1
|
Ackermann M, Werlein C, Plucinski E, Leypold S, Kühnel MP, Verleden SE, Khalil HA, Länger F, Welte T, Mentzer SJ, Jonigk DD. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024; 27:293-310. [PMID: 38580869 PMCID: PMC11303512 DOI: 10.1007/s10456-024-09910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 04/07/2024]
Abstract
In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany.
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| | | | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sophie Leypold
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Antwerp, Belgium
| | - Hassan A Khalil
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Division of Thoracic and Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
2
|
Peng J, Guo G, Wang Z, Zhuang L, Ma Y, Yuan B, Zhang M, Tao Q, Zhao Y, Zhao L, Dong X. Factors Associated With Radiological Lung Growth Rate After Lobectomy in Patients With Lung Cancer. J Surg Res 2024; 298:251-259. [PMID: 38636181 DOI: 10.1016/j.jss.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION This study is a retrospective study. This study aims to explore the association between lobectomy in lung cancer patients and subsequent compensatory lung growth (CLG), and to identify factors that may be associated with variations in CLG. METHODS 207 lung cancer patients who underwent lobectomy at Yunnan Cancer Hospital between January 2020 and December 2020. All patients had stage IA primary lung cancer and were performed by the same surgical team. And computed tomography examinations were performed before and 1 y postoperatively. Based on computed tomography images, the volume of each lung lobe was measured using computer software and manual, the radiological lung weight was calculated. And multiple linear regressions were used to analyze the factors related to the increase in postoperative lung weight. RESULTS One year after lobectomy, the radiological lung weight increased by an average of 112.4 ± 20.8%. Smoking history, number of resected lung segments, preoperative low attenuation volume, intraoperative arterial oxygen partial pressure/fraction of inspired oxygen ratio and postoperative visual analog scale scores at 48 h were significantly associated with postoperative radiological lung weight gain. CONCLUSIONS Our results suggest that CLG have occurred after lobectomy in adults. In addition, anesthetists should maintain high arterial oxygen partial pressure/fraction of inspired oxygen ratio during one-lung ventilation and improve acute postoperative pain to benefit CLG.
Collapse
Affiliation(s)
- Jing Peng
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Gang Guo
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunman, China
| | - Zhonghui Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Li Zhuang
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yuhui Ma
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Bin Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Mingxiong Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Qunfen Tao
- Department of Operation Room, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yanqiu Zhao
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunman, China
| | - Li Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China.
| | - Xingxiang Dong
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China.
| |
Collapse
|
3
|
Konkimalla A, Konishi S, Macadlo L, Kobayashi Y, Farino ZJ, Miyashita N, El Haddad L, Morowitz J, Barkauskas CE, Agarwal P, Souma T, ElMallah MK, Tata A, Tata PR. Transitional cell states sculpt tissue topology during lung regeneration. Cell Stem Cell 2023; 30:1486-1502.e9. [PMID: 37922879 PMCID: PMC10762634 DOI: 10.1016/j.stem.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Satoshi Konishi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary J Farino
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Naoya Miyashita
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Jeremy Morowitz
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pankaj Agarwal
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Regeneration Center, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, Miranda-Maldonado I, Ortega-Martínez M. Back to the Basics: Usefulness of Naturally Aged Mouse Models and Immunohistochemical and Quantitative Morphologic Methods in Studying Mechanisms of Lung Aging and Associated Diseases. Biomedicines 2023; 11:2075. [PMID: 37509714 PMCID: PMC10377355 DOI: 10.3390/biomedicines11072075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging-related molecular and cellular alterations in the lung contribute to an increased susceptibility of the elderly to devastating diseases. Although the study of the aging process in the lung may benefit from the use of genetically modified mouse models and omics techniques, these approaches are still not available to most researchers and produce complex results. In this article, we review works that used naturally aged mouse models, together with immunohistochemistry (IHC) and quantitative morphologic (QM) methods in the study of the mechanisms of the aging process in the lung and its most commonly associated disorders: cancer, chronic obstructive pulmonary disease (COPD), and infectious diseases. The advantage of using naturally aged mice is that they present characteristics similar to those observed in human aging. The advantage of using IHC and QM methods lies in their simplicity, economic accessibility, and easy interpretation, in addition to the fact that they provide extremely important information. The study of the aging process in the lung and its associated diseases could allow the design of appropriate therapeutic strategies, which is extremely important considering that life expectancy and the number of elderly people continue to increase considerably worldwide.
Collapse
Affiliation(s)
- Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | | | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Ivett Miranda-Maldonado
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
5
|
Marega M, El-Merhie N, Gökyildirim MY, Orth V, Bellusci S, Chao CM. Stem/Progenitor Cells and Related Therapy in Bronchopulmonary Dysplasia. Int J Mol Sci 2023; 24:11229. [PMID: 37446407 DOI: 10.3390/ijms241311229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.
Collapse
Affiliation(s)
- Manuela Marega
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Natalia El-Merhie
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Valerie Orth
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Saverio Bellusci
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
6
|
Direct thrombin inhibitors as alternatives to heparin to preserve lung growth and function in a murine model of compensatory lung growth. Sci Rep 2022; 12:21117. [PMID: 36477689 PMCID: PMC9729628 DOI: 10.1038/s41598-022-25773-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) may require cardiopulmonary bypass and systemic anticoagulation. Expeditious lung growth while on bypass is essential for survival. Previously, we demonstrated that heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). We investigated the effects of the direct thrombin inhibitors (DTIs) bivalirudin and argatroban. In vitro assays of lung endothelial cell proliferation and apoptosis were performed. C57BL/6 J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were pre-loaded with normal saline (control), bivalirudin, argatroban, or heparin and outcomes were assessed on postoperative day 8. Heparin administration inhibited endothelial cell proliferation in vitro and significantly decreased lung volume in vivo, while bivalirudin and argatroban preserved lung growth. These findings correlated with changes in alveolarization on morphometric analysis. Treadmill exercise tolerance testing demonstrated impaired exercise performance in heparinized mice; bivalirudin/argatroban did not affect exercise tolerance. On lung protein analysis, heparin decreased angiogenic signaling which was not impacted by bivalirudin or argatroban. Together, this data supports the use of DTIs as alternatives to heparin for systemic anticoagulation in CDH patients on bypass. Based on this work, clinical studies on the impact of heparin and DTIs on CDH outcomes are warranted.
Collapse
|
7
|
Tsikis ST, Hirsch TI, Fligor SC, Quigley M, Puder M. Targeting the lung endothelial niche to promote angiogenesis and regeneration: A review of applications. Front Mol Biosci 2022; 9:1093369. [PMID: 36601582 PMCID: PMC9807216 DOI: 10.3389/fmolb.2022.1093369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung endothelial cells comprise the pulmonary vascular bed and account for the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs form a specialized microenvironment, or niche, with important roles in health and disease. In early development, progenitor ECs direct alveolar development through angiogenesis. Following birth, lung ECs are thought to maintain their regenerative capacity despite the aging process. As such, harnessing the power of the EC niche, specifically to promote angiogenesis and alveolar regeneration has potential clinical applications. Here, we focus on translational research with applications related to developmental lung diseases including pulmonary hypoplasia and bronchopulmonary dysplasia. An overview of studies examining the role of ECs in lung regeneration following acute lung injury is also provided. These diseases are all characterized by significant morbidity and mortality with limited existing therapeutics, affecting both young children and adults.
