1
|
Shenhav L, Fehr K, Reyna ME, Petersen C, Dai DLY, Dai R, Breton V, Rossi L, Smieja M, Simons E, Silverman MA, Levy M, Bode L, Field CJ, Marshall JS, Moraes TJ, Mandhane PJ, Turvey SE, Subbarao P, Surette MG, Azad MB. Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development. Cell 2024; 187:5431-5452.e20. [PMID: 39303691 PMCID: PMC11531244 DOI: 10.1016/j.cell.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/02/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.
Collapse
Affiliation(s)
- Liat Shenhav
- Institute for Systems Genetics, New York Grossman School of Medicine, New York University, New York, NY, USA; Department of Microbiology, New York Grossman School of Medicine, New York University, New York, NY, USA; Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
| | - Kelsey Fehr
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Myrtha E Reyna
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Darlene L Y Dai
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ruixue Dai
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vanessa Breton
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Laura Rossi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Marek Smieja
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Michael A Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maayan Levy
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA; Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Catherine J Field
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jean S Marshall
- Department of Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | | | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Stevens DR, Yeung E, Hinkle SN, Grobman W, Williams A, Ouidir M, Kumar R, Lipsky LM, Rohn MCH, Kanner J, Sherman S, Chen Z, Mendola P. Maternal asthma in relation to infant size and body composition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100122. [PMID: 37485032 PMCID: PMC10361394 DOI: 10.1016/j.jacig.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Asthma affects 10% of pregnancies and may influence offspring health, including infant size and body composition, through hypoxic and inflammatory pathways. Objective We sought to determine associations between maternal asthma and asthma phenotypes during pregnancy and infant size and body composition. Methods The B-WELL-Mom study (2015-19) is a prospective cohort of 418 pregnant persons with and without asthma recruited in the first trimester of pregnancy from 2 US obstetric clinics. Exposures were maternal self-reported active asthma (n = 311) or no asthma (n = 107), and asthma phenotypes were classified on the bases of atopy, onset, exercise induced, control, severity, symptomology, and exacerbations. Outcomes were infant weight, length, head circumference, and skinfold measurements at birth and postnatal follow-up, as well as fat and lean mass assessed by air displacement plethysmography at birth. Adjusted multivariable linear regression examined associations of maternal asthma and asthma phenotypes with infant outcomes. Results Offspring were born at a mean ± SD of 38 ± 2.3 weeks' gestation and were 18 ± 2.2 weeks of age at postnatal follow-up. Infants of participants with asthma had a mean ± SD fat mass of 11.0 ± 4.2%, birth weight of 3045.8 ± 604.3 g, and postnatal follow-up weight of 6696.4 ± 964.2 g, which were not different from infants of participants without asthma (respectively, β [95% confidence interval]: -0.1 [-1.4, 1.3], -26.7 [-156.9, 103.4], and 107.5 [-117.3, 332.3]). Few associations were observed between asthma or asthma phenotypes and infant size or body composition. Conclusions In a current obstetric cohort, maternal asthma during pregnancy was not associated with differential infant size or body composition.
