1
|
Hu PW, Chen CK, Hsiao YH, Weng CY, Lee YC, Su KC, Feng JY, Chou KT, Perng DW, Ko HK. Correlations between blood vessel distribution, lung function and structural change in idiopathic pulmonary fibrosis. Respirology 2024; 29:962-968. [PMID: 39147387 DOI: 10.1111/resp.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Correlations between the image analysis of CT scan, lung function and quality of life in patients with idiopathic pulmonary fibrosis (IPF) remain unclear. This study aimed to investigate the impacts of pulmonary blood-vessel distribution and the extent of fibrosis on the lung function and quality of life of patients with IPF. METHODS Patients were enrolled in an IPF registry and had completed pulmonary function tests, chest HRCT, St. George Respiratory Questionnaire (SGRQ) and echocardiography. Pulmonary blood-vessel distribution, specific image-derived airway volume (siVaw) and fibrosis extent (siVfib) were quantitatively calculated by functional respiratory imaging on HRCT. RESULTS The study subjects were categorized into DLco <40% pred. (n = 40) and DLco ≥40% pred. (n = 19) groups. Patients with DLco <40% pred. had significantly higher scores of SGRQ, composite physiologic index (CPI), exercise oxygen desaturation (∆SpO2), siVaw, lower FVC% pred. and 6-minute walking distance% pred. The proportion of small blood vessels in the upper lobes (BV5PR-UL) was significantly correlated with CPI, DLco % Pred., FVC% pred., SGRQ and ∆SpO2. Only BV5PR-UL had a significant impact on all indices but not BV5PR in the lower lobes (BV5PR-LL). siVfib was significantly negatively correlated with BV5PR-UL, DLco% pred. and FVC% pred., as well as positively correlated with CPI, ∆SpO2 and siVaw. CONCLUSION BV5PR-UL and siVfib had significant correlations with lung function and may become important indicators to assess the severity of IPF and the impact on quality of life.
Collapse
Affiliation(s)
- Po-Wei Hu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Chest Medicine, Department of Internal Medicine, National Yang-Ming Chiao Tung University Hospital, Yi-Lan, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Ku Chen
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Han Hsiao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ching-Yao Weng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ying-Chi Lee
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Kang-Cheng Su
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kun-Ta Chou
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
Torregiani C, Baratella E, Segalotti A, Ruaro B, Salton F, Confalonieri P, Tavano S, Lapadula G, Bozzi C, Confalonieri M, Dellaca’ RL, Veneroni C. Oscillometry Longitudinal Data on COVID-19 Acute Respiratory Syndrome Treated with Non-Invasive Respiratory Support. J Clin Med 2024; 13:1868. [PMID: 38610633 PMCID: PMC11012861 DOI: 10.3390/jcm13071868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Oscillometry allows for the non-invasive measurements of lung mechanics. In COVID-19 ARDS patients treated with Non-Invasive Oxygen Support (NI-OS), we aimed to (1) observe lung mechanics at the patients' admission and their subsequent changes, (2) compare lung mechanics with clinical and imaging data, and (3) evaluate whether lung mechanics helps to predict clinical outcomes. Methods: We retrospectively analyzed the data from 37 consecutive patients with moderate-severe COVID-19 ARDS. Oscillometry was performed on their 1st, 4th, and 7th day of hospitalization. Resistance (R5), reactance (X5), within-breath reactance changes (ΔX5), and the frequency dependence of the resistance (R5-R19) were considered. Twenty-seven patients underwent computed tomographic pulmonary angiography (CTPA): collapsed, poorly aerated, and normally inflated areas were quantified. Adverse outcomes were defined as intubation or death. Results: Thirty-two patients were included in this study. At the first measurement, only 44% of them had an abnormal R5 or X5. In total, 23 patients had measurements performed on their 3rd day and 7 on their 7th day of hospitalization. In general, their R5, R5-R19, and ΔX decreased with time, while their X5 increased. Collapsed areas on the CTPA correlated with the X5 z-score (ρ = -0.38; p = 0.046), while poorly aerated areas did not. Seven patients had adverse outcomes but did not present different oscillometry parameters on their 1st day of hospitalization. Conclusions: Our study confirms the feasibility of oscillometry in critically ill patients with COVID-19 pneumonia undergoing NI-OS. The X5 z-scores indicates collapsed but not poorly aerated lung areas in COVID-19 pneumonia. Our data, which show a severe impairment of gas exchange despite normal reactance in most patients with COVID-19 ARDS, support the hypothesis of a composite COVID-19 ARDS physiopathology.
Collapse
Affiliation(s)
- Chiara Torregiani
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Elisa Baratella
- Radiology Unit, Department of Medical Surgical and Health Sciences, University Hospital of Cattinara, 34149 Trieste, Italy
| | - Antonio Segalotti
- Radiology Unit, Department of Medical Surgical and Health Sciences, University Hospital of Cattinara, 34149 Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Stefano Tavano
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Giulia Lapadula
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Chiara Bozzi
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, University of Trieste, Hospital of Cattinara, 34149 Trieste, Italy
| | - Raffaele L. Dellaca’
- Department of Electronics, Information and Biomedical Engineering (DEIB), TechRes Lab, Politecnico di Milano University, 20122 Milano, Italy; (R.L.D.); (C.V.)
| | - Chiara Veneroni
- Department of Electronics, Information and Biomedical Engineering (DEIB), TechRes Lab, Politecnico di Milano University, 20122 Milano, Italy; (R.L.D.); (C.V.)
| |
Collapse
|
3
|
Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 2024; 27:5-22. [PMID: 37103631 PMCID: PMC10134732 DOI: 10.1007/s10456-023-09878-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China.