Collapse
Affiliation(s)
- Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mikayla Quigley
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
9
|
Ersöz H, Ağababaoğlu İ, Taylan İ, Çakır E, Aksun S, Güneli E. Do oral amino acid supplements facilitate the healing of rat lung injuries? Eur J Cardiothorac Surg 2021; 58:983-990. [PMID: 32783058 DOI: 10.1093/ejcts/ezaa206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Prolonged air leaks following lung injury cause extended hospital stays. This study investigated the effect of nutritional supplements containing arginine, glutamine and β-hydroxy β-methyl butyrate, which were theoretically proven to accelerate wound healing, on air leak and wound healing parameters in a rat lung injury model. METHODS Twenty-eight female rats were randomly divided into 4 groups. Experimental groups were given glutamine (Resource Glutamine®) or a mixture of arginine, glutamine and β-hydroxy β-methyl butyrate (Abound®) as a dietary supplement at isonitrogenous and isocaloric doses. On day 3, standard sized lung injuries were created in all rats except the sham group. The rats were sacrificed on day 6, and the lungs were removed for air-leak threshold pressure measurement and histopathological and biochemical analyses. RESULTS Loss of body mass was greater in the glutamine group than in the other groups (P = 0.004). Rats that received the amino acid mixture had better results for mature collagen fibre density (P = 0.002) and inflammation suppression (P = 0.003). The sham group had higher values for air-leak threshold pressure and all other histochemical parameters compared to the other groups. Hydroxyproline level did not differ significantly in any of the groups. CONCLUSIONS Our results indicated that an oral amino acid mixture was effective in the healing of lung injuries. Isolated glutamine supplementation had an adverse impact on body mass. Randomized clinical studies including larger series are needed. Hydroxyproline does not seem to be a suitable marker for this purpose.
Collapse
Affiliation(s)
- Hasan Ersöz
- Department of Thoracic Surgery, Izmir Katip Celebi University, Ataturk Training and Research Hospital, İzmir, Turkey
| | - İsmail Ağababaoğlu
- Department of Thoracic Surgery, Yıldırım Beyazıd University, Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - İbrahim Taylan
- Department of Thoracic Surgery, Izmir Katip Celebi University, Ataturk Training and Research Hospital, İzmir, Turkey
| | - Ebru Çakır
- Department of Medical Pathology, Izmir Katip Celebi University, Ataturk Training and Research Hospital, İzmir, Turkey
| | - Saliha Aksun
- Department of Medical Biochemistry, Izmir Katip Celebi University, Ataturk Training and Research Hospital, İzmir, Turkey
| | - Ensari Güneli
- Dokuz Eylül University, İzmir Biomedicine and Genome Center, İzmir, Turkey.,Department of Laboratory Animal Science, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
10
|
Yu LJ, Ko VH, Dao DT, Secor JD, Pan A, Cho BS, Mitchell PD, Kishikawa H, Bielenberg DR, Puder M. Investigation of the mechanisms of VEGF-mediated compensatory lung growth: the role of the VEGF heparin-binding domain. Sci Rep 2021; 11:11827. [PMID: 34088930 PMCID: PMC8178332 DOI: 10.1038/s41598-021-91127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Morbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.
Collapse
Affiliation(s)
- Lumeng J. Yu
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Victoria H. Ko
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Duy T. Dao
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Jordan D. Secor
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Amy Pan
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Bennet S. Cho
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Paul D. Mitchell
- grid.2515.30000 0004 0378 8438Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Hiroko Kishikawa
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Diane R. Bielenberg
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Mark Puder
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| |
Collapse
|
11
|
Lung injury in axolotl salamanders induces an organ‐wide proliferation response. Dev Dyn 2021; 250:866-879. [DOI: 10.1002/dvdy.315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023] Open
|
12
|
Juul NH, Stockman CA, Desai TJ. Niche Cells and Signals that Regulate Lung Alveolar Stem Cells In Vivo. Cold Spring Harb Perspect Biol 2020; 12:a035717. [PMID: 32179507 PMCID: PMC7706567 DOI: 10.1101/cshperspect.a035717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distal lung is a honeycomb-like collection of delicate gas exchange sacs called alveoli lined by two interspersed epithelial cell types: the cuboidal, surfactant-producing alveolar type II (AT2) and the flat, gas-exchanging alveolar type I (AT1) cell. During aging, a subset of AT2 cells expressing the canonical Wnt target gene, Axin2, function as stem cells, renewing themselves while generating new AT1 and AT2 cells. Wnt activity endows AT2 cells with proliferative competency, enabling them to respond to activating cues, and simultaneously blocks AT2 to AT1 cell transdifferentiation. Acute alveolar injury rapidly expands the AT2 stem cell pool by transiently inducing Wnt signaling activity in "bulk" AT2 cells, facilitating rapid epithelial repair. AT2 cell "stemness" is thus tightly regulated by access to Wnts, supplied by a specialized single-cell fibroblast niche during maintenance and by AT2 cells themselves during injury repair. Two non-AT2 "reserve" cell populations residing in the distal airways also contribute to alveolar repair, but only after widespread epithelial injury, when they rapidly proliferate, migrate, and differentiate into airway and alveolar lineages. Here, we review alveolar renewal and repair with a focus on the niches, rather than the stem cells, highlighting what is known about the cellular and molecular mechanisms by which they control stem cell activity in vivo.
Collapse
Affiliation(s)
- Nicholas H Juul
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Courtney A Stockman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tushar J Desai
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
13
|
Ren Z, Li J, Shen J, Yu H, Mei X, Zhao P, Xiao Z, Wu W. Therapeutic sildenafil inhibits pulmonary damage induced by cigarette smoke exposure and bacterial inhalation in rats. PHARMACEUTICAL BIOLOGY 2020; 58:116-123. [PMID: 31967915 PMCID: PMC7006811 DOI: 10.1080/13880209.2019.1711135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Context: Clinical reports showed sildenafil beneficial therapy on severe chronic obstructive pulmonary disease (COPD) with pulmonary hypertension (PH) patients.Objective: The study investigated therapeutic effects of silenafil on pulmonary damage induced by cigarette smoke exposure and bacterial inhalation in rats.Materials and methods: Female Sprague-Dawley rats (200-250 g) were divided into control group (no exposure, n = 10) and exposure group (n = 50) suffered from cigarette smoke exposure and Klebsiella pneumonia inhalation for 8 weeks. Then rats were orally given normal saline (control group or model group), 2.0, 3.0, or 4.5 mg/kg sildenafil for 4 weeks, respectively. Pulmonary pressure, RVHI and morphological analysis of pulmonary vascular remodeling, respiratory functions assay, morphological analysis of pulmonary alveoli, and expression of PCNA and caspase-3 of epithelial cells in bronchioles wall were examined.Results: Compared to model rats, 2.0, 3.0, and 4.5 mg/kg sildenafil increased VT by -0.6 to 9.58%, PEF by 3.12 to 6.49%, EF50 by 0.81 to 6.50%, decreased mPAP by 4.43 to 25.58%, RVHI by 6.54 to 26.41%, showing a dose-dependent improvement. Furthermore, 4.5 mg/kg sildenafil significantly increased MAN by 39.70%, LA/CSA by 37.07%, decreased muscular pulmonary arteries by 48.00%, WT by 12.83%, MT by 22.89%, caspase-3 expression by 17.71%, and showed improvement on abnormality in lung interstitial and bronchioles by microscopy.Discussion and conclusion: Our results demonstrated that sildenafil decreased pathological changes in alveoli, bronchioles, interstitial tissue, and arterioles of rats with COPD and PH.
