1
|
Tondo P, Scioscia G, De Pace CC, Murgolo F, Maci F, Stella GM, Pescatore D, Foschino Barbaro MP, Lacedonia D. Gender Differences Are a Leading Factor in 5-Year Survival of Patients with Idiopathic Pulmonary Fibrosis over Antifibrotic Therapy Reduction. Life (Basel) 2025; 15:106. [PMID: 39860046 PMCID: PMC11766819 DOI: 10.3390/life15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with a median survival of 3-5 years. Antifibrotic therapies like pirfenidone and nintedanib slow progression, but the outcomes vary. Gender may influence disease presentation, progression, and response to treatment. This study evaluates the impact of gender on the 5-year survival, pharmacological management, and clinical outcomes of patients with IPF. METHODS A retrospective cohort study of 254 IPF patients was conducted, with 164 (131 males:33 females) having complete data. Patients underwent spirometry, DLCO, and 6 min walk tests. Data on comorbidities, smoking, antifibrotic therapy type, dosage adjustments, and adverse events were collected. We used Kaplan-Meier survival curves and logistic regression to assess gender-related differences in outcomes. RESULTS Men had worse lung function at diagnosis (FVC 74.9 ± 18.5 vs. 87.2 ± 20.1% of pred.; p < 0.001) and a higher smoking prevalence (74% vs. 30%; p < 0.001). Women had better survival (51.2 vs. 40.8 ± 19.2 months; p = 0.005) despite more frequent biopsy use (36% vs. 17%; p = 0.013). Women tolerated longer therapy better (p = 0.001). No differences were found between patients receiving reduced antifibrotic dosing and those receiving full dosing. CONCLUSIONS Gender has a significant impact on IPF outcomes, with women demonstrating better survival and tolerance to long-term therapy. In contrast, reducing antifibrotic treatment does not appear to significantly affect survival outcomes. These findings underscore the need for future research on gender-specific management approaches.
Collapse
Affiliation(s)
- Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (G.S.); (F.M.); (D.P.); (M.P.F.B.)
- Pulmonary and Critical Care Unit, Department of Specialistic Medicine, University-Hospital Polyclinic of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (G.S.); (F.M.); (D.P.); (M.P.F.B.)
- Pulmonary and Critical Care Unit, Department of Specialistic Medicine, University-Hospital Polyclinic of Foggia, 71122 Foggia, Italy
| | - Cosimo C. De Pace
- Respiratory Diseases and Rehabilitation Unit, “Teresa Maselli Mascia” Hospital, 71016 San Severo, Italy;
| | - Fabiola Murgolo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (G.S.); (F.M.); (D.P.); (M.P.F.B.)
| | - Federica Maci
- Pulmonology Unit, “A. Perrino” Hospital, 72100 Brindisi, Italy;
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Respiratory Diseases Unit, Cardiothoracic and Vascular Department, IRCCS San Matteo Polyclinic Hospital, 27100 Pavia, Italy
| | - Dalila Pescatore
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (G.S.); (F.M.); (D.P.); (M.P.F.B.)
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (G.S.); (F.M.); (D.P.); (M.P.F.B.)
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (G.S.); (F.M.); (D.P.); (M.P.F.B.)
- Pulmonary and Critical Care Unit, Department of Specialistic Medicine, University-Hospital Polyclinic of Foggia, 71122 Foggia, Italy
| |
Collapse
|
2
|
Colin Waldo MD, Quintero-Millán X, Negrete-García MC, Ruiz V, Sommer B, Romero-Rodríguez DP, Montes-Martínez E. Circulating MicroRNAs in Idiopathic Pulmonary Fibrosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:13746-13766. [PMID: 39727949 DOI: 10.3390/cimb46120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease. These miRNAs, released into the circulation outside the cell through exosomes and proteins, play a crucial role in the pathogenic pathways and mechanisms involved in IPF development. This review focuses on the serum/plasma miRNAs reported in IPF that have been validated by real-time PCR and the published evidence regarding the fibrotic process. First, we describe the mechanisms by which miRNAs travel through the circulation (contained in exosomes and bound to proteins), as well as the mechanism by which miRNAs perform their function within the cell. Subsequently, we summarize the evidence concerning miRNAs reported in serum/plasma, where we find contradictory functions in some miRNAs (dual functions in IPF) when comparing the findings in vitro vs. in vivo. The most relevant finding, for instance, the levels of miRNAs let-7d and miR-21 reported in the serum/plasma in IPF, correspond to those found in studies in lung fibroblasts and the murine bleomycin model, reinforcing the usefulness of these miRNAs as future biomarkers in IPF.
Collapse
Affiliation(s)
- Marisa Denisse Colin Waldo
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Xochipilzihuitl Quintero-Millán
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Maria Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Dámaris P Romero-Rodríguez
- Conahcyt National Laboratory for Research and Diagnosis by Immunocytofluorometry (LANCIDI), National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Lesur O, Segal ED, Rego K, Mercat A, Asfar P, Chagnon F. Process-Specific Blood Biomarkers and Outcomes in COVID-19 Versus Non-COVID-19 ARDS (APEL-COVID Study): A Prospective, Observational Cohort Study. J Clin Med 2024; 13:5919. [PMID: 39407979 PMCID: PMC11477790 DOI: 10.3390/jcm13195919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Severe acute respiratory syndrome (SARS) and acute respiratory distress syndrome (ARDS) are often considered separate clinico-radiological entities. Whether these conditions also present a single process-specific systemic biomolecular phenotype and how this relates to patient outcomes remains unknown. A prospective cohort study was conducted, including adult patients admitted to the ICU and general floors for COVID-19-related (COVID+) or non-COVID-19-related (COVID-) acute respiratory failure during the main phase of the pandemic. The primary objective was to study blood biomarkers and outcomes among different groups and severity subsets. Results: A total of 132 patients were included, as follows: 67 COVID+, 54 COVID- (with 11 matched control subjects for biomarker reference), and 58 of these patients allowed for further pre- and post-analysis. The baseline apelin (APL) levels were higher in COVID+ patients (p < 0.0001 vs. COVID- patients) and in SARS COVID+ patients (p ≤ 0.02 vs. ARDS), while the IL-6 levels were higher in ARDS COVID- patients (p ≤ 0.0001 vs. SARS). Multivariable logistic regression analyses with cohort biomarkers and outcome parameters revealed the following: (i) log-transformed neprilysin (NEP) activity was significantly higher in COVID+ patients (1.11 [95% CI: 0.4-1.9] vs. 0.37 [95% CI: 0.1-0.8], fold change (FC): 1.43 [95% CI: 1.04-1.97], p = 0.029) and in SARS patients (FC: 1.65 [95% CI: 1.05-2.6], p = 0.032 vs. non-SARS COVID+ patients, and 1.73 [95% CI: 1.19-2.5], p = 0.005 vs. ARDS COVID- patients) and (ii) higher lysyl oxidase (LOX) activity and APL levels were respectively associated with death and a shorter length of hospital stay in SARS COVID+ patients (Odds Ratios (OR): 1.01 [1.00-1.02], p = 0.05, and OR: -0.007 [-0.013-0.0001], p = 0.048). Conclusion: Process-specific blood biomarkers exhibited distinct profiles between COVID+ and COVID- patients, and across stages of severity. NEP and LOX activities, as well as APL levels, are particularly linked to COVID+ patients and their outcomes (ClinicalTrials.gov Identifier: NCT04632732).
Collapse
Affiliation(s)
- Olivier Lesur
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Départements de Soins Intensifs et Service de Pneumologie, CHU Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke QC J1H 5N4, Canada
- Département de Médecine, CHU Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Eric David Segal
- Département de Médecine, CHU Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Kevin Rego
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Départements de Soins Intensifs et Service de Pneumologie, CHU Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke QC J1H 5N4, Canada
- Département de Médecine, CHU Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Alain Mercat
- Département de Médecine Intensive-Réanimation, CHU Angers, 49000 Angers, France; (A.M.); (P.A.)
| | - Pierre Asfar
- Département de Médecine Intensive-Réanimation, CHU Angers, 49000 Angers, France; (A.M.); (P.A.)
| | - Frédéric Chagnon
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
4
|
Zhao R, Wang Z, Wang G, Geng J, Wu H, Liu X, Bin E, Sui J, Dai H, Tang N. Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis. Cell Stem Cell 2024; 31:1344-1358.e6. [PMID: 39096904 DOI: 10.1016/j.stem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic disease. Recent studies have highlighted the persistence of an intermediate state of alveolar stem cells in IPF lungs. In this study, we discovered a close correlation between the distribution pattern of intermediate alveolar stem cells and the progression of fibrotic changes. We showed that amphiregulin (AREG) expression is significantly elevated in intermediate alveolar stem cells of mouse fibrotic lungs and IPF patients. High levels of serum AREG correlate significantly with profound deteriorations in lung function in IPF patients. We demonstrated that AREG in alveolar stem cells is both required and sufficient for activating EGFR in fibroblasts, thereby driving lung fibrosis. Moreover, pharmacological inhibition of AREG using a neutralizing antibody effectively blocked the initiation and progression of lung fibrosis in mice. Our study underscores the therapeutic potential of anti-AREG antibodies in attenuating IPF progression, offering a promising strategy for treating fibrotic diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Pulmongene (Beijing) Ltd., Beijing 102206, China.
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guowu Wang
- Pulmongene (Beijing) Ltd., Beijing 102206, China
| | - Jing Geng
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ximing Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ennan Bin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huaping Dai
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100190, China.
| |
Collapse
|
5
|
Chang SE, Jia G, Gao X, Schiffman C, Gupta S, Wolters P, Neighbors M. Pursuing Clinical Predictors and Biomarkers for Progression in ILD: Analysis of the Pulmonary Fibrosis Foundation (PFF) Registry. Lung 2024; 202:269-273. [PMID: 38753183 PMCID: PMC11142961 DOI: 10.1007/s00408-024-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/30/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.
Collapse
Affiliation(s)
| | - Guiquan Jia
- Genentech, Inc, South San Francisco, CA, USA
| | - Xia Gao
- Genentech, Inc, South San Francisco, CA, USA
| | | | | | - Paul Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Zheng Z, Peng F, Zhou Y. Biomarkers in idiopathic pulmonary fibrosis: Current insight and future direction. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:72-79. [PMID: 38962100 PMCID: PMC11221783 DOI: 10.1016/j.pccm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a dismal prognosis. Early diagnosis, accurate prognosis, and personalized therapeutic interventions are essential for improving patient outcomes. Biomarkers, as measurable indicators of biological processes or disease states, hold significant promise in IPF management. In recent years, there has been a growing interest in identifying and validating biomarkers for IPF, encompassing various molecular, imaging, and clinical approaches. This review provides an in-depth examination of the current landscape of IPF biomarker research, highlighting their potential applications in disease diagnosis, prognosis, and treatment response. Additionally, the challenges and future perspectives of biomarker integration into clinical practice for precision medicine in IPF are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fei Peng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Zhou
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Ebert C, Walsh AM, Sereda L, Wilson CL, Schafer PH, Fischer A, Zhao L, Ramirez-Valle F, Gordon D, Schnapp LM. Circulating biomarker analyses in a longitudinal cohort of patients with IPF. Am J Physiol Lung Cell Mol Physiol 2024; 326:L303-L312. [PMID: 38226605 PMCID: PMC11281789 DOI: 10.1152/ajplung.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an incurable interstitial lung disease characterized by fibrosis. Two FDA-approved drugs, pirfenidone and nintedanib, only modestly prolong survival. In this study, we asked whether levels of select circulating biomarkers in patients with IPF demonstrated changes in response to treatment over time and whether treatment with pirfenidone and nintedanib led to differential biomarker expression. Serial plasma samples from 48 patients with IPF on usual treatment and six healthy volunteers were analyzed to identify differentially expressed blood protein. Hypothesis-driven potential biomarker selection was based on recent literature, internal preclinical data, and the PROLIFIC Consortium (Schafer P. 6th Annual IPF Summit. Boston, MA, 2022) proposed biomarkers of pulmonary fibrosis. We compared our findings to public databases to provide insights into relevant signaling pathways in IPF. Of the 26 proteins measured, we found that 11 (SP-D, TIMP1, MMP7, CYFRA21-1, YKL40, CA125, sICAM, IP-10, MDC, CXCL13) were significantly elevated in patients with IPF compared with healthy volunteers but their levels did not significantly change over time. In the IPF samples, seven proteins were elevated in the treatment group compared with the no-treatment group. However, protein profiles were not distinguishable between patients on pirfenidone versus nintedanib. We demonstrated that most proteins differentially detected in our samples were predicted to be secreted from the lung epithelial or interstitial compartments. However, a significant minority of the proteins are not known to be transcriptionally expressed by lung cells, suggesting an ongoing systemic response. Understanding the contributions of the systemic response in IPF may be important as new therapeutics are developed.NEW & NOTEWORTHY In this study, we confirmed protein expression differences in only a subset of predicted biomarkers from IPF and control subjects. Most differentially expressed proteins were predicted to be secreted from lung cells. However, a significant minority of the proteins are not known to be transcriptionally expressed by lung cells, suggesting an ongoing systemic response. The contributions of the systemic response in IPF may be important as new therapeutics are developed.
