1
|
Dutta J, Singh S, Greeshma MV, Mahesh PA, Mabalirajan U. Diagnostic Challenges and Pathogenetic Differences in Biomass-Smoke-Induced versus Tobacco-Smoke-Induced COPD: A Comparative Review. Diagnostics (Basel) 2024; 14:2154. [PMID: 39410558 PMCID: PMC11475549 DOI: 10.3390/diagnostics14192154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD) is a major global health challenge, primarily driven by exposures to tobacco smoke and biomass smoke. While Tobacco-Smoke-Induced COPD (TSCOPD) has been extensively studied, the diagnostic challenges and distinct pathogenesis of Biomass-Smoke-Induced COPD (BSCOPD), particularly in low- and middle-income countries, remain underexplored. Objective: To explore the differences in clinical manifestations, pulmonary function, and inflammatory profiles between BSCOPD and TSCOPD and highlight the diagnostic complexities of BSCOPD. Methods: This review analyzes the current literature comparing BSCOPD with TSCOPD, focusing on distinctive pathophysiological mechanisms, inflammatory markers, and oxidative stress processes. Results: BSCOPD presents differences in clinical presentation, with less emphysema, smaller airway damage, and higher rates of pulmonary hypertension compared to TSCOPD. BSCOPD is also characterized by bronchial hyperresponsiveness and significant hypoxemia, unlike TSCOPD, which exhibits severe airflow obstruction and emphysema. Additionally, the inflammatory profile of BSCOPD includes distinct mucous hypersecretion and airway remodeling. Conclusions: The unique genetic, epigenetic, and oxidative stress mechanisms involved in BSCOPD complicate its diagnosis and management. Biomass smoke's underrecognized impact on accelerated lung aging and exacerbation mechanisms emphasizes the need for targeted research to refine diagnostic criteria and management strategies for BSCOPD. Future directions: Further research should focus on identifying specific biomarkers and molecular pathways to enhance early diagnosis and improve clinical outcomes in populations exposed to biomass smoke.
Collapse
Affiliation(s)
- Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| | - Mandya V. Greeshma
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; (M.V.G.); (P.A.M.)
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; (M.V.G.); (P.A.M.)
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, WB, India; (J.D.); (S.S.)
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, UP, India
| |
Collapse
|
2
|
Dellière S, Chauvin C, Wong SSW, Gressler M, Possetti V, Parente R, Fontaine T, Krüger T, Kniemeyer O, Bayry J, Carvalho A, Brakhage AA, Inforzato A, Latgé JP, Aimanianda V. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus. Nat Commun 2024; 15:6966. [PMID: 39138196 PMCID: PMC11322389 DOI: 10.1038/s41467-024-51047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Institut Pasteur, Unité des Aspergillus, Paris, France
| | - Markus Gressler
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany; Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, Jena, Germany
| | - Valentina Possetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Thierry Fontaine
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Agostinho Carvalho
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France.
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France.
- Institut Pasteur, Unité des Aspergillus, Paris, France.
| |
Collapse
|
3
|
Mukhtar S, Choudhry N, Saeed S, Hanif A, Gondal AJ, Yasmin N. Exploring the associations between elevated plasma SP-D levels and OSCAR gene expression as potential biomarkers in patients with COPD: a cross-sectional study. Front Pharmacol 2024; 15:1376394. [PMID: 39144626 PMCID: PMC11322580 DOI: 10.3389/fphar.2024.1376394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) imposes a substantial burden on patients and healthcare systems. Spirometry is the most widely used test to diagnose the disease; however, a surrogate marker is required to predict the disease pattern and progression. Objectives: The aim of the current study was to explore the association of elevated levels of plasma surfactant protein D (SP-D) with gene expression of osteoclast-associated receptor (OSCAR) and lung functions as potential diagnostic biomarkers of COPD. Methods: This cross-sectional study employed convenience sampling. As men compose the majority of patients in the outpatient department and with smoking being common among Pakistani men, choosing men offered a representative sample. Using a post-bronchodilator forced expiratory volume in the first second (FEV1) to a forced vital capacity (FVC) of less than 0.70 (FEV1/FVC <0.7), COPD patients were diagnosed on spirometry (n = 41). Controls were healthy individuals with FEV1/FVC >0.7 (n = 41). Plasma SP-D levels were measured using an enzyme-linked immunosorbent assay (ELISA). The gene expression of OSCAR was determined by real-time polymerase chain reaction (qPCR) and subsequently analyzed by the threshold cycle (Ct) method. Statistical Package for Social Sciences (SPSS) version 20 was used for statistical analysis. Results: The mean BMI of controls (25.66 ± 4.17 kg/m2) was higher than that of cases (23.49 ± 2.94 kg/m2 (p = .008)). The median age of controls was 49 years (interquartile range (IQR) 42.0-65.0 years) and that of cases was 65 years (IQR = 57.50-68.50). SP-D concentration was not significantly higher in COPD patients [4.96 ng/mL (IQR 3.26-7.96)] as compared to controls [3.64 ng/mL (IQR 2.60-8.59)] (p = .209). The forced expiratory ratio (FEV1/FVC) and FEV1 were related to gene expression of OSCAR (p = <.001). The gene expression of OSCAR was significantly related to SP-D (p = .034). A multiple regression model found FEV1 and FVC to have a significant effect on the gene expression of OSCAR (p-values <0.001 and 0.001, respectively). Conclusion: Gene expression of OSCAR was increased in COPD patients and related directly to SP-D levels and inversely to lung functions in cohort of this study, suggesting that OSCAR along with SP-D may serve as a diagnostic biomarker of COPD.