Collapse
Affiliation(s)
- Zhouxin Ren
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Jiansheng Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Junling Shen
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Yu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Zhenya Xiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wanliu Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Ysasi AB, Bennett RD, Wagner W, Valenzuela CD, Servais AB, Tsuda A, Pyne S, Li S, Grimsby J, Pokharel P, Livak KJ, Ackermann M, Blainey PC, Mentzer SJ. Single-Cell Transcriptional Profiling of Cells Derived From Regenerating Alveolar Ducts. Front Med (Lausanne) 2020; 7:112. [PMID: 32373614 PMCID: PMC7186418 DOI: 10.3389/fmed.2020.00112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Lung regeneration occurs in a variety of adult mammals after surgical removal of one lung (pneumonectomy). Previous studies of murine post-pneumonectomy lung growth have identified regenerative “hotspots” in subpleural alveolar ducts; however, the cell-types participating in this process remain unclear. To identify the single cells participating in post-pneumonectomy lung growth, we used laser microdissection, enzymatic digestion and microfluidic isolation. Single-cell transcriptional analysis of the murine alveolar duct cells was performed using the C1 integrated fluidic circuit (Fluidigm) and a custom PCR panel designed for lung growth and repair genes. The multi-dimensional data set was analyzed using visualization software based on the tSNE algorithm. The analysis identified 6 cell clusters; 1 cell cluster was present only after pneumonectomy. This post-pneumonectomy cluster was significantly less transcriptionally active than 3 other clusters and may represent a transitional cell population. A provisional cluster identity for 4 of the 6 cell clusters was obtained by embedding bulk transcriptional data into the tSNE analysis. The transcriptional pattern of the 6 clusters was further analyzed for genes associated with lung repair, matrix production, and angiogenesis. The data demonstrated that multiple cell-types (clusters) transcribed genes linked to these basic functions. We conclude that the coordinated gene expression across multiple cell clusters is likely a response to a shared regenerative microenvironment within the subpleural alveolar ducts.
Collapse
Affiliation(s)
- Alexandra B Ysasi
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Willi Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Cristian D Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Andrew B Servais
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, United States
| | - Saumyadipta Pyne
- Public Health Dynamics Laboratory, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shuqiang Li
- Fluidigm Corporation, South San Francisco, CA, United States
| | - Jonna Grimsby
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Prapti Pokharel
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Kenneth J Livak
- Fluidigm Corporation, South San Francisco, CA, United States
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul C Blainey
- Broad Institute of Harvard and MIT, Cambridge, MA, United States.,Department of Biological Engineering, MIT, Cambridge, MA, United States
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| |
Collapse
|
15
|
Messerli M, Aaldijk D, Haberthür D, Röss H, García-Poyatos C, Sande-Melón M, Khoma OZ, Wieland FAM, Fark S, Djonov V. Adaptation mechanism of the adult zebrafish respiratory organ to endurance training. PLoS One 2020; 15:e0228333. [PMID: 32023296 PMCID: PMC7001924 DOI: 10.1371/journal.pone.0228333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022] Open
Abstract
In order to study the adaptation scope of the fish respiratory organ and the O2 metabolism due to endurance training, we subjected adult zebrafish (Danio rerio) to endurance exercise for 5 weeks. After the training period, the swimmer group showed a significant increase in swimming performance, body weight and length. In scanning electron microscopy of the gills, the average length of centrally located primary filaments appeared significantly longer in the swimmer than in the non-trained control group (+6.1%, 1639 μm vs. 1545 μm, p = 0.00043) and the average number of secondary filaments increased significantly (+7.7%, 49.27 vs. 45.73, p = 9e-09). Micro-computed tomography indicated a significant increase in the gill volume (p = 0.048) by 11.8% from 0.490 mm3 to 0.549 mm3. The space-filling complexity dropped significantly (p = 0.0088) by 8.2% from 38.8% to 35.9%., i.e. making the gills of the swimmers less compact. Respirometry after 5 weeks showed a significantly higher oxygen consumption (+30.4%, p = 0.0081) of trained fish during exercise compared to controls. Scanning electron microscopy revealed different stages of new secondary filament budding, which happened at the tip of the primary lamellae. Using BrdU we could confirm that the growth of the secondary filaments took place mainly in the distal half and the tip and for primary filaments mainly at the tip. We conclude that the zebrafish respiratory organ-unlike the mammalian lung-has a high plasticity, and after endurance training increases its volume and changes its structure in order to facilitate O2 uptake.
Collapse
Affiliation(s)
- Matthias Messerli
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Dea Aaldijk
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - David Haberthür
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Helena Röss
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Carolina García-Poyatos
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Marcos Sande-Melón
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Oleksiy-Zakhar Khoma
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Fluri A. M. Wieland
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Sarya Fark
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Valentin Djonov
- Topographic and clinical Anatomy, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
16
|
O'Keefe KJ, DeSantis KA, Altrieth AL, Nelson DA, Taroc EZM, Stabell AR, Pham MT, Larsen M. Regional Differences following Partial Salivary Gland Resection. J Dent Res 2019; 99:79-88. [PMID: 31765574 DOI: 10.1177/0022034519889026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine aims to repair, replace, or restore function to tissues damaged by aging, disease, or injury. Partial organ resection is not only a common clinical approach in cancer therapy but also an experimental injury model used to examine mechanisms of regeneration and repair in organs. We performed a partial resection, or partial sialoadenectomy, in the female murine submandibular salivary gland (SMG) to establish a model for investigation of repair mechanisms in salivary glands (SGs). After partial sialoadenectomy, we performed whole-gland measurements over a period of 56 d and found that the gland increased slightly in size. We used microarray analysis and immunohistochemistry (IHC) to examine messenger RNA and protein changes in glands over time. Microarray analysis identified dynamic changes in the transcriptome 3 d after injury that were largely resolved by day 14. At the 3-d time point, we detected gene signatures for cell cycle regulation, inflammatory/repair response, and extracellular matrix (ECM) remodeling in the partially resected glands. Using quantitative IHC, we identified a transient proliferative response throughout the gland. Both secretory epithelial and stromal cells expressed Ki67 that was detectable at day 3 and largely resolved by day 14. IHC also revealed that while most of the gland underwent a wound-healing response that resolved by day 14, a small region of the gland showed an aberrant sustained fibrotic response characterized by increased levels of ECM deposition, sustained Ki67 levels in stromal cells, and a persistent M2 macrophage response through day 56. The partial submandibular salivary gland resection model provides an opportunity to examine a normal healing response and an aberrant fibrotic response within the same gland to uncover mechanisms that prevent wound healing and regeneration in mammals. Understanding regional differences in the wound-healing responses may ultimately affect regenerative therapies for patients.
Collapse
Affiliation(s)
- K J O'Keefe
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA.,Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - K A DeSantis
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA.,Gen*NY*Sis Center for Excellence in Cancer, Department of Environmental Health Sciences, School of Public Health, State University of New York, University at Albany, Albany, NY, USA
| | - A L Altrieth
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA.,Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - D A Nelson
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - E Z M Taroc
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA.,Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - A R Stabell
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA.,Current address: Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - M T Pham
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA.,Current address: The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, UK
| | - M Larsen
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA.,Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| |
Collapse
|
17
|
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most important causes of death worldwide, and in addition to its impact on the patient's health, it poses a major socioeconomic burden. Tobacco smoke, indoor cooking, and air pollution are major triggers of the disease. This article summarizes evidence for the concept that lung microvascular molecular alterations can be a driver of lung emphysema. If findings from preclinical models allow a transfer to the human situation, this concept can offer new approaches for curative treatment of lung emphysema.