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, MA, Boston, USA.
| |
Collapse
|
4
|
Scheim DE, Vottero P, Santin AD, Hirsh AG. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int J Mol Sci 2023; 24:17039. [PMID: 38069362 PMCID: PMC10871123 DOI: 10.3390/ijms242317039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus's pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520, USA
| | | |
Collapse
|
5
|
Cajigas HR, Lavon B, Harmsen W, Muchmore P, Costa J, Mussche C, Pulsipher S, De Backer J. Quantitative CT measures of pulmonary vascular volume distribution in pulmonary hypertension associated with COPD: Association with clinical characteristics and outcomes. Pulm Circ 2023; 13:e12321. [PMID: 38098498 PMCID: PMC10719487 DOI: 10.1002/pul2.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
To determine whether quantitative computed tomography (qCT)-derived metrics of pulmonary vascular volume distribution could distinguish chronic obstructive pulmonary disease (COPD) subjects with associated pulmonary hypertension (PH) from those without and to characterize associations of these measurements with clinical and physiological characteristics and outcomes. We collected retrospective CT, pulmonary hemodynamic, clinical, and outcomes data from subjects with COPD and right-heart catheterization-confirmed PH (PH-COPD) and control subjects with COPD but without PH. We measured the volumes of pulmonary vessels < 5 and >10 mm2 in cross-sectional area as a percentage of total pulmonary vascular volume (qCT-derived volume of pulmonary vessels < 5 mm2 in cross-sectional area as a volume fraction of total pulmonary blood volume [BV5%] and qCT-derived volume of pulmonary vessels > 10 mm2 in cross-sectional area [BV10] as a volume fraction of total pulmonary blood volume [BV10%], respectively) using Functional Respiratory Imaging (FRI), an automated qCT platform, and compared them between PH and control arms and between subjects with mild-moderate PH and those with severe disease. Correlations of hemodynamics with pulmonary function and associations with survival were tested. Forty-five PH-COPD and 42 control subjects were studied. BV5% was lower in PH subjects (32.2% vs. 37.7%, p = 0.003), and BV10% was higher (50.2% vs. 43.5, p = 0.001). Subjects with severe PH did not differ from those with mild-moderate PH in qCT. Pulmonary vascular volumes were not associated with pulmonary function. BV10 was associated with mean pulmonary artery pressure (r = 0.3, p = 0.05). Associations with survival were observed for BV5% (hazard ratio 0.63, p = 0.02) and BV10% (hazard ratio 1.43, p = 0.03) in the PH-COPD arm, but not for controls. qCT-derived measures of pulmonary vascular volume may have diagnostic and prognostic significance in PH-COPD and should be investigated further as screening and risk stratification tools.
Collapse
Affiliation(s)
- Hector R. Cajigas
- Department of Internal Medicine, Division of Pulmonary and Critical CareMayo ClinicRochesterMinnesotaUSA
| | | | - William Harmsen
- Department of Quantitative Health Sciences, Division of Clinical Trials and BiostatisticsMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Sydney Pulsipher
- Department of Quantitative Health Sciences, Division of Clinical Trials and BiostatisticsMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
6
|
Iwasawa T, Matsushita S, Hirayama M, Baba T, Ogura T. Quantitative Analysis for Lung Disease on Thin-Section CT. Diagnostics (Basel) 2023; 13:2988. [PMID: 37761355 PMCID: PMC10528918 DOI: 10.3390/diagnostics13182988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Thin-section computed tomography (CT) is widely employed not only for assessing morphology but also for evaluating respiratory function. Three-dimensional images obtained from thin-section CT provide precise measurements of lung, airway, and vessel volumes. These volumetric indices are correlated with traditional pulmonary function tests (PFT). CT also generates lung histograms. The volume ratio of areas with low and high attenuation correlates with PFT results. These quantitative image analyses have been utilized to investigate the early stages and disease progression of diffuse lung diseases, leading to the development of novel concepts such as pre-chronic obstructive pulmonary disease (pre-COPD) and interstitial lung abnormalities. Quantitative analysis proved particularly valuable during the COVID-19 pandemic when clinical evaluations were limited. In this review, we introduce CT analysis methods and explore their clinical applications in the context of various lung diseases. We also highlight technological advances, including images with matrices of 1024 × 1024 and slice thicknesses of 0.25 mm, which enhance the accuracy of these analyses.
Collapse
Affiliation(s)
- Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Shoichiro Matsushita
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Mariko Hirayama
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (T.B.); (T.O.)