Collapse
Affiliation(s)
- Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Edwina Yeung
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Stefanie N. Hinkle
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Andrew Williams
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Marion Ouidir
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Rajesh Kumar
- Feinberg School of Medicine, Northwestern University, Chicago
| | - Leah M. Lipsky
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Matthew C. H. Rohn
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
- Department of Obstetrics and Gynecology, George Washington University, Washington
| | - Jenna Kanner
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | | | - Zhen Chen
- Biostatistics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Pauline Mendola
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo
| |
Collapse
|
3
|
Lupu A, Jechel E, Mihai CM, Mitrofan EC, Fotea S, Starcea IM, Ioniuc I, Mocanu A, Ghica DC, Popp A, Munteanu D, Sasaran MO, Salaru DL, Lupu VV. The Footprint of Microbiome in Pediatric Asthma-A Complex Puzzle for a Balanced Development. Nutrients 2023; 15:3278. [PMID: 37513696 PMCID: PMC10384859 DOI: 10.3390/nu15143278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Considered to be of greater complexity than the human genome itself, the microbiome, the structure of the body made up of trillions of bacteria, viruses, and fungi, has proven to play a crucial role in the context of the development of pathological processes in the body, starting from various infections, autoimmune diseases, atopies, and culminating in its involvement in the development of some forms of cancer, a diagnosis that is considered the most disabling for the patient from a psychological point of view. Therefore, being a cornerstone in the understanding and optimal treatment of a multitude of ailments, the body's microbiome has become an intensively studied subject in the scientific literature of the last decade. This review aims to bring the microbiome-asthma correlation up to date by classifying asthmatic patterns, emphasizing the development patterns of the microbiome starting from the perinatal period and the impact of pulmonary dysbiosis on asthmatic symptoms in children. Likewise, the effects of intestinal dysbiosis reflected at the level of homeostasis of the internal environment through the intestine-lung/vital organs axis, the circumstances in which it occurs, but also the main methods of studying bacterial variability used for diagnostic purposes and in research should not be omitted. In conclusion, we draw current and future therapeutic lines worthy of consideration both in obtaining and maintaining remission, as well as in delaying the development of primary acute episodes and preventing future relapses.
Collapse
Affiliation(s)
- Ancuta Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Jechel
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Catalin Ghica
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Faculty of General Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragos Munteanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of General Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Migliori C, Braga M, Siragusa V, Villa MC, Luzi L. The impact of gender medicine on neonatology: the disadvantage of being male: a narrative review. Ital J Pediatr 2023; 49:65. [PMID: 37280693 DOI: 10.1186/s13052-023-01447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/20/2023] [Indexed: 06/08/2023] Open
Abstract
This narrative non-systematic review addresses the sex-specific differences observed both in prenatal period and, subsequently, in early childhood. Indeed, gender influences the type of birth and related complications. The risk of preterm birth, perinatal diseases, and differences on efficacy for pharmacological and non-pharmacological therapies, as well as prevention programs, will be evaluated. Although male newborns get more disadvantages, the physiological changes during growth and factors like social, demographic, and behavioural reverse this prevalence for some diseases. Therefore, given the primary role of genetics in gender differences, further studies specifically targeted neonatal sex-differences will be needed to streamline medical care and improve prevention programs.
Collapse
Affiliation(s)
- Claudio Migliori
- Department of Neonatology, Ospedale San Giuseppe MultiMedica, 20123, Milan, Italy.
| | - Marta Braga
- Department of Neonatology, Ospedale San Giuseppe MultiMedica, 20123, Milan, Italy
| | - Virginia Siragusa
- Department of Neonatology, Ospedale San Giuseppe MultiMedica, 20123, Milan, Italy
| | - Maria Cristina Villa
- Department of Neonatology, Ospedale San Giuseppe MultiMedica, 20123, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
5
|
The rise to power of the microbiome: power and sample size calculation for microbiome studies. Mucosal Immunol 2022; 15:1060-1070. [PMID: 35869146 DOI: 10.1038/s41385-022-00548-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
A priori power and sample size calculations are crucial to appropriately test null hypotheses and obtain valid conclusions from all clinical studies. Statistical tests to evaluate hypotheses in microbiome studies need to consider intrinsic features of microbiome datasets that do not apply to classic sample size calculation. In this review, we summarize statistical approaches to calculate sample sizes for typical microbiome study scenarios, including those that hypothesize microbiome features to be the outcome, the exposure or the mediator, and provide relevant R scripts to conduct some of these calculations. This review is intended to be a resource to facilitate the conduct of sample size calculations that are based on testable hypotheses across several dimensions of the microbiome. Implementation of these methods will improve the quality of human or animal microbiome studies, enabling reliable conclusions that will generalize beyond the study sample.
