1
|
Assou S, Ahmed E, Morichon L, Nasri A, Foisset F, Bourdais C, Gros N, Tieo S, Petit A, Vachier I, Muriaux D, Bourdin A, De Vos J. The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2. Int J Mol Sci 2023; 24:12017. [PMID: 37569398 PMCID: PMC10418806 DOI: 10.3390/ijms241512017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.
Collapse
Affiliation(s)
- Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Lisa Morichon
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
| | - Amel Nasri
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Florent Foisset
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Carine Bourdais
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Nathalie Gros
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
| | - Sonia Tieo
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34090 Montpellier, France;
| | - Aurelie Petit
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Delphine Muriaux
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
- IRIM, Université de Montpellier, CNRS UMR9004, 34090 Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - John De Vos
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, 34090 Montpellier, France
| |
Collapse
|
2
|
Martinu T, Todd JL, Gelman AE, Guerra S, Palmer SM. Club Cell Secretory Protein in Lung Disease: Emerging Concepts and Potential Therapeutics. Annu Rev Med 2023; 74:427-441. [PMID: 36450281 PMCID: PMC10472444 DOI: 10.1146/annurev-med-042921-123443] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.
Collapse
Affiliation(s)
- Tereza Martinu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
3
|
Using intracellular SCGB1A1-sorted, formalin-fixed club cells for successful transcriptomic analysis. Biochem Biophys Res Commun 2022; 604:151-157. [PMID: 35305419 DOI: 10.1016/j.bbrc.2022.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
As opposed to surface marker staining, certain cell types can only be recognized by intracellular markers. Intracellular staining for use in cell sorting remains challenging. Fixation and permeabilization steps for intracellular staining and the presence of RNases notably affect preservation of high-quality mRNA. We report the work required for the optimization of a successful protocol for microarray analysis of intracellular target-sorted, formalin-fixed human bronchial club cells. Cells obtained from differentiated air-liquid interface cultures were stained with the most characteristic intracellular markers for club cell (SCGB1A1+) sorting. A benchmarked intracellular staining protocol was carried out before flow cytometry. The primary outcome was the extraction of RNA sufficient quality for microarray analysis as assessed by Bioanalyzer System. Fixation with 4% paraformaldehyde coupled with 0.1% Triton/0.1% saponin permeabilization obtained optimal results for SCGB1A1 staining. Addition of RNase inhibitors throughout the protocol and within the appropriate RNA extraction kit (Formalin-Fixed-Paraffin-Embedded) dramatically improved RNA quality, resulting in samples eligible for microarray analysis. The protocol resulted in successful cell sorting according to specific club cell intracellular marker without using cell surface marker. The protocol also preserved RNA of sufficient quality for subsequent microarray transcriptomic analysis, and we were able to generate transcriptomic signature of club cells.
Collapse
|
4
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
5
|
Methods of Sputum and Mucus Assessment for Muco-Obstructive Lung Diseases in 2022: Time to “Unplug” from Our Daily Routine! Cells 2022; 11:cells11050812. [PMID: 35269434 PMCID: PMC8909676 DOI: 10.3390/cells11050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.
Collapse
|
6
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:985. [PMID: 35055174 PMCID: PMC8778852 DOI: 10.3390/ijms23020985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, socially significant disease characterized by progressive airflow limitation due to chronic inflammation in the bronchi. Although the causes of COPD are considered to be known, the pathogenesis of the disease continues to be a relevant topic of study. Mechanisms of the innate immune system are involved in various links in the pathogenesis of COPD, leading to persistence of chronic inflammation in the bronchi, their bacterial colonization and disruption of lung structure and function. Bronchial epithelial cells, neutrophils, macrophages and other cells are involved in the development and progression of the disease, demonstrating multiple compromised immune mechanisms.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26:298-321. [PMID: 33506971 DOI: 10.1111/resp.14007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.
Collapse
Affiliation(s)
- Peter Lange
- Department of Internal Medicine, Section of Respiratory Medicine, Copenhagen University Hospital - Herlev, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Zakaria Mohamed Lahmar
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arnaud Bourdin
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
9
|
Mathioudakis AG, Vanfleteren LEGW, Lahousse L, Higham A, Allinson JP, Gotera C, Visca D, Singh D, Spanevello A. Current developments and future directions in COPD. Eur Respir Rev 2020; 29:29/158/200289. [PMID: 33268439 PMCID: PMC9488623 DOI: 10.1183/16000617.0289-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
The European Respiratory Society journals publish respiratory research and policy documents of the highest quality, offering a platform for the exchange and promotion of scientific knowledge. In this article, focusing on COPD, the third leading cause of death globally, we summarise novel research highlights focusing on the disease's underlying mechanisms, epidemiology and management, with the aim to inform and inspire respiratory clinicians and researchers. Current developments and future directions in COPD: a critical summary of some of the most recent ground-breaking research studies and policy documents from @ERSpublicationshttps://bit.ly/3oW0xDM
Collapse
Affiliation(s)
- Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK .,North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Lowie E G W Vanfleteren
- COPD Center, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Lies Lahousse
- Dept of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Andrew Higham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK.,North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James P Allinson
- The Royal Brompton Hospital and The National Heart and Lung Institute, Imperial College London, London, UK
| | - Carolina Gotera
- Dept of Pneumology, IIS-Fundación Jiménez Díaz, ISCIII-CIBERES, Madrid, Spain
| | - Dina Visca
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy.,Dept of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK.,North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| | - Antonio Spanevello
- Division of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Tradate, Italy.,Dept of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| |
Collapse
|
10
|
Wang Y, Ren S, Wang Z, Wang Z, Zhu N, Cai D, Ye Z, Ruan J. Chemokines in bone-metastatic breast cancer: Therapeutic opportunities. Int Immunopharmacol 2020; 87:106815. [PMID: 32711376 DOI: 10.1016/j.intimp.2020.106815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Due to non-response to chemotherapy, incomplete surgical resection, and resistance to checkpoint inhibitors, breast cancer with bone metastasis is notoriously difficult to cure. Therefore, the development of novel, efficient strategies to tackle bone metastasis of breast cancer is urgently needed. Chemokines, which induce directed migration of immune cells and act as guide molecules between diverse cells and tissues, are small proteins indispensable in immunity. These complex chemokine networks play pro-tumor roles or anti-tumor roles when produced by breast cancer cells in the tumor microenvironment. Additionally, chemokines have diverse roles when secreted by various immune cells in the tumor microenvironment of breast cancer, which can be roughly divided into immunosuppressive effects and immunostimulatory effects. Recently, targeting chemokine networks has been shown to have potential for use in treatment of metastatic malignancies, including bone-metastatic breast cancer. In this review, we focus on the role of chemokines networks in the biology of breast cancer and metastasis to the bone. We also discuss the therapeutic opportunities and future prospects of targeting chemokine networks, in combination with other current standard therapies, for the treatment of bone-metastatic breast cancer.
Collapse
Affiliation(s)
| | - Shihong Ren
- First People's Hospital of Wenling, Wenling, China
| | - Zhan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Hebei North University, Zhangjiakou, China
| | | | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | |
Collapse
|