Collapse
Affiliation(s)
- Saima Mukhtar
- Department of Physiology, Rahbar Medical and Dental College, Lahore, Pakistan
- Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Saqib Saeed
- Institute of TB and Chest Medicine, Mayo Hospital, Lahore, Pakistan
| | - Asif Hanif
- Institute of TB and Chest Medicine, Mayo Hospital, Lahore, Pakistan
| | - Aamir J. Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
4
|
Lassen FH, Venkatesh SS, Baya N, Hill B, Zhou W, Bloemendal A, Neale BM, Kessler BM, Whiffin N, Lindgren CM, Palmer DS. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. CELL GENOMICS 2024; 4:100602. [PMID: 38944039 PMCID: PMC11293579 DOI: 10.1016/j.xgen.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
The phenotypic impact of compound heterozygous (CH) variation has not been investigated at the population scale. We phased rare variants (MAF ∼0.001%) in the UK Biobank (UKBB) exome-sequencing data to characterize recessive effects in 175,587 individuals across 311 common diseases. A total of 6.5% of individuals carry putatively damaging CH variants, 90% of which are only identifiable upon phasing rare variants (MAF < 0.38%). We identify six recessive gene-trait associations (p < 1.68 × 10-7) after accounting for relatedness, polygenicity, nearby common variants, and rare variant burden. Of these, just one is discovered when considering homozygosity alone. Using longitudinal health records, we additionally identify and replicate a novel association between bi-allelic variation in ATP2C2 and an earlier age at onset of chronic obstructive pulmonary disease (COPD) (p < 3.58 × 10-8). Genetic phase contributes to disease risk for gene-trait pairs: ATP2C2-COPD (p = 0.000238), FLG-asthma (p = 0.00205), and USH2A-visual impairment (p = 0.0084). We demonstrate the power of phasing large-scale genetic cohorts to discover phenome-wide consequences of compound heterozygosity.
Collapse
Affiliation(s)
- Frederik H Lassen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Samvida S Venkatesh
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Nikolas Baya
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Novo Nordisk Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Shashikadze B, Flenkenthaler F, Kemter E, Franzmeier S, Stöckl JB, Haid M, Riols F, Rothe M, Pichl L, Renner S, Blutke A, Wolf E, Fröhlich T. Multi-omics analysis of diabetic pig lungs reveals molecular derangements underlying pulmonary complications of diabetes mellitus. Dis Model Mech 2024; 17:dmm050650. [PMID: 38900131 DOI: 10.1242/dmm.050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Sophie Franzmeier
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Jan B Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | | | - Lisa Pichl
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Andreas Blutke
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
Lu L, Cheng M. Serum levels of HMW adiponectin and its receptors are associated with cytokine levels and clinical characteristics in chronic obstructive pulmonary disease. Open Med (Wars) 2024; 19:20240904. [PMID: 38463522 PMCID: PMC10921442 DOI: 10.1515/med-2024-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 03/12/2024] Open
Abstract
We aimed to investigate the changes in the levels of high-molecular-weight (HMW) adiponectin, adiponectin receptors, and cytokines in patients with chronic obstructive pulmonary disease (COPD), as well as their potential relationships. Forty-one patients who underwent lobectomy for lung lesions and had a clear postoperative pathological diagnosis were divided into the non-COPD (N = 23) and COPD (N = 18) groups. HMW adiponectin, cytokine, and T-cadherin levels in serum and tissues were detected by enzyme-linked immunosorbent assay. The levels of HMW adiponectin and cytokine (interleukin [IL]-6, IL-10, surfactant protein D, 4-hydroxynonenal, tumor necrosis factor-α, and C reactive protein) in the serum and tissues increased in the COPD group compared to those in the non-COPD group. Patients with COPD exhibited AdipoR1 upregulation and AdipoR2 downregulation. Although T-cadherin did not differ significantly between patients with and those without COPD, its expression was elevated during the progression from COPD with benign lung lesions to combined lung cancer. Furthermore, the HMW adiponectin levels were significantly correlated with the cytokine levels and the clinical characteristics of COPD. HMW adiponectin and its receptors affect the inflammatory process in COPD and may further contribute to the progression of the disease to malignancy.
