosis (CF) has conventionally targeted downstream consequences of the defect such as mucus plugging and infection. More recently, significant advances have been made in treating the root cause of the disease, namely a defective CF transmembrane conductance regulator (CFTR) gene. This review summarizes current pulmonary treatment options and highlights advances in research and development of new therapies.
Collapse
Affiliation(s)
- Claire Edmondson
- Royal Brompton & Harefield NHS Foundation Trust, Paediatric Respiratory Medicine, London, UK
| | - Jane C. Davies
- Imperial College London, Paediatric Respirology and Experimental Medicine, London SW7 2AZ, UK
| |
Collapse
|
44
|
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70,000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development.
Collapse
Affiliation(s)
- Bradley S Quon
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6Z 1Y6
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Department of Medicine, Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
45
|
Turnbull AR, Davies JC. New drug developments in the management of cystic fibrosis lung disease. Expert Opin Pharmacother 2016; 17:1103-12. [PMID: 27017976 DOI: 10.1517/14656566.2016.1157582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Therapies for cystic fibrosis (CF) pulmonary disease have, until recently, all targeted downstream manifestations rather than the root cause of the disease. A step-change in our approach has been achieved in the last few years, with novel small-molecule CFTR modulating drugs entering the clinic. AREAS COVERED In this article, we will discuss the field of drug development for CF lung disease. The case will be made for the potential benefits of basic defect-targeted strategies, which will be described in detail. Novel therapies directed at the downstream pulmonary manifestations of CF - infection, inflammation, and mucus impaction - will be reviewed. Finally, we will speculate on future directions and challenges. EXPERT OPINION CF drug development is in an exciting phase, catalysed by the impressive results seen in patients with ivacaftor-responsive CFTR mutations. The research field is active with trials of novel therapies targeting the basic defect, alongside drugs targeting downstream effects. In order to detect potentially small improvements due to novel therapies, especially in the context of treating young patients with early disease, sensitive outcome measures and the coordinated efforts of collaborative research networks are crucial.
Collapse
Affiliation(s)
- Andrew R Turnbull
- a National Heart and Lung Institute, Imperial College , London , UK.,b Department of Paediatric Respiratory Medicine , Royal Brompton and Harefield NHS Foundation Trust , London , UK
| | - Jane C Davies
- a National Heart and Lung Institute, Imperial College , London , UK.,b Department of Paediatric Respiratory Medicine , Royal Brompton and Harefield NHS Foundation Trust , London , UK
| |
Collapse
|
46
|
Nolan SJ, Thornton J, Murray CS, Dwyer T. Inhaled Mannitol (Bronchitol) for Cystic Fibrosis. Paediatr Respir Rev 2016; 18:52-4. [PMID: 26867712 DOI: 10.1016/j.prrv.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Sarah J Nolan
- Department of Biostatistics, The University of Liverpool, Liverpool, UK.
| | - Judith Thornton
- Centre for Clinical Practice, National Institute for Health and Care Excellence, Manchester, UK
| | - Clare S Murray
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, UK
| | - Tiffany Dwyer
- Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
47
|
Country to country variation: what can be learnt from national cystic fibrosis registries. Curr Opin Pulm Med 2016; 21:585-90. [PMID: 26390334 DOI: 10.1097/mcp.0000000000000208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This review will address the evolving science involving international comparisons of populations of persons living with cystic fibrosis. Understanding the current clinical outcomes in cystic fibrosis is critical prior to assessing such comparisons. Countries that differ in clinical approaches provide natural experiments to assess those approaches. RECENT FINDINGS Recent studies have highlighted that the population of persons with cystic fibrosis is changing; estimates predict a continued growth of cystic fibrosis populations with substantial increases in persons with cystic fibrosis who are adults. Additional work highlighted differences in subpopulations (i.e. children); US cystic fibrosis children appear to have better lung function, but similar nutritional status, compared to UK cystic fibrosis children. These differences were associated with differences in intensity of care, with a higher proportion of US children receiving more cystic fibrosis-specific therapies. Additional research raises important questions regarding potential sampling bias in different patient registries and differing rates of unconfirmed cases of cystic fibrosis. These and other limitations are highlighted. SUMMARY Differences in both demographics and clinical outcomes in cystic fibrosis between nations can be informative, but, like many types of observational research, are at risk of unrecognized bias. Despite this limitation, these comparisons can lead to substantive improvements in care in cystic fibrosis.
Collapse
|
48
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive inherited metabolic disease. The mutation is located on the long arm of chromosome 7. Due to a defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, chloride ion transport is reduced across the cell membrane. As a result, the disease can be described as an exocrinopathy. In all organs with exocrine glands, disorders occur in association with the defective chloride transport. The main impact of this defect is manifested in the lungs. Therefore, the most common cause of death is pulmonary disease with respiratory insufficiency due to recurrent infections. Unfortunately, a cure for the disease is still not available. However, new therapies that may affect the CFTR mutation more specifically give new hope for better therapeutic options in the future. The long-term goal of therapy is to develop a causal therapy for all six different mutation classes and thus for about 2000 mutations.
Collapse
Affiliation(s)
- C Schwarz
- Christiane Herzog-Zentrum, Sektion Cystische Fibrose, Klinik für Pädiatrie m. S. Pneumologie und Immunologie, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Deutschland,
| | | |
Collapse
|
49
|
Price KE, Orazi G, Ruoff KL, Hebert WP, O’Toole GA, Mastoridis P. Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation. PLoS One 2015; 10:e0141192. [PMID: 26506004 PMCID: PMC4624634 DOI: 10.1371/journal.pone.0141192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting.