Collapse
Affiliation(s)
| | - Alice M Walsh
- Bristol Myers Squibb, Princeton, New Jersey, United States
| | - Larisa Sereda
- Bristol Myers Squibb, Princeton, New Jersey, United States
| | - Carole L Wilson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Medical University of South Carolina, Charleston, South Carolina, United States
| | | | - Aryeh Fischer
- Bristol Myers Squibb, Princeton, New Jersey, United States
| | - Lei Zhao
- Bristol Myers Squibb, Princeton, New Jersey, United States
| | | | - David Gordon
- Bristol Myers Squibb, Princeton, New Jersey, United States
| | - Lynn M Schnapp
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
8
|
Suzuki T, Karayama M, Aoshima Y, Mori K, Yoshizawa N, Ichikawa S, Kato S, Yokomura K, Kono M, Hashimoto D, Inoue Y, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, Goshima S, Inui N, Suda T. Association of the lung immune prognostic index with the survival of patients with idiopathic interstitial pneumonias. Respirology 2024; 29:136-145. [PMID: 37921012 DOI: 10.1111/resp.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The lung immune prognostic index (LIPI), a simple index calculated from the blood lactate dehydrogenase level and derived neutrophil-to-lymphocyte ratio, is thought to be associated with host immune status. However, the utility of LIPI in patients with idiopathic interstitial pneumonias (IIPs) is unknown. METHODS In this multicentre, retrospective, observational study, an association between LIPI and the survival of patients with IIPs was evaluated. RESULTS Exploratory and validation cohorts consisting of 460 and 414 patients with IIPs, respectively, were included (159 and 159 patients had idiopathic pulmonary fibrosis [IPF], and 301 and 255 had non-IPF, respectively). In the exploratory cohort, patients with IPF and a low LIPI had significantly better survival than those with a high LIPI (median of 5.6 years vs. 3.9 years, p = 0.016). The predictive ability of LIPI for the survival of patients with IPF was validated in the validation cohort (median of 8.5 years vs. 4.4 years, p = 0.003). In a multivariate Cox proportional hazard analysis, LIPI was selected as an independent predictive factor for the survival of IPF patients. There was no significant association between LIPI and survival of non-IPF patients in the exploratory and validation cohorts. CONCLUSION The LIPI was a predictive factor for the survival of patients with IPF and could aid the management of IPF.
Collapse
Affiliation(s)
- Takahito Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoichiro Aoshima
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazutaka Mori
- Department of Respiratory Medicine, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Nobuko Yoshizawa
- Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinpei Kato
- Department of Respiratory Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Koshi Yokomura
- Department of Respiratory Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masato Kono
- Department of Respiratory Medicine, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Dai Hashimoto
- Department of Respiratory Medicine, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Goshima
- Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Otelea MR, Oancea C, Reisz D, Vaida MA, Maftei A, Popescu FG. Club Cells-A Guardian against Occupational Hazards. Biomedicines 2023; 12:78. [PMID: 38255185 PMCID: PMC10813369 DOI: 10.3390/biomedicines12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Club cells have a distinct role in the epithelial repair and defense mechanisms of the lung. After exposure to environmental pollutants, during chronic exposure, the secretion of club cells secretory protein (CCSP) decreases. Exposure to occupational hazards certainly has a role in a large number of interstitial lung diseases. According to the American Thoracic Society and the European Respiratory Society, around 40% of the all interstitial lung disease is attributed to occupational hazards. Some of them are very well characterized (pneumoconiosis, hypersensitivity pneumonitis), whereas others are consequences of acute exposure (e.g., paraquat) or persistent exposure (e.g., isocyanate). The category of vapors, gases, dusts, and fumes (VGDF) has been proven to produce subclinical modifications. The inflammation and altered repair process resulting from the exposure to occupational respiratory hazards create vicious loops of cooperation between epithelial cells, mesenchymal cells, innate defense mechanisms, and immune cells. The secretions of club cells modulate the communication between macrophages, epithelial cells, and fibroblasts mitigating the inflammation and/or reducing the fibrotic process. In this review, we describe the mechanisms by which club cells contribute to the development of interstitial lung diseases and the potential role for club cells as biomarkers for occupational-related fibrosis.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Corina Oancea
- Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Reisz
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Monica Adriana Vaida
- Department of Anatomy and Embryology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Andreea Maftei
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Florina Georgeta Popescu
- Department of Occupational Health, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| |
Collapse
|
10
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Klay D, Kazemier KM, van der Vis JJ, Smits HM, Grutters JC, van Moorsel CHM. New Insights via RNA Profiling of Formalin-Fixed Paraffin-Embedded Lung Tissue of Pulmonary Fibrosis Patients. Int J Mol Sci 2023; 24:16748. [PMID: 38069069 PMCID: PMC10706203 DOI: 10.3390/ijms242316748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
In sporadic idiopathic pulmonary fibrosis (sIPF) and pulmonary fibrosis caused by a mutation in telomere (TRG-PF) or surfactant related genes (SRG-PF), there are a number of aberrant cellular processes known that can lead to fibrogenesis. We investigated whether RNA expression of genes involved in these processes differed between sIPF, TRG-PF, and SRG-PF and whether expression levels were associated with survival. RNA expression of 28 genes was measured in lung biopsies of 26 sIPF, 17 TRG-PF, and 6 SRG-PF patients. Significant differences in RNA expression of TGFBR2 (p = 0.02) and SFTPA2 (p = 0.02) were found between sIPF, TRG-PF, and SRG-PF. Patients with low (
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Karin M. Kazemier
- Center of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joanne J. van der Vis
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Department of Clinical Chemistry, ILD Center of Excellence, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Hidde M. Smits
- Center of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan C. Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Coline H. M. van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| |
Collapse
|
12
|
Tlatelpa-Romero B, Contreras-Cruz DA, Guerrero-Luna G, Hernández-Linares MG, Ruiz-Salgado S, Mendoza-Milla C, Romero Y, de-la-Rosa Paredes R, Oyarzábal LF, Mendoza-Sámano DA, Galván-León JA, Vázquez-de-Lara LG. Organic synthesis of 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine and its effect on the induction of apoptosis in normal human lung fibroblasts. Chem Phys Lipids 2023; 257:105349. [PMID: 37838345 DOI: 10.1016/j.chemphyslip.2023.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND /OBJECTIVE The phospholipid 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF). METHODOLOGY The first step of the organic synthesis route began with protected glycerol that was benzylated at sn-3; later, it was deprotected to react with palmitic acid at sn-1, sn-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in sn-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h. RESULTS The PE obtained by organic synthesis presented a melting point of 190-192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%- 25.54%, while late apoptosis was only significant P < 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69-32.16%, 12.59-18.84%, and 10.91-12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03-16-42%, 11.04-15.94%, and 49.23-51.28%. Statistical analysis showed a significance P < 0.05 compared to the control. CONCLUSION The organic synthesis route of PE allows obtaining rac-1,2-O-Dipalmitoyl-glycero-3-phosphoethanolamine (1), which showed an apoptotic effect on NHLF.
Collapse
Affiliation(s)
- Beatriz Tlatelpa-Romero
- Programa de Maestría y Doctorado en Ciencias Médicas, Ondotológicas y de la Salud, División de Estudios de Posgrado e Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico
| | | | - Gabriel Guerrero-Luna
- Centro de Química, Instituto de Ciencias. Herbario y Jardín Botánico Universitario. Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - María Guadalupe Hernández-Linares
- Centro de Química, Instituto de Ciencias. Herbario y Jardín Botánico Universitario. Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - Sinuhé Ruiz-Salgado
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Mexico
| | - Criselda Mendoza-Milla
- Laboratorio de Transducción de Señales, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Luis F Oyarzábal
- Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico
| | | | - Jiovani Alfredo Galván-León
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Luis G Vázquez-de-Lara
- Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico.
| |
Collapse
|
13
|
Tomos I, Roussis I, Matthaiou AM, Dimakou K. Molecular and Genetic Biomarkers in Idiopathic Pulmonary Fibrosis: Where Are We Now? Biomedicines 2023; 11:2796. [PMID: 37893169 PMCID: PMC10604739 DOI: 10.3390/biomedicines11102796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents a chronic progressive fibrotic interstitial lung disease of unknown cause with an ominous prognosis. It remains an unprecedent clinical challenge due to its delayed diagnosis and unpredictable clinical course. The need for accurate diagnostic, prognostic and predisposition biomarkers in everyday clinical practice becomes more necessary than ever to ensure prompt diagnoses and early treatment. The identification of such blood biomarkers may also unravel novel drug targets against IPF development and progression. So far, the role of diverse blood biomarkers, implicated in various pathogenetic pathways, such as in fibrogenesis (S100A4), extracellular matrix remodelling (YKL-40, MMP-7, ICAM-1, LOXL2, periostin), chemotaxis (CCL-18, IL-8), epithelial cell injury (KL-6, SP-A, SP-D), autophagy and unfolded protein response has been investigated in IPF with various results. Moreover, the recent progress in genetics in IPF allows for a better understanding of the underlying disease mechanisms. So far, the causative mutations in pulmonary fibrosis include mutations in telomere-related genes and in surfactant-related genes, markers that could act as predisposition biomarkers in IPF. The aim of this review is to provide a comprehensive overview from the bench to bedside of current knowledge and recent insights on biomarkers in IPF, and to suggest future directions for research. Large-scale studies are still needed to confirm the exact role of these biomarkers.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| | - Ioannis Roussis
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| | - Andreas M. Matthaiou
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 714 09 Heraklion, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia 2029, Cyprus
| | - Katerina Dimakou
- 5th Department of Respiratory Medicine, ‘SOTIRIA’ Chest Diseases Hospital of Athens, 11527 Athens, Greece; (I.R.); (A.M.M.); (K.D.)
| |
Collapse
|
14
|
Elmore A, Almuntashiri A, Wang X, Almuntashiri S, Zhang D. Circulating Surfactant Protein D: A Biomarker for Acute Lung Injury? Biomedicines 2023; 11:2517. [PMID: 37760958 PMCID: PMC10525947 DOI: 10.3390/biomedicines11092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening lung diseases in critically ill patients. The lack of prognostic biomarkers has halted detection methods and effective therapy development. Quantitative biomarker-based approaches in the systemic circulation have been proposed as a means of enhancing diagnostic strategies as well as pharmacotherapy in a patient-specific manner. Pulmonary surfactants are complex mixtures made up of lipids and proteins, which are secreted into the alveolar space by epithelial type II cells under normal and pathological conditions. In this review, we summarize the current knowledge of SP-D in lung injury from both preclinical and clinical studies. Among surfactant proteins, surfactant protein-D (SP-D) has been more widely studied in ALI and ARDS. Recent studies have reported that SP-D has a superior discriminatory ability compared to other lung epithelial proteins for the diagnosis of ARDS, which could reflect the severity of lung injury. Furthermore, we shed light on recombinant SP-D treatment and its benefits as a potential drug for ALI, and we encourage further studies to translate SP-D into clinical use for diagnosis and treatment.