Collapse
Affiliation(s)
- Li Lu
- Department of Endocrinology, Taiyuan People’s Hospital, Taiyuan, 030001, P.R. China
| | - Mengyu Cheng
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
7
|
Muthumalage T, Goracci C, Rahman I. Club cell-specific telomere protection protein 1 (TPP1) protects against tobacco smoke-induced lung inflammation, xenobiotic metabolic dysregulation, and injurious responses. FASEB Bioadv 2024; 6:53-71. [PMID: 38344410 PMCID: PMC10853660 DOI: 10.1096/fba.2023-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 07/09/2024] Open
Abstract
Inhaling xenobiotics, such as tobacco smoke is a major risk factor for pulmonary diseases, e.g., COPD/emphysema, interstitial lung disease, and pre-invasive diseases. Shelterin complex or telosome provides telomeric end protection during replication. Telomere protection protein 1 (TPP1) is one of the main six subunits of the shelterin complex supporting the telomere stability and genomic integrity. Dysfunctional telomeres and shelterin complex are associated as a disease mechanism of tobacco smoke-induced pulmonary damage and disease processes. The airway epithelium is critical to maintaining respiratory homeostasis and is implicated in lung diseases. Club cells (also known as clara cells) play an essential role in the immune response, surfactant production, and metabolism. Disrupted shelterin complex may lead to dysregulated cellular function, DNA damage, and disease progression. However, it is unknown if the conditional removal of TPP1 from Club cells can induce lung disease pathogenesis caused by tobacco smoke exposure. In this study, conditional knockout of Club-cell specific TPP1 demonstrated the instability of other shelterin protein subunits, such as TRF1, dysregulation of cell cycle checkpoint proteins, p53 and downstream targets, and dysregulation of telomeric genes. This was associated with age-dependent senescence-associated genes, increased DNA damage, and upregulated RANTES/IL13/IL33 mediated lung inflammation and injury network by cigarette smoke (CS). These phenomena are also associated with alterations in cytochrome P450 and glutathione transferases, upregulated molecular pathways promoting lung lesions, bronchial neoplasms, and adenocarcinomas. These findings suggest a pivotal role of TPP1 in maintaining lung homeostasis and injurious responses in response to CS. Thus, these data TPP1 may have therapeutic value in alleviating telomere-related chronic lung diseases.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Chiara Goracci
- Department of Environmental Medicine, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
8
|
Hata K, Tsubouchi K, Suzuki K, Eto D, Ando H, Yanagihara T, Kan-O K, Okamoto I. Surfactant protein D prevents mucin overproduction in airway goblet cells via SIRPα. Sci Rep 2024; 14:1799. [PMID: 38245585 PMCID: PMC10799941 DOI: 10.1038/s41598-024-52328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.
Collapse
Affiliation(s)
- Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Eto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Kan-O
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Axelsson GT, Jonmundsson T, Woo Y, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume: a Mendelian randomisation study. Respir Res 2024; 25:44. [PMID: 38238732 PMCID: PMC10797790 DOI: 10.1186/s12931-023-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Department of Internal Medicine, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Thorarinn Jonmundsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Youngjae Woo
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | | | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | | | - Anthony P Orth
- Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | | | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Respiratory Medicine and Sleep, Landspitali University Hospital, 108, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
10
|
Pourmanaf H, Nikoukheslat S, Sari-Sarraf V, Amirsasan R, Vakili J, Mills DE. The acute effects of endurance exercise on epithelial integrity of the airways in athletes and non-athletes: A systematic review and meta-analysis. Respir Med 2023; 220:107457. [PMID: 37951313 DOI: 10.1016/j.rmed.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Acute endurance exercise may induce airway epithelium injury. However, the response of epithelial integrity markers of the airways including club cell secretory protein (CC16) and surfactant protein D (SP-D) to endurance exercise have not been systematically reviewed. Therefore, the aim of this systematic review and meta-analysis was to assess the acute effects of endurance exercise on markers of epithelial integrity of the airways (CC16, SP-D and the CC16/SP-D ratio) in athletes and non-athletes. METHODS A systematic search was performed utilizing PubMed/Medline, EMBASE, Web of Science, and hand searching bibliographies of retrieved articles through to September 2022. Based on the inclusion criteria, articles with available data about the acute effects of endurance exercise on serum or plasma concentrations of CC16, SP-D and CC16/SP-D ratio in athletes and non-athletes were included. Quality assessment of studies and statistical analysis were conducted via Review Manager 5.4 software. RESULTS The search resulted in 908 publications. Finally, thirteen articles were included in the review. Acute endurance exercise resulted in an increase in CC16 (P = 0.0006, n = 13) and CC16/SP-D ratio (P = 0.005, n = 2) whereas SP-D (P = 0.47, n = 3) did not change significantly. Subgroup analysis revealed that the type (P = 0.003), but not the duration of exercise (P = 0.77) or the environmental temperature (P = 0.06) affected the CC16 response to endurance exercise. CONCLUSIONS Acute endurance exercise increases CC16 and the CC16/SP-D ratio, as markers of epithelial integrity, but not SP-D in athletes and non-athletes.
Collapse
Affiliation(s)
- Hadi Pourmanaf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Nikoukheslat
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vahid Sari-Sarraf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Ramin Amirsasan
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Javad Vakili
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Dean E Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Queensland, Australia.