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (T.B.); (T.O.)
| |
Collapse
|
7
|
Dierckx W, De Backer W, Ides K, De Meyer Y, Lauwers E, Franck E, De Backer J. Unraveling pathophysiologic mechanisms contributing to symptoms in patients with post-acute sequelae of COVID-19 (PASC): A retrospective study. Physiol Rep 2023; 11:e15754. [PMID: 37344757 PMCID: PMC10284821 DOI: 10.14814/phy2.15754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Patients with post-acute sequelae of COVID-19 (PASC) present with a decrease in physical fitness. The aim of this paper is to reveal the relations between the remaining symptoms, blood volume distribution, exercise tolerance, static and dynamic lung volumes, and overall functioning. Patients with PASC were retrospectively studied. Pulmonary function tests (PFT), 6-minute walk test (6MWT), and cardiopulmonary exercise test were performed. Chest CT was taken and quantified. Patients were divided into two groups: minor functional limitations (MFL) and severe functional limitations (SFL) based on the completed Post-COVID-19 Functional Status scale (PCFS). Twenty one patients (3 M; 18 FM), mean age 44 (IQR 21) were studied. Eighteen completed the PCFS (8 MFL; 10 SFL). VO2 max was suboptimal in both groups (not significant). 6MWT was significantly higher in MFL-group (p = 0.043). Subjects with SFL, had significant lower TLC (p = 0.029). The MFL-group had more air trapping (p = 0.036). Throughout the sample, air trapping correlated significantly with residual volume (RV) in L (p < 0.001). An increase in air trapping was related to an increase in BV5 (p < 0.001). Mean BV5 was 65% (IQR 5%). BV5% in patients with PASC was higher than in patients with acute COVID-19 infection. This increase in BV5% in patients with PASC is thought to be driven by the air trapping in the lobes. This study reveals that symptoms are more driven by occlusion of the small airways. Patients with more physical complaints have significantly lower TLC. All subjects encounter physical limitations as indicated by suboptimal VO2 max. Treatment should focus on opening or re-opening of small airways by recruiting alveoli.
Collapse
Affiliation(s)
- Wendel Dierckx
- Centre for Research and Innovation in Care, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Multidisciplinary Medical CenterKontichBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Wilfried De Backer
- Multidisciplinary Medical CenterKontichBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- FLUIDDA NVKontichBelgium
| | - Kris Ides
- Multidisciplinary Medical CenterKontichBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- CoSys Research Lab, Faculty of Applied EngineeringUniversity of AntwerpAntwerpBelgium
- Flanders Make Strategic Research CenterLommelBelgium
- Department of PediatricsAntwerp University HospitalEdegemBelgium
| | - Yinka De Meyer
- Multidisciplinary Medical CenterKontichBelgium
- Clinical OperationsFLUIDDA NVKontichBelgium
| | - Eline Lauwers
- Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Clinical OperationsFLUIDDA NVKontichBelgium
| | - Erik Franck
- Centre for Research and Innovation in Care, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | | |
Collapse
|
8
|
Lippi G, Favaloro EJ. What We Know (and Do not Know) Regarding the Pathogenesis of Pulmonary Thrombosis in COVID-19. Semin Thromb Hemost 2023; 49:27-33. [PMID: 35021250 DOI: 10.1055/s-0041-1742091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The clinical course of coronavirus disease 2019 (COVID-19) is often complicated by the onset of venous thrombosis and thromboembolism (VTE), encompassing also pulmonary thrombosis. Recent statistics attests that the cumulative frequency of VTE can be as high as 30% in COVID-19 hospitalized patients, increasing to nearly 40 to 70% (depending on systematic screening) in those with severe illness, mechanical ventilation, or intensive care unit admission. The risk of venous thrombosis seems mostly limited to the active phase of disease, and is directly associated with some genetic (i.e., inherited prothrombotic predisposition) and demographical factors (male sex, overweight/obesity), disease severity (risk increasing progressively from hospitalization to development of severe illness, being the highest in patients needing mechanical ventilation and/or intensive care), presence and extent of pulmonary disease, coexistence of multiple risk factors (immobilization, mechanical ventilation, co- or superinfections), along with increased values of inflammatory and thrombotic biomarkers. At least three different phenotypes of pulmonary thrombosis may develop in COVID-19 patients, one caused by typical embolization from peripheral venous thrombosis (e.g., deep vein thrombosis), a second type triggered by local inflammation of nearby pulmonary tissue, and a third one mostly attributable to the prothrombotic state consequent to the pronounced systemic inflammatory response (i.e., the so-called cytokine storm) that is frequently observed in COVID-19. Although the pathogenesis of these three conditions has different features, their discrimination is essential for diagnostic and therapeutic purposes. The prognosis of COVID-19 patients who develop pulmonary thrombosis is also considerably worse than those who do not, thus probably needing frequent monitoring and more aggressive therapeutic management.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia.,Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW, Australia.,Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
9
|
Lee JH, Koh J, Jeon YK, Goo JM, Yoon SH. An Integrated Radiologic-Pathologic Understanding of COVID-19 Pneumonia. Radiology 2023; 306:e222600. [PMID: 36648343 PMCID: PMC9868683 DOI: 10.1148/radiol.222600] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
This article reviews the radiologic and pathologic findings of the epithelial and endothelial injuries in COVID-19 pneumonia to help radiologists understand the fundamental nature of the disease. The radiologic and pathologic manifestations of COVID-19 pneumonia result from epithelial and endothelial injuries based on viral toxicity and immunopathologic effects. The pathologic features of mild and reversible COVID-19 pneumonia involve nonspecific pneumonia or an organizing pneumonia pattern, while the pathologic features of potentially fatal and irreversible COVID-19 pneumonia are characterized by diffuse alveolar damage followed by fibrosis or acute fibrinous organizing pneumonia. These pathologic responses of epithelial injuries observed in COVID-19 pneumonia are not specific to SARS-CoV-2 but rather constitute universal responses to viral pneumonia. Endothelial injury in COVID-19 pneumonia is a prominent feature compared with other types of viral pneumonia and encompasses various vascular abnormalities at different levels, including pulmonary thromboembolism, vascular engorgement, peripheral vascular reduction, a vascular tree-in-bud pattern, and lung perfusion abnormality. Chest CT with different imaging techniques (eg, CT quantification, dual-energy CT perfusion) can fully capture the various manifestations of epithelial and endothelial injuries. CT can thus aid in establishing prognosis and identifying patients at risk for deterioration.