Collapse
|
6
|
Mehta S, Huey SL, McDonald D, Knight R, Finkelstein JL. Nutritional Interventions and the Gut Microbiome in Children. Annu Rev Nutr 2021; 41:479-510. [PMID: 34283919 DOI: 10.1146/annurev-nutr-021020-025755] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gut microbiome plays an integral role in health and disease, and diet is a major driver of its composition, diversity, and functional capacity. Given the dynamic development of the gut microbiome in infants and children, it is critical to address two major questions: (a) Can diet modify the composition, diversity, or function of the gut microbiome, and (b) will such modification affect functional/clinical outcomes including immune function, cognitive development, and overall health? We synthesize the evidence on the effect of nutritional interventions on the gut microbiome in infants and children across 26 studies. Findings indicate the need to study older children, assess the whole intestinal tract, and harmonize methods and interpretation of findings, which are critical for informing meaningful clinical and public health practice. These findings are relevant for precision health, may help identify windows of opportunity for intervention, and may inform the design and delivery of such interventions. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Daniel McDonald
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Departments of Bioengineering and Computer Science & Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Julia L Finkelstein
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
7
|
Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol 2021; 61:100912. [PMID: 33713673 DOI: 10.1016/j.yfrne.2021.100912] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex system, consisting of a dynamic population of microorganisms, involved in the regulation of the host's homeostasis. A vast number of factors are driving the gut microbiota composition including diet, antibiotics, environment, and lifestyle. However, in the past decade, a growing number of studies also focused on the role of sex in relationship to changes in the gut microbiota composition in animal experiments as well as in human beings. Despite the progress in investigation techniques, still little is known about the mechanism behind the observed sex-related differences. In this review, we summarized current knowledge on the sex-dependent differences of the intestinal commensals and discuss the probable direct impact of sex hormones and more indirect effects such as dietary habits or antibiotics. While we have to conclude limited data on specific developmental stages, a clear role for sexual hormones and most probably for testosterone emerges.
Collapse
Affiliation(s)
- Francesco Valeri
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany.
| |
Collapse
|
8
|
Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, Gordon A. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes 2021; 13:1-30. [PMID: 33978558 PMCID: PMC8276657 DOI: 10.1080/19490976.2021.1897210] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Early life, including the establishment of the intestinal microbiome, represents a critical window of growth and development. Postnatal factors affecting the microbiome, including mode of delivery, feeding type, and antibiotic exposure have been widely investigated, but questions remain regarding the influence of exposures in utero on infant gut microbiome assembly. This systematic review aimed to synthesize evidence on exposures before birth, which affect the early intestinal microbiome. Five databases were searched in August 2019 for studies exploring pre-pregnancy or pregnancy 'exposure' data in relation to the infant microbiome. Of 1,441 publications identified, 76 were included. Factors reported influencing microbiome composition and diversity included maternal antibiotic and probiotic uses, dietary intake, pre-pregnancy body mass index (BMI), gestational weight gain (GWG), diabetes, mood, and others. Eleven studies contributed to three meta-analyses quantifying associations between maternal intrapartum antibiotic exposure (IAP), BMI and GWG, and infant microbiome alpha diversity (Shannon Index). IAP, maternal overweight/obesity and excessive GWG were all associated with reduced diversity. Most studies were observational, few included early recruitment or longitudinal follow-up, and the timing, frequency, and methodologies related to stool sampling and analysis were variable. Standardization and collaboration are imperative to enhance understanding in this complex and rapidly evolving area.