| |
Collapse
|
11
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
12
|
Lassen FH, Venkatesh SS, Baya N, Zhou W, Bloemendal A, Neale BM, Kessler BM, Whiffin N, Lindgren CM, Palmer DS. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.29.23291992. [PMID: 37461573 PMCID: PMC10350147 DOI: 10.1101/2023.06.29.23291992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Exome-sequencing association studies have successfully linked rare protein-coding variation to risk of thousands of diseases. However, the relationship between rare deleterious compound heterozygous (CH) variation and their phenotypic impact has not been fully investigated. Here, we leverage advances in statistical phasing to accurately phase rare variants (MAF ~ 0.001%) in exome sequencing data from 175,587 UK Biobank (UKBB) participants, which we then systematically annotate to identify putatively deleterious CH coding variation. We show that 6.5% of individuals carry such damaging variants in the CH state, with 90% of variants occurring at MAF < 0.34%. Using a logistic mixed model framework, systematically accounting for relatedness, polygenic risk, nearby common variants, and rare variant burden, we investigate recessive effects in common complex diseases. We find six exome-wide significant (P < 1.68 × 10 - 7 ) and 17 nominally significant (P < 5.25 × 10 - 5 ) gene-trait associations. Among these, only four would have been identified without accounting for CH variation in the gene. We further incorporate age-at-diagnosis information from primary care electronic health records, to show that genetic phase influences lifetime risk of disease across 20 gene-trait combinations (FDR < 5%). Using a permutation approach, we find evidence for genetic phase contributing to disease susceptibility for a collection of gene-trait pairs, including FLG-asthma (P = 0.00205 ) and USH2A-visual impairment (P = 0.0084 ). Taken together, we demonstrate the utility of phasing large-scale genetic sequencing cohorts for robust identification of the phenome-wide consequences of compound heterozygosity.
Collapse
Affiliation(s)
- Frederik H. Lassen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Samvida S. Venkatesh
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Nikolas Baya
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Wei Zhou
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Department of Medicine Massachusetts General Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Center for Genomic Mechanisms of Disease Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M. Neale
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Department of Medicine Massachusetts General Hospital, Boston, MA, USA
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Whiffin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Population Health Health, Medical Sciences Division University of Oxford, Oxford, United Kingdom
| | - Duncan S. Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Axelsson GT, Jonmundsson T, Woo YJ, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume - a Mendelian randomisation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.30.23292035. [PMID: 37425696 PMCID: PMC10327250 DOI: 10.1101/2023.06.30.23292035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A decline in forced expiratory volume (FEV1) is a hallmark of obstructive respiratory diseases, an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. Data from the general population-based AGES-Reykjavik study were used. Proteomic measurements were done using 4,782 DNA aptamers (SOMAmers). Data from 1,648 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5,368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). In observational analyses, 473 SOMAmers were associated with FEV1 after multiple testing adjustment. The most significant were R-Spondin 4, Alkaline Phosphatase, Placental Like 2 and Retinoic Acid Receptor Responder 2. Of the 235 SOMAmers with genetic data, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta and Apolipoprotein M. THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. In summary, this large scale proteogenomic analyses of FEV1 reveals protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
|
14
|
Hsieh MH, Chen PC, Hsu HY, Liu JC, Ho YS, Lin YJ, Kuo CW, Kuo WS, Kao HF, Wang SD, Liu ZG, Wu LSH, Wang JY. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol 2023; 20:38-50. [PMID: 36376488 PMCID: PMC9794778 DOI: 10.1038/s41423-022-00946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Increased levels of surfactant protein D (SP-D) and lipid-laden foamy macrophages (FMs) are frequently found under oxidative stress conditions and/or in patients with chronic obstructive pulmonary disease (COPD) who are also chronically exposed to cigarette smoke (CS). However, the roles and molecular mechanisms of SP-D and FMs in COPD have not yet been determined. In this study, increased levels of SP-D were found in the bronchoalveolar lavage fluid (BALF) and sera of ozone- and CS-exposed mice. Furthermore, SP-D-knockout mice showed increased lipid-laden FMs and airway inflammation caused by ozone and CS exposure, similar to that exhibited by our study cohort of chronic smokers and COPD patients. We also showed that an exogenous recombinant fragment of human SP-D (rfhSP-D) prevented the formation of oxidized low-density lipoprotein (oxLDL)-induced FMs in vitro and reversed the airway inflammation and emphysematous changes caused by oxidative stress and CS exposure in vivo. SP-D upregulated bone marrow-derived macrophage (BMDM) expression of genes involved in countering the oxidative stress and lipid metabolism perturbations induced by CS and oxLDL. Our study demonstrates the crucial roles of SP-D in the lipid homeostasis of dysfunctional alveolar macrophages caused by ozone and CS exposure in experimental mouse emphysema, which may provide a novel opportunity for the clinical application of SP-D in patients with COPD.
Collapse
Affiliation(s)
- Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Han-Yin Hsu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Jui-Chang Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yu-Sheng Ho
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yuh Jyh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan, China
| | - Chin-Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Shulhn-Der Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, China.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Department of Allergy, Immunology, and Rheumatology (AIR), China Medical University Children's Hospital, Taichung, Taiwan, China.