Collapse
Affiliation(s)
- Jong Hyuk Lee
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Jaemoon Koh
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Yoon Kyung Jeon
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Jin Mo Goo
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| | - Soon Ho Yoon
- From the Departments of Radiology (J.H.L., J.M.G., S.H.Y.) and
Pathology (J.K., Y.K.J.), Seoul National University Hospital, Seoul National
University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea;
Department of Radiology, Seoul National University College of Medicine, Seoul,
Korea (J.M.G.); Institute of Radiation Medicine, Seoul National University
Medical Research Center, Seoul, Korea (J.M.G.); and Cancer Research Institute,
Seoul National University, Seoul, Korea (J.M.G.)
| |
Collapse
|
10
|
Dierckx W, De Backer W, Lins M, De Meyer Y, Ides K, Vandevenne J, De Backer J, Franck E, Lavon BR, Lanclus M, Thillai M. CT-derived measurements of pulmonary blood volume in small vessels and the need for supplemental oxygen in COVID-19 patients. J Appl Physiol (1985) 2022; 133:1295-1299. [PMID: 36269576 DOI: 10.1152/japplphysiol.00458.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout the COVID-19 pandemic, a portion of those affected have evolved toward acute hypoxic respiratory failure. Initially, this was hypothesized to result from acute lung injury leading to acute respiratory distress syndrome (ARDS). In previous research, a novel quantitative CT post-processing technique was described to quantify the volume of blood contained within pulmonary blood vessels of a given size. We hypothesized that patients with lower BV5 blood flow would have higher supplemental oxygen needs and less favorable arterial blood gas profiles. From the initial data analysis, 111 hospitalized COVID-19 patients were retrospectively selected based on the availability of CT scans of the lungs with a slice thickness of 1.5 mm or less, as well as PCR-confirmed SARS-CoV2 infection. Three-dimensional (3-D) reconstructions of the lungs and pulmonary vasculature were created. Further analysis was performed on 50 patients. Patients were divided into groups based on their need for oxygen at the time of CT scan acquisition. Eighteen out of 50 patients needed >2 L/min supplemental oxygen and this group demonstrated a significantly lower median percentage of total blood flow in the BV5 vessels compared with the 32 patients who needed <2 L/min supplemental oxygen (41.61% vs. 46.89%, P = 0.023). Both groups had significantly less blood as a proportion in BV5 vessels compared with healthy volunteers. These data are consistent with the hypothesis that reduced blood volume within small (BV5) pulmonary vessels is associated with higher needs for supplemental oxygen and more severe gas exchange anomalies in COVID-19 infections.NEW & NOTEWORTHY This research provides, by using new imaging analysis on CT imaging, an insight into the pathophysiology of patients with COVID-19 infection. By visualizing and quantifying the blood in small vessels in the lung, we can link these results to the clinical need for oxygen in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Wendel Dierckx
- Faculty of Medicine, University of Antwerp, Antwerp, Belgium.,Fluidda NV, Kontich, Belgium.,Multidisciplinary praxis Medimprove, Kontich, Belgium
| | - Wilfried De Backer
- Faculty of Medicine, University of Antwerp, Antwerp, Belgium.,Multidisciplinary praxis Medimprove, Kontich, Belgium
| | - Muriel Lins
- General Hospital Sint-Maarten, Mechelen, Belgium
| | - Yinka De Meyer
- Fluidda NV, Kontich, Belgium.,Multidisciplinary praxis Medimprove, Kontich, Belgium
| | - Kris Ides
- Faculty of Medicine, University of Antwerp, Antwerp, Belgium.,Department of Engineering, Cosys Labs, University of Antwerp, Antwerp, Belgium.,Multidisciplinary praxis Medimprove, Kontich, Belgium
| | - Jan Vandevenne
- Department of Radiology, Ziekenhuis Oost-Limburg, Genk, Belgium.,Faculty of Medicine, University of Hasselt, Diepenbeek, Belgium
| | | | - Erik Franck
- Centre for Research and Innovation in Care, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | - Muhunthan Thillai
- Interstitial Lung Disease Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Sharifi H, Hsu J. COVID-19 Pneumonia: Clinical Manifestations. Clin Chest Med 2022; 44:227-237. [PMID: 37085216 PMCID: PMC9682061 DOI: 10.1016/j.ccm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus disease-2019 (COVID-19) pneumonia has diverse clinical manifestations, which have shifted throughout the pandemic. Formal classifications include presymptomatic infection and mild, moderate, severe, and critical illness. Social risk factors are numerous, with Black, Hispanic, and Native American populations in the United States having suffered disproportionately. Biological risk factors such as age, sex, underlying comorbid burden, and certain laboratory metrics can assist the clinician in triage and management. Guidelines for classifying radiographic findings have been proposed and may assist in prognosis. In this article, we review the risk factors, clinical course, complications, and imaging findings of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Husham Sharifi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Joe Hsu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Katzenstein TL, Christensen J, Lund TK, Kalhauge A, Rönsholt F, Podlekareva D, Arndal E, Berg RMG, Helt TW, Lebech AM, Mortensen J. Relation of Pulmonary Diffusing Capacity Decline to HRCT and VQ SPECT/CT Findings at Early Follow-Up after COVID-19: A Prospective Cohort Study (The SECURe Study). J Clin Med 2022; 11:jcm11195687. [PMID: 36233555 PMCID: PMC9572695 DOI: 10.3390/jcm11195687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
A large proportion of patients exhibit persistently reduced pulmonary diffusion capacity after COVID-19. It is unknown whether this is due to a post-COVID restrictive lung disease and/or pulmonary vascular disease. The aim of the current study was to investigate the association between initial COVID-19 severity and haemoglobin-corrected diffusion capacity to carbon monoxide (DLco) reduction at follow-up. Furthermore, to analyse if DLco reduction could be linked to pulmonary fibrosis (PF) and/or thromboembolic disease within the first months after the illness, a total of 67 patients diagnosed with COVID-19 from March to December 2020 were included across three severity groups: 12 not admitted to hospital (Group I), 40 admitted to hospital without intensive care unit (ICU) admission (Group II), and 15 admitted to hospital with ICU admission (Group III). At first follow-up, 5 months post SARS-CoV-2 positive testing/4 months after discharge, lung function testing, including DLco, high-resolution CT chest scan (HRCT) and ventilation-perfusion (VQ) single photon emission computed tomography (SPECT)/CT were conducted. DLco was reduced in 42% of the patients; the prevalence and extent depended on the clinical severity group and was typically observed as part of a restrictive pattern with reduced total lung capacity. Reduced DLco was associated with the extent of ground-glass opacification and signs of PF on HRCT, but not with mismatched perfusion defects on VQ SPECT/CT. The severity-dependent decline in DLco observed early after COVID-19 appears to be caused by restrictive and not pulmonary vascular disease.