Collapse
Affiliation(s)
- Alyssa Elmore
- College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Ali Almuntashiri
- Department of Dentistry, Security Forces Hospital, Dammam 32314, Saudi Arabia
- Department of Preventive Dentistry, College of Dentistry, Qassim University, Ar Rass 52571, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA (D.Z.)
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA (D.Z.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA (D.Z.)
| |
Collapse
|
15
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
16
|
Levy L, Moshkelgosha S, Huszti E, Hunter S, Renaud-Picard B, Berra G, Kawashima M, Fernandez-Castillo J, Fuchs E, Dianti M, Ghany R, Keshavjee S, Singer LG, Tikkanen J, Martinu T. Pulmonary epithelial markers in phenotypes of chronic lung allograft dysfunction. J Heart Lung Transplant 2023; 42:1152-1160. [PMID: 36963446 DOI: 10.1016/j.healun.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Airway epithelial injury is thought to be a key event in the pathogenesis of chronic lung allograft dysfunction (CLAD). We investigated whether markers of epithelial activity and injury in bronchoalveolar lavage fluid (BAL) correlate with CLAD diagnosis and major CLAD phenotypes: bronchiolitis obliterans syndrome (BOS) vs restrictive allograft syndrome (RAS)-related phenotypes (including RAS, mixed phenotype, and all other patients with RAS-like opacities). METHODS CLAD status and phenotypes were retrospectively determined in a cohort of all consecutive adult, first, bilateral lung transplants performed 2010-2015, with available BAL samples. All patients with RAS-related phenotypes were included and 1:1 matched with BOS patients based on the time from transplant to CLAD-onset. Subjects who were CLAD-free for a minimum of 3 years post-transplant were 1:1 matched to CLAD patients and included as controls. Proteins that maintain the barrier function of the airway epithelial mucosa (club cell secretory protein, surfactant protein-D and epithelial mucins: MUC1, MUC5AC, MUC5B, MUC16), as well as epithelial cell death markers (M30&M65 representing epithelial cell apoptosis and overall death, respectively), were measured in BAL obtained within 6-months post CLAD onset using a double-sandwich ELISA or a multiplex bead assay. Protein levels were compared using Mann-Whitney-U-test. Association between protein levels and graft survival was assessed using Cox proportional hazards models, adjusted for CMV serology mismatch status and CLAD phenotype. RESULTS Fifty-four CLAD (27 BOS, 11 RAS, 7 mixed, 9 others with RAS-like opacities) patients and 23 CLAD-free controls were included. Median BAL levels were significantly higher in patients with CLAD compared to CLAD-free controls for M30 (124.5 vs 88.7 U/L), MUC1 (6.8 vs 3.2 pg/mL), and MUC16 (121.0 vs 30.1 pg/mL). When comparing CLAD phenotypes, M30 was significantly higher in patients with RAS-related phenotypes than BOS (160.9 vs 114.6 U/L). In multivariable models, higher M30 and MUC5B levels were associated with decreased allograft survival after CLAD onset independent of phenotype (p < 0.05 for all). CONCLUSIONS Airway epithelial mucins and cell death markers are enhanced in the BAL of patients with CLAD and can assist in differentiating between CLAD phenotypes and post-CLAD outcomes. Abnormal airway mucin expression and epithelial cell death may be involved in the pathogenesis of CLAD, and therefore their detection may aid in future selection of targeted therapies.
Collapse
Affiliation(s)
- Liran Levy
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada; Institute of Pulmonary Medicine, Sheba Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Sajad Moshkelgosha
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sarah Hunter
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | - Gregory Berra
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Mitsuaki Kawashima
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | - Eyal Fuchs
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Milagros Dianti
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Rasheed Ghany
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Jussi Tikkanen
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Adduri RSR, Cai K, Velasco‐Alzate K, Vasireddy R, Miller JW, de Frías SP, de Frías FP, Horimasu Y, Iwamoto H, Hattori N, Zhang Y, Gibson KF, Pal AK, Chen Z, Nicastro D, Li L, Cherian S, Sholl LM, Shetty S, Ndetan H, Maeda AH, Ferretto MAP, Hunninghake GM, Schwartz DA, Kass DJ, Rosas IO, Konduru NV. Plasma extracellular vesicle proteins as promising noninvasive biomarkers for diagnosis of idiopathic pulmonary fibrosis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e98. [PMID: 38939072 PMCID: PMC11080873 DOI: 10.1002/jex2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2024]
Abstract
High-resolution computed tomography (HRCT) imaging is critical for diagnostic evaluation of Idiopathic Pulmonary Fibrosis (IPF). However, several other interstitial lung diseases (ILDs) often exhibit radiologic pattern similar to IPF on HRCT making the diagnosis of the disease difficult. Therefore, biomarkers that distinguish IPF from other ILDs can be a valuable aid in diagnosis. Using mass spectrometry, we performed proteomic analysis of plasma extracellular vesicles (EVs) in patients diagnosed with IPF, chronic hypersensitivity pneumonitis, nonspecific interstitial pneumonitis, and healthy subjects. A five-protein signature was identified by lasso regression and was validated in an independent cohort using ELISA. The five-protein signature derived from mass spectrometry data showed an area under the receiver operating characteristic curve of 0.915 (95%CI: 0.819-1.011) and 0.958 (95%CI: 0.882-1.034) for differentiating IPF from other ILDs and from healthy subjects, respectively. Stepwise backwards elimination yielded a model with 3 and 2 proteins for discriminating IPF from other ILDs and healthy subjects, respectively, without compromising diagnostic accuracy. In summary, we discovered and validated EV protein biomarkers for differential diagnosis of IPF in independent cohorts. Interestingly, the biomarker panel could also distinguish IPF and healthy subjects with high accuracy. The biomarkers need to be evaluated in large prospective cohorts to establish their clinical utility.
Collapse
Affiliation(s)
- Raju S. R. Adduri
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Kai Cai
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Karen Velasco‐Alzate
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Ravikiran Vasireddy
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Jeffrey W. Miller
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Sergio Poli de Frías
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Internal MedicineMount Sinai Medical CenterMiami BeachFloridaUSA
| | - Fernando Poli de Frías
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Pulmonary, Critical Care, and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | - Yasushi Horimasu
- Department of Molecular and Internal MedicineGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal MedicineGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Noboru Hattori
- Department of Molecular and Internal MedicineGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kevin F. Gibson
- Division of Pulmonary, Allergy and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Zhe Chen
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Li Li
- Division of Environmental and Occupational Health SciencesDivision of Pulmonary Sciences and Critical Care MedicineDepartment of MedicineSchool of MedicineUniversity of Colorado DenverDenverColoradoUSA
| | - Sujith Cherian
- Department of Internal MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lynette M. Sholl
- Department of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sreerama Shetty
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Harrison Ndetan
- Department of BiostatisticsSchool of Health ProfessionsUniversity of Texas Health Science Center at TylerTylerTexasUSA
| | - Anthony H. Maeda
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Gary M. Hunninghake
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David A. Schwartz
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Daniel J. Kass
- Division of Pulmonary, Allergy and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ivan O. Rosas
- Pulmonary Critical Care Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Pulmonary, Critical Care, and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | - Nagarjun V. Konduru
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
| |
Collapse
|
18
|
Neighbors M, Li Q, Zhu SJ, Liu J, Wong WR, Jia G, Sandoval W, Tew GW. Bioactive lipid lysophosphatidic acid species are associated with disease progression in idiopathic pulmonary fibrosis. J Lipid Res 2023; 64:100375. [PMID: 37075981 PMCID: PMC10205439 DOI: 10.1016/j.jlr.2023.100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (
Collapse
Affiliation(s)
| | - Qingling Li
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Sha Joe Zhu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Jia Liu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech Inc., South San Francisco, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Gaik W Tew
- I2O Technology and Translational Research, Genentech Inc., South San Francisco, USA.
| |
Collapse
|
19
|
Rai M, Parthasarathi A, Beeraka NM, Kaleem Ullah M, Malamardi S, Padukudru S, Siddaiah JB, Uthaiah CA, Vishwanath P, Chaya SK, Ramaswamy S, Upadhyay S, Ganguly K, Mahesh PA. Circulatory Serum Krebs von Den Lungen-6 and Surfactant Protein-D Concentrations Predict Interstitial Lung Disease Progression and Mortality. Cells 2023; 12:cells12091281. [PMID: 37174681 PMCID: PMC10177381 DOI: 10.3390/cells12091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
There is a need for biomarkers to predict outcomes, including mortality, in interstitial lung disease (ILD). Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) are associated with lung damage and fibrosis in all ILDs and are related to important clinical outcomes. Though these two biomarkers have been associated with ILD outcomes, there are no studies that have evaluated their predictive potential in combination. This study aims to determine whether KL-6 and SP-D are linked to poor disease outcomes and mortality. Additionally, we plan to examine whether changes in KL-6 and SP-D concentrations correspond with changes in lung function and whether serial measurements improve their predictive potential to identify disease progression and mortality. Forty-four patients with ILD participated in a prospective 6-month longitudinal observational study. ILD patients who succumbed had the highest KL-6 levels (3990.4 U/mL (3490.0-4467.6)) and highest SP-D levels (256.1 ng/mL (217.9-260.0)), followed by those who deteriorated: KL-6 levels 1357.0 U/mL (822.6-1543.4) and SP-D levels 191.2 ng/mL (152.8-210.5). The generalized linear model (GLM) analysis demonstrated that changes in forced vital capacity (FVC), diffusing capacity of lungs for carbon monoxide (DLCO), forced expiratory volume in 1 s (FEV1), and partial pressure of arterial oxygen (PaO2) were correlated to changes in KL6 (p = 0.016, 0.014, 0.027, 0.047) and SP-D (p = 0.008, 0.012, 0.046, 0.020), respectively. KL-6 (odds ratio (OR): 2.87 (1.06-7.79)) and SPD (OR: 1.76 (1.05-2.97)) were independent predictors of disease progression, and KL-6 (hazard ratio (HR): 3.70 (1.46-9.41)) and SPD (HR: 2.58 (1.01-6.59)) were independent predictors of death by Cox regression analysis. Combined biomarkers (KL6 + SPD + CT + FVC) had the strongest ability to predict disease progression (AUC: 0.797) and death (AUC: 0.961), on ROC analysis. Elevated KL-6 and SPD levels are vital biomarkers for predicting the severity, progression, and outcomes of ILD. High baseline levels or an increase in levels over a six-month follow-up despite treatment indicate a poor prognosis. Combining KL6 and SPD with conventional measures yields a more potent prognostic indicator. Clinical studies are needed to test additional interventions, and future research will determine if this combined biomarker benefits different ethnicities globally.