Collapse
|
18
|
Ng-Blichfeldt JP, Gosens R, Dean C, Griffiths M, Hind M. Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax 2019; 74:890-897. [PMID: 30940772 DOI: 10.1136/thoraxjnl-2018-212630] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 11/04/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health concern with few effective treatments. Widespread destruction of alveolar tissue contributes to impaired gas exchange in severe COPD, and recent radiological evidence suggests that destruction of small airways is a major contributor to increased peripheral airway resistance in disease. This important finding might in part explain the failure of conventional anti-inflammatory treatments to restore lung function even in patients with mild disease. There is a clear need for alternative pharmacological strategies for patients with COPD/emphysema. Proposed regenerative strategies such as cell therapy and tissue engineering are hampered by poor availability of exogenous stem cells, discouraging trial results, and risks and cost associated with surgery. An alternative therapeutic approach is augmentation of lung regeneration and/or repair by biologically active factors, which have potential to be employed on a large scale. In favour of this strategy, the healthy adult lung is known to possess a remarkable endogenous regenerative capacity. Numerous preclinical studies have shown induction of regeneration in animal models of COPD/emphysema. Here, we argue that given the widespread and irreversible nature of COPD, serious consideration of regenerative pharmacology is necessary. However, for this approach to be feasible, a better understanding of the cell-specific molecular control of regeneration, the regenerative potential of the human lung and regenerative competencies of patients with COPD are required.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK .,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Charlotte Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK.,Barts Heart Centre, St Bartholomews Hospital, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Dane DM, Cao K, Lu H, Yilmaz C, Dolan J, Thaler CD, Ravikumar P, Hammond KA, Hsia CCW. Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude. J Appl Physiol (1985) 2018; 125:1411-1423. [PMID: 30091664 DOI: 10.1152/japplphysiol.01036.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A colony of deer mice subspecies ( Peromyscus maniculatus sonoriensis) native to high altitude (HA) has been maintained at sea level for 18-20 generations and remains genetically unchanged. To determine if these animals retain responsiveness to hypoxia, one group (9-11 wk old) was acclimated to HA (3,800 m) for 8 wk. Age-matched control animals were acclimated to a lower altitude (LA; 252 m). Maximal O2 uptake (V̇o2max) was measured at the respective altitudes. On a separate day, lung volume, diffusing capacity for carbon monoxide (DLCO), and pulmonary blood flow were measured under anesthesia using a rebreathing technique at two inspired O2 tensions. The HA-acclimated deer mice maintained a normal V̇o2max relative to LA baseline. Compared with LA control mice, antemortem lung volume was larger in HA mice in a manner dependent on alveolar O2 tension. Systemic hematocrit, pulmonary blood flow, and standardized DLCO did not differ significantly between groups. HA mice showed a higher postmortem alveolar-capillary hematocrit, larger alveolar ducts, and smaller distal conducting structures. In HA mice, absolute volumes of alveolar type I epithelia and endothelia were higher whereas that of interstitia was lower than in LA mice. These structural changes occurred without a net increase in whole-lung septal tissue-capillary volumes or surface areas. Thus, deer mice bred and raised to adulthood at LA retain phenotypic plasticity and adapt to HA without a decrement in V̇o2max via structural (enlarged airspaces, alveolar septal remodeling) and nonstructural (lung expansion under hypoxia) mechanisms and without an increase in systemic hematocrit or compensatory lung growth. NEW & NOTEWORTHY Deer mice ( Peromyscus maniculatus) are robust and very active mammals that are found across the North American continent. They are also highly adaptable to extreme environments. When introduced to high altitude they retain remarkable adaptive ability to the low-oxygen environment via lung expansion and remodeling of existing lung structure, thereby maintaining normal aerobic capacity without generating more red blood cells or additional lung tissue.
Collapse
Affiliation(s)
- D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Khoa Cao
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Hua Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jamie Dolan
- Department of Evolution, Ecology and Organismal Biology, University of California at Riverside , Riverside, California
| | - Catherine D Thaler
- Department of Evolution, Ecology and Organismal Biology, University of California at Riverside , Riverside, California
| | - Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Kimberly A Hammond
- Department of Evolution, Ecology and Organismal Biology, University of California at Riverside , Riverside, California
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
20
|
Rodríguez-Castillo JA, Pérez DB, Ntokou A, Seeger W, Morty RE, Ahlbrecht K. Understanding alveolarization to induce lung regeneration. Respir Res 2018; 19:148. [PMID: 30081910 PMCID: PMC6090695 DOI: 10.1186/s12931-018-0837-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Gas exchange represents the key physiological function of the lung, and is dependent upon proper formation of the delicate alveolar structure. Malformation or destruction of the alveolar gas-exchange regions are key histopathological hallmarks of diseases such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis; all of which are characterized by perturbations to the alveolo-capillary barrier structure. Impaired gas-exchange is the primary initial consequence of these perturbations, resulting in severe clinical symptoms, reduced quality of life, and death. The pronounced morbidity and mortality associated with malformation or destruction of alveoli underscores a pressing need for new therapeutic concepts. The re-induction of alveolarization in diseased lungs is a new and exciting concept in a regenerative medicine approach to manage pulmonary diseases that are characterized by an absence of alveoli. Main text Mechanisms of alveolarization first need to be understood, to identify pathways and mediators that may be exploited to drive the induction of alveolarization in the diseased lung. With this in mind, a variety of candidate cell-types, pathways, and molecular mediators have recently been identified. Using lineage tracing approaches and lung injury models, new progenitor cells for epithelial and mesenchymal cell types – as well as cell lineages which are able to acquire stem cell properties – have been discovered. However, the underlying mechanisms that orchestrate the complex process of lung alveolar septation remain largely unknown. Conclusion While important progress has been made, further characterization of the contributing cell-types, the cell type-specific molecular signatures, and the time-dependent chemical and mechanical processes in the developing, adult and diseased lung is needed in order to implement a regenerative therapeutic approach for pulmonary diseases.
Collapse
Affiliation(s)
- José Alberto Rodríguez-Castillo
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - David Bravo Pérez
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Aglaia Ntokou
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Werner Seeger
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Rory E Morty
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Katrin Ahlbrecht
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
21
|
Mentzer SJ. The puzzling mechanism of compensatory lung growth. Stem Cell Investig 2018; 5:8. [PMID: 29682515 DOI: 10.21037/sci.2018.03.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol 2018; 433:166-176. [DOI: 10.1016/j.ydbio.2017.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
|
23
|
Glénet S, de Bisschop C, Delcambre F, Thiébaut R, Laurent F, Jougon J, Velly JF, Georges A, Guénard H. No compensatory lung growth after resection in a one-year follow-up cohort of patients with lung cancer. J Thorac Dis 2017; 9:3938-3945. [PMID: 29268404 DOI: 10.21037/jtd.2017.08.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background As compensatory lung growth after lung resection has been studied in animals of various ages and in one case report in a young adult, it has not been studied in a cohort of adults operated for lung cancer. Methods A prospective study including patients with lung cancer was conducted over two years. Parenchymal mass was calculated using computed tomography before (M0) and at 3 and 12 months (M3 and M12) after surgery. Respiratory function was estimated by plethysmography and CO/NO lung transfer (DLCO and DLNO). Pulmonary capillary blood volume (Vc) and membrane conductance for CO (DmCO) were calculated. Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) plasma concentrations were measured simultaneously. Results Forty-nine patients underwent a pneumonectomy (N=12) or a lobectomy (N=37) thirty two completed the protocol. Among all patients, from M3 to M12 the masses of the operated lungs (239±58 to 238±72 g in the lobectomy group) and of the non-operated lungs (393±84 to 377±68 g) did not change. Adjusted by the alveolar volume (VA), DLNO/VA decreased transiently by 7% at M3, returning towards the M0 value at M12. Both Vc and DmCO increased slightly between M3 and M12. IGF-1 and IGFBP-3 concentrations did not change at M3, IGF-1 decreased significantly from M3 to M12. Conclusions Compensatory lung growth did not occur over one year after lung surgery. The lung function data could suggest a slight recruitment or distension of capillaries owing to the likely hemodynamic alterations. An angiogenesis process is unlikely.