Collapse
Affiliation(s)
- Terese L. Katzenstein
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-35451492
| | - Jan Christensen
- Department of Occupational and Physiotherapy, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thomas Kromann Lund
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anna Kalhauge
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Frederikke Rönsholt
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Daria Podlekareva
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Elisabeth Arndal
- Department of Otorhinolaryngology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ronan M. G. Berg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thora Wesenberg Helt
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Medicine, The National Hospital, 100 Torshavn, Faroe Islands
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Hermann EA, Motahari A, Hoffman EA, Allen N, Bertoni AG, Bluemke DA, Eskandari A, Gerard SE, Guo J, Hiura GT, Kaczka DW, Michos ED, Nagpal P, Pankow J, Shah S, Smith BM, Stukovsky KH, Sun Y, Watson K, Barr RG. Pulmonary Blood Volume Among Older Adults in the Community: The MESA Lung Study. Circ Cardiovasc Imaging 2022; 15:e014380. [PMID: 35938411 PMCID: PMC9387743 DOI: 10.1161/circimaging.122.014380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The pulmonary vasculature is essential for gas exchange and impacts both pulmonary and cardiac function. However, it is difficult to assess and its characteristics in the general population are unknown. We measured pulmonary blood volume (PBV) noninvasively using contrast enhanced, dual-energy computed tomography to evaluate its relationship to age and symptoms among older adults in the community. METHODS The MESA (Multi-Ethnic Study of Atherosclerosis) is an ongoing community-based, multicenter cohort. All participants attending the most recent MESA exam were selected for contrast enhanced dual-energy computed tomography except those with estimated glomerular filtration rate <60 mL/min per 1.73 m2. PBV was calculated by material decomposition of dual-energy computed tomography images. Multivariable models included age, sex, race/ethnicity, education, height, weight, smoking status, pack-years, and scanner model. RESULTS The mean age of the 727 participants was 71 (range 59-94) years, and 55% were male. The race/ethnicity distribution was 41% White, 29% Black, 17% Hispanic, and 13% Asian. The mean±SD PBV in the youngest age quintile was 547±180 versus 433±194 mL in the oldest quintile (P<0.001), with an approximately linear decrement of 50 mL per 10 years of age ([95% CI, 32-67]; P<0.001). Findings were similar with multivariable adjustment. Lower PBV was associated independently with a greater dyspnea after a 6-minute walk (P=0.04) and greater composite dyspnea symptom scores (P=0.02). Greater PBV was also associated with greater height, weight, lung volume, Hispanic race/ethnicity, and nonsmoking history. CONCLUSIONS Pulmonary blood volume was substantially lower with advanced age and was associated independently with greater symptoms scores in the elderly.