Collapse
Affiliation(s)
- Meghna Rai
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ashwaghosha Parthasarathi
- Allergy, Asthma, and Chest Centre, Krishnamurthypuram, Mysuru 570004, India
- Rutgers Centre for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901-1293, USA
| | - Narasimha M Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu 515721, Andhra Pradesh, India
| | - Mohammed Kaleem Ullah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sowmya Malamardi
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
- School of Psychology & Public Health, College of Science Health and Engineering, La Trobe University, Melbourne 3086, Australia
| | - Sunag Padukudru
- Yenepoya Medical College, Yenepoya University, Mangalore 575018, Karnataka, India
| | - Jayaraj Biligere Siddaiah
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Chinnappa A Uthaiah
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Prashant Vishwanath
- Centre for Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Sindaghatta Krishnarao Chaya
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Subramanian Ramaswamy
- Department of Clinical Immunology & Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
20
|
Fu S, Song X, Tang X, Qian X, Du Z, Hu Y, Xu X, Zhang M. Synergistic effect of constituent drugs of Baibutang on improving Yin-deficiency pulmonary fibrosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116050. [PMID: 36535334 DOI: 10.1016/j.jep.2022.116050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baibutang (BBT) is an ancient prescription for the treatment of pulmonary fibrosis. Previous experiments have shown that BBT had a good therapeutic effect on pulmonary fibrosis. However, there had been no study on the synergy between drugs composed of BBT. Due to the interaction between the constituent drugs, exploring their synergy profile is of great significance for explaining the essence of BBT's efficacy in improving pulmonary fibrosis. AIM OF THE STUDY Based on the pharmacodynamic value, this study aimed to explore a method for the evaluation of the synergy profile between constituent drugs in traditional Chinese medicine (TCM) compounds. MATERIALS AND METHODS Nine herbs of BBT were divided into Zhikeqingre (ZK), Yangyinyiqi (YY) and Lishijianpi (LS) groups. A rat model of Yin-deficiency pulmonary fibrosis induced by thyroxine-bleomycin was used to evaluate the effects of BBT and the three groups. The pathological changes of lung tissue and the changes of biomarkers associated with fibrosis, Yin-deficiency and water-fluid metabolism were detected. After standardization of pharmacodynamics value (PV), the compatibility coefficient (CC) of the three groups, the relative PV (RPV) and contribution value (CV) of each group on every index were calculated. RESULTS The average CC on fibrosis indexes was 0.44, indicating that 44% of the efficacy of BBT came from the synergistic effect of the three groups. ZK group had the highest RPV (0.80) in improving fibrosis indexes such as histopathological changes, α-SMA, collagen-I and renin-angiotensin system. The average CC on Yin-deficiency indexes was 0.25, and YY group had the highest RPV (0.96) in improving deficiency indexes such as body temperature, cAMP/cGMP ratio, and PDEs, PGE2 and COX-2 levels. The average CC on water-fluid metabolism indexes was 0.15, and LS group had the highest RPV (1.52) in improving water-fluid metabolism indexes such as aquaporins, mucins, and surfactant proteins. The results also showed that 29% of the improvement effect of BBT on all indexes came from the synergistic effect of the three groups, and the contribution of ZK, YY and LS groups to the efficacy of BBT were 25%, 25% and 21%, respectively. CONCLUSION The established semiquantitative method can clearly and simply evaluate the synergy of the three groups in BBT, which will help to promote the research on the synergy of TCM compounds and other multiple-components combinations.
Collapse
Affiliation(s)
- San Fu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xianrui Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xiaoyan Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xiuhui Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Zesen Du
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Yingying Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Xianghong Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Mian Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
21
|
Tachibana K, Akira M, Arai T, Sugimoto C, Hayashi S, Inoue Y. Poor Outcome and Mortality in Patients with Lower Lung-Dominant Sarcoidosis. Can Respir J 2023; 2023:3624344. [PMID: 37096167 PMCID: PMC10122593 DOI: 10.1155/2023/3624344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Background Pulmonary sarcoidosis predominantly affects the upper lung zones but sometimes affects the lower lung zones. We hypothesised that patients with lower lung zone-dominant sarcoidosis had lower baseline forced vital capacity, progressive restrictive lung function decline, and higher long-term mortality. Methods We retrospectively reviewed clinical data including the pulmonary function tests of 108 consecutive patients with pulmonary sarcoidosis pathologically confirmed by lung and/or mediastinal lymph node biopsy from 2004 to 2014 from our database. Results Eleven patients (10.2%) with lower lung zone-dominant sarcoidosis were compared with 97 patients with nonlower lung zone-dominant sarcoidosis. The median age of the patients with lower dominance was significantly older (71 vs. 56, p = 0.0005). The patient with lower dominance had a significantly lower baseline percent forced vital capacity (FVC) (96.0% vs. 103%, p = 0.022). The annual change in FVC was -112 mL in those with lower dominance vs. 0 mL in nonlower dominance (p = 0.0033). Fatal acute deterioration was observed in three patients (27%) in the lower dominant group. Overall survival in the lower dominant group was significantly worse. Conclusions Patients with lower lung zone-dominant sarcoidosis had an older age and lower baseline FVC with disease progression and acute deterioration associated with higher long-term mortality.
Collapse
Affiliation(s)
- Kazunobu Tachibana
- Department of Respiratory Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Masanori Akira
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
- Department of Radiology, Katano Hospital, Katano City, Osaka, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| | - Chikatoshi Sugimoto
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
- Sugimoto Naika Clinic, Sakai City, Osaka, Japan
| | - Seiji Hayashi
- Department of Internal Medicine, Aihara Daini Hospital, Osaka City, Osaka, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Osaka, Japan
| |
Collapse
|
22
|
Comes A, Sgalla G, Ielo S, Magrì T, Richeldi L. Challenges in the diagnosis of idiopathic pulmonary fibrosis: the importance of a multidisciplinary approach. Expert Rev Respir Med 2023; 17:1-11. [PMID: 37005289 DOI: 10.1080/17476348.2023.2199156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
INTRODUCTION The diagnosis of Idiopathic pulmonary fibrosis (IPF) requires the careful exclusion of secondary causes of interstitial lung disease (ILD), and the collaboration among different specialists is considered paramount to establish a diagnosis with high diagnostic confidence. The multidisciplinary discussion (MDD) has assumed an increasing importance over the years in the different phases of the IPF diagnostic work-up. AREAS COVERED The role of MDD in the diagnosis and management of IPF will be described. Practical insights will be provided into how and when to perform MDD based on the available scientific evidence. Current limitations and future perspectives will be discussed. EXPERT OPINION In the absence of high diagnostic confidence, agreement between different specialists during MDD is recognized as a surrogate indicator of diagnostic accuracy. Often, despite a lengthy evaluation, the diagnosis remains unclassifiable in a significant percentage of patients. MDD therefore appears to be pivotal in attaining an accurate diagnosis of ILDs. The discussion among different specialists can also include other specialists, such as rheumatologists and thoracic surgeons, in addition to the core group of pulmonologists, radiologists, and pathologists. Such discussions can allow greater diagnostic accuracy and have important effects on management, pharmacologic therapies, and prognosis.
Collapse
Affiliation(s)
- Alessia Comes
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giacomo Sgalla
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Simone Ielo
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Tonia Magrì
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - L Richeldi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| |
Collapse
|
23
|
Mierke SK, Rapier KL, Method AM, King BA, Kingma PS. Intravenous surfactant protein D inhibits lipopolysaccharide-induced systemic inflammation. Ann Anat 2023; 247:152048. [PMID: 36690045 PMCID: PMC9992088 DOI: 10.1016/j.aanat.2023.152048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Surfactant protein D (SP-D) is an innate host defense protein that clears infectious pathogens from the lung and regulates pulmonary host defense cells. SP-D is also detected in lower concentrations in plasma and many other non-pulmonary tissues. Plasma levels of SP-D increase during infection and other proinflammatory states; however, the source and functions of SP-D in the systemic circulation are largely unknown. We hypothesized that systemic SP-D may clear infectious pathogens and regulate host defense cells in extrapulmonary systems. METHODS To determine if SP-D inhibited inflammation induced by systemic lipopolysaccharide (LPS), E.coli LPS was administered to mice via tail vein injection with and without SP-D and the inflammatory response was measured. RESULTS Systemic SP-D has a circulating half-life of 6 h. Systemic IL-6 levels in mice lacking the SP-D gene were similar to wild type mice at baseline but were significantly higher than wild type mice following LPS treatment (38,000 vs 29,900 ng/ml for 20 mg/kg LPS and 100,700 vs 73,700 ng/ml for 40 mg/kg LPS). In addition, treating wild type mice with purified intravenous SP-D inhibited LPS induced secretion of IL-6 and TNFα in a concentration dependent manner. Inhibition of LPS induced inflammation by SP-D correlated with SP-D LPS binding suggesting SP-D mediated inhibition of systemic LPS requires direct SP-D LPS interactions. CONCLUSIONS Taken together, the above results suggest that circulating SP-D decreases systemic inflammation and raise the possibility that a physiological purpose of increasing systemic SP-D levels during infection is to scavenge systemic infectious pathogens and limit inflammation-induced tissue injury.
Collapse
Affiliation(s)
- Sarah K Mierke
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelsey L Rapier
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Method
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brooke A King
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul S Kingma
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Alsomali H, Palmer E, Aujayeb A, Funston W. Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis: A Narrative Review. Pulm Ther 2023; 9:177-193. [PMID: 36773130 PMCID: PMC10203082 DOI: 10.1007/s41030-023-00216-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown aetiology. Patients typically present with symptoms of chronic dyspnoea and cough over a period of months to years. IPF has a poor prognosis, with an average life expectancy of 3-5 years from diagnosis if left untreated. Two anti-fibrotic medications (nintedanib and pirfenidone) have been approved for the treatment of IPF. These drugs slow disease progression by reducing decline in lung function. Early diagnosis is crucial to ensure timely treatment selection and improve outcomes. High-resolution computed tomography (HRCT) plays a major role in the diagnosis of IPF. In this narrative review, we discuss the importance of early diagnosis, awareness among primary care physicians, lung cancer screening programmes and early IPF detection, and barriers to accessing anti-fibrotic medications.
Collapse
Affiliation(s)
- Hana Alsomali
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Evelyn Palmer
- Department of Respiratory Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK.
| | - Avinash Aujayeb
- Department of Respiratory Medicine, Northumbria Healthcare NHS Trust, Northumbria Way, Cramlington, NE23 6NZ, UK
| | - Wendy Funston
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,Department of Respiratory Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK
| |
Collapse
|
25
|
Mikolasch TA, George PM, Sahota J, Nancarrow T, Barratt SL, Woodhead FA, Kouranos V, Cope VS, Creamer AW, Fidan S, Ganeshan B, Hoy L, Mackintosh JA, Shortman R, Duckworth A, Fallon J, Garthwaite H, Heightman M, Adamali HI, Lines S, Win T, Wollerton R, Renzoni EA, Steward M, Wells AU, Gibbons M, Groves AM, Gooptu B, Scotton CJ, Porter JC. Multi-center evaluation of baseline neutrophil-to-lymphocyte (NLR) ratio as an independent predictor of mortality and clinical risk stratifier in idiopathic pulmonary fibrosis. EClinicalMedicine 2023; 55:101758. [PMID: 36483266 PMCID: PMC9722446 DOI: 10.1016/j.eclinm.2022.101758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disorder with a variable disease trajectory. The aim of this study was to assess the potential of neutrophil-to-lymphocyte ratio (NLR) to predict outcomes in IPF. Methods We adopted a two-stage discovery (n = 71) and validation (n = 134) design using patients from the UCL partners (UCLp) cohort. We then combined discovery and validation cohorts and included an additional 794 people with IPF, using real-life data from 5 other UK centers, to give a combined cohort of 999 patients. Data were collected from patients presenting over a 13-year period (2006-2019) with mean follow up of 3.7 years (censoring: 2018-2020). Findings In the discovery analysis, we showed that high values of NLR (>/ = 2.9 vs < 2.9) were associated with increased risk of mortality in IPF (HR 2.04, 95% CI 1.09-3.81, n = 71, p = 0.025). This was confirmed in the validation (HR 1.91, 95% CI 1.15-3.18, n = 134, p = 0.0114) and combined cohorts (HR 1.65, n = 999, 95% CI 1.39-1.95; p < 0·0001). NLR correlated with GAP stage and GAP index (p < 0.0001). Stratifying patients by NLR category (low/high) showed significant differences in survival for GAP stage 2 (p < 0.0001), however not for GAP stage 1 or 3. In a multivariate analysis, a high NLR was an independent predictor of mortality/progression after adjustment for individual GAP components and steroid/anti-fibrotic use (p < 0·03). Furthermore, incorporation of baseline NLR in a modified GAP-stage/index, GAP-index/stage-plus, refined prognostic ability as measured by concordance (C)-index. Interpretation We have identified NLR as a widely available test that significantly correlates with lung function, can predict outcomes in IPF and refines cohort staging with GAP. NLR may allow timely prioritisation of at-risk patients, even in the absence of lung function. Funding Breathing Matters, GSK, CF Trust, BLF-Asthma, MRC, NIHR Alpha-1 Foundation.