Collapse
Affiliation(s)
- Stéphane Glénet
- Laboratoire de Physiologie, Université Victor Segalen Bordeaux and Lung Testing Laboratory CHU de Bordeaux, France
| | | | - Frédéric Delcambre
- Service de chirurgie thoracique, hôpital du Haut Lévêque, F-33600 Pessac, France
| | | | - François Laurent
- Service d'imagerie thoracique, hôpital du Haut Lévêque, F-33600 Pessac, France
| | - Jacques Jougon
- Service de chirurgie thoracique, hôpital du Haut Lévêque, F-33600 Pessac, France
| | - Jean-François Velly
- Service de chirurgie thoracique, hôpital du Haut Lévêque, F-33600 Pessac, France
| | - Agnès Georges
- Service de médecine nucléaire, hôpital du Haut Lévêque, F-33600 Pessac, France
| | - Hervé Guénard
- Laboratoire de Physiologie, Université Victor Segalen Bordeaux and Lung Testing Laboratory CHU de Bordeaux, France
| |
Collapse
|
24
|
Liu Z, Fu S, Tang N. A Standardized Method for Measuring Internal Lung Surface Area via Mouse Pneumonectomy and Prosthesis Implantation. J Vis Exp 2017:56114. [PMID: 28784942 PMCID: PMC5612599 DOI: 10.3791/56114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary morphology, physiology, and respiratory functions change in both physiological and pathological conditions. Internal lung surface area (ISA), representing the gas-exchange capacity of the lung, is a critical criterion to assess respiratory function. However, observer bias can significantly influence measured values for lung morphological parameters. The protocol that we describe here minimizes variations during measurements of two morphological parameters used for ISA calculation: internal lung volume (ILV) and mean linear intercept (MLI). Using ISA as a morphometric and functional parameter to determine the outcome of alveolar regeneration in both pneumonectomy (PNX) and prosthesis implantation mouse models, we found that the increased ISA following PNX treatment was significantly blocked by implantation of a prosthesis into the thoracic cavity1. The ability to accurately quantify ISA is not only expected to improve the reliability and reproducibility of lung function studies in injured-induced alveolar regeneration models, but also to promote mechanistic discoveries of multiple pulmonary diseases.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Life Sciences, Peking University; National Institute of Biological Sciences, Beijing
| | - Siling Fu
- National Institute of Biological Sciences, Beijing; Graduate School of Peking Union Medical College
| | - Nan Tang
- National Institute of Biological Sciences, Beijing;
| |
Collapse
|
25
|
Ysasi AB, Wagner WL, Valenzuela CD, Kienzle A, Servais AB, Bennett RD, Tsuda A, Ackermann M, Mentzer SJ. Evidence for pleural epithelial-mesenchymal transition in murine compensatory lung growth. PLoS One 2017; 12:e0177921. [PMID: 28542402 PMCID: PMC5438137 DOI: 10.1371/journal.pone.0177921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022] Open
Abstract
In many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); namely, cells with disrupted intercellular junctions and an acquired mesenchymal (rounded and fusiform) morphotype. To detect the migration of the transitional pleural cells into the lung, a biotin tracer was used to label the pleural mesothelial cells at the time of surgery. By post-operative day 3, image cytometry of post-pneumonectomy subpleural alveoli demonstrated a 40-fold increase in biotin+ cells relative to pneumonectomy-plus-plombage controls (p < .01). Suggesting a similar origin in space and time, the distribution of cells expressing biotin, SMA, or vimentin demonstrated a strong spatial autocorrelation in the subpleural lung (p < .001). We conclude that post-pneumonectomy compensatory lung growth involves EMT with the migration of transitional mesothelial cells into subpleural alveoli.
Collapse
Affiliation(s)
- Alexandra B. Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arne Kienzle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew B. Servais
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert D. Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A, Locksley RM, Rock JR. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell Stem Cell 2017; 21:120-134.e7. [PMID: 28506464 DOI: 10.1016/j.stem.2017.03.024] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/09/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Abstract
To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults.
Collapse
Affiliation(s)
- Andrew J Lechner
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Ian H Driver
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jinwoo Lee
- Department of Medicine and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Carmen M Conroy
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Abigail Nagle
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Department of Medicine and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jason R Rock
- Department of Anatomy, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Yablonskiy DA, Sukstanskii AL, Quirk JD. Diffusion lung imaging with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3448. [PMID: 26676342 PMCID: PMC4911335 DOI: 10.1002/nbm.3448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 05/28/2023]
Abstract
Lung imaging using conventional 1 H MRI presents great challenges because of the low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2 * is about 1-2 ms). MRI with hyperpolarized gases (3 He and 129 Xe) provides a valuable alternative because of the very strong signal originating from inhaled gas residing in the lung airspaces and relatively slow gas T2 * relaxation (typical T2 * is about 20-30 ms). However, in vivo human experiments should be performed very rapidly - usually during a single breath-hold. In this review, we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of the results of modeling of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows the extraction of quantitative information on the lung microstructure at the alveolar level. From an MRI scan of less than 15 s, this approach, called in vivo lung morphometry, allows the provision of quantitative values and spatial distributions of the same physiological parameters as measured by means of 'standard' invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). In addition, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure: average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiment based on the in vivo lung morphometry technique combined with quantitative computed tomography measurements, as well as with gradient echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume and length of the acinar airways, and allow the evaluation of lung parenchymal and non-parenchymal tissue. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - James D Quirk
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
28
|
Bennett RD, Ysasi AB, Wagner WL, Valenzuela CD, Tsuda A, Pyne S, Li S, Grimsby J, Pokharel P, Livak KJ, Ackermann M, Blainey P, Mentzer SJ. Deformation-induced transitional myofibroblasts contribute to compensatory lung growth. Am J Physiol Lung Cell Mol Physiol 2017; 312:L79-L88. [PMID: 27836901 PMCID: PMC5283924 DOI: 10.1152/ajplung.00383.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/24/2023] Open
Abstract
In many mammals, including humans, removal of one lung (pneumonectomy) results in the compensatory growth of the remaining lung. Compensatory growth involves not only an increase in lung size, but also an increase in the number of alveoli in the peripheral lung; however, the process of compensatory neoalveolarization remains poorly understood. Here, we show that the expression of α-smooth muscle actin (SMA)-a cytoplasmic protein characteristic of myofibroblasts-is induced in the pleura following pneumonectomy. SMA induction appears to be dependent on pleural deformation (stretch) as induction is prevented by plombage or phrenic nerve transection (P < 0.001). Within 3 days of pneumonectomy, the frequency of SMA+ cells in subpleural alveolar ducts was significantly increased (P < 0.01). To determine the functional activity of these SMA+ cells, we isolated regenerating alveolar ducts by laser microdissection and analyzed individual cells using microfluidic single-cell quantitative PCR. Single cells expressing the SMA (Acta2) gene demonstrated significantly greater transcriptional activity than endothelial cells or other discrete cell populations in the alveolar duct (P < 0.05). The transcriptional activity of the Acta2+ cells, including expression of TGF signaling as well as repair-related genes, suggests that these myofibroblast-like cells contribute to compensatory lung growth.
Collapse
Affiliation(s)
- Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandra B Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Willi L Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Cristian D Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| | - Saumyadipta Pyne
- Indian Institute of Public Health, Kavuri Hills, Madhapur, Hyderabad, India
| | - Shuqiang Li
- Fluidigm Corporation, South San Francisco, California; and
| | - Jonna Grimsby
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Prapti Pokharel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul Blainey
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
29
|
Abstract
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints.
Collapse
Affiliation(s)
- Connie C.W. Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dallas M. Hyde
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | | |
Collapse
|
30
|
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches. Int J Mol Sci 2016; 17:ijms17010128. [PMID: 26797607 PMCID: PMC4730369 DOI: 10.3390/ijms17010128] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.
Collapse
|
31
|
Yablonskiy DA, Sukstanskii AL, Quirk JD, Woods JC, Conradi MS. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 2016; 71:486-505. [PMID: 23554008 DOI: 10.1002/mrm.24729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of hyperpolarized gases ((3)He and (129)Xe) has opened the door to applications for which gaseous agents are uniquely suited-lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade-long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface-to-volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three-dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials.