| |
Collapse
|
15
|
Jayadi, Airlangga PS, Kusuma E, Waloejo CS, Salinding A, Lestari P. Correlation between serum surfactant protein-D level with respiratory compliance and acute respiratory distress syndrome in critically ill COVID-19 Patients: A retrospective observational study. Int J Crit Illn Inj Sci 2022; 12:204-210. [PMID: 36779213 PMCID: PMC9910112 DOI: 10.4103/ijciis.ijciis_27_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is one of the manifestations of severe coronavirus disease 2019 (COVID-19) with low respiratory compliance and poor oxygenation as main characteristics and mortality rate of 50%-94%. Surfactants, including surfactant protein D (SP-D), have a role in maintaining respiratory compliance. This study aimed to analyze the relationship between serum SP-D levels with respiratory compliance and ARDS in patients with critically ill COVID-19 pneumonia. Methods This study was a cross-sectional study. Subjects were adult reverse transcription-polymerase chain reaction-confirmed COVID-19 patients who had ARDS treated with invasive mechanical ventilation. All data were obtained from medical records. Statistical analysis was done using Spearman test, Mann-Whitney test, and receiver operating characteristic curve. Results Serum level of SP-D was significantly correlated with static respiratory compliance (P = 0.009; correlation coefficient [rs] = 0.467). Serum SP-D levels correlated with ARDS severity (P < 0.001). SP-D levels had a very strong diagnostic value for ARDS severity, with an optimal cutoff value of 44.24 ng/mL (sensitivity 92.3%; specificity 94.1%). ARDS severity also correlated significantly with respiratory compliance (P = 0.005; correlation coefficient 0.496). Conclusion Higher serum SP-D levels were associated with lower respiratory compliance, ARDS severity, and may be utilized diagnostically to identify patients with severe ARDS.
Collapse
Affiliation(s)
- Jayadi
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Prananda Surya Airlangga
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Edward Kusuma
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Christrijogo Soemartono Waloejo
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Agustina Salinding
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
16
|
Uysal P. Novel Applications of Biomarkers in Chronic Obstructive Pulmonary Disease. Biomark Med 2022. [DOI: 10.2174/9789815040463122010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health
problem and an increasing cause of morbidity and mortality worldwide. Currently,
COPD is considered a multisystem disease. Although it primarily affects the lungs,
structural and functional changes occur in other organs due to systemic inflammation.
It is stated that in patients with COPD, airway and systemic inflammatory markers are
increased and that these markers are high are associated with a faster decline in lung
functions. In recent years, numerous articles have been published on the discovery and
evaluation of biomarkers in COPD. Many markers have also been studied to accurately
assess COPD exacerbations and provide effective treatment. However, based on the
evidence from published studies, a single molecule has not been adequately validated
for broad clinical use.
Collapse
Affiliation(s)
- Pelin Uysal
- Department of Chest Diseases, Faculty of Medicine, Mehmet Ali Aydınlar University, Atakent
Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Lv MY, Qiang LX, Wang BC, Zhang YP, Li ZH, Li XS, Jin LL, Jin SD. Complex Evaluation of Surfactant Protein A and D as Biomarkers for the Severity of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1537-1552. [PMID: 35811742 PMCID: PMC9259505 DOI: 10.2147/copd.s366988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-β, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1–2 group vs Gold 3–4 group). The worse the patient’s condition, the more pronounced the change. Conclusion This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Bao-Cai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Yue-Peng Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Zhi-Heng Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Xiang-Shun Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Ling-Ling Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Shou-De Jin
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Correspondence: Shou-De Jin, Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin, 150001, People’s Republic of China, Tel/Fax +86 0451-85939123, Email
| |
Collapse
|
18
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Gutmann C, Khamina K, Theofilatos K, Diendorfer AB, Burnap SA, Nabeebaccus A, Fish M, McPhail MJW, O'Gallagher K, Schmidt LE, Cassel C, Auzinger G, Napoli S, Mujib SF, Trovato F, Sanderson B, Merrick B, Roy R, Edgeworth JD, Shah AM, Hayday AC, Traby L, Hackl M, Eichinger S, Shankar-Hari M, Mayr M. Association of cardiometabolic microRNAs with COVID-19 severity and mortality. Cardiovasc Res 2022; 118:461-474. [PMID: 34755842 PMCID: PMC8689968 DOI: 10.1093/cvr/cvab338] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 01/26/2023] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity and 28 day intensive care unit (ICU) mortality. METHODS AND RESULTS We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19 patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16) patients. Candidates were then measured by RT-qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 samples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122 also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and positively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and triplet combinations, miRNAs improved classification performance of established markers for severity and mortality. CONCLUSION Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | - Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Adam Nabeebaccus
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Matthew Fish
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Mark J W McPhail
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Lukas E Schmidt
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christian Cassel
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Georg Auzinger
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Liver Intensive Care & Critical Care, King's College Hospital London, Denmark Hill, London SE5 9RS, UK
- Department of Critical Care, Cleveland Clinic London, 33 Grosvenor Place, London SW1X 7HY, UK
| | - Salvatore Napoli
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
| | - Salma F Mujib
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Francesca Trovato
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Barnaby Sanderson
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust & King’s College London, Westminster Bridge Road, London SE1 7EH, UK
| | - Roman Roy
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Jonathan D Edgeworth
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust & King’s College London, Westminster Bridge Road, London SE1 7EH, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ludwig Traby
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | - Sabine Eichinger
- Department of Medicine I, Division of Haematology and Hemostaseology Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Manu Shankar-Hari
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
- Centre of Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
20
|
Liao JP, Wang X, Liu F, Cheng Y, Hu ZW, Zhang LN, Xia GG, Zhang C, Ma J, Wang GF. Serum surfactant protein D, lung function decline, and incident chronic obstructive pulmonary disease: a longitudinal study in Beijing. J Thorac Dis 2021; 13:92-100. [PMID: 33569189 PMCID: PMC7867840 DOI: 10.21037/jtd-20-1675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) has become a major public-health problem in China. Surfactant protein D (SP-D) is a very promising biomarker and therapeutic target for COPD. To assess whether baseline serum SP-D is associated with lung function decline and incident COPD. Methods This longitudinal study was initiated in 2009 in a community in Beijing. Data were collected on spirometry, and the baseline level of serum SP-D was measured in 772 non-COPD subjects aged 40-70 years old. In 2012, spirometry was repeated in 364 individuals, 37 of whom subjects had incident COPD. Results From 2009 to 2012, subjects with incident COPD had a more rapid decline in FEV1 (MD 98.27 vs. MD 43.41 mL) compared with those without COPD. There was no association between baseline serum SP-D and the COPD incidence. Smoking (OR =2.72; P=0.002) and age (OR =1.06; P=0.000) were risk factors for COPD. The rate of FEV1 decline varies widely in the general population, and the univariate analysis showed that baseline serum SP-D levels (R=-0.169; P=0.003), income level, home-road distance, and statin use were inversely correlated with the decline in FEV1. After multivariable analyses, only smoking was consistently associated with the decline in FEV1. Conclusions There was no correlation between baseline serum SP-D levels and incident COPD in a general population. Smoking and age were major risk factors for COPD. The effect of serum SP-D levels on the decline in FEV1 needs further investigation.