Collapse
Affiliation(s)
- Allison Grech
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Holmes
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Ravin Lal
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kerith Duncanson
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Rachael Taylor
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Adrienne Gordon
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
9
|
Lee YS, Kim JH, Lim DH. Urine Microbe-Derived Extracellular Vesicles in Children With Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:75-87. [PMID: 33191678 PMCID: PMC7680828 DOI: 10.4168/aair.2021.13.1.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Several studies have found significant associations between asthma and microbiome. However, it is challenging to obtain-sputum and bronchoalveolar lavage samples from pediatric patients. Thus, we used voided urine to show that urine microbe-derived extracellular vesicles (EVs) in asthma are an available source for clinical research. METHODS Five urine samples were obtained at 2-3-month intervals from each patient with asthma (n = 20), and a single voided urine sample were obtained from each healthy child (n = 20). After isolating EVs, 16S rDNA pyrosequencing was performed. The Chao1 index and principal coordinate analysis (PCoA) were used to assess diversity. To predict microbiota functional capacities, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used based on the Kyoto Encyclopedia of Genes and Genomes pathway database. Eight covariates were included in the EnvFit analysis to identify significant factors in the asthma group. RESULTS The asthma group showed lower Chao1 bacterial richness, and PCoA-based clustering differed significantly. Two phyla, and 13 families and genera were enriched or depleted. Functional profiling revealed significant differences between the asthma and control groups. EnvFit analysis of correlation to age, sex, body mass index, infection, season, asthma phenotype, severity, and symptoms was not significant except for infections associated with visit 1 and the season of visit 2. CONCLUSIONS This study showed that microbe-derived EVs were constantly altered in the urine of children with asthma, consistent with the findings of previous studies indicating microbiome changes in the lung and gut. The urine may reflect the specific pattern of microbiome EVs in children with asthma.
Collapse
Affiliation(s)
- Yeong Seok Lee
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Jeong Hee Kim
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea
| | - Dae Hyun Lim
- Department of Pediatrics, School of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
10
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci 2020; 21:E9580. [PMID: 33339172 PMCID: PMC7765661 DOI: 10.3390/ijms21249580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is well known as playing a critical role in inflammation and asthma development. The very low-calorie ketogenic diet (VLCKD) is suggested to affect gut microbiota; however, the effects of VLCKD during pregnancy and lactation on the infant gut microbiota are unclear. The VLCKD appears to be more effective than caloric/energy restriction diets for the treatment of several diseases, such as obesity and diabetes. However, whether adherence to VLCKD affects the infant gut microbiota and the protective effects thereof on asthma remains uncertain. The exact mechanisms underlying this process, and in particular the potential role of short chain fatty acids (SCFAs), are still to be unravelled. Thus, the aim of this review is to identify the potential role of SCFAs that underlie the effects of VLCKD during pregnancy and lactation on the infant gut microbiota, and explore whether it incurs significant implications for reducing asthma.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
11
|
Drall KM, Field CJ, Haqq AM, de Souza RJ, Tun HM, Morales-Lizcano NP, Konya TB, Guttman DS, Azad MB, Becker AB, Lefebvre DL, Mandhane PJ, Moraes TJ, Sears MR, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. Vitamin D supplementation in pregnancy and early infancy in relation to gut microbiota composition and C. difficile colonization: implications for viral respiratory infections. Gut Microbes 2020; 12:1799734. [PMID: 32779963 PMCID: PMC7524344 DOI: 10.1080/19490976.2020.1799734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Canada and the US, the infant diet is supplemented with vitamin D via supplement drops or formula. Pregnant and nursing mothers often take vitamin D supplements. Since little is known about the impact of this supplementation on infant gut microbiota, we undertook a study to determine the association between maternal and infant vitamin D supplementation, infant gut microbiota composition and Clostridioides difficile colonization in 1,157 mother-infant pairs of the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study over 2009-2012. Logistic and MaAsLin regression were employed to assess associations between vitamin D supplementation, and C. difficile colonization, or other gut microbiota, respectively. Sixty-five percent of infants received a vitamin D supplement. Among all infants, infant vitamin D supplementation was associated with a lower abundance of genus Megamonas (q = 0.01) in gut microbiota. Among those exclusively breastfed, maternal prenatal supplementation was associated with lower abundance of Bilophila (q = 0.01) and of Lachnospiraceae (q = 0.02) but higher abundance of Haemophilus (q = 0.02). There were no differences in microbiota composition with vitamin D supplementation among partially and not breastfed infants. Neither infant nor maternal vitamin D supplementation were associated with C. difficile colonization, after adjusting for breastfeeding status and other factors. However, maternal consumption of vitamin-D fortified milk reduced the likelihood of C. difficile colonization in infants (adjustedOR: 0.40, 95% CI: 0.19-0.82). The impact of this compositional difference on later childhood health, especially defense against viral respiratory infection, may go beyond the expected effects of vitamin D supplements and remains to be ascertained.