Collapse
Affiliation(s)
- Emilia A. Hermann
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
| | | | | | | | | | | | | | | | | | - Grant T. Hiura
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
| | | | | | - Prashant Nagpal
- 2. University of Iowa, Iowa City, IA
- 5. University of Wisconsin-Madison, Madison WI
| | - Jim Pankow
- 7. University of Minnesota, Minneapolis, MN
| | | | - Benjamin M Smith
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
| | | | - Yifei Sun
- 9. Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Karol Watson
- 10. University of California, Los Angeles, Los Angeles, CA
| | - R. Graham Barr
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
- 11. Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| |
Collapse
|
14
|
Overton PM, Toshner M, Mulligan C, Vora P, Nikkho S, de Backer J, Lavon BR, Klok FA. Pulmonary thromboembolic events in COVID-19-A systematic literature review. Pulm Circ 2022; 12:e12113. [PMID: 35942076 PMCID: PMC9349961 DOI: 10.1002/pul2.12113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 11/15/2022] Open
Abstract
Pulmonary thromboembolic events have been linked to coronavirus disease 2019 (COVID-19), but their incidence and long-term sequelae remain unclear. We performed a systematic literature review to investigate the incidence of pulmonary embolism (PE), microthrombi, thrombosis in situ (thromboinflammatory disease), and chronic thromboembolic pulmonary hypertension (CTEPH) during and after COVID-19. PubMed and the World Health Organization Global Research Database were searched on May 7, 2021. Hospital cohort and database studies reporting data for ≥1000 patients and autopsy studies reporting data for ≥20 patients were included. Results were summarized descriptively. We screened 1438 records and included 41 references (32 hospital/database studies and 9 autopsy studies). The hospital/database studies reported the incidence of PE but not CTEPH, microthrombi, or thromboinflammatory disease. PE incidence varied widely (0%-1.1% of outpatients, 0.9%-8.2% of hospitalized patients, and 1.8%-18.9% of patients in intensive care). One study reported PE events occurring within 45 days after hospital discharge (incidence in discharged patients: 0.2%). Segmental arteries were generally the most common location for PE. In autopsy studies, PE, thromboinflammatory disease, and microthrombi were reported in 6%-23%, 43%-100%, and 45%-84% of deceased patients, respectively. Overall, the included studies mostly focused on PE during the acute phase of COVID-19. The results demonstrate the challenges of identifying and characterizing vascular abnormalities using current protocols (e.g., visual computed tomography reads). Further research is needed to detect subtle pulmonary vascular abnormalities, distinguish thromboinflammatory disease from PE, optimize treatment, and assess the incidence of long-term sequelae after COVID-19.
Collapse
Affiliation(s)
| | - Mark Toshner
- Department of Medicine, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | - Frederikus A. Klok
- Department of Medicine–Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | | |
Collapse
|
15
|
Yoon SH, Lee JH, Kim BN. Chest CT Findings in Hospitalized Patients with SARS-CoV-2: Delta versus Omicron Variants. Radiology 2022; 306:252-260. [PMID: 35762887 PMCID: PMC9272824 DOI: 10.1148/radiol.220676] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background CT manifestations of SARS-CoV-2 may differ among variants. Purpose To compare the chest CT findings of SARS-CoV-2 between the Delta and Omicron variants. Materials and Methods This retrospective study collected consecutive baseline chest CT images of hospitalized patients with SARS-CoV-2 from a secondary referral hospital when the Delta and Omicron variants were predominant. Two radiologists categorized CT images according to the RSNA classification system for COVID-19 and visually graded pneumonia extent. Pneumonia, pleural effusion, and intrapulmonary vessels were segmented and quantified on CT images using a priori-developed neural networks, followed by reader confirmation. Multivariable logistic and linear regression analyses were performed to examine the associations between the variants and CT category, distribution, severity, and peripheral vascularity. Results In total, 88 patients with the Delta variant (mean age, 67 years ± 15 [SD]; 46 men) and 88 patients with the Omicron variant (mean age, 62 years ± 19; 51 men) were included. Omicron was associated with less frequent, typical peripheral bilateral ground-glass opacity (32% [28 of 88] vs 57% [50 of 88], P = .001), more frequent peribronchovascular predilection (38% [25 of 66] vs 7% [five of 71], P < .001), lower visual pneumonia extent (5.4 ± 6.0 vs 7.7 ± 6.6, P = .02), similar pneumonia volume (5% ± 1 vs 7% ± 11, P = .14), and a higher proportion of vessels with a cross-sectional area smaller than 5 mm2 relative to the total pulmonary blood volume (BV5%; 48% ± 11 vs 44% ± 8; P = .004). In adjusted analyses, Omicron was associated with a nontypical appearance (odds ratio, 0.34; P = .006), peribronchovascular predilection (odds ratio, 9.2; P < .001), and higher BV5% (β = 3.8; P = .01) but similar visual pneumonia extent (P = .17) and pneumonia volume (P = .67) relative to the Delta variant. Conclusion At chest CT, the Omicron SARS-COV-2 variant showed nontypical peribronchovascular pneumonia and less pulmonary vascular involvement than did the Delta variant in hospitalized patients with similar disease severity. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Soon Ho Yoon
- From the Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (S.H.Y., J.H.L.); and Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Korea (B.N.K.)
| | - Jong Hyuk Lee
- From the Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (S.H.Y., J.H.L.); and Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Korea (B.N.K.)
| | - Baek-Nam Kim
- From the Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea (S.H.Y., J.H.L.); and Department of Internal Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Korea (B.N.K.)
| |
Collapse
|
16
|
Kang J, Kang J, Seo WJ, Park SH, Kang HK, Park HK, Song JE, Kwak YG, Chang J, Kim S, Kim KH, Park J, Choe WJ, Lee SS, Koo HK. Quantitative Computed Tomography Parameters in Coronavirus Disease 2019 Patients and Prediction of Respiratory Outcomes Using a Decision Tree. Front Med (Lausanne) 2022; 9:914098. [PMID: 35669915 PMCID: PMC9163736 DOI: 10.3389/fmed.2022.914098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Chest computed tomography (CT) scans play an important role in the diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to describe the quantitative CT parameters in COVID-19 patients according to disease severity and build decision trees for predicting respiratory outcomes using the quantitative CT parameters. Methods Patients hospitalized for COVID-19 were classified based on the level of disease severity: (1) no pneumonia or hypoxia, (2) pneumonia without hypoxia, (3) hypoxia without respiratory failure, and (4) respiratory failure. High attenuation area (HAA) was defined as the quantified percentage of imaged lung volume with attenuation values between −600 and −250 Hounsfield units (HU). Decision tree models were built with clinical variables and initial laboratory values (model 1) and including quantitative CT parameters in addition to them (model 2). Results A total of 387 patients were analyzed. The mean age was 57.8 years, and 50.3% were women. HAA increased as the severity of respiratory outcome increased. HAA showed a moderate correlation with lactate dehydrogenases (LDH) and C-reactive protein (CRP). In the decision tree of model 1, the CRP, fibrinogen, LDH, and gene Ct value were chosen as classifiers whereas LDH, HAA, fibrinogen, vaccination status, and neutrophil (%) were chosen in model 2. For predicting respiratory failure, the decision tree built with quantitative CT parameters showed a greater accuracy than the model without CT parameters. Conclusions The decision tree could provide higher accuracy for predicting respiratory failure when quantitative CT parameters were considered in addition to clinical characteristics, PCR Ct value, and blood biomarkers.