Collapse
|
32
|
Okui M, Goto T, Asakura K, Kamiyama I, Ohtsuka T. Alveolar macrophage phenotype expression in airway-instilled bone marrow cells in mice. SPRINGERPLUS 2015; 4:770. [PMID: 26688784 PMCID: PMC4676774 DOI: 10.1186/s40064-015-1525-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
No uniform consensus has been established regarding post-pneumonectomy lung regeneration. This study was undertaken to determine whether airway-instilled lung- or bone marrow-derived cells are able to differentiate
and reconstitute as lung component cells in the course of post-pneumonectomy lung growth. Bone marrow cells or lung cells obtained from C57 black (BL)/6-GFP mice were intratracheally instilled into C57BL/6 mice treated with left pneumonectomy and cell differentiation was examined. It is unclear whether intratracheally instilled lung or bone marrow cells differentiate into non-hematopoietic cells after pneumonectomy. However, regardless of whether pneumonectomy is performed, intratracheally instilled bone marrow cells display a surface antigen profile that is similar to alveolar macrophages. Furthermore, these newly differentiated macrophages function similarly to resident macrophages in terms of TNF-α production, suggesting that bone marrow stem cells acquire the same macrophage phenotype. In conclusion, intratracheally instilled bone marrow cells adapt to the surrounding microenvironment, directly differentiating into alveolar macrophages, and remain in the alveolar space for at least 3 months.
Collapse
Affiliation(s)
- Masayuki Okui
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Taichiro Goto
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Keisuke Asakura
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Ikuo Kamiyama
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takashi Ohtsuka
- Division of General Thoracic Surgery, Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
33
|
Mühlfeld C, Hegermann J, Wrede C, Ochs M. A review of recent developments and applications of morphometry/stereology in lung research. Am J Physiol Lung Cell Mol Physiol 2015; 309:L526-36. [DOI: 10.1152/ajplung.00047.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022] Open
Abstract
Design-based stereology is the gold standard of morphometry in lung research. Here, we analyze the current use of morphometric and stereological methods in lung research and provide an overview on recent methodological developments and biological observations made by the use of stereology. Based on this analysis we hope to provide useful recommendations for a good stereological practice to further the use of advanced and unbiased stereological methods.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
34
|
Ysasi AB, Wagner WL, Bennett RD, Ackermann M, Valenzuela CD, Belle J, Tsuda A, Konerding MA, Mentzer SJ. Remodeling of alveolar septa after murine pneumonectomy. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1237-44. [PMID: 26078396 PMCID: PMC4587600 DOI: 10.1152/ajplung.00042.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends ("E"). Septal retraction, observed in 20-30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling.
Collapse
Affiliation(s)
- Alexandra B Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Willi L Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; and
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; and
| | - Cristian D Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Janeil Belle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| | - Moritz A Konerding
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
35
|
The role of vascular endothelial growth factor receptor-1 signaling in compensatory contralateral lung growth following unilateral pneumonectomy. J Transl Med 2015; 95:456-68. [PMID: 25642830 DOI: 10.1038/labinvest.2014.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 10/31/2014] [Accepted: 12/02/2014] [Indexed: 01/09/2023] Open
Abstract
Compensatory lung growth models have been widely used to investigate alveolization because the remaining lung can be kept intact and volume loss can be controlled. Vascular endothelial growth factor (VEGF) plays an important role in blood formation during lung growth and repair, but the precise mechanisms involved are poorly understood; therefore, the aim of this study was to investigate the role of VEGF signaling in compensatory lung growth. After left pneumonectomy, the right lung weight was higher in VEGF transgenic mice than wild-type (WT) mice. Compensatory lung growth was suppressed significantly in mice injected with a VEGF neutralizing antibody and in VEGF receptor-1 tyrosine kinase-deficient mice (TK(-/-) mice). The mobilization of progenitor cells expressing VEGFR1(+) cells from bone marrow and the recruitment of these cells to lung tissue were also suppressed in the TK(-/-) mice. WT mice transplanted with bone marrow from TK(-/-)transgenic GFP(+) mice had significantly lower numbers of GFP(+)/aquaporin 5(+), GFP(+)/surfactant protein A(+), and GFP(+)/VEGFR1(+) cells than WT mice transplanted with bone marrow from WTGFP(+) mice. The GFP(+)/VEGFR1(+) cells also co-stained for aquaporin 5 and surfactant protein A. Overall, these results suggest that VEGF signaling contributes to compensatory lung growth by mobilizing VEGFR1(+) cells.
Collapse
|
36
|
Ahlbrecht K, McGowan SE. In search of the elusive lipofibroblast in human lungs. Am J Physiol Lung Cell Mol Physiol 2014; 307:L605-8. [PMID: 25193605 DOI: 10.1152/ajplung.00230.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although the pulmonary interstitial lipofibroblast (LF) has been widely recognized in rat and mouse lungs, their presence in human lungs remains controversial. In a recent issue of the Journal, Tahedl and associates (Tahedl D, Wirkes A, Tschanz SA, Ochs M, Mühlfeld C. Am J Physiol Lung Cell Mol Physiol 307: L386-L394, 2014) address this controversy and provide the most detailed stereological analysis of LFs in mammals other than rodents. Strikingly, their observations demonstrate that LFs were only observed in rodents, which contrasts with earlier reports. This editorial reviews the anatomical, physiological, and biochemical characteristics of the LF to better understand the significance of LFs for lung development and disease. Although lipid droplets are a signature of the LF cell type, it remains unclear whether lipid storage is the defining characteristic of LFs, or whether other less overt properties determine the importance of LFs. Are lipid droplets an adaptation to the neonatal environment, or are LFs a surrogate for other properties that promote alveolar development, and do lipid droplets modify physiology or disease in adults?
Collapse
Affiliation(s)
- Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany; and
| | - Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
37
|
Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014; 15:123-38. [PMID: 25105578 PMCID: PMC4212493 DOI: 10.1016/j.stem.2014.07.012] [Citation(s) in RCA: 632] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA.
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke Medicine, Durham, NC 27705, USA
| | - Harold A Chapman
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Elizabeth Calle
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Andrew Le
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melinda Snitow
- Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Krummel
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barry R Stripp
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thiennu Vu
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric S White
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey A Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 2014; 20:822-32. [PMID: 25100528 PMCID: PMC4229034 DOI: 10.1038/nm.3642] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that the respiratory system has an extensive ability to respond to injury and regenerate lost or damaged cells. The unperturbed adult lung is remarkably quiescent, but after insult or injury progenitor populations can be activated or remaining cells can re-enter the cell cycle. Techniques including cell-lineage tracing and transcriptome analysis have provided novel and exciting insights into how the lungs and trachea regenerate in response to injury and have allowed the identification of pathways important in lung development and regeneration. These studies are now informing approaches for modulating the pathways that may promote endogenous regeneration as well as the generation of exogenous lung cell lineages from pluripotent stem cells. The emerging advances, highlighted in this Review, are providing new techniques and assays for basic mechanistic studies as well as generating new model systems for human disease and strategies for cell replacement.
Collapse
Affiliation(s)
- Darrell N Kotton
- 1] Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA. [2] Pulmonary Center, Boston University, Boston, Massachusetts, USA. [3] Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Edward E Morrisey
- 1] Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. [2] Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. [3] Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA. [4] Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Guo J, Huang HJ, Wang X, Wang W, Ellison H, Thomen RP, Gelman AE, Woods JC. Imaging mouse lung allograft rejection with (1)H MRI. Magn Reson Med 2014; 73:1970-8. [PMID: 24954886 DOI: 10.1002/mrm.25313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/05/2014] [Accepted: 05/18/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE To demonstrate that longitudinal, noninvasive monitoring via MRI can characterize acute cellular rejection in mouse orthotopic lung allografts. METHODS Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig versus anti-CD4/anti-CD8 treated groups. A two-dimensional multislice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at postoperative days 3, 7, and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. RESULTS Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 posttransplantation (0.046→0.789; P < 0.05), despite large intermouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003; P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. CONCLUSION Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment.