Collapse
Affiliation(s)
- Kelsea M. Drall
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M. Haqq
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Russell J. de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada,Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Hein M. Tun
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada,HKU-Pasteur Research Pole, School of Public Health, Hong Kong University, Hong Kong SAR, China
| | | | - Theodore B. Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada,Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - Meghan B. Azad
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Allan B. Becker
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | | | - Piush J. Mandhane
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Theo J. Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ONCanada
| | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Medicine, McMaster University, Hamilton, ON, Canada,Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ONCanada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anita L Kozyrskyj
- Departments of Pediatrics, Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada,School of Public Health, University of Alberta, Edmonton, Canada,CONTACT : Anita L Kozyrskyj 3-527 Edmonton Clinic Health Academy, Edmonton, ABT6G 1C9, Canada
| |
Collapse
|
12
|
Huey SL, Jiang L, Fedarko MW, McDonald D, Martino C, Ali F, Russell DG, Udipi SA, Thorat A, Thakker V, Ghugre P, Potdar RD, Chopra H, Rajagopalan K, Haas JD, Finkelstein JL, Knight R, Mehta S. Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. mSphere 2020; 5:e00731-20. [PMID: 32968008 PMCID: PMC7568645 DOI: 10.1128/msphere.00731-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
In this cross-sectional study, we describe the composition and diversity of the gut microbiota among undernourished children living in urban slums of Mumbai, India, and determine how nutritional status, including anthropometric measurements, dietary intakes from complementary foods, feeding practices, and micronutrient concentrations, is associated with their gut microbiota. We collected rectal swabs from children aged 10 to 18 months living in urban slums of Mumbai participating in a randomized controlled feeding trial and conducted 16S rRNA sequencing to determine the composition of the gut microbiota. Across the study cohort, Proteobacteria dominated the gut microbiota at over 80% relative abundance, with Actinobacteria representation at <4%, suggesting immaturity of the gut. Increased microbial α-diversity was associated with current breastfeeding, greater head circumference, higher fat intake, and lower hemoglobin concentration and weight-for-length Z-score. In redundancy analyses, 47% of the variation in Faith's phylogenetic diversity (Faith's PD) could be accounted for by age and by iron and polyunsaturated fatty acid intakes. Differences in community structure (β-diversity) of the microbiota were observed among those consuming fats and oils the previous day compared to those not consuming fats and oils the previous day. Our findings suggest that growth, diet, and feeding practices are associated with gut microbiota metrics in undernourished children, whose gut microbiota were comprised mainly of Proteobacteria, a phylum containing many potentially pathogenic taxa.IMPORTANCE The impact of comprehensive nutritional status, defined as growth, nutritional blood biomarkers, dietary intakes, and feeding practices, on the gut microbiome in children living in low-resource settings has remained underreported in microbiome research. Among undernourished children living in urban slums of Mumbai, India, we observed a high relative abundance of Proteobacteria, a phylum including many potentially pathogenic species similar to the composition in preterm infants, suggesting immaturity of the gut, or potentially a high inflammatory burden. We found head circumference, fat and iron intake, and current breastfeeding were positively associated with microbial diversity, while hemoglobin and weight for length were associated with lower diversity. Findings suggest that examining comprehensive nutrition is critical to gain more understanding of how nutrition and the gut microbiota are linked, particularly in vulnerable populations such as children in urban slum settings.