Collapse
Affiliation(s)
- Jieun Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Jiyeon Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Woo Jung Seo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - So Hee Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Hyung Koo Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Hye Kyeong Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Je Eun Song
- Division of Infectious Diseases, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Yee Gyung Kwak
- Division of Infectious Diseases, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Jeonghyun Chang
- Department of Laboratory Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Sollip Kim
- Department of Laboratory Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Ki Hwan Kim
- Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Junseok Park
- Department of Emergency Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Won Joo Choe
- Department of Anesthesiology and Pain Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Sung-Soon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Hyeon-Kyoung Koo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
- *Correspondence: Hyeon-Kyoung Koo,
| |
Collapse
|
17
|
Halawa S, Pullamsetti SS, Bangham CRM, Stenmark KR, Dorfmüller P, Frid MG, Butrous G, Morrell NW, de Jesus Perez VA, Stuart DI, O'Gallagher K, Shah AM, Aguib Y, Yacoub MH. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nat Rev Cardiol 2022; 19:314-331. [PMID: 34873286 PMCID: PMC8647069 DOI: 10.1038/s41569-021-00640-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
The lungs are the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with severe hypoxia being the cause of death in the most critical cases. Coronavirus disease 2019 (COVID-19) is extremely heterogeneous in terms of severity, clinical phenotype and, importantly, global distribution. Although the majority of affected patients recover from the acute infection, many continue to suffer from late sequelae affecting various organs, including the lungs. The role of the pulmonary vascular system during the acute and chronic stages of COVID-19 has not been adequately studied. A thorough understanding of the origins and dynamic behaviour of the SARS-CoV-2 virus and the potential causes of heterogeneity in COVID-19 is essential for anticipating and treating the disease, in both the acute and the chronic stages, including the development of chronic pulmonary hypertension. Both COVID-19 and chronic pulmonary hypertension have assumed global dimensions, with potential complex interactions. In this Review, we present an update on the origins and behaviour of the SARS-CoV-2 virus and discuss the potential causes of the heterogeneity of COVID-19. In addition, we summarize the pathobiology of COVID-19, with an emphasis on the role of the pulmonary vasculature, both in the acute stage and in terms of the potential for developing chronic pulmonary hypertension. We hope that the information presented in this Review will help in the development of strategies for the prevention and treatment of the continuing COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Kurt R Stenmark
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
| | - Maria G Frid
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent at Canterbury, Canterbury, UK
| | - Nick W Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David I Stuart
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Magdi H Yacoub
- Aswan Heart Centre, Aswan, Egypt.
- National Heart & Lung Institute, Imperial College London, London, UK.
- Harefield Heart Science Centre, London, UK.
| |
Collapse
|
18
|
Pelosi P, Tonelli R, Torregiani C, Baratella E, Confalonieri M, Battaglini D, Marchioni A, Confalonieri P, Clini E, Salton F, Ruaro B. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J Clin Med 2022; 11:1704. [PMID: 35330029 PMCID: PMC8952765 DOI: 10.3390/jcm11061704] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The latest guidelines for the hospital care of patients affected by coronavirus disease 2019 (COVID-19)-related acute respiratory failure have moved towards the widely accepted use of noninvasive respiratory support (NIRS) as opposed to early intubation at the pandemic onset. The establishment of severe COVID-19 pneumonia goes through different pathophysiological phases that partially resemble typical acute respiratory distress syndrome (ARDS) and have been categorized into different clinical-radiological phenotypes. These can variably benefit on the application of external positive end-expiratory pressure (PEEP) during noninvasive mechanical ventilation, mainly due to variable levels of lung recruitment ability and lung compliance during different phases of the disease. A growing body of evidence suggests that intense respiratory effort producing excessive negative pleural pressure swings (Ppl) plays a critical role in the onset and progression of lung and diaphragm damage in patients treated with noninvasive respiratory support. Routine respiratory monitoring is mandatory to avoid the nasty continuation of NIRS in patients who are at higher risk for respiratory deterioration and could benefit from early initiation of invasive mechanical ventilation instead. Here we propose different monitoring methods both in the clinical and experimental settings adapted for this purpose, although further research is required to allow their extensive application in clinical practice. We reviewed the needs and available tools for clinical-physiological monitoring that aims at optimizing the ventilatory management of patients affected by acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (D.B.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41121 Modena, Italy
| | - Chiara Torregiani
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy;
| | - Marco Confalonieri
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Denise Battaglini
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (D.B.)