Collapse
Affiliation(s)
- Katherine E. Price
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Giulia Orazi
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kathryn L. Ruoff
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Wesley P. Hebert
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - George A. O’Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail: (GAO); (PM)
| | - Paul Mastoridis
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, United States of America
- * E-mail: (GAO); (PM)
| |
Collapse
|
50
|
Abstract
BACKGROUND Several agents are used to clear secretions from the airways of people with cystic fibrosis. Inhaled dry powder mannitol is now available in Australia and some countries in Europe. The exact mechanism of action of mannitol is unknown, but it increases mucociliary clearance. Phase III trials of inhaled dry powder mannitol for the treatment of cystic fibrosis have been completed. The dry powder formulation of mannitol may be more convenient and easier to use compared with established agents which require delivery via a nebuliser. OBJECTIVES To assess whether inhaled dry powder mannitol is well tolerated, whether it improves the quality of life and respiratory function in people with cystic fibrosis and which adverse events are associated with the treatment. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic databases, handsearching relevant journals and abstracts from conferences.Date of last search: 16 April 2015. SELECTION CRITERIA All randomised controlled studies comparing mannitol with placebo, active inhaled comparators (for example, hypertonic saline or dornase alfa) or with no treatment. DATA COLLECTION AND ANALYSIS Authors independently assessed studies for inclusion, carried out data extraction and assessed the risk of bias in included studies. MAIN RESULTS The searches identified nine separate studies (45 publications), of which four studies (36 publications) were included with a total of 667 participants, one study (only available as an abstract) is awaiting assessment and two studies are ongoing. Duration of treatment in the included studies ranged from two weeks to six months with open-label treatment for an additional six months in two of the studies. Three studies compared mannitol with control (a very low dose of mannitol or non-respirable mannitol); two of these were parallel studies with a similar design and data could be pooled, where data for a particular outcome and time point were available; also, one short-term cross-over study supplied additional results. The fourth study compared mannitol to dornase alfa alone and to mannitol plus dornase alfa. There was generally a low risk of bias in relation to randomisation and blinding; evidence from the parallel studies was judged to be of low to moderate quality and from the cross-over studies was judged to be of low to very low quality. While the published papers did not provide all the data required for our analysis, additional unpublished data were provided by the drug's manufacturer and the author of one of the studies. There was an initial test to see if participants tolerated mannitol, with only those who could tolerate the drug being randomised to the studies; therefore the study results are not applicable to the cystic fibrosis population as a whole.For the comparison of mannitol and control, we found no consistent differences in health-related quality of life in any of the domains, except for burden of treatment, which was less for mannitol up to four months in the two pooled studies of a similar design; this difference was not maintained at six months. Up to and including six months, lung function in terms of forced expiratory volume at one second (millilitres) and per cent predicted were significantly improved in all three studies comparing mannitol to control. Beneficial results were observed in these studies in adults and in both concomitant dornase alfa users and non users. A significant reduction was shown in the incidence of pulmonary exacerbations in favour of mannitol at six months; however, the estimate of this effect was imprecise so it is unclear whether the effect is clinically meaningful. Cough, haemoptysis, bronchospasm, pharyngolaryngeal pain and post-tussive vomiting were the most commonly reported side effects on both treatments. Mannitol was not associated with any increase in isolation of bacteria over a six-month period.In the 12-week cross-over study (28 participants), no significant differences were found in the recorded domains of health-related quality of life or measures of lung function between mannitol versus dornase alfa alone and versus mannitol plus dornase alfa. There seemed to be a higher rate of pulmonary exacerbations in the mannitol plus dornase alfa arm compared with dornase alfa alone; although not statistically significant, this was the most common reason for stopping treatment in this arm. Cough was the most common side effect in the mannitol alone arm but there was no occurrence of cough in the dornase alfa alone arm and the most commonly reported reason of withdrawal from the mannitol plus dornase alfa arm was pulmonary exacerbations. Mannitol (with or without dornase alfa) was not associated with any increase in isolation of bacteria over the 12-week period. AUTHORS' CONCLUSIONS There is evidence to show that treatment with mannitol over a six-month period is associated with an improvement in some measures of lung function in people with cystic fibrosis compared to control. There is no evidence that quality of life is improved for participants taking mannitol compared to control; a decrease in burden of treatment was observed up to four months on mannitol compared to control but this difference was not maintained to six months. Randomised information regarding the burden of adding mannitol to an existing treatment is limited. There is no randomised evidence of improvement in lung function or quality of life comparing mannitol to dornase alfa alone and to mannitol plus dornase alfa.Mannitol as a single or concomitant treatment to dornase alfa may be of benefit to people with cystic fibrosis, but further research is required in order to establish who may benefit most and whether this benefit is sustained in the longer term.The clinical implications from this review suggest that mannitol could be considered as a treatment in cystic fibrosis; however, studies comparing its efficacy against other (established) mucolytic therapies need to be undertaken before it can be considered for mainstream practice.
Collapse
Affiliation(s)
- Sarah J Nolan
- Department of Biostatistics, The University of Liverpool, Duncan Building, Daulby Street, Liverpool, UK, L69 3GA
| | | | | | | |
Collapse
|