Collapse
Affiliation(s)
- Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lingjing Jiang
- Division of Biostatistics, University of California, San Diego, California, USA
| | - Marcus W Fedarko
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cameron Martino
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
| | - Farhana Ali
- Department of Bioengineering, University of California, San Diego, California, USA
| | - David G Russell
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Shobha A Udipi
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Aparna Thorat
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Varsha Thakker
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Padmini Ghugre
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - R D Potdar
- Centre for the Study of Social Change, Mumbai, India
| | - Harsha Chopra
- Centre for the Study of Social Change, Mumbai, India
| | - Kripa Rajagopalan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Jere D Haas
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, New York, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Björkander S, Carvalho-Queiroz C, Hallberg J, Persson JO, Johansson MA, Nussbaum B, Jenmalm MC, Nilsson C, Sverremark-Ekström E. Childhood allergy is preceded by an absence of gut lactobacilli species and higher levels of atopy-related plasma chemokines. Clin Exp Immunol 2020; 202:288-299. [PMID: 32652542 PMCID: PMC7670166 DOI: 10.1111/cei.13494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
Alterations in the composition and reduced diversity of the infant microbiome are associated with allergic disease in children. Further, an altered microbiota is linked to immune dysregulation, including skewing of different T helper (Th) subsets, which is also seen in atopic individuals. The aim of this study was, therefore, to investigate the associations between gut lactobacilli and Th‐related plasma factors in allergy development during childhood. A total of 194 children with known allergy status at 1 year of age were followed to 10 years of age. We used real‐time polymerase chain reaction (PCR) to investigate the presence of three lactobacilli species (Lactobacillus casei, L. paracasei, L. rhamnosus) in infant fecal samples (collected between 1 week and 2 months of age) from a subgroup of children. Plasma chemokines and cytokines were quantified at 6 months and at 1, 2, 5 and 10 years of age with Luminex or enzyme‐linked immunosorbent assay (ELISA). Fractional exhaled nitrogen oxide (FeNO) was measured and spirometry performed at 10 years of age. The data were analysed by non‐parametric testing and a logistic regression model adjusted for parental allergy. An absence of these lactobacilli and higher levels of the chemokines BCA‐1/CXCL13, CCL17/TARC, MIP‐3α/CCL20 and MDC/CCL22 in plasma at 6 months of age preceded allergy development. The presence of lactobacilli associated with lower levels of atopy‐related chemokines during infancy, together with higher levels of interferon (IFN)‐γ and lower FeNO during later childhood. The results indicate that the presence of certain lactobacilli species in the infant gut may influence allergy‐related parameters in the peripheral immune system, and thereby contribute to allergy protection.
Collapse
Affiliation(s)
- S Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - C Carvalho-Queiroz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J Hallberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Stockholm, Sweden.,Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - J-O Persson
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - M A Johansson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - B Nussbaum
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - M C Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - C Nilsson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - E Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
The Infant Gut Microbiota and Risk of Asthma: The Effect of Maternal Nutrition during Pregnancy and Lactation. Microorganisms 2020; 8:microorganisms8081119. [PMID: 32722458 PMCID: PMC7466123 DOI: 10.3390/microorganisms8081119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Research has amply demonstrated that early life dysbiosis of the gut microbiota influences the propensity to develop asthma. The influence of maternal nutrition on infant gut microbiota is therefore of growing interest. However, a handful of prospective studies have examined the role of maternal dietary patterns during pregnancy in influencing the infant gut microbiota but did not assess whether this resulted in an increased risk of asthma later in life. The mechanisms involved in the process are also, thus far, poorly documented. There have also been few studies examining the effect of maternal dietary nutrient intake during lactation on the milk microbiota, the effect on the infant gut microbiota and, furthermore, the consequences for asthma development remain largely unknown. Therefore, the specific aim of this mini review is summarizing the current knowledge regarding the effect of maternal nutrition during pregnancy and lactation on the infant gut microbiota composition, and whether it has implications for asthma development.