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
| | - Paola Confalonieri
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Enrico Clini
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences SMECHIMAI, University of Modena Reggio Emilia, 41121 Modena, Italy; (R.T.); (A.M.); (E.C.)
| | - Francesco Salton
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| | - Barbara Ruaro
- Pulmonology Department, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy; (C.T.); (M.C.); (P.C.); (F.S.)
| |
Collapse
|
19
|
Poletti J, Bach M, Yang S, Sexauer R, Stieltjes B, Rotzinger DC, Bremerich J, Walter Sauter A, Weikert T. Automated lung vessel segmentation reveals blood vessel volume redistribution in viral pneumonia. Eur J Radiol 2022; 150:110259. [PMID: 35334245 DOI: 10.1016/j.ejrad.2022.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE It is known from histology studies that lung vessels are affected in viral pneumonia. However, their diagnostic potential as a chest CT imaging parameter has only rarely been exploited. The purpose of this study is to develop a robust method for automated lung vessel segmentation and morphology analysis and apply it to a large chest CT dataset. METHODS In total, 509 non-enhanced chest CTs (NECTs) and 563 CT pulmonary angiograms (CTPAs) were included. Sub-groups were patients with healthy lungs (group_NORM, n = 634) and those RT-PCR-positive for Influenza A/B (group_INF, n = 159) and SARS-CoV-2 (group_COV, n = 279). A lung vessel segmentation algorithm (LVSA) based on traditional image processing was developed, validated with a point-of-interest approach, and applied to a large clinical dataset. Total blood vessel volume in lung (TBV) and the blood vessel volume percentage (BV%) of three blood vessel size types were calculated and compared between groups: small (BV5%, cross-sectional area < 5 mm2), medium (BV5-10%, 5-10 mm2) and large (BV10%, >10 mm2). RESULTS Sensitivity of the LVSA was 84.6% (95 %CI: 73.9-95.3) for NECTs and 92.8% (95 %CI: 90.8-94.7) for CTPAs. In viral pneumonia, besides an increased TBV, the main finding was a significantly decreased BV5% in group_COV (n = 14%) and group_INF (n = 15%) compared to group_NORM (n = 18%) [p < 0.001]. At the same time, BV10% was increased (group_COV n = 15% and group_INF n = 14% vs. group_NORM n = 11%; p < 0.001). CONCLUSION In COVID-19 and Influenza, the blood vessel volume is redistributed from small to large vessels in the lung. Automated LSVA allows researchers and clinicians to derive imaging parameters for large amounts of CTs. This can enhance the understanding of vascular changes, particularly in infectious lung diseases.
Collapse
Affiliation(s)
- Julien Poletti
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Michael Bach
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Shan Yang
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Raphael Sexauer
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Bram Stieltjes
- Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - David C Rotzinger
- Cardiothoracic and Vascular Division, Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| | - Jens Bremerich
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Alexander Walter Sauter
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Thomas Weikert
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
20
|
Laveneziana P, Sesé L, Gille T. Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe (Sheff) 2022; 17:210065. [PMID: 35035546 PMCID: PMC8753644 DOI: 10.1183/20734735.0065-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the predisposing and protecting factors have not been fully elucidated. COVID-19 primarily impacts the respiratory system, and can result in mild illness or serious disease leading to critical illness requiring admission to the intensive care unit due to respiratory failure. After hospital discharge, the more commonly described pulmonary function anomalies are alterations in diffusing capacity and the loss of lung volume. Reduction of inspiratory muscle contraction may also be underestimated. This article will focus on the pathophysiology of pulmonary function anomalies in COVID-19 survivors. We will discuss current advances and provide future directions and also present our perspective on this field.
Collapse
Affiliation(s)
- Pierantonio Laveneziana
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire APHP-Sorbonne Université, sites Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Lucile Sesé
- Université Sorbonne Paris Nord (USPN), INSERM, UMR 1272 "Hypoxia & the Lung", UFR SMBH Léonard de Vinci, Bobigny, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaire Paris-Seine-Saint-Denis (HUPSSD), Hôpital Avicenne, Service de Physiologie et Explorations Fonctionnelles du Département Médico-Universitaire NARVAL, Bobigny, France
| | - Thomas Gille
- Université Sorbonne Paris Nord (USPN), INSERM, UMR 1272 "Hypoxia & the Lung", UFR SMBH Léonard de Vinci, Bobigny, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaire Paris-Seine-Saint-Denis (HUPSSD), Hôpital Avicenne, Service de Physiologie et Explorations Fonctionnelles du Département Médico-Universitaire NARVAL, Bobigny, France
| |
Collapse
|
21
|
Maincent C, Perrin C, Chironi G, Baqué-Juston M, Berthier F, Paulmier B, Hugonnet F, Dittlot C, Farhad RL, Renvoise J, Serrano B, Nataf V, Mocquot F, Keita-Perse O, Claessens YE, Faraggi M. Microvascular injuries, secondary edema, and inconsistencies in lung vascularization between affected and nonaffected pulmonary segments of non-critically ill hospitalized COVID-19 patients presenting with clinical deterioration. Ther Adv Respir Dis 2022; 16:17534666221096040. [PMID: 35485327 PMCID: PMC9058452 DOI: 10.1177/17534666221096040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose: We aimed to better understand the pathophysiology of SARS-CoV-2 pneumonia in non-critically ill hospitalized patients secondarily presenting with clinical deterioration and increase in oxygen requirement without any identified worsening factors. Methods: We consecutively enrolled patients without clinical or biological evidence for superinfection, without left ventricular dysfunction and for whom a pulmonary embolism was discarded by computed tomography (CT) pