1
|
Wrotek A, Jackowska T. A noninferiority randomized open-label pilot study of 3- versus 7-day influenza postexposure prophylaxis with oseltamivir in hospitalized children. Sci Rep 2024; 14:14192. [PMID: 38902383 PMCID: PMC11189916 DOI: 10.1038/s41598-024-65244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Short influenza postexposure prophylaxis (PEP) showed high efficacy in adults, but studies in children are lacking. This randomized open-label pilot trial aimed to verify noninferiority of a 3- versus 7-day prophylaxis with oral oseltamivir in hospitalized children. Influenza contacts were randomized to the 3- or 7-day group and efficacy, relative risk of adverse events (AEs), and the cumulative costs of drugs and AEs management were compared. The intention-to-treat (ITT) analysis included 59 children (n = 28 and n = 31 in the 3- and 7-day group, respectively). The efficacy was 100% (95% CI 87.7-100%) versus 93.6% (95% CI 78.6-99.2%) in the 3- and 7-day group; the differences were statistically insignificant. A per-protocol (PP) analysis including 56 patients (n = 27 and n = 29, respectively) showed 100% (95% CI 87.2-100%) and 93.1% (95% CI 77.2-99.2%) efficacy, respectively, without statistical significance. Differences were within the predefined noninferiority margin with an efficacy difference Δ = 6.45 percentage points (p.p.) with 1-sided 95% CI (- 2.8, - 1.31, p = 0.86; ITT) and Δ = 6.9 p.p. (1-sided 95% CI - 2.83, - 1.27, p = 0.85; PP). Adverse events did not differ significantly, while the cumulative costs of the prophylaxis and AEs management were higher in the 7-day group (median 10.5 euro vs. 4.5 euro, p < 0.01). This pilot study showed the noninferiority of the 3-day versus 7-day PEP, which was associated with lower costs.Trial registration number: NCT04297462, 5th March 2020, restrospectively registered.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, The Centre of Postgraduate Medical Education, Warsaw, Poland.
- Department of Pediatrics, Bielanski Hospital, Warsaw, Poland.
| | - Teresa Jackowska
- Department of Pediatrics, The Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Warsaw, Poland
| |
Collapse
|
2
|
Wolters RM, Ferguson JA, Nuñez IA, Chen EE, Sornberger T, Myers L, Oeverdieck S, Raghavan SSR, Kona C, Handal LS, Esilu TE, Davidson E, Doranz BJ, Engdahl TB, Kose N, Williamson LE, Creech CB, Gibson-Corley KN, Ward AB, Crowe JE. Isolation of human antibodies against influenza B neuraminidase and mechanisms of protection at the airway interface. Immunity 2024; 57:1413-1427.e9. [PMID: 38823390 PMCID: PMC11440431 DOI: 10.1016/j.immuni.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.
Collapse
Affiliation(s)
- Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ivette A Nuñez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine E Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ty Sornberger
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Svearike Oeverdieck
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sai Sundar Rajan Raghavan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chandrahaas Kona
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | - Taylor B Engdahl
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - C Buddy Creech
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Thottasseri AA, Kaur G, Ramesh D, Banerjee I, Kannan T. Morpholinodiazenyl chalcone blocks influenza A virus capsid uncoating by perturbing the clathrin-mediated vesicular trafficking pathway. Arch Pharm (Weinheim) 2024; 357:e2300670. [PMID: 38487979 DOI: 10.1002/ardp.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 06/04/2024]
Abstract
Influenza A virus (IAV) is a highly contagious respiratory pathogen that significantly threatens global health by causing seasonal epidemics and occasional, unpredictable pandemics. To identify new compounds with therapeutic potential against IAV, we designed and synthesized a series of 4'-morpholinodiazenyl chalcones using the molecular hybridization method, performed a high-content screen against IAV, and found that (E)-1-{4-[(E)-morpholinodiazenyl]phenyl}-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (MC-22) completely neutralized IAV infection. While MC-22 allowed IAV to successfully internalize into the cell and fuse at the acidic late endosomes, it prevented viral capsid uncoating and genome release. Since IAV majorly utilizes clathrin-mediated endocytosis (CME) for cellular entry, we examined whether MC-22 had any effect on CME, using nonviral cargoes that enter cells via clathrin-dependent or -independent pathways. Although MC-22 showed no effect on the uptake of choleratoxin B, a cargo that enters cells majorly via the clathrin-independent pathway, it significantly attenuated the clathrin-dependent internalization of both epidermal growth factor and transferrin. Cell biological analyses revealed a marked increase in the size of early endosomes upon MC-22 treatment, indicating an endosomal trafficking/maturation defect. This study reports the identification of MC-22 as a novel CME-targeting, highly potent IAV entry inhibitor, which is expected to neutralize a broad spectrum of viruses that enter the host cells via CME.