Collapse
|
15
|
Metsälä J, Hakola L, Lundqvist A, Virta LJ, Gissler M, Virtanen SM. Perinatal factors and the risk of type 1 diabetes in childhood and adolescence-A register-based case-cohort study in Finland, years 1987 to 2009. Pediatr Diabetes 2020; 21:586-596. [PMID: 32003515 DOI: 10.1111/pedi.12994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Our aim was to clarify previously reported associations and to explore new ones between various maternal background and perinatal factors and the risk of type 1 diabetes in childhood. METHODS We identified all children born 1 January 1987 to 31 December 2008 in Finland and diagnosed with type 1 diabetes by age 16 years or end of 2009 from the Special Reimbursement Register (n = 6862). A 10% random sample from each birth year cohort was selected as a reference cohort (n = 127 216). Information on perinatal factors was obtained from the Finnish Medical Birth Register. RESULTS Maternal diabetes (hazard ratios [HR] = 6.43; 95% confidence interval [CI] 5.35, 7.73), maternal asthma (HR = 1.23; 95% CI 1.06, 1.43), child's high birth length for gestational age (HR = 1.35; 95% CI 1.22, 1.51 highest vs lowest quintile) and premature or early term birth (HR = 1.21; 95% CI 1.05, 1.39 gestational weeks 33-36 and HR = 1.17; 95% CI 1.09, 1.26 gestational weeks 37-38 vs gestational weeks 39-40) was associated with an increased risk of type 1 diabetes when adjusted for several potential confounders. Maternal smoking during pregnancy (HR = 0.72; 95% CI 0.66, 0.77), high number of previous live births (HR = 0.65; 95% CI 0.55, 0.76 ≥ 4 vs 0 live births), and the child being born small for gestational age (HR = 0.80; 95% CI 0.67, 0.96) was associated with a decreased risk of type 1 diabetes. CONCLUSIONS Findings on maternal asthma and high birth length for gestational age increasing the risk of type 1 diabetes are novel and need to be confirmed. Our findings indicate that perinatal factors may play a role in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Johanna Metsälä
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Annamari Lundqvist
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Lauri J Virta
- Research Department, Social Insurance Institution, Turku, Finland
| | - Mika Gissler
- Information Services Department, Finnish Institute for Health and Welfare, Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Suvi M Virtanen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland.,Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Tampere Center for Child Health Research, Tampere University and Tampere University Hospital, Finland.,Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
16
|
Salameh M, Burney Z, Mhaimeed N, Laswi I, Yousri NA, Bendriss G, Zakaria D. The role of gut microbiota in atopic asthma and allergy, implications in the understanding of disease pathogenesis. Scand J Immunol 2020; 91:e12855. [PMID: 31793015 DOI: 10.1111/sji.12855] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/10/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
Asthma is a clinical syndrome characterized by chronic airway inflammation. There is mounting evidence on the role of microbiota in the development of asthma. This review focuses on the role of microbiota in maintaining the integrity of the epithelia and their role in regulating the immune response. The review compiles data from multiple studies on the role of microbiota in the innate immune response and the development and differentiation of CD4+ T cells, a major component of the adaptive arm of the immune response. As a result of dysbiosis, invariant natural killer T cells may induce T helper 2 cell differentiation and immunoglobulin E isotype switching through the release of interleukin-4 and interleukin-13. Furthermore, degradation of immunoglobulin A antibodies, increased circulating mast cells and basophils, and inflammation are among other mechanisms by which dysbiosis can induce or exacerbate asthma. After explaining the underlying mechanisms, the review derives conclusions from studies that investigate dysbiosis in infancy and the development of asthma later in life. The review also includes studies that investigate asthmatic mothers and the development of asthma in children and the role of dysbiosis in that regard. Finally, the review explains the statistical relationship between eczema and asthma through multiple studies that investigate the role of dysbiosis in both atopic states. This review provides insight into the role of dysbiosis in asthma, and an understanding that is required to establish clinical trials which aim to modulate the gut microbiota as a means of preventing and treating asthma.