Collapse
Affiliation(s)
- Ji-Ping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Feng Liu
- Second Outpatient Department of Aviation General Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhan-Wei Hu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Li-Na Zhang
- Department of Internal Medicine, Shichahai Community Health Care Center, Beijing, China
| | - Guo-Guang Xia
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jing Ma
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guang-Fa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Milne S, Sin DD. Biomarkers in Chronic Obstructive Pulmonary Disease: The Gateway to Precision Medicine. Clin Chest Med 2020; 41:383-394. [PMID: 32800193 DOI: 10.1016/j.ccm.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease with limited adequate treatments. Biomarkers-which may relate to disease susceptibility, diagnosis, prognosis, or treatment response-are ideally suited to dissecting such a complex disease and form a critical component of the precision medicine paradigm. Not all potential candidates, however, make good biomarkers. To date, only plasma fibrinogen has been approved by regulatory bodies as a biomarker of exacerbation risk for clinical trial enrichment. This review outlines some of the challenges of biomarker research in COPD and highlights novel and promising biomarker candidates.
Collapse
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, University of British Columbia, Room 166, St Paul's Hospital, 1081 Burrard St, Vancouver, British Columbia V6Z 1Y6, Canada; Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia.
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, University of British Columbia, Room 166, St Paul's Hospital, 1081 Burrard St, Vancouver, British Columbia V6Z 1Y6, Canada
| |
Collapse
|
22
|
Zhao D, Abbasi A, Rossiter HB, Su X, Liu H, Pi Y, Sang L, Zhong W, Yang Q, Guo X, Zhou Y, Li T, Casaburi R, Zhang N. Serum Amyloid A in Stable COPD Patients is Associated with the Frequent Exacerbator Phenotype. Int J Chron Obstruct Pulmon Dis 2020; 15:2379-2388. [PMID: 33061355 PMCID: PMC7535123 DOI: 10.2147/copd.s266844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Background We sought to determine whether circulating inflammatory biomarkers were associated with the frequent exacerbator phenotype in stable COPD patients ie, those with two or more exacerbations in the previous year. Methods Eighty-eight stable, severe, COPD patients (4 females) were assessed for exacerbation frequency, pulmonary function, fraction of expired nitric oxide (FENO); inflammatory variables were measured in venous blood. Logistic regression assessed associations between the frequent exacerbator phenotype and systemic inflammation. Results Compared with infrequent exacerbators, frequent exacerbators (n=10; 11.4%) had greater serum concentration (median (25th-75th quartile)) of serum amyloid A (SAA; 134 (84–178) vs 71 (38–116) ng/mL; P=0.024), surfactant protein D (SP-D; 15.6 (9.0–19.3) vs 8.5 (3.6–14.9) ng/mL; P=0.049) and interleukin-4 (IL-4; 0.12 (0.08–1.44) vs 0.03 (0.01–0.10) pg/mL; P=0.001). SAA, SP-D and IL-4 were not significantly correlated with FEV1%predicted or FVC %predicted. After adjusting for sex, age, BMI, FEV1/FVC and smoking pack-years, only SAA remained independently associated with the frequent exacerbator phenotype (OR 1.49[1.09–2.04]; P=0.012). The odds of being a frequent exacerbator was 18-times greater in the highest SAA quartile (≥124.1 ng/mL) than the lowest SAA quartile (≤44.1 ng/mL) (OR 18.34[1.30–258.81]; P=0.031), and there was a significant positive trend of increasing OR with increasing SAA quartile (P=0.008). For SAA, the area under the receiver operating characteristic curve was 0.721 for identification of frequent exacerbators; an SAA cut-off of 87.0 ng/mL yielded an 80% sensitivity and 61.5% specificity. Conclusion In stable COPD patients, SAA was independently associated with the frequent exacerbator phenotype, suggesting that SAA may be a useful serum biomarker to inform progression or management in COPD.