Collapse
Affiliation(s)
- Theresia A. Mikolasch
- CITR, UCL Respiratory, UCL, London, UK
- Interstitial Lung Disease Service, UCLH NHS Trust, London, UK
| | - Peter M. George
- Interstitial Lung Disease Unit, Royal Brompton Hospital, UK
- National Heart and Lung Institute, Imperial College London, UK
| | - Jagdeep Sahota
- CITR, UCL Respiratory, UCL, London, UK
- Interstitial Lung Disease Service, UCLH NHS Trust, London, UK
| | - Thomas Nancarrow
- College of Medicine & Health, University of Exeter, Exeter, UK
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Shaney L. Barratt
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Felix A. Woodhead
- Institute for Lung Health and Leicester Interstitial Lung Disease Service and NIHR Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, Groby Road, Leicester, LE3, UK
- Department of Respiratory Sciences and Leicester Institute of Structural & Chemical Biology University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 5HB, UK
| | - Vasilis Kouranos
- Interstitial Lung Disease Unit, Royal Brompton Hospital, UK
- National Heart and Lung Institute, Imperial College London, UK
| | | | - Andrew W. Creamer
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Silan Fidan
- Institute for Lung Health and Leicester Interstitial Lung Disease Service and NIHR Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, Groby Road, Leicester, LE3, UK
- Department of Respiratory Sciences and Leicester Institute of Structural & Chemical Biology University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 5HB, UK
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, UCL and Department of Nuclear Medicine UCLH, UK
| | - Luke Hoy
- Institute of Nuclear Medicine, UCL and Department of Nuclear Medicine UCLH, UK
| | - John A. Mackintosh
- Interstitial Lung Disease Unit, Royal Brompton Hospital, UK
- The Prince Charles Hospital, Queensland, Australia
| | - Robert Shortman
- Institute of Nuclear Medicine, UCL and Department of Nuclear Medicine UCLH, UK
| | - Anna Duckworth
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Janet Fallon
- Department of Respiratory Medicine, Somerset Lung Centre, Musgrove Park Hospital, Taunton, UK
| | | | | | - Huzaifa I. Adamali
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol, UK
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Sarah Lines
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Thida Win
- Lister Hospital, North East Herts Trust, Stevenage UK
| | - Rebecca Wollerton
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Elisabetta A. Renzoni
- Interstitial Lung Disease Unit, Royal Brompton Hospital, UK
- National Heart and Lung Institute, Imperial College London, UK
| | - Matthew Steward
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Athol U. Wells
- Interstitial Lung Disease Unit, Royal Brompton Hospital, UK
- National Heart and Lung Institute, Imperial College London, UK
| | - Michael Gibbons
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Ashley M. Groves
- Institute of Nuclear Medicine, UCL and Department of Nuclear Medicine UCLH, UK
| | - Bibek Gooptu
- Institute for Lung Health and Leicester Interstitial Lung Disease Service and NIHR Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, Groby Road, Leicester, LE3, UK
- Department of Respiratory Sciences and Leicester Institute of Structural & Chemical Biology University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 5HB, UK
| | - Chris J. Scotton
- College of Medicine & Health, University of Exeter, Exeter, UK
- Academic Department of Respiratory Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Joanna C. Porter
- CITR, UCL Respiratory, UCL, London, UK
- Interstitial Lung Disease Service, UCLH NHS Trust, London, UK
| |
Collapse
|
26
|
Diesler R, Cottin V. Pulmonary fibrosis associated with rheumatoid arthritis: from pathophysiology to treatment strategies. Expert Rev Respir Med 2022; 16:541-553. [PMID: 35695895 DOI: 10.1080/17476348.2022.2089116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is the most common inflammatory autoimmune disease, characterised by symmetric destructive arthritis and synovitis. Lung involvement is frequent, including in the form of interstitial lung disease (ILD). RA-ILD often presents with a radiologic and pathologic pattern of usual interstitial pneumonia, similar to idiopathic pulmonary fibrosis, highlighting the similarities between the two diseases, but other patterns and pathological associations are described. AREAS COVERED This article reviews the pathogenesis of pulmonary fibrosis in the setting of rheumatoid arthritis as well as the current and future therapeutic options. EXPERT OPINION Pulmonary fibrosis in the setting of RA-ILD is an example of genotype-environment interaction and involves multiple mechanisms including autoimmunity, inflammation and fibrogenesis. Despite that ILD conveys most of the exceeding mortality in RA patients, there are no official guidelines for the management of RA-ILD. Attention should be paid to potential lung toxicity of RA treatment even though some of them might help stabilise the ILD. Current standard of care is often composed of glucocorticoids that may be associated with immunosuppressive therapy. Following the approval of antifibrotic therapy for ILDs with a progressive fibrosing phenotype, current works are evaluating the benefit of such treatment in RA-ILD.
Collapse
Affiliation(s)
- Rémi Diesler
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| |
Collapse
|
27
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
28
|
White ES, Thomas M, Stowasser S, Tetzlaff K. Challenges for Clinical Drug Development in Pulmonary Fibrosis. Front Pharmacol 2022; 13:823085. [PMID: 35173620 PMCID: PMC8841605 DOI: 10.3389/fphar.2022.823085] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a pathologic process associated with scarring of the lung interstitium. Interstitial lung diseases (ILDs) encompass a large and heterogenous group of disorders, a number of which are characterized by progressive pulmonary fibrosis that leads to respiratory failure and death. Idiopathic pulmonary fibrosis (IPF) has been described as an archetype of progressive fibrosing ILD, and the development of pirfenidone and nintedanib has been a major breakthrough in the treatment of patients with this deadly disease. Both drugs principally target scar-forming fibroblasts and have been shown to significantly slow down the accelerated decline of lung function by approximately 50%. In addition, nintedanib has been approved for patients with other progressive fibrosing ILDs and systemic sclerosis-associated ILD. However, there is still no cure for pulmonary fibrosis and no meaningful improvement of symptoms or quality of life has been shown. Advancement in research, such as the advent of single cell sequencing technology, has identified additional pathologic cell populations beyond the fibroblast which could be targeted for therapeutic purposes. The preclinical and clinical development of novel drug candidates is hampered by profound challenges such as a lack of sensitive clinical outcomes or suitable biomarkers that would provide an early indication of patient benefit. With the availability of these anti-fibrotic treatments, it has become even more difficult to demonstrate added efficacy, in particular in short-term clinical studies. Patient heterogeneity and the paucity of biomarkers of disease activity further complicate clinical development. It is conceivable that future treatment of pulmonary fibrosis will need to embrace more precision in treating the right patient at the right time, explore novel measures of efficacy, and likely combine treatment options.
Collapse
Affiliation(s)
- Eric S. White
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Matthew Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Susanne Stowasser
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Kay Tetzlaff
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
- Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Popmihajlov Z, Sutherland DJ, Horan GS, Ghosh A, Lynch DA, Noble PW, Richeldi L, Reiss TF, Greenberg S. CC-90001, a c-Jun N-terminal kinase (JNK) inhibitor, in patients with pulmonary fibrosis: design of a phase 2, randomised, placebo-controlled trial. BMJ Open Respir Res 2022; 9:9/1/e001060. [PMID: 35058236 PMCID: PMC8783810 DOI: 10.1136/bmjresp-2021-001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/18/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal interstitial lung disease (ILD); other ILDs have a progressive, fibrotic phenotype (PF-ILD). Antifibrotic agents can slow but not stop disease progression in patients with IPF or PF-ILD. c-Jun N-terminal kinases (JNKs) are stress-activated protein kinases implicated in the underlying mechanisms of fibrosis, including epithelial cell death, inflammation and polarisation of profibrotic macrophages, fibroblast activation and collagen production. CC-90001, an orally administered (PO), one time per day, JNK inhibitor, is being evaluated in IPF and PF-ILD. Methods and analysis This is a phase 2, randomised, double-blind, placebo-controlled study evaluating efficacy and safety of CC-90001 in patients with IPF (main study) and patients with PF-ILD (substudy). Both include an 8-week screening period, a 24-week treatment period, up to an 80-week active-treatment extension and a 4-week post-treatment follow-up. Patients with IPF (n=165) will be randomised 1:1:1 to receive 200 mg or 400 mg CC-90001 or placebo administered PO one time per day; up to 25 patients/arm will be permitted concomitant pirfenidone use. Forty-five patients in the PF-ILD substudy will be randomised 2:1 to receive 400 mg CC-90001 or placebo. The primary endpoint is change in per cent predicted forced vital capacity from baseline to Week 24 in patients with IPF. Ethics and dissemination This study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. Trial registration number NCT03142191.
Collapse
Affiliation(s)
| | | | | | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado, USA
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Luca Richeldi
- Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli IRCSS, Rome, Italy
| | | | - Steven Greenberg
- Bristol Myers Squibb, Princeton, New Jersey, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
30
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
31
|
Kim JS, Anderson MR, Bernstein EJ, Oelsner EC, Raghu G, Noth I, Tsai MY, Salvatore M, Austin JHM, Hoffman EA, Barr RG, Podolanczuk AJ. Associations of D-Dimer with Computed Tomographic Lung Abnormalities, Serum Biomarkers of Lung Injury, and Forced Vital Capacity: MESA Lung Study. Ann Am Thorac Soc 2021; 18:1839-1848. [PMID: 33861685 PMCID: PMC8641831 DOI: 10.1513/annalsats.202012-1557oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Rationale: The coagulation cascade may play a role in the pathogenesis of interstitial lung disease through increased production of thrombin and fibrin deposition. Whether circulating coagulation cascade factors are linked to lung inflammation and scarring among community-dwelling adults is unknown. Objectives: To test the hypothesis that higher baseline D-dimer concentrations are associated with markers of early lung injury and scarring. Methods: Using the MESA (Multi-Ethnic Study of Atherosclerosis) cohort (n = 6,814), we examined associations of baseline D-dimer concentrations with high attenuation areas from examination 1 (2000-2002; n = 6,184) and interstitial lung abnormalities from examination 5 computed tomographic (CT) scans (2010-2012; n = 2,227), and serum MMP-7 (matrix metalloproteinase-7) and SP-A (surfactant protein-A) from examination 1 (n = 1,098). We examined longitudinal change in forced vital capacity (FVC) from examinations 3-6 (2004-2018, n = 3,562). We used linear logistic regression and linear mixed models to examine associations and adjust for potential confounders. Results: The mean (standard deviation) age of the cohort was 62 (10) years, and the D-dimer concentration was 0.35 (0.69) ug/ml. For every 10% increase in D-dimer concentration, there was an increase in high attenuation area percentage of 0.27 (95% confidence interval (CI), 0.08-0.47) after adjustment for covariates. Associations were stronger among those older than 65 years (P values for interaction < 0.001). A 10% increase in D-dimer concentration was associated with an odds ratio of 1.05 for interstitial lung abnormalities (95% CI, 0.99-1.11). Higher D-dimer concentrations were associated with higher serum MMP-7 and a faster decline in FVC. D-dimer was not associated with SP-A. Conclusions: Higher D-dimer concentrations were associated with a greater burden of lung parenchymal abnormalities detected on CT scan, MMP-7, and FVC decline among community-dwelling adults.
Collapse
Affiliation(s)
- John S. Kim
- Department of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Medicine
| | | | | | | | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, Washington
| | - Imre Noth
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Eric A. Hoffman
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - R. Graham Barr
- Department of Medicine
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Anna J. Podolanczuk
- Department of Medicine
- Department of Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
32
|
Almuntashiri S, James C, Wang X, Siddiqui B, Zhang D. The Potential of Lung Epithelium Specific Proteins as Biomarkers for COVID-19-Associated Lung Injury. Diagnostics (Basel) 2021; 11:diagnostics11091643. [PMID: 34573984 PMCID: PMC8469873 DOI: 10.3390/diagnostics11091643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection was first reported in Wuhan, China, and was declared a pandemic by the World Health Organization (WHO) on 20 March 2020. The respiratory system is the major organ system affected by COVID-19. Numerous studies have found lung abnormalities in patients with COVID-19, including shortness of breath, respiratory failure, and acute respiratory distress syndrome. The identification of lung-specific biomarkers that are easily measurable in serum would be valuable for both clinicians and patients with such conditions. This review is focused on the pneumoproteins and their potential to serve as biomarkers for COVID-19-associated lung injury, including Krebs von den Lungen-6 (KL-6), surfactant proteins (SP-A, SP-B, SP-C, SP-D), and Clara cell secretory protein (CC16). The current findings indicate the aforementioned pneumoproteins may reflect the severity of pulmonary manifestations and could serve as potential biomarkers in COVID-19-related lung injury.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (X.W.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Chelsea James
- College of Pharmacy, University of Georgia, Augusta, GA 30912, USA;
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (X.W.)
| | - Budder Siddiqui
- Division of Infectious Diseases, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (X.W.)