Collapse
Affiliation(s)
- Mohammad Salameh
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Zain Burney
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Nada Mhaimeed
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ibrahim Laswi
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Noha A Yousri
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ghizlane Bendriss
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Dalia Zakaria
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
17
|
The Sex-Gender Effects in the Road to Tailored Botanicals. Nutrients 2019; 11:nu11071637. [PMID: 31319627 PMCID: PMC6682902 DOI: 10.3390/nu11071637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Phenols are a wide family of phytochemicals that are characterized by large chemical diversity and are considered to bioactive molecules of foods, beverages, and botanicals. Although they have a multitude of biological actions, their beneficial effects are rarely evidenced in clinical research with high scientific rigor. This may occur due to the presence of numerous confounders, such as the modulation of phenol bioavailability, which can be regulated by microbiota, age, sex-gender. Sex-gender is an important determinant of health and well-being, and has an impact on environmental and occupational risks, access to health care, disease prevalence, and treatment outcomes. In addition, xenobiotic responses may be strongly influenced by sex-gender. This review describes how sex–gender differentially influences the activities of phenols also in some critical periods of women life such as pregnancy and lactation, considering also the sex of fetuses and infants. Thus, sex–gender is a variable that must be carefully considered and should be used to propose directions for future research on the road to tailored medicine and nutrition.
Collapse
|
18
|
Shah R, Newcomb DC. Sex Bias in Asthma Prevalence and Pathogenesis. Front Immunol 2018; 9:2997. [PMID: 30619350 PMCID: PMC6305471 DOI: 10.3389/fimmu.2018.02997] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-related differences in asthma prevalence are well established and change through the reproductive phases of life. As children, boys have increased prevalence of asthma compared to girls. However, as adults, women have increased prevalence of asthma compared to men. Many factors, including genetics, environment, immunological responses, and sex hormones, affect the sex disparity associated with the development and control of asthma and other allergic diseases. Fluctuations of hormones during puberty, menstruation, pregnancy, and menopause, alter asthma symptoms and severity. In this article, we review clinical and epidemiological studies that examined the sex disparity in asthma and other allergic diseases as well as the role of sex hormones on asthma pathogenesis.
Collapse
Affiliation(s)
- Ruchi Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
19
|
Obiakor CV, Tun HM, Bridgman SL, Arrieta MC, Kozyrskyj AL. The association between early life antibiotic use and allergic disease in young children: recent insights and their implications. Expert Rev Clin Immunol 2018; 14:841-855. [PMID: 30198345 DOI: 10.1080/1744666x.2018.1521271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Greater prescribing of antibiotics to infants has coincided with an epidemic of allergic disease. Through meta-analytic synthesis, accumulating evidence from prospective or database cohorts suggests a link between infant antibiotic treatment and the development of atopy. Stronger associations seen with multiple course and broad-spectrum antibiotic treatment add to biological plausibility. A major bias, confounding by indication, has been addressed in studies on antibiotic treatment of conditions which do not precede allergic disease. Areas covered: Our review provides an up-to-date synthesis of the current literature on associations between infant antibiotic exposure and future allergic disease. We discuss methods that assist in reducing study bias and look at new insights from studies of the infant gut microbiome. Expert commentary: Large-scale profiling of the gut microbiome provides a new tool for disentangling biases found in observational studies of infant antibiotic use. To date, microbial dysbiosis of the infant gut has been reported to predict allergic disease independent of antibiotic exposure up to 3 months after birth. However, these studies have not accounted for antibiotic treatment in later infancy. Continued study of the infant gut microbiome, mycobiome, or resistome will provide a closer link to antibiotic treatment or refute it as a cause of allergic disease.
Collapse
Affiliation(s)
- Chinwe V Obiakor
- a School of Public Health , University of Alberta , Edmonton , Canada
| | - Hein M Tun
- b Department of Pediatrics , University of Alberta , Edmonton , Canada.,c HKU-Pasteur Research Pole, School of Public Health , The University of Hong Kong, Hong Kong , Hong Kong
| | - Sarah L Bridgman
- b Department of Pediatrics , University of Alberta , Edmonton , Canada
| | - Marie-Claire Arrieta
- d Departments of Physiology and Pharmacology & Pediatrics , Cumming School of Medicine, University of Calgary , Calgary , Canada
| | - Anita L Kozyrskyj
- a School of Public Health , University of Alberta , Edmonton , Canada.,b Department of Pediatrics , University of Alberta , Edmonton , Canada.,e Department of Obstetrics and Gynecology , University of Alberta , Edmonton , Canada
| |
Collapse
|