Collapse
Affiliation(s)
| | - Gaganpreet Kaur
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Puducherry, India
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| | | |
Collapse
|
4
|
Feng J, Guo F, Li P, Zhang J, Jiang K, Zhu Z, Yin S, Lin X, Lin F, Xiao F, Xue X, He H, Chen S. Discovery of a Macrocyclic Influenza Cap-Dependent Endonuclease Inhibitor. J Med Chem 2024; 67:2570-2583. [PMID: 38301207 DOI: 10.1021/acs.jmedchem.3c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Influenza viruses (IFVs) have caused several pandemics and have claimed numerous lives since their first record in the early 20th century. While the outbreak of COVID-19 seemed to expel influenza from the sight of people for a short period of time, it is not surprising that it will recirculate around the globe after the coronavirus has mutated into a less fatal variant. Baloxavir marboxil (1), the prodrug of baloxavir (2) and a cap-dependent endonuclease (CEN) inhibitor, were approved by the FDA for the first treatment in almost 20 years. Despite their high antiviral potency, drug-resistant variants have been observed in clinical trials. Herein, we report a novel CEN inhibitor 8 with a delicately designed macrocyclic scaffold that exhibits a significantly smaller shift of inhibitory activity toward baloxavir-resistant variants.
Collapse
Affiliation(s)
- Jiajie Feng
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | | | - Peng Li
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Jing Zhang
- Pharmaceutical Research Institute, Cisen Pharmaceutical Co., Ltd., Jining 272000, China
| | | | | | | | - Xiaowan Lin
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Fusen Lin
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Fubiao Xiao
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Xiaoxia Xue
- Pharmaceutical Research Institute, Cisen Pharmaceutical Co., Ltd., Jining 272000, China
| | - Haiying He
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Shuhui Chen
- WuXi AppTec Co., Ltd., Shanghai 200131, China
| |
Collapse
|
5
|
Budama-Kilinc Y, Kurtur OB, Gok B, Cakmakci N, Kecel-Gunduz S, Unel NM, Ozturk TK. Use of Immunoglobulin Y Antibodies: Biosensor-based Diagnostic Systems and Prophylactic and Therapeutic Drug Delivery Systems for Viral Respiratory Diseases. Curr Top Med Chem 2024; 24:973-985. [PMID: 38561616 DOI: 10.2174/0115680266289898240322073258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Respiratory viruses have caused many pandemics from past to present and are among the top global public health problems due to their rate of spread. The recently experienced COVID-19 pandemic has led to an understanding of the importance of rapid diagnostic tests to prevent epidemics and the difficulties of developing new vaccines. On the other hand, the emergence of resistance to existing antiviral drugs during the treatment process poses a major problem for society and global health systems. Therefore, there is a need for new approaches for the diagnosis, prophylaxis, and treatment of existing or new types of respiratory viruses. Immunoglobulin Y antibodies (IgYs) obtained from the yolk of poultry eggs have significant advantages, such as high production volumes, low production costs, and high selectivity, which enable the development of innovative and strategic products. Especially in diagnosing respiratory viruses, antibody-based biosensors in which these antibodies are integrated have the potential to provide superiority in making rapid and accurate diagnosis as a practical diagnostic tool. This review article aims to provide information on using IgY antibodies in diagnostic, prophylactic, and therapeutic applications for respiratory viruses and to provide a perspective for future innovative applications.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Ozan Baris Kurtur
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Nisanur Cakmakci
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, Istanbul, Turkiye
| | - Necdet Mehmet Unel
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Plantomics Research Laboratory, Kastamonu, Turkiye
- Research and Application Center, Kastamonu University, Kastamonu, Turkiye
| | | |
Collapse
|
6
|