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
33
|
Alay H, Laloglu E. The role of angiopoietin-2 and surfactant protein-D levels in SARS-CoV-2-related lung injury: A prospective, observational, cohort study. J Med Virol 2021; 93:6008-6015. [PMID: 34232533 PMCID: PMC8427084 DOI: 10.1002/jmv.27184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/06/2023]
Abstract
Introduction Coronavirus disease‐2019 (COVID‐19) is a respiratory disease whose clinical manifestation ranges from asymptomatic to severe respiratory failure. The purpose of this study was to investigate the place of serum surfactant‐D (SP‐D) and angiopoetin‐2 (Ang‐2) levels in predicting severity of disease in patients diagnosed with COVID‐19. Methods Sixty‐four patients diagnosed with COVID‐19 between September 2020 and February 2021, 50 patients diagnosed with community‐acquired pneumonia and a 50‐member healthy control group were included in the study. Plasma samples and clinical data were collected within 72 h after admission, during hospital stay. Serum SP‐D and Ang‐2 concentrations were measured using the enzyme‐linked immunosorbent assay. Results SP‐D and Ang‐2 levels were significantly higher in the mild–moderate pneumonia and severe/critical patient groups compared to the asymptomatic and noncomplicated COVID‐19 patients (p < 0.001 for all groups). Serum SP‐D and Ang‐2 levels of severe‐critical COVID‐19 patients were significantly higher than CAP patients (p < 0.001). Powerful correlation was present between clinical severity of COVID‐19 and SP‐D and Ang‐2 levels (r = 0.885 p < 0.001 and r = 0.913 p < 0.001, respectively). Cut‐off values of 37.7 ng/ml (AUC = 0.763, p < 0.001, 95% confidence interval [CI] = 0.667–0.860) for SP‐D and 4208.3 pg/ml (AUC = 0.659, p = 0.004, 95% CI = 0.554–0.763) for Ang‐2 were identified as predictors of COVID‐19 disease at receiver operating characteristic curve analysis. Conclusion SP‐D and Ang‐2 are predictive factors in differentiating COVID‐19 patients and determining severity of disease. These data may be important for the initiation of treatment in the early stage of the disease in patients with COVID‐19. All clinicians should be aware of cutaneous lesions of COVID‐19 Such manifestations could be the first presentation of the infection or an indicator of the deterioration of the patient s wellbeing. Also, such dermatologic symptoms could be because of anti‐SARS‐CoV‐2 medications, expressing the need to monitor patients cautiously.
Collapse
Affiliation(s)
- Handan Alay
- Department of Infectious Diseases and Clinical Microbiology, Faculty of MedicineAtaturk UniversityErzurumTurkey
| | - Esra Laloglu
- Department of Medical Biochemistry, Faculty of MedicineAtaturk UniversityErzurumTurkey
| |
Collapse
|
34
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
35
|
Stainer A, Faverio P, Busnelli S, Catalano M, Della Zoppa M, Marruchella A, Pesci A, Luppi F. Molecular Biomarkers in Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. Int J Mol Sci 2021; 22:6255. [PMID: 34200784 PMCID: PMC8230407 DOI: 10.3390/ijms22126255] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most lethal form of interstitial pneumonia of unknown cause, is associated with a specific radiological and histopathological pattern (the so-called "usual interstitial pneumonia" pattern) and has a median survival estimated to be between 3 and 5 years after diagnosis. However, evidence shows that IPF has different clinical phenotypes, which are characterized by a variable disease course over time. At present, the natural history of IPF is unpredictable for individual patients, although some genetic factors and circulating biomarkers have been associated with different prognoses. Since in its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. Two drugs, pirfenidone and nintedanib, have been shown to modify the disease course by slowing down the decline in lung function. It is also known that 5-10% of the IPF patients may be affected by episodes of acute and often fatal decline. The acute worsening of disease is sometimes attributed to identifiable conditions, such as pneumonia or heart failure; but many of these events occur without an identifiable cause. These idiopathic acute worsenings are termed acute exacerbations of IPF. To date, clinical biomarkers, diagnostic, prognostic, and theranostic, are not well characterized. However, they could become useful tools helping facilitate diagnoses, monitoring disease progression and treatment efficacy. The aim of this review is to cover molecular mechanisms underlying IPF and research into new clinical biomarkers, to be utilized in diagnosis and prognosis, even in patients treated with antifibrotic drugs.
Collapse
Affiliation(s)
- Anna Stainer
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Paola Faverio
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Sara Busnelli
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Martina Catalano
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
| | - Matteo Della Zoppa
- Pulmonology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Alberto Pesci
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| | - Fabrizio Luppi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy; (A.S.); (P.F.); (M.C.); (A.P.)
- Respiratory Unit, San Gerardo Hospital, 20900 Monza, Italy; (S.B.); (A.M.)
| |
Collapse
|
36
|
Shao T, Shi X, Yang S, Zhang W, Li X, Shu J, Alqalyoobi S, Zeki AA, Leung PS, Shuai Z. Interstitial Lung Disease in Connective Tissue Disease: A Common Lesion With Heterogeneous Mechanisms and Treatment Considerations. Front Immunol 2021; 12:684699. [PMID: 34163483 PMCID: PMC8215654 DOI: 10.3389/fimmu.2021.684699] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
Connective tissue disease (CTD) related interstitial lung disease (CTD-ILD) is one of the leading causes of morbidity and mortality of CTD. Clinically, CTD-ILD is highly heterogenous and involves rheumatic immunity and multiple manifestations of respiratory complications affecting the airways, vessels, lung parenchyma, pleura, and respiratory muscles. The major pathological features of CTD are chronic inflammation of blood vessels and connective tissues, which can affect any organ leading to multi-system damage. The human lung is particularly vulnerable to such damage because anatomically it is abundant with collagen and blood vessels. The complex etiology of CTD-ILD includes genetic risks, epigenetic changes, and dysregulated immunity, which interact leading to disease under various ill-defined environmental triggers. CTD-ILD exhibits a broad spectra of clinical manifestations: from asymptomatic to severe dyspnea; from single-organ respiratory system involvement to multi-organ involvement. The disease course is also featured by remissions and relapses. It can range from stability or slow progression over several years to rapid deterioration. It can also present clinically as highly progressive from the initial onset of disease. Currently, the diagnosis of CTD-ILD is primarily based on distinct pathology subtype(s), imaging, as well as related CTD and autoantibodies profiles. Meticulous comprehensive clinical and laboratory assessment to improve the diagnostic process and management strategies are much needed. In this review, we focus on examining the pathogenesis of CTD-ILD with respect to genetics, environmental factors, and immunological factors. We also discuss the current state of knowledge and elaborate on the clinical characteristics of CTD-ILD, distinct pathohistological subtypes, imaging features, and related autoantibodies. Furthermore, we comment on the identification of high-risk patients and address how to stratify patients for precision medicine management approaches.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Xiaodong Shi
- Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Shanpeng Yang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwei Shu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shehabaldin Alqalyoobi
- Internal Medicine - Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, Greenville, NC, United States
| | - Amir A. Zeki
- University of California (U.C.), Davis, Lung Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis School of Medicine, University of California, Davis, Davis, CA, United States
| | - Patrick S. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Mayr CH, Simon LM, Leuschner G, Ansari M, Schniering J, Geyer PE, Angelidis I, Strunz M, Singh P, Kneidinger N, Reichenberger F, Silbernagel E, Böhm S, Adler H, Lindner M, Maurer B, Hilgendorff A, Prasse A, Behr J, Mann M, Eickelberg O, Theis FJ, Schiller HB. Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Mol Med 2021; 13:e12871. [PMID: 33650774 PMCID: PMC8033531 DOI: 10.15252/emmm.202012871] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
The correspondence of cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we generated and integrated single-cell transcriptomic and proteomic data from multiple large pulmonary fibrosis patient cohorts. Integration of 233,638 single-cell transcriptomes (n = 61) across three independent cohorts enabled us to derive shifts in cell type proportions and a robust core set of genes altered in lung fibrosis for 45 cell types. Mass spectrometry analysis of lung lavage fluid (n = 124) and plasma (n = 141) proteomes identified distinct protein signatures correlated with diagnosis, lung function, and injury status. A novel SSTR2+ pericyte state correlated with disease severity and was reflected in lavage fluid by increased levels of the complement regulatory factor CFHR1. We further discovered CRTAC1 as a biomarker of alveolar type-2 epithelial cell health status in lavage fluid and plasma. Using cross-modal analysis and machine learning, we identified the cellular source of biomarkers and demonstrated that information transfer between modalities correctly predicts disease status, suggesting feasibility of clinical cell state monitoring through longitudinal sampling of body fluid proteomes.
Collapse
Affiliation(s)
- Christoph H Mayr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Lukas M Simon
- Institute of Computational BiologyHelmholtz Zentrum MünchenMunichGermany
| | - Gabriela Leuschner
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
- Department of Internal Medicine VLudwig‐Maximilians University (LMU) MunichMember of the German Center for Lung Research (DZL), CPC‐M bioArchiveMunichGermany
| | - Meshal Ansari
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
- Institute of Computational BiologyHelmholtz Zentrum MünchenMunichGermany
| | - Janine Schniering
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
- Department of RheumatologyCenter of Experimental RheumatologyUniversity & University Hospital ZurichZurichSwitzerland
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Ilias Angelidis
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Maximilian Strunz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Pawandeep Singh
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Nikolaus Kneidinger
- Department of Internal Medicine VLudwig‐Maximilians University (LMU) MunichMember of the German Center for Lung Research (DZL), CPC‐M bioArchiveMunichGermany
| | - Frank Reichenberger
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Edith Silbernagel
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Stephan Böhm
- Faculty of MedicineMax von Pettenkofer‐Institute, VirologyNational Reference Center for RetrovirusesLMU MünchenMunichGermany
| | - Heiko Adler
- Helmholtz Zentrum MünchenResearch Unit Lung Repair and Regeneration, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Michael Lindner
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
- University Department of Visceral and Thoracic Surgery SalzburgParacelsus Medical UniversitySalzburgAustria
| | - Britta Maurer
- Department of RheumatologyCenter of Experimental RheumatologyUniversity & University Hospital ZurichZurichSwitzerland
| | - Anne Hilgendorff
- Center for Comprehensive Developmental Care (CDeCLMU)Member of the German Center for Lung Research (DZL)Hospital of the Ludwig‐Maximilians University (LMU)CPC‐M bioArchiveMunichGermany
| | - Antje Prasse
- Department of PneumologyHannover Medical School, Member of the German Center for Lung Research (DZL)HannoverGermany
| | - Jürgen Behr
- Department of Internal Medicine VLudwig‐Maximilians University (LMU) MunichMember of the German Center for Lung Research (DZL), CPC‐M bioArchiveMunichGermany
- Asklepios Fachkliniken Munich‐GautingCPC‐M bioArchive, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Fabian J Theis
- Institute of Computational BiologyHelmholtz Zentrum MünchenMunichGermany
| | - Herbert B Schiller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC–M bioArchiveHelmholtz Zentrum München, Member of the German Center for Lung Research (DZL)MunichGermany
| |
Collapse
|
38
|
Wang J, Zheng P, Huang Z, Huang H, Xue M, Liao C, Sun B, Zhong N. Serum SP-A and KL-6 levels can predict the improvement and deterioration of patients with interstitial pneumonia with autoimmune features. BMC Pulm Med 2020; 20:315. [PMID: 33267857 PMCID: PMC7709263 DOI: 10.1186/s12890-020-01336-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Some patients with interstitial pneumonia with autoimmune features (IPAF) showed a progressive course despite therapy. This study aimed to evaluate whether serial changes in the serum levels of surfactant protein-A (SP-A) and Krebs von den Lungen-6 (KL-6) can predict disease progression. METHODS Sixty-four patients with IPAF and 41 patients with non-fibrotic lung disease (non-FLD) were examined. Based on long-term changes in lung function, 36 IPAF patients who were followed up for more than 3 months were divided into a progressive group (n = 9), an improvement group (n = 13), and a stable group (n = 14). Serum KL-6 and SP-A levels were measured. The sensitivity, specificity, cut-off value, and area under the curve (AUC) value for each of the indices were determined using receiver operating characteristic (ROC) curve analysis. The expression differences in these biomarkers and their correlation with disease severity were analyzed. RESULTS Compared with non-FLD patients, serum SP-A and KL-6 levels in IPAF patients were increased significantly [SP-A: (p < 0.001); KL-6: (p < 0.001)] and negatively correlated with DLCO (SP-A: rS = - 0.323, p = 0.018; KL-6: rS = - 0.348, p = 0.0011). In patients with progressive disease, the posttreatment serum SP-A and KL-6 levels were increased significantly compared with pretreatment levels [SP-A: (p = 0.021); KL-6: (p = 0.008)]. In patients showing improvement, the levels were decreased significantly [SP-A (p = 0.007) and KL-6 (p = 0.002)]. Changes in serum biomarkers (Delta SP-A and Delta KL-6) were significantly negatively correlated with changes in lung function (Delta FVC, Delta DLCO and Delta FEV1) (rS = 0.482, p < 0.05). A significant positive correlation was found between Delta SP-A and Delta KL-6 (rS = 0.482, p < 0.001). CONCLUSIONS Serum SP-A and KL-6 offer high sensitivity and specificity for the diagnosis of IPAF. The decrease in serum SP-A and/or KL-6 levels in patients with IPAF is related to the improvement in pulmonary function. SP-A and KL-6 may be important biomarkers for predicting disease progression in patients with IPAF.