Collapse
Affiliation(s)
- Dongxing Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China.,Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Asghar Abbasi
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.,Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaofen Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Heng Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yuhong Pi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Li Sang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Weiyong Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Xiongtian Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yanyan Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Tianyang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Nuofu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
23
|
Tiotiu AI, Novakova P, Nedeva D, Chong-Neto HJ, Novakova S, Steiropoulos P, Kowal K. Impact of Air Pollution on Asthma Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176212. [PMID: 32867076 PMCID: PMC7503605 DOI: 10.3390/ijerph17176212] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic respiratory disease characterized by variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Evidence suggests that air pollution has a negative impact on asthma outcomes in both adult and pediatric populations. The aim of this review is to summarize the current knowledge on the effect of various outdoor and indoor pollutants on asthma outcomes, their burden on its management, as well as to highlight the measures that could result in improved asthma outcomes. Traffic-related air pollution, nitrogen dioxide and second-hand smoking (SHS) exposures represent significant risk factors for asthma development in children. Nevertheless, a causal relation between air pollution and development of adult asthma is not clearly established. Exposure to outdoor pollutants can induce asthma symptoms, exacerbations and decreases in lung function. Active tobacco smoking is associated with poorer asthma control, while exposure to SHS increases the risk of asthma exacerbations, respiratory symptoms and healthcare utilization. Other indoor pollutants such as heating sources and molds can also negatively impact the course of asthma. Global measures, that aim to reduce exposure to air pollutants, are highly needed in order to improve the outcomes and management of adult and pediatric asthma in addition to the existing guidelines.
Collapse
Affiliation(s)
- Angelica I. Tiotiu
- Department of Pulmonology, University Hospital of Nancy, 54395 Nancy, France
- Development of Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control (EA 3450 DevAH), University of Lorraine, 54395 Nancy, France
- Correspondence: ; Tel.: +33-383-154-299
| | - Plamena Novakova
- Clinic of Clinical Allergy, Medical University, 1000 Sofia, Bulgaria;
| | | | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba 80000-000, Brazil;
| | - Silviya Novakova
- Allergy Unit, Internal Consulting Department, University Hospital “St. George”, 4000 Plovdiv, Bulgaria;
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece;
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-037 Bialystok, Poland;
| |
Collapse
|
24
|
Milne S, Li X, Hernandez Cordero AI, Yang CX, Cho MH, Beaty TH, Ruczinski I, Hansel NN, Bossé Y, Brandsma CA, Sin DD, Obeidat M. Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study. Thorax 2020; 75:934-943. [PMID: 32839289 DOI: 10.1136/thoraxjnl-2019-214487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.
Collapse
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada .,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - Corry-Anke Brandsma
- University of Groningen Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maen Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
miR-199a-5p Exacerbated Intestinal Barrier Dysfunction through Inhibiting Surfactant Protein D and Activating NF- κB Pathway in Sepsis. Mediators Inflamm 2020; 2020:8275026. [PMID: 32508527 PMCID: PMC7251462 DOI: 10.1155/2020/8275026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a severe disease, which results from the excessive inflammatory response to the infection. Dysfunction of intestinal barrier is a crucial problem in various pathological conditions. Meanwhile, microRNAs exhibit significant roles in the modulation of many diseases, including sepsis. Multiple investigations indicate that miR-199a-5p participates in different human diseases. Nevertheless, little is known on the roles of miR-199a-5p in sepsis. Herein, we evaluated the mechanism of miR-199a-5p on the intestinal barrier dysfunction in sepsis. Intestinal mucosa permeability indicators including D-lactic acid, DAO, and FD-40 levels were determined, and they were greatly increased in sepsis. Then, we proved that miR-199a-5p was induced in sepsis mice tissues and isolated intestinal epithelial cells. Moreover, miR-199a-5p increased D-lactic acid, DAO, and FD-40 while inhibition of miR-199a-5p exhibited a reversed process. Additionally, we observed that miR-199a-5p affected the oxidative damage and inflammation in the intestine tissues from sepsis mice. The content of MDA was elevated whereas SOD was remarkably repressed in the miR-199a-5p mimic group. IL-6, IL-1β, and TNF-α were induced by miR-199a-5p overexpression while IL-10 was reduced by miR-199a-5p. Subsequently, surfactant protein D (SP-D) was predicted as the target of miR-199a-5p. The activation of NF-κB has been identified in sepsis. Herein, we demonstrated that inhibitor of miR-199a-5p contributed to IEC injury via targeting SP-D and inactivating the NF-κB pathway. These revealed miR-199a-5p exacerbated the intestinal barrier dysfunction via inhibiting SP-D and activating the NF-κB pathway in sepsis.