Vanderven HA, Wentworth DN, Han WM, Peck H, Barr IG, Davey RT, Beigel JH, Dwyer DE, Jain MK, Angus B, Brandt CT, Mykietiuk A, Law MG, Neaton JD, Kent SJ. Understanding the treatment benefit of hyperimmune anti-influenza intravenous immunoglobulin (Flu-IVIG) for severe human influenza. JCI Insight 2023; 8:e167464. [PMID: 37289541 PMCID: PMC10443807 DOI: 10.1172/jci.insight.167464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUNDAntibody-based therapies for respiratory viruses are of increasing importance. The INSIGHT 006 trial administered anti-influenza hyperimmune intravenous immunoglobulin (Flu-IVIG) to patients hospitalized with influenza. Flu-IVIG treatment improved outcomes in patients with influenza B but showed no benefit for influenza A.METHODSTo probe potential mechanisms of Flu-IVIG utility, sera collected from patients hospitalized with influenza A or B viruses (IAV or IBV) were analyzed for antibody isotype/subclass and Fcγ receptor (FcγR) binding by ELISA, bead-based multiplex, and NK cell activation assays.RESULTSInfluenza-specific FcγR-binding antibodies were elevated in Flu-IVIG-infused IBV- and IAV-infected patients. In IBV-infected participants (n = 62), increased IgG3 and FcγR binding were associated with more favorable outcomes. Flu-IVIG therapy also improved the odds of a more favorable outcome in patients with low levels of anti-IBV Fc-functional antibody. Higher FcγR-binding antibody was associated with less favorable outcomes in IAV-infected patients (n = 50), and Flu-IVIG worsened the odds of a favorable outcome in participants with low levels of anti-IAV Fc-functional antibody.CONCLUSIONThese detailed serological analyses provide insights into antibody features and mechanisms required for a successful humoral response against influenza, suggesting that IBV-specific, but not IAV-specific, antibodies with Fc-mediated functions may assist in improving influenza outcome. This work will inform development of improved influenza immunotherapies.TRIAL REGISTRATIONClinicalTrials.gov NCT02287467.FUNDINGFunding for this research was provided by subcontract 13XS134 under Leidos Biomedical Research Prime Contract HHSN261200800001E and HHSN261201500003I, NCI/NIAID.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, and
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Deborah N. Wentworth
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Win Min Han
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard T. Davey
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - John H. Beigel
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, Maryland, USA
| | - Dominic E. Dwyer
- New South Wales Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia
| | | | - Brian Angus
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Christian T. Brandt
- Department of Infectious Diseases, Zealand University Hospital Roskilde, Denmark
| | | | - Matthew G. Law
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - James D. Neaton
- Divison of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, Victoria, Australia
| | | |
Collapse
|
7
|
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin-Drug against Respiratory Diseases. Int J Mol Sci 2023; 24:11173. [PMID: 37446350 PMCID: PMC10342444 DOI: 10.3390/ijms241311173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.
Collapse
Affiliation(s)
- Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA; (A.A.I.); (I.A.I.)
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | | - Dmitrii O. Shkil
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | |
Collapse
|
8
|
Postma M, Fisman D, Giglio N, Márquez-Peláez S, Nguyen VH, Pugliese A, Ruiz-Aragón J, Urueña A, Mould-Quevedo J. Real-World Evidence in Cost-Effectiveness Analysis of Enhanced Influenza Vaccines in Adults ≥ 65 Years of Age: Literature Review and Expert Opinion. Vaccines (Basel) 2023; 11:1089. [PMID: 37376478 DOI: 10.3390/vaccines11061089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Influenza vaccination can benefit most populations, including adults ≥ 65 years of age, who are at greater risk of influenza-related complications. In many countries, enhanced vaccines, such as adjuvanted, high-dose, and recombinant trivalent/quadrivalent influenza vaccines (aTIV/aQIV, HD-TIV/HD-QIV, and QIVr, respectively), are recommended in older populations to provide higher immunogenicity and increased relative vaccine efficacy/effectiveness (rVE) than standard-dose vaccines. This review explores how efficacy and effectiveness data from randomized controlled trials and real-world evidence (RWE) are used in economic evaluations. Findings from published cost-effectiveness analyses (CEA) on enhanced influenza vaccines for older adults are summarized, and the assumptions and approaches used in these CEA are assessed alongside discussion of the importance of RWE in CEA. Results from many CEA showed that adjuvanted and high-dose enhanced vaccines were cost-effective compared with standard vaccines, and that differences in rVE estimates and acquisition price may drive differences in cost-effectiveness estimates between enhanced vaccines. Overall, RWE and CEA provide clinical and economic rationale for enhanced vaccine use in people ≥ 65 years of age, an at-risk population with substantial burden of disease. Countries that consider RWE when making vaccine recommendations have preferentially recommended aTIV/aQIV, as well as HD-TIV/HD-QIV and QIVr, to protect older individuals.
Collapse
Affiliation(s)
- Maarten Postma
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands
- Department of Economics, Econometrics & Finance, Faculty of Economics & Business, University of Groningen, 9713 AB Groningen, The Netherlands
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, 40132 Bandung, Indonesia
| | - David Fisman
- Dalla Lana School of Public Health, Toronto, ON M5T 3M7, Canada
| | - Norberto Giglio
- Hospital de Niños Ricardo Gutièrrez, Buenos Aires 1425, Argentina
| | - Sergio Márquez-Peláez
- Department of Economics, Economic Analysis, Faculty of Business Pablo de Olavide University, 41013 Seville, Spain
| | | | - Andrea Pugliese
- Department of Mathematics, University of Trento, 38123 Trento, Italy
| | | | - Analia Urueña
- Centro de Estudios para la Prevención y Control de Enfermedades Transmisibles, Universidad Isalud, Buenos Aires C1095AAS, Argentina
| | | |
Collapse
|
9
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
10
|
Beukenhorst AL, Frallicciardi J, Koch CM, Phillips A, Desai MM, Wichapong K, Nicolaes GAF, Koudstaal W, Alter G, Goudsmit J. The influenza hemagglutinin stem antibody CR9114: Evidence for a narrow evolutionary path towards universal protection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1049134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human monoclonal antibodies (hmAbs) that protect against all influenza A and B strains are considered the road to universal influenza vaccines. Based on publicly-available data, we analyze the mechanistic and structural basis of pan-influenza protection by CR9114, a hemagglutinin (HA) stem-reactive antibody that protects against influenza subtypes from groups A1, A2, and B. The mechanistic basis of CR9114’s universal protection is not limited to in vitro neutralization, as CR9114 also protects in vivo from strains that escape its neutralizing activity: some H2 strains and influenza B. Fusion inhibition, viral egress inhibition, and activation of Fc-mediated effector functions are key contributors to CR9114’s universal protection. A comparative analysis of paratopes – between CR9114 (pan-influenza protection) and structurally similar VH1-69 hmAb CR6261 (influenza A1 protection) – pinpoints the structural basis of pan-influenza protection. CR9114’s heterosubtypic binding is conferred by its ability to bind HA with multiple domains: three HCDR loops and FR3. In contrast to other VH1-69 hmAbs, CR9114 uses a long and polar side chain of tyrosine (Y) residues on its HCDR3 for crucial H-bonds with H3, H5, and B HA. The recognition of a highly conserved epitope by CR9114 results in a high genetic barrier for escape by influenza strains. The nested, hierarchical structure of the mutations between the germline ancestor and CR9114 demonstrates that it is the result of a narrow evolutionary pathway within the B cell population. This rare evolutionary pathway indicates an immuno-recessive epitope and limited opportunity for vaccines to induce a polyclonal CR9114-like response.