Collapse
Affiliation(s)
- Jingxian Wang
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China.,National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Gui zhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Zhifeng Huang
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Chenxi Liao
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China.
| | - Nanshan Zhong
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
39
|
Tajima Y, Tsuruta M, Hasegawa H, Okabayashi K, Ishida T, Yahagi M, Makino A, Koishikawa K, Akimoto S, Sin DD, Kitagawa Y. Association of surfactant protein D with pulmonary metastases from colon cancer. Oncol Lett 2020; 20:322. [PMID: 33123238 PMCID: PMC7583848 DOI: 10.3892/ol.2020.12185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Surfactant protein D (SP-D) is a member of the collectin family of proteins, which is secreted by airway epithelial cells. SP-D serves an important role in the immune system and in the inflammatory regulation of the lung. SP-D was recently found to suppress lung cancer progression by downregulating epidermal growth factor signaling. However, the relationship between SP-D and pulmonary metastases from colon cancer remains unknown. The present study aimed to determine whether SP-D may suppress the development of the mouse rectal carcinoma cell line, CMT93, in vitro. The present study investigated the effect of SP-D on pulmonary metastases from colon cancer in vivo using SP-D knockout mice. A wound healing assay and cell invasion assay revealed that SP-D suppressed the proliferation, migration and invasion of CMT-93 cells. After injection of CMT-93 cells into the tail vein, SP-D knockout mice were significantly more susceptible to developing pulmonary metastases than C57/BL6 mice (control). Moreover, a novel cell line (CMT-93 pulmonary metastasis; CMT-93 PM) was established from the lesions of pulmonary metastases in C57/BL6 mice following injection of CMT93 into the tail vein. CMT-93 PM exhibited more robust invasion and proliferation compared to CMT93, which was unaffected by exposure to SP-D. A higher incidence of pulmonary metastases was detected following injection of CMT93 PM into the tail vein of C57/BL6 mice compared with CMT-93. Consequently, SP-D may be involved in the pathogenesis of pulmonary metastases from colon cancer.
Collapse
Affiliation(s)
- Yuki Tajima
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Tsuruta
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirotoshi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Ishida
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Yahagi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akitsugu Makino
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaoru Koishikawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shingo Akimoto
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Don D. Sin
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver BC V6Z 1Y6, Canada
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
40
|
Ikeda K, Chiba H, Nishikiori H, Azuma A, Kondoh Y, Ogura T, Taguchi Y, Ebina M, Sakaguchi H, Miyazawa S, Suga M, Sugiyama Y, Nukiwa T, Kudoh S, Takahashi H. Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: a post-hoc analysis of the phase 3 trial in Japan. Respir Res 2020; 21:316. [PMID: 33256760 PMCID: PMC7706186 DOI: 10.1186/s12931-020-01582-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disorder with a variable disease course. The recent advancement of antifibrotic therapy has increased the need for reliable and specific biomarkers. This study aimed to assess alveolar epithelial biomarkers as predictors for the efficacy of the antifibrotic drug pirfenidone. Methods We conducted a post-hoc analysis of the prospective, multicenter, randomized, placebo-controlled, phase 3 trial of pirfenidone in Japan (total, n = 267; pirfenidone, n = 163; placebo, n = 104). Logistic regression analysis was performed to extract parameters that predicted disease progression, defined by a ≥ 10% relative decline in vital capacity (VC) from baseline and/or death, at week 52. For assessment of serum surfactant protein (SP)-D, SP-A and Krebs von den Lungen (KL)-6, all patients were dichotomized by the median concentration of each biomarker at baseline to the high and low biomarker subgroups. Associations of these concentrations were examined with changes in VC at each time point from baseline up to week 52, along with progression-free survival (PFS). Additionally, the effect of pirfenidone treatment on serial longitudinal concentrations of these biomarkers were evaluated. Results In the multivariate logistic regression analysis, body mass index (BMI), %VC and SP-D in the pirfenidone group, and BMI and %VC in the placebo group were indicated as predictors of disease progression. Pirfenidone treatment reduced the decline in VC with statistical significance in the low SP-D and low SP-A subgroups over most of the treatment period, and also prolonged PFS in the low SP-D and low KL-6 subgroups. Furthermore, SP-D levels over time course were reduced in the pirfenidone group from as early as week 8 until the 52-week treatment period compared with the placebo group. Conclusions Serum SP-D was the most consistent biomarker for the efficacy of pirfenidone in the cohort trial of IPF. Serial measurements of SP-D might have a potential for application as a pharmacodynamic biomarker. Trial registration The clinical trial was registered with the Japan Pharmaceutical Information Center (JAPIC) on September 13, 2005 (registration No. JapicCTI-050121; http://Clinicaltrials.jp)
Collapse
Affiliation(s)
- Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan.
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | | | | | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | - Masahito Ebina
- Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To provide an overview of recent studies that could be helpful in a better understanding of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) and to facilitate the clinical management of this severe complication of RA. RECENT FINDINGS The advances in deciphering the genetic architecture of RA-ILD support the hypothesis of RA-ILD as a complex disease with a complex phenotype encompassing at least the usual interstitial pneumonia (UIP) high-resolution CT pattern and non-UIP. Genetics studies have provided evidence for a shared genetic background in idiopathic pulmonary fibrosis (IPF) and RA-ILD, and more specifically RA-UIP, a disease with high morbidity and mortality. These findings support the rationale for common pathogenic pathways opening new avenues for future intervention in RA-ILD, notably with - drugs that proved active in IPF. In agreement, a recent controlled trial suggests efficacy of nintedanib, an antifibrotic drug, in patients with progressive lung fibrosis, including RA-ILD. However, there is a substantial gap in RA-ILD treatment, notably evaluating the effect of the RA treatments on the ILD course because of no controlled trial yet. SUMMARY The phenotypical, environmental, and genetic similarities between IPF and RA-ILD have led to a better understanding of the underlying pathogenesis of RA-ILD. Despite the identification of several biomarkers and useful screening tools, several questions remain unanswered regarding the identification of patients with RA at increased risk of ILD and risk of progression. Other substantial gaps are the lack of recommendations for how high-risk patients should be screened and which specific therapeutic strategy should be initiated. International collaborative efforts are needed to address these issues and develop specific recommendations for RA-ILD.
Collapse
|
42
|
Genetic Variation in CCL18 Gene Influences CCL18 Expression and Correlates with Survival in Idiopathic Pulmonary Fibrosis: Part A. J Clin Med 2020; 9:jcm9061940. [PMID: 32575869 PMCID: PMC7356165 DOI: 10.3390/jcm9061940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease, characterized by fibroblast proliferation and extracellular matrix deposition. CC-chemokine ligand 18 (CCL18) upregulates the production of collagen by lung fibroblasts and is associated with mortality. This study was designed to evaluate the influence of single nucleotide polymorphisms (SNPs) in the CCL18 gene on CCL18 expression and survival in IPF. Serum CCL18 levels and four SNPs in the CCL18 gene were analyzed in 77 Dutch IPF patients and 349 healthy controls (HCs). CCL18 mRNA expression was analyzed in peripheral blood mononuclear cells (PBMCs) from 18 healthy subjects. Survival analysis was conducted, dependent on CCL18-levels and -genotypes and validated in two German IPF cohorts (Part B). IPF patients demonstrated significantly higher serum CCL18 levels than the healthy controls (p < 0.001). Both in IPF patients and HCs, serum CCL18 levels were influenced by rs2015086 C > T genotype, with the highest CCL18-levels with the presence of the C-allele. Constitutive CCL18 mRNA-expression in PBMCs was significantly increased with the C-allele and correlated with serum CCL18-levels. In IPF, high serum levels correlated with decreased survival (p = 0.02). Survival was worse with the CT-genotype compared to the TT genotype (p = 0.01). Concluding, genetic variability in the CCL18-gene accounts for differences in CCL18 mRNA-expression and serum-levels and influences survival in IPF.
Collapse
|
43
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
44
|
Ni S, Song M, Guo W, Guo T, Shen Q, Peng H. Biomarkers and their potential functions in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:593-602. [PMID: 32187497 DOI: 10.1080/17476348.2020.1745066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating, and progressive lung disease that is characterized by fibrosis and respiratory failure. IPF holds high morbidity and poor prognosis and still faces considerable problems of reliable diagnosis and valid prognosis. A growing body of literature have reported changes in the level of various biomarkers in IPF patients, which means that they are expected to become a new tool for the clinical practice of IPF.Areas covered: We reviewed the recent literature about biomarkers and focus on the role they play in IPF. We systematically searched Medline/PubMed through February 2020. Many works of literature have shown that a variety of biomolecules and genomics played multiple roles in the diagnosis or differential diagnosis, prognosis, and indication of acute deterioration of IPF and so on.Expert opinion: Significant advances have been made in the role of biomarkers for IPF these years; however, current data indicate that a single biomarker is unlikely to have a transformative effect on clinical practice; therefore, the combined effect of various biomarkers can be considered to improve the accuracy of diagnosis and prognosis. Further research of biomarkers may provide new insights for the diagnosis, prognosis, and even therapy of IPF.
Collapse
Affiliation(s)
- Shanshan Ni
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Min Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Wei Guo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Ting Guo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Qinxue Shen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Hong Peng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital of Central South University; Research Unit of Respiratory Disease, Central South University; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
45
|
Choi B, Kawut SM, Raghu G, Hoffman E, Tracy R, Madahar P, Bernstein EJ, Barr RG, Lederer DJ, Podolanczuk A. Regional distribution of high-attenuation areas on chest computed tomography in the Multi-Ethnic Study of Atherosclerosis. ERJ Open Res 2020; 6:00115-2019. [PMID: 32154292 PMCID: PMC7049731 DOI: 10.1183/23120541.00115-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
High-attenuation areas (HAA) are a computed tomography-based quantitative measure of subclinical interstitial lung disease (ILD). We aimed to validate HAA in lung regions that are less subject to artefacts, such as extravascular lung water or dependent atelectasis. We examined the associations of HAA within six lung regions (basilar, non-basilar, peel, core, basilar peel, basilar core) with serum biomarkers of lung remodelling, forced vital capacity (FVC), visually-assessed interstitial lung abnormalities (ILA), and all-cause and ILD-specific mortality. We performed cross-sectional and longitudinal analyses of participants in the Multi-Ethnic Study of Atherosclerosis, a prospective cohort of 6814 adults aged 45–84 years without known cardiovascular disease who underwent cardiac computed tomography. Median regional HAA ranged from 3.8% in the peel to 4.8% in the basilar core. Doubling of regional HAA was associated with greater serum matrix metalloproteinase-7 (range 3.8% to 10.3%; p≤0.01), higher odds of ILA (OR 1.42 to 2.20; p≤0.03), and a higher risk of all-cause mortality (hazard ratio 1.20 to 1.47; p≤0.001). Doubling of regional HAA was associated with greater serum interleukin-6 (4.9% to 10.3%; p≤0.005) and higher risk of ILD-specific mortality (hazard ratio 3.30 to 3.98; p<0.001), except in the basilar core. Doubling of regional HAA was associated with lower FVC in the non-basilar, core and basilar core (113 mL to 186 mL; p<0.001). Associations of HAA with lung remodelling biomarkers, ILA risk and all-cause mortality were consistent across all regions of the lung, including dependent areas where atelectasis may be present. These findings support the validity of HAA as a measure of pathologic subclinical ILD. Evenwhen found in small regions of the lungs, high-attenuation areas, a CT-based quantitative measure of subclinical ILD, are associated with biomarkers of lung remodelling, risk of interstitial lung abnormalities and all-cause mortalityhttp://bit.ly/36psfin
Collapse
Affiliation(s)
- Bina Choi
- Columbia University Medical Center, New York, NY, USA
| | - Steven M Kawut
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ganesh Raghu
- University of Washington Medical Center, Seattle, WA, USA
| | - Eric Hoffman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | - R Graham Barr
- Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
46
|
Prognostic Value of Serum Osteopontin in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3424208. [PMID: 32104688 PMCID: PMC7035537 DOI: 10.1155/2020/3424208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Background Acute exacerbation (AE) is a common cause of rapid deterioration and high mortality in idiopathic pulmonary fibrosis (IPF) patients. Osteopontin (OPN) plays an important role in IPF, but the studies about serum OPN in AE-IPF are unclear. We aimed to investigate whether OPN had a potential prognostic value in acute exacerbation and mortality in IPF. Methods Thirty-two patients with AE-IPF, 39 with S-IPF, and 20 healthy controls were included. Serum OPN and KL-6 levels were compared between AE-IPF and S-IPF. Logistic regression analysis was applied to identify the predicted value of OPN for AE. Kaplan-Meier curves were used to display survival, and Cox proportional hazards regression was used to identify risk for mortality. Results In AE-IPF patients, serum OPN levels were significantly higher than in S-IPF subjects (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (p < 0.001) or healthy controls (. Conclusion Elevated OPN could be a potential serum predictor for AE status and survival in IPF patients.
Collapse
|
47
|
Elhai M, Avouac J, Allanore Y. Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: Where do we stand? Semin Arthritis Rheum 2020; 50:480-491. [PMID: 32089354 DOI: 10.1016/j.semarthrit.2020.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Interstitial lung diseases (ILDs) are complex diseases with various courses where personalized medicine is highly expected. Biomarkers are indicators of physiological, pathological processes or of pharmacological response to therapeutic interventions. They can be used for diagnosis, risk-stratification, prediction and monitoring of treatment response. To better delineate the input and pitfalls of biomarkers in ILDs, we performed a systematic review and meta-analysis of literature in MEDLINE and Embase databases from January 1960 to February 2019. We focused on circulating biomarkers as having the highest generalizability. Overall, 70 studies were included in the review and 20 studies could be included in the meta-analysis. This review highlights that ILD associated with connective tissue diseases (CTD-ILD) and idiopathic pulmonary fibrosis (IPF) share common biomarkers, suggesting common pathophysiological pathways. KL-6 and SP-D, could diagnose lung fibrosis in both IPF and CTD-ILD, with KL-6 having the strongest value (OR: 520.95[110.07-2465.58], p<0.001 in IPF and OR:26.43[7.15-97.68], p<0.001 in CTD-ILD), followed by SPD (OR: 33.81[3.20-357.52], p = 0.003 in IPF and 13.24 [3.84-45.71] in SSc-ILD), MMP7 appeared as interesting for IPF diagnosis (p<0.001), whereas in SSc, CCL18 was associated with ILD diagnosis. Both CCL18 and KL-6 were predictive for the outcomes of ILDs, with higher predictive values for CCL18 in both IPF (OR:10.22[4.72-22.16], p<0.001 and in SSc [2.62[1.71-4.03], p<0.001). However, disease specific biomarkers are lacking and large longitudinal studies are needed before the translational use of the potential biomarkers in clinical practice. With the recent availability of new effective therapies in ILDs, further studies should assess response to treatment.
Collapse
Affiliation(s)
- Muriel Elhai
- INSERM U1016, Rheumatology A department, Cochin Hospital, Paris Descartes University, 27 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | - Jérôme Avouac
- INSERM U1016, Rheumatology A department, Cochin Hospital, Paris Descartes University, 27 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | - Yannick Allanore
- INSERM U1016, Rheumatology A department, Cochin Hospital, Paris Descartes University, 27 rue du Faubourg Saint Jacques, 75014 Paris, France.
| |
Collapse
|
48
|
Yamagishi T, Kodaka N, Watanabe K, Nakano C, Oshio T, Niitsuma K, Shimada N, Matsuse H. A retrospective clinical research of relapsed organizing pneumonia. Ann Thorac Med 2020; 15:15-20. [PMID: 32002042 PMCID: PMC6967145 DOI: 10.4103/atm.atm_311_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/21/2019] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Organizing pneumonia (OP) usually responds spectacularly well to initial treatment, but relapses can occur and some cases run a fatal course. Still, the issue of relapse has been addressed in relatively few studies, and predictors have not been clarified. The purpose of this study was to examine the pattern of relapses in OP, to determine whether relapse affects morbidity and mortality, and to identify possible predictors of relapse. METHODS Blood sampling, pulmonary function testing, computed tomography (CT) of the chest, and bronchofiberscopy were performed for all patients and were retrospectively reviewed along with clinical information. Periodical chest CT was conducted and additional chest CT was performed when relapse of OP was clinically suspected. All patients were followed regarding treatment response, treatment duration, and presence of relapse. Results were compared between two groups based on serum concentrations of surfactant protein (SP)-D: normal SP-D and high SP-D. RESULTS Twenty-two patients were analyzed in this study. SP-D showed a negative correlation with percutaneous oxygen saturation and positive correlations with serum lactate dehydrogenase, Krebs von den Lungen (KL)-6, and percentage of lymphocytes in bronchoalveolar lavage (BAL). Prognosis was good for all patients, but relapse was significantly more frequent in the high SP-D group (6 cases) than in the normal SP-D group (0 cases; P = 0.049). Serum KL-6 and percentage of monocytes in BAL were significantly higher, and pulmonary vital capacity and forced expiratory volume in 1 s were significantly lower in the high SP-D group than in the low SP-D group. CONCLUSIONS When treating cases of OP with high serum concentrations of SP-D, attention should be paid to the possibility of relapse.
Collapse
Affiliation(s)
- Toru Yamagishi
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Norio Kodaka
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kayo Watanabe
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Chihiro Nakano
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Takeshi Oshio
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Kumiko Niitsuma
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Nagashige Shimada
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Hiroto Matsuse
- Department of Internal Medicine, Division of Respiratory Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| |
Collapse
|
49
|
Marks KT, Landis MW, Lim FY, Haberman B, Kingma PS. Evaluation of Lung Injury in Infants with Congenital Diaphragmatic Hernia. J Pediatr Surg 2019; 54:2443-2447. [PMID: 31296329 DOI: 10.1016/j.jpedsurg.2019.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE The presence of lung injury and the factors that contribute to it in infants with congenital diaphragmatic hernia (CDH) have not been objectively measured during their clinical course. In adults with acute respiratory distress syndrome, higher serum levels of surfactant protein D (SP-D) are linked to lung injury and worse outcomes. We hypothesized that serum SP-D levels would be elevated in CDH infants and that the levels would correlate to the amount of lung injury present. METHODS In this retrospective cohort study, serum SP-D levels were analyzed in 37 CDH infants and 5 control infants using a commercially available enzyme-linked immunosorbent assay kit. RESULTS Infants with more severe CDH had a statistically significant increase (p < 0.001) in serum SP-D over their first month of life. SP-D levels in CDH infants were similar to control infants while on extracorporeal membrane oxygenation (ECMO) but were 2.5-fold higher (p = 0.03) than controls following ECMO termination. SP-D levels increased 1.6-fold following surgical repair of the diaphragm and were significantly higher in the second week following surgery when compared to pre-operative levels (p < 0.03). CONCLUSIONS These results demonstrate that CDH infants experience lung injury during the first week of life, around the time of surgery, and at the time of ECMO termination. Level II prognosis study.
Collapse
Affiliation(s)
- Kaitlyn T Marks
- The Perinatal Institute Cincinnati Children's Hospital Medical Center
| | - Melissa W Landis
- The Perinatal Institute Cincinnati Children's Hospital Medical Center
| | - Foong Y Lim
- Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center; Divisions of Pediatric General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Beth Haberman
- The Perinatal Institute Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Paul S Kingma
- The Perinatal Institute Cincinnati Children's Hospital Medical Center; Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
50
|
Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF-PRO Registry. Respir Res 2019; 20:227. [PMID: 31640794 PMCID: PMC6805665 DOI: 10.1186/s12931-019-1190-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease for which diagnosis and management remain challenging. Defining the circulating proteome in IPF may identify targets for biomarker development. We sought to quantify the circulating proteome in IPF, determine differential protein expression between subjects with IPF and controls, and examine relationships between protein expression and markers of disease severity. Methods This study involved 300 patients with IPF from the IPF-PRO Registry and 100 participants without known lung disease. Plasma collected at enrolment was analysed using aptamer-based proteomics (1305 proteins). Linear regression was used to determine differential protein expression between participants with IPF and controls and associations between protein expression and disease severity measures (percent predicted values for forced vital capacity [FVC] and diffusion capacity of the lung for carbon monoxide [DLco]; composite physiologic index [CPI]). Multivariable models were fit to select proteins that best distinguished IPF from controls. Results Five hundred fifty one proteins had significantly different levels between IPF and controls, of which 47 showed a |log2(fold-change)| > 0.585 (i.e. > 1.5-fold difference). Among the proteins with the greatest difference in levels in patients with IPF versus controls were the glycoproteins thrombospondin 1 and von Willebrand factor and immune-related proteins C-C motif chemokine ligand 17 and bactericidal permeability-increasing protein. Multivariable classification modelling identified nine proteins that, when considered together, distinguished IPF versus control status with high accuracy (area under receiver operating curve = 0.99). Among participants with IPF, 14 proteins were significantly associated with FVC % predicted, 23 with DLco % predicted, 14 with CPI. Four proteins (roundabout homolog-2, spondin-1, polymeric immunoglobulin receptor, intercellular adhesion molecule 5) demonstrated the expected relationship across all three disease severity measures. When considered in pathways analyses, proteins associated with the presence or severity of IPF were enriched in pathways involved in platelet and haemostatic responses, vascular or platelet derived growth factor signalling, immune activation, and extracellular matrix organisation. Conclusions Patients with IPF have a distinct circulating proteome and can be distinguished using a nine-protein profile. Several proteins strongly associate with disease severity. The proteins identified may represent biomarker candidates and implicate pathways for further investigation. Trial registration ClinicalTrials.gov (NCT01915511).
Collapse
|