Collapse
Affiliation(s)
- Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Advances in medical therapy have increased survival of extremely premature infants and changed the pathology of bronchopulmonary dysplasia (BPD) from one of acute lung injury to a disease of disrupted lung development. With this evolution, new questions emerge regarding the molecular mechanisms that control postnatal lung development, the effect of early disruptions of postnatal lung development on long-term lung function, and the existence of endogenous mechanisms that permit lung regeneration after injury. RECENT FINDINGS Recent data demonstrate that a significant component of alveolarization, the final stage of lung development, occurs postnatally. Further, clinical and experimental studies demonstrate that premature birth disrupts alveolarization, decreasing the gas exchange surface area of the lung and causing BPD. BPD is associated with significant short-term morbidity, and new longitudinal, clinical data demonstrate that survivors of BPD have long-standing deficits in lung function and may be at risk for the development of additional lung disease as adults. Unfortunately, current care is mainly supportive with few effective therapies that prevent or treat established BPD. These studies underscore the need to further elucidate the mechanisms that direct postnatal lung growth and develop innovative strategies to stimulate lung regeneration. SUMMARY Despite significant improvements in the care and survival of extremely premature infants, BPD remains a major clinical problem. Although efforts should remain focused on the prevention of preterm labor and BPD, novel research aimed at promoting postnatal alveolarization offers a unique opportunity to develop effective strategies to treat established BPD.
Collapse
|
41
|
Eisenhauer P, Earle B, Loi R, Sueblinvong V, Goodwin M, Allen GB, Lundblad L, Mazan MR, Hoffman AM, Weiss DJ. Endogenous distal airway progenitor cells, lung mechanics, and disproportionate lobar growth following long-term postpneumonectomy in mice. Stem Cells 2014; 31:1330-9. [PMID: 23533195 DOI: 10.1002/stem.1377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 01/21/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022]
Abstract
Using a model of postpneumonectomy (PNY) compensatory lung growth in mice, we previously observed an increase in numbers of a putative endogenous distal airway progenitor cell population (CCSP(pos) /pro-SPC(pos) cells located at bronchoalveolar duct junctions [BADJs]), at 3, 7, and 14 days after pneumonectomy, returning to baseline at 28 days post-PNY. As the origin of these cells is poorly understood, we evaluated whether bone marrow cells contributed to the pool of these or other cells during prolonged post-PNY lung regrowth. Naïve and sex-mismatched chimeric mice underwent left PNY and were evaluated at 1, 2, and 3 months for numbers of BADJ CCSP(pos) /pro-SPC(pos) cells and presence of donor-derived marrow cells engrafted as airway or alveolar epithelium. Nonchimeric mice were also examined at 12 months after PNY for numbers of BADJ CCSP(pos) /pro-SPC(pos) cells. Notably, the right accessory lobe (RAL) continued to grow disproportionately over 12 months, a novel finding not previously described. Assessment of lung mechanics demonstrated an increase in lung stiffness following PNY, which significantly diminished over 1 year, but remained elevated relative to 1-year-old naïve controls. However, the number of CCSP(pos) /pro-SPC(pos) BADJ cells ≥1-month following PNY was equivalent to that found in naïve controls even after 12 months of continued RAL growth. Notably, no donor bone marrow-derived cells engrafted as airway or alveolar epithelial cells, including those at the BADJ, up to 3 months after PNY. These studies suggest that lung epithelial cells, including CCSP(pos) /pro-SPC(pos) cells, are not replenished from marrow-derived cells during post-PNY lung growth in mice.
Collapse
Affiliation(s)
- Philip Eisenhauer
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Thane K, Ingenito EP, Hoffman AM. Lung regeneration and translational implications of the postpneumonectomy model. Transl Res 2014; 163:363-76. [PMID: 24316173 DOI: 10.1016/j.trsl.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Lung regeneration research is yielding data with increasing translational value. The classical models of lung development, postnatal alveolarization, and postpneumonectomy alveolarization have contributed to a broader understanding of the cellular participants including stem-progenitor cells, cell-cell signaling pathways, and the roles of mechanical deformation and other physiologic factors that have the potential to be modulated in human and animal patients. Although recent information is available describing the lineage fate of lung fibroblasts, genetic fate mapping, and clonal studies are lacking in the study of lung regeneration and deserve further examination. In addition to increasing knowledge concerning classical alveolarization (postnatal, postpneumonectomy), there is increasing evidence for remodeling of the adult lung after partial pneumonectomy. Though limited in scope, compelling data have emerged describing restoration of lung tissue mass in the adult human and in large animal models. The basis for this long-term adaptation to pneumonectomy is poorly understood, but investigations into mechanisms of lung regeneration in older animals that have lost their capacity for rapid re-alveolarization are warranted, as there would be great translational value in modulating these mechanisms. In addition, quantitative morphometric analysis has progressed in conjunction with developments in advanced imaging, which allow for longitudinal and nonterminal evaluation of pulmonary regenerative responses in animals and humans. This review focuses on the cellular and molecular events that have been observed in animals and humans after pneumonectomy because this model is closest to classical regeneration in other mammalian systems and has revealed several new fronts of translational research that deserve consideration.
Collapse
Affiliation(s)
- Kristen Thane
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass
| | - Edward P Ingenito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Andrew M Hoffman
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass.
| |
Collapse
|
43
|
Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development 2014; 141:502-13. [PMID: 24449833 DOI: 10.1242/dev.098186] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The respiratory system, which consists of the lungs, trachea and associated vasculature, is essential for terrestrial life. In recent years, extensive progress has been made in defining the temporal progression of lung development, and this has led to exciting discoveries, including the derivation of lung epithelium from pluripotent stem cells and the discovery of developmental pathways that are targets for new therapeutics. These discoveries have also provided new insights into the regenerative capacity of the respiratory system. This Review highlights recent advances in our understanding of lung development and regeneration, which will hopefully lead to better insights into both congenital and acquired lung diseases.
Collapse
Affiliation(s)
- Michael Herriges
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
44
|
Madurga A, Mižíková I, Ruiz-Camp J, Vadász I, Herold S, Mayer K, Fehrenbach H, Seeger W, Morty RE. Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2014; 306:L684-97. [PMID: 24508731 DOI: 10.1152/ajplung.00361.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arrested alveolarization is the pathological hallmark of bronchopulmonary dysplasia (BPD), a complication of premature birth. Here, the impact of systemic application of hydrogen sulfide (H2S) on postnatal alveolarization was assessed in a mouse BPD model. Exposure of newborn mice to 85% O2 for 10 days reduced the total lung alveoli number by 56% and increased alveolar septal wall thickness by 29%, as assessed by state-of-the-art stereological analysis. Systemic application of H2S via the slow-release H2S donor GYY4137 for 10 days resulted in pronounced improvement in lung alveolarization in pups breathing 85% O2, compared with vehicle-treated littermates. Although without impact on lung oxidative status, systemic H2S blunted leukocyte infiltration into alveolar air spaces provoked by hyperoxia, and restored normal lung interleukin 10 levels that were otherwise depressed by 85% O2. Treatment of primary mouse alveolar type II (ATII) cells with the rapid-release H2S donor NaHS had no impact on cell viability; however, NaHS promoted ATII cell migration. Although exposure of ATII cells to 85% O2 caused dramatic changes in mRNA expression, exposure to either GYY4137 or NaHS had no impact on ATII cell mRNA expression, as assessed by microarray, suggesting that the effects observed were independent of changes in gene expression. The impact of NaHS on ATII cell migration was attenuated by glibenclamide, implicating ion channels, and was accompanied by activation of Akt, hinting at two possible mechanisms of H2S action. These data support further investigation of H2S as a candidate interventional strategy to limit the arrested alveolarization associated with BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Furukawa K, Matsumoto K, Nagayasu T, Yamamoto-Fukuda T, Tobinaga S, Abo T, Yamasaki N, Tsuchiya T, Miyazaki T, Kamohara R, Nanashima A, Obatake M, Koji T. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat. Acta Histochem Cytochem 2013; 46:179-85. [PMID: 24610965 PMCID: PMC3929616 DOI: 10.1267/ahc.13036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/26/2013] [Indexed: 01/28/2023] Open
Abstract
Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth.