Collapse
|
11
|
Capillary Blood Gas in Children Hospitalized Due to Influenza Predicts the Risk of Lower Respiratory Tract Infection. Diagnostics (Basel) 2022; 12:diagnostics12102412. [PMID: 36292102 PMCID: PMC9600777 DOI: 10.3390/diagnostics12102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Influenza may impair respiratory exchange in the case of lower respiratory tract infections (LRTIs). Capillary blood gas (CBG) reflects arterial blood values but is a less invasive method than arterial blood sampling. We aimed to retrospectively verify the usefulness of CBG in pediatric influenza. Material and methods: CBG parameters (pH, pCO2, pO2, SatO2) in laboratory confirmed influenza cases hospitalized in 2013−2020 were verified in terms of LRTI, chest X-ray (CXR) performance, radiologically confirmed pneumonia (CXR + Pneumonia), prolonged hospitalization, and intensive care transfer. A theoretical CBG-based model for CXR performance was created and the odds ratios were compared to the factual CXR performance. Results: Among 409 children (aged 13 days−17 years 3/12, median 31 months), the usefulness of CBG decreased with the age. The SatO2 predicted the LRTI with AUC = 0.74 (95%CI: 0.62−0.86), AUC = 0.71 (0.61−0.82), and AUC = 0.602 (0.502−0.702) in children aged <6 months old (mo), 6−23 mo, 24−59 mo, respectively, while pO2 revealed AUC = 0.73 (0.6−0.85), AUC = 0.67 (0.56−0.78), and AUC = 0.601 (0.501−0.702), respectively. The pCO2 predicted the LRTI most precisely in children <6 months with AUC = 0.75 (0.63−0.87), yet not in older children. A high negative predictive value for CXR + Pneumonia was seen for SatO2 < 6 mo (96.7%), SatO2 6−23 mo (89.6%), pO2 < 6 mo (94.3%), pO2 6−23 mo (88.9%). The use of a CBG-driven CXR protocol (based on SatO2 and pO2) would decrease the odds of an unnecessary CXR in children <2 years old (yo) by 84.15% (74.5−90.14%) and 86.15% (66.46−94.28%), respectively. SatO2 and pO2 also predicted a prolonged hospitalization <6 mo AUC = 0.71 (0.59−0.83) and AUC = 0.73 (0.61−0.84), respectively, and in 6−23 mo AUC = 0.66 (0.54−0.78) and AUC = 0.63 (0.52−0.75), respectively. Conclusions: The CBG is useful mainly in children under two years, predicts the risk of LRTI, and can help exclude the risk of CXR + pneumonia. Children under six months of age represent the group that would benefit the most from CBG. A CBG-based protocol for the performance of CXR could significantly decrease the number of unnecessary CXRs.
Collapse
|
12
|
Myers ML, Gallagher JR, Woolfork DD, Stradtmann-Carvalho RK, Maldonado-Puga S, Bock KW, Boyoglu-Barnum S, Syeda H, Creanga A, Alves DA, Kanekiyo M, Harris AK. Impact of adjuvant: Trivalent vaccine with quadrivalent-like protection against heterologous Yamagata-lineage influenza B virus. Front Immunol 2022; 13:1002286. [PMID: 36248851 PMCID: PMC9561127 DOI: 10.3389/fimmu.2022.1002286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
As new vaccine technologies and platforms, such as nanoparticles and novel adjuvants, are developed to aid in the establishment of a universal influenza vaccine, studying traditional influenza split/subunit vaccines should not be overlooked. Commercially available vaccines are typically studied in terms of influenza A H1 and H3 viruses but influenza B viruses need to be examined as well. Thus, there is a need to both understand the limitations of split/subunit vaccines and develop strategies to overcome those limitations, particularly their ability to elicit cross-reactive antibodies to the co-circulating Victoria (B-V) and Yamagata (B-Y) lineages of human influenza B viruses. In this study, we compared three commercial influenza hemagglutinin (HA) split/subunit vaccines, one quadrivalent (H1, H3, B-V, B-Y HAs) and two trivalent (H1, H3, B-V HAs), to characterize potential differences in their antibody responses and protection against a B-Y challenge. We found that the trivalent adjuvanted vaccine Fluad, formulated without B-Y HA, was able to produce antibodies to B-Y (cross-lineage) on a similar level to those elicited from a quadrivalent vaccine (Flucelvax) containing both B-V and B-Y HAs. Interestingly, Fluad protected mice from a lethal cross-lineage B-Y viral challenge, while another trivalent vaccine, Fluzone HD, failed to elicit antibodies or full protection following challenge. Fluad immunization also diminished viral burden in the lungs compared to Fluzone and saline groups. The success of a trivalent vaccine to provide protection from a cross-lineage influenza B challenge, similar to a quadrivalent vaccine, suggests that further analysis of different split/subunit vaccine formulations could identify mechanisms for vaccines to target antigenically different viruses. Understanding how to increase the breadth of the immune response following immunization will be needed for universal influenza vaccine development.
Collapse
Affiliation(s)
- Mallory L Myers
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - De'Marcus D Woolfork
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Regan K Stradtmann-Carvalho
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samantha Maldonado-Puga
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Audray K Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Speck-Planche A, Kleandrova VV. Multi-Condition QSAR Model for the Virtual Design of Chemicals with Dual Pan-Antiviral and Anti-Cytokine Storm Profiles. ACS OMEGA 2022; 7:32119-32130. [PMID: 36120024 PMCID: PMC9476185 DOI: 10.1021/acsomega.2c03363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV, respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS). Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We report here the first multicondition model based on quantitative structure-activity relationships and an artificial neural network (mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model, we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-antiviral and anti-CS activities.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Grupo
de Química Computacional y Teórica (QCT-USFQ), Departamento
de Ingeniería Química, Universidad
San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Valeria V. Kleandrova
- Laboratory
of Fundamental and Applied Research of Quality and Technology of Food
Production, Moscow State University of Food
Production, Volokolamskoe
shosse 11, 125080, Moscow, Russian Federation
| |
Collapse
|
14
|
Kedia N, Banerjee S, Mondal A. A Comprehensive Roadmap Towards the Generation of an Influenza B Reporter Assay Using a Single DNA Polymerase-Based Cloning of the Reporter RNA Construct. Front Microbiol 2022; 13:868367. [PMID: 35694292 PMCID: PMC9174941 DOI: 10.3389/fmicb.2022.868367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The mini-genome reporter assay is a key tool for conducting RNA virus research. However, procedural complications and the lack of adequate literature pose a major challenge in developing these assay systems. Here, we present a novel, yet generic and simple, cloning strategy for the construction of an influenza B virus reporter RNA template and describe an extensive standardization of the reporter RNP/polymerase activity assay for monitoring viral RNA synthesis in an infection-free setting. Using this assay system, we showed for the first time the effect of viral protein NS1 and host protein kinase C delta (PKCD) on influenza B virus RNA synthesis. In addition, the assay system showed promising results in evaluating the efficacy of antiviral drugs targeting viral RNA synthesis and virus propagation. Together, this work offers a detailed protocol for the standardization of the influenza virus minigenome assay and an excellent tool for screening of host factors and antivirals in a fast, user-friendly, and high-throughput manner.
Collapse
|
15
|
Cell-Adapted Mutations and Antigenic Diversity of Influenza B Viruses in Missouri, 2019-2020 Season. Viruses 2021; 13:v13101896. [PMID: 34696325 PMCID: PMC8538563 DOI: 10.3390/v13101896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 01/31/2023] Open
Abstract
Influenza B viruses (IBVs) are causing an increasing burden of morbidity and mortality, yet the prevalence of culture-adapted mutations in human seasonal IBVs are unclear. We collected 368 clinical samples from patients with influenza-like illness in Missouri during the 2019–2020 influenza season and recovered 146 influenza isolates including 38 IBV isolates. Of MDCK-CCL34, MDCK-Siat1, and humanized MDCK (hCK), hCK showed the highest virus recovery efficiency. All Missourian IBVs belonged to the Victoria V1A.3 lineage, all of which contained a three-amino acid deletion on the HA protein and were antigenically distant from the Victoria lineage IBV vaccine strain used during that season. By comparing genomic sequences of these IBVs in 31 paired samples, eight cell-adapted nonsynonymous mutations were identified, with the majority in the RNA polymerase. Analyses of IBV clinical sample–isolate pairs from public databases further showed that cell- and egg-adapted mutations occurred more widely in viral proteins, including the receptor and antibody binding sites on HA. Our study suggests that hCK is an effective platform for IBV isolation and that culture-adapted mutations may occur during IBV isolation. As culture-adapted mutations may affect subsequent virus studies and vaccine development, the knowledge from this study may help optimize strategies for influenza surveillance, vaccine strain selection, and vaccine development.