Collapse
|
26
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
27
|
Sun Y, Milne S, Jaw JE, Yang CX, Xu F, Li X, Obeidat M, Sin DD. BMI is associated with FEV 1 decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respir Res 2019; 20:236. [PMID: 31665000 PMCID: PMC6819522 DOI: 10.1186/s12931-019-1209-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Background There is considerable heterogeneity in the rate of lung function decline in chronic obstructive pulmonary disease (COPD), the determinants of which are largely unknown. Observational studies in COPD indicate that low body mass index (BMI) is associated with worse outcomes, and overweight/obesity has a protective effect – the so-called “obesity paradox”. We aimed to determine the relationship between BMI and the rate of FEV1 decline in data from published clinical trials in COPD. Methods We performed a systematic review of the literature, and identified 5 randomized controlled trials reporting the association between BMI and FEV1 decline. Four of these were included in the meta-analyses. We analyzed BMI in 4 categories: BMI-I (< 18.5 or < 20 kg/m2), BMI-II (18.5 or 20 to < 25 kg/m2), BMI-III (25 to < 29 or < 30 kg/m2) and BMI-IV (≥29 or ≥ 30 kg/m2). We then performed a meta-regression of all the estimates against the BMI category. Results The estimated rate of FEV1 decline decreased with increasing BMI. Meta-regression of the estimates showed that BMI was significantly associated with the rate of FEV1 decline (linear trend p = 1.21 × 10− 5). Conclusions These novel findings support the obesity paradox in COPD: compared to normal BMI, low BMI is a risk factor for accelerated lung function decline, whilst high BMI has a protective effect. The relationship may be due to common but as-of-yet unknown causative factors; further investigation into which may reveal novel endotypes or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yilan Sun
- The Respiratory Department of the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.,Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Stephen Milne
- Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Jen Erh Jaw
- Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Feng Xu
- Centre for Heart Lung Innovation, St. Paul's Hospital & Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Xuan Li
- Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital & Division of Respiratory Medicine, University of British Columbia, Rm 166-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
28
|
Martinović Kaliterna D, Petrić M. Biomarkers of skin and lung fibrosis in systemic sclerosis. Expert Rev Clin Immunol 2019; 15:1215-1223. [DOI: 10.1080/1744666x.2020.1670062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Marin Petrić
- Department of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| |
Collapse
|
29
|
Barreiro E, Wang X, Tang J. COPD: preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:829-838. [DOI: 10.1080/14728222.2019.1667976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Xuejie Wang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jun Tang
- Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Klont F, Pouwels SD, Bults P, van de Merbel NC, ten Hacken NH, Horvatovich P, Bischoff R. Quantification of surfactant protein D (SPD) in human serum by liquid chromatography-mass spectrometry (LC-MS). Talanta 2019; 202:507-513. [DOI: 10.1016/j.talanta.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
|
31
|
Pilecki B, Wulf-Johansson H, Støttrup C, Jørgensen PT, Djiadeu P, Nexøe AB, Schlosser A, Hansen SWK, Madsen J, Clark HW, Nielsen CH, Vestbo J, Palaniyar N, Holmskov U, Sorensen GL. Surfactant Protein D Deficiency Aggravates Cigarette Smoke-Induced Lung Inflammation by Upregulation of Ceramide Synthesis. Front Immunol 2018; 9:3013. [PMID: 30619359 PMCID: PMC6305334 DOI: 10.3389/fimmu.2018.03013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease. Surfactant protein D (SP-D) is an important anti-inflammatory protein that regulates host immune defense in the lungs. Here, we investigated the role of SP-D in a murine model of CS-induced inflammation. Pulmonary SP-D localization and abundance was compared between smoker and non-smoker individuals. For in vivo studies, wildtype, and SP-D-deficient mice were exposed to CS for either 12 weeks or 3 days. Moreover, the effect of therapeutic administration of recombinant fragment of human SP-D on the acute CS-induced changes was evaluated. Pulmonary SP-D appeared with heterogenous expression in human smokers, while mouse lung SP-D was uniformly upregulated after CS exposure. We found that SP-D-deficient mice were more susceptible to CS-induced macrophage-rich airway inflammation. SP-D deficiency influenced local pro-inflammatory cytokine levels, with increased CCL3 and interleukin-6 but decreased CXCL1. Furthermore, CS exposure caused significant upregulation of pro-inflammatory ceramides and related ceramide synthase gene transcripts in SP-D-deficient mice compared to wildtype littermates. Administration of recombinant fragment of human SP-D (rfhSP-D) alleviated CS-induced macrophage infiltration and prevented induction of ceramide synthase gene expression. Finally, rfhSP-D treatment attenuated CS-induced human epithelial cell apoptosis in vitro. Our results indicate that SP-D deficiency aggravates CS-induced lung inflammation partly through regulation of ceramide synthesis and that local SP-D enrichment rescues CS-induced inflammation.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christian Støttrup
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Patricia Troest Jørgensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal Djiadeu
- Translational Medicine, Lung Innate Immunity Research Laboratory, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anders Bathum Nexøe
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Søren Werner Karlskov Hansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jens Madsen
- Department of Child Health, Sir Henry Wellcome Laboratories, Academic Unit for Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Howard William Clark
- Department of Child Health, Sir Henry Wellcome Laboratories, Academic Unit for Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Claus Henrik Nielsen
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Nades Palaniyar
- Translational Medicine, Lung Innate Immunity Research Laboratory, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Lin Z, Thorenoor N, Wu R, DiAngelo SL, Ye M, Thomas NJ, Liao X, Lin TR, Warren S, Floros J. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Front Immunol 2018; 9:2256. [PMID: 30333828 PMCID: PMC6175982 DOI: 10.3389/fimmu.2018.02256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Susan L. DiAngelo
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Meixia Ye
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Neal J. Thomas
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Xiaojie Liao
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Tony R. Lin
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Stuart Warren
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
- Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
33
|
|
34
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Manichaikul A, Nguyen JN. Genetic studies as a tool for identifying novel potential targets for treatment of COPD. Eur Respir J 2017; 50:1702042. [PMID: 29191956 PMCID: PMC5871433 DOI: 10.1183/13993003.02042-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer N Nguyen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|