Collapse
Affiliation(s)
- Katsuro Furukawa
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomomi Yamamoto-Fukuda
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Shuichi Tobinaga
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takafumi Abo
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Naoya Yamasaki
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takuro Miyazaki
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Ryotaro Kamohara
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsushi Nanashima
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Masayuki Obatake
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
46
|
Wang W, Nguyen NM, Guo J, Woods JC. Longitudinal, noninvasive monitoring of compensatory lung growth in mice after pneumonectomy via (3)He and (1)H magnetic resonance imaging. Am J Respir Cell Mol Biol 2013; 49:697-703. [PMID: 23763461 DOI: 10.1165/rcmb.2012-0332ma] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In rodents and some other mammals, partial pneumonectomy (PNX) of adult lungs results in rapid compensatory lung growth. In the past, quantification of compensatory lung growth and realveolarization could only be accomplished after killing the animal, removal of lungs, and histologic analysis of lungs at single time points. Hyperpolarized (3)He diffusion magnetic resonance imaging (MRI) allows in vivo morphometry of human lungs; our group has adapted this technique for application to mouse lungs. Through imaging, we can obtain maps of lung microstructural parameters that allow quantification of morphometric and physiologic measurements. In this study, we employed our (3)He MRI technique to image in vivo morphometry at baseline and to serially assess compensatory growth after left PNX of mice. (1)H and hyperpolarized (3)He diffusion MRI were performed at baseline (pre-PNX), 3-days, and 30-days after PNX. Compared with the individual mouse's own baseline, MRI was able to detect and serially quantify changes in lung volume, alveolar surface area, alveolar number, and regional changes in alveolar size that occurred during the course of post-PNX lung growth. These results are consistent with morphometry measurements reported in the literature for mouse post-PNX compensatory lung growth. In addition, we were also able to serially assess and quantify changes in the physiologic parameter of lung compliance during the course of compensatory lung growth; this was consistent with flexiVent data. With these techniques, we now have a noninvasive, in vivo method to serially assess the effectiveness of therapeutic interventions on post-PNX lung growth in the same mouse.
Collapse
|
47
|
McLoughlin P, Keane MP. Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 2013; 1:1473-508. [PMID: 23733650 DOI: 10.1002/cphy.c100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis occurs during growth and physiological adaptation in many systemic organs, for example, exercise-induced skeletal and cardiac muscle hypertrophy, ovulation, and tissue repair. Disordered angiogenesis contributes to chronic inflammatory disease processes and to tumor growth and metastasis. Although it was previously thought that the adult pulmonary circulation was incapable of supporting new vessel growth, over that past 10 years new data have shown that angiogenesis within this circulation occurs both during physiological adaptive processes and as part of the pathogenic mechanisms of lung diseases. Here we review the expression of vascular growth factors in the adult lung, their essential role in pulmonary vascular homeostasis and the changes in their expression that occur in response to physiological challenges and in disease. We consider the evidence for adaptive neovascularization in the pulmonary circulation in response to alveolar hypoxia and during lung growth following pneumonectomy in the adult lung. In addition, we review the role of disordered angiogenesis in specific lung diseases including idiopathic pulmonary fibrosis, acute adult distress syndrome and both primary and metastatic tumors of the lung. Finally, we examine recent experimental data showing that therapeutic enhancement of pulmonary angiogenesis has the potential to treat lung diseases characterized by vessel loss.
Collapse
Affiliation(s)
- Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, and St. Vincent's University Hospital, Dublin, Ireland.
| | | |
Collapse
|
48
|
Paisley D, Bevan L, Choy KJ, Gross C. The pneumonectomy model of compensatory lung growth: insights into lung regeneration. Pharmacol Ther 2013; 142:196-205. [PMID: 24333263 DOI: 10.1016/j.pharmthera.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
Pneumonectomy (PNX) in experimental animals leads to a species- and age-dependent compensatory growth of the remaining lung lobes. PNX mimics the loss of functional gas exchange units observed in a number of chronic destructive lung diseases. However, unlike in disease models, this tissue loss is well defined, reproducible and lacks accompanying inflammation. Furthermore, compensatory responses to the tissue loss can be easily quantified. This makes PNX a potentially useful model for the study of the cellular and molecular events which occur during realveolarisation. It may therefore help to get a better understanding of how to manipulate these pathways, in order to promote the generation of new alveolar tissue as therapies for destructive lung diseases. This review will explore the insights that experimental PNX has provided into the physiological factors which promote compensatory lung growth as well as the importance of age and species in the rate and extent of compensation. In addition, more recent studies which are beginning to uncover the key cellular and molecular pathways involved in realveolarisation will be discussed. The potential relevance of experimental pneumonectomy to novel therapeutic strategies which aim to promote lung regeneration will also be highlighted.
Collapse
Affiliation(s)
- Derek Paisley
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom.
| | - Luke Bevan
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Katherine J Choy
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Carina Gross
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
49
|
Kho AT, Liu K, Visner G, Martin T, Boudreault F. Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 2013; 305:L542-54. [PMID: 23997171 DOI: 10.1152/ajplung.00403.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surgical resection of pulmonary tissue exerts a proregenerative stretch stimulus in the remaining lung units. Whether this regeneration process reenacts part or whole of lung morphogenesis developmental program remains unclear. To address this question, we analyzed the stretch-induced regenerating lung transcriptome in mice after left pneumonectomy (PNX) in its developmental context. We created a C57BL/6 mice lung regeneration transcriptome time course at 3, 7, 14, 28, and 56 days post-PNX, profiling the cardiac and medial lobes and whole right lung. Prominent expression at days 3 and 7 of genes related to cell proliferation (Ccnb1, Bub1, and Cdk1), extracellular matrix (Col1a1, Eln, and Tnc), and proteases (Serpinb2 and Mmp9) indicated regenerative processes that tapered off after 56 days. We projected the post-PNX transcriptomic time course into the transcriptomic principal component space of the C57BL/6 mouse developing lungs time series from embryonic day 9.5 to postnatal day 56. All post-PNX samples were localized around the late postnatal stage of developing lungs. Shortly after PNX, the temporal trajectory of regenerating lobes and right lung reversed course relative to the developing lungs in a process reminiscent of dedifferentiation. This reversal was limited to the later postnatal stage of lung development. The post-PNX temporal trajectory then moves forward in lung development time close to its pre-PNX state after days 28 to 56 in a process resembling redevelopment. A plausible interpretation is that remaining pulmonary tissue reverts to a more primitive stage of development with higher potential for growth to generate tissue in proportion to the loss.
Collapse
Affiliation(s)
- Alvin T Kho
- Boston Children's Hospital, 320 Longwood Ave., Boston, MA 02115 (
| | | | | | | | | |
Collapse
|
50
|
Abstract
Although the pulmonary capillaries were discovered in 1661, the ultrastructure of the wall was not elucidated until 60 years ago. Electron micrographs then showed that only 0.2 μm of tissue separated the capillary endothelium from the alveolar space over much of the area. In retrospect this vanishingly small protective layer should have alerted physiologists to the potential fragility of the capillaries, but this was not appreciated until almost 40 years later. This predicament is unique to pulmonary capillaries. No other capillaries in the body are shielded from the outside environment by such a minute amount of tissue. Reasons why the fragility of the capillaries was not recognized earlier include an inappropriate comparison with the properties of systemic capillaries, the mistaken view that the pulmonary capillary pressure is always low, and a misleading use of the Laplace equation. Evidence for the fragility comes from physiological, pathological, and laboratory observations. As expected from evolutionary considerations, the fragility only becomes evident in the normal lung under exceptional conditions. These include elite human athletes at maximal exercise and animals that have developed the capacity for extreme aerobic activity. However, lung and heart diseases frequently cause capillary disruption. Remodeling of pulmonary capillaries occurs in humans in whom the capillary pressure rises over a long period. Neonatal capillaries are extremely fragile, presumably because they have never been exposed to increased transmural pressures. The capillaries conform to the general biological rule that tissue adapts its structure to carry out its required function.
Collapse
Affiliation(s)
- John B West
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|