Collapse
|
16
|
Prokopyeva E, Kurskaya O, Sobolev I, Solomatina M, Murashkina T, Suvorova A, Alekseev A, Danilenko D, Komissarov A, Fadeev A, Ramsay E, Shestopalov A, Dygai A, Sharshov K. Experimental Infection Using Mouse-Adapted Influenza B Virus in a Mouse Model. Viruses 2020; 12:v12040470. [PMID: 32326238 PMCID: PMC7232149 DOI: 10.3390/v12040470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Every year, influenza B viruses (IBVs) contribute to annual illness, and infection can lead to serious respiratory disease among humans. More attention is needed in several areas, such as increasing virulence or pathogenicity of circulating B viruses and developing vaccines against current influenza. Since preclinical trials of anti-influenza drugs are mainly conducted in mice, we developed an appropriate infection model, using an antigenically-relevant IBV strain, for furtherance of anti-influenza drug testing and influenza vaccine protective efficacy analysis. A Victoria lineage (clade 1A) IBV was serially passaged 17 times in BALB/c mice, and adaptive amino acid substitutions were found in hemagglutinin (HA) (T214I) and neuraminidase (NA) (D432N). By electron microscopy, spherical and elliptical IBV forms were noted. Light microscopy showed that mouse-adapted IBVs caused influenza pneumonia on day 6 post inoculation. We evaluated the illness pathogenicity, viral load, and histopathological features of mouse-adapted IBVs and estimated anti-influenza drugs and vaccine efficiency in vitro and in vivo. Assessment of an investigational anti-influenza drug (oseltamivir ethoxysuccinate) and an influenza vaccine (Ultrix®, SPBNIIVS, Saint Petersburg, Russia) showed effectiveness against the mouse-adapted influenza B virus.
Collapse
Affiliation(s)
- Elena Prokopyeva
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
- Medical Department, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Olga Kurskaya
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Ivan Sobolev
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Mariia Solomatina
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Tatyana Murashkina
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Anastasia Suvorova
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Alexander Alekseev
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Daria Danilenko
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (D.D.); (A.K.); (A.F.); (E.R.)
| | - Andrey Komissarov
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (D.D.); (A.K.); (A.F.); (E.R.)
| | - Artem Fadeev
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (D.D.); (A.K.); (A.F.); (E.R.)
| | - Edward Ramsay
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (D.D.); (A.K.); (A.F.); (E.R.)
| | - Alexander Shestopalov
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| | - Alexander Dygai
- Goldberg Research Institute of Pharmacology and Regenerative Medicine Clinic, 634009 Tomsk, Russia;
| | - Kirill Sharshov
- Department of Development and Testing of Pharmacological Agents, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (O.K.); (I.S.); (M.S.); (T.M.); (A.S.); (A.A.); (A.S.); (K.S.)
| |
Collapse
|
17
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
18
|
Chan WM, Wong LH, So CF, Chen LL, Wu WL, Ip JD, Lam AHY, Yip CCY, Yuen KY, To KKW. Development and evaluation of a conventional RT-PCR for differentiating emerging influenza B/Victoria lineage viruses with hemagglutinin amino acid deletion from B/Yamagata lineage viruses. J Med Virol 2019; 92:382-385. [PMID: 31608480 DOI: 10.1002/jmv.25607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent influenza B/Victoria lineage viruses contain amino acid deletions at positions 162 to 164 of the haemagglutinin (HA) protein. These amino acid deletions have affected the detection of B/Victoria lineage viruses by the lineage-specific conventional reverse-transcription polymerase chain reaction (RT-PCR) that was recommended by World Health Organization (WHO). OBJECTIVES We aimed to develop and evaluate a novel lineage-specific RT-PCR for rapid differentiation of the contemporary B/Victoria lineage from B/Yamagata lineage viruses. STUDY DESIGN Primers of our in-house RT-PCR were designed to avoid amino acid positions 162 to 164 and to target conserved regions of the HA gene that are specific for B/Victoria and B/Yamagata lineage viruses. Our in-house RT-PCR and WHO RT-PCR were evaluated using influenza B positive clinical specimens or virus culture isolates. Influenza B virus lineage was confirmed by Sanger sequencing. RESULTS A total of 105 clinical specimens or virus culture isolates were retrieved, including 83 with B/Victoria lineage and 22 with B/Yamagata lineage viruses. Our in-house RT-PCR correctly identified B/Victoria lineage viruses in all 83 samples, including 82 samples with double or triple amino acid deletion in the HA protein. Conversely, the WHO lineage-specific conventional RT-PCR failed to detect any of the 82 samples with HA amino acid deletions. For the 22 samples with B/Yamagata lineage viruses, both RT-PCR assays have correctly identified B/Yamagata lineage in all samples. CONCLUSIONS Our novel lineage-specific RT-PCR has successfully detected all contemporary B/Victoria lineage viruses with amino acid deletions in HA. This protocol is especially useful for laboratories without the equipment for real-time PCR.
Collapse
Affiliation(s)
- Wan-Mui Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lok-Hin Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chun-Fung So
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lin-Lei Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wai-Lan Wu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan D Ip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Athene Hoi-Ying Lam
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cyril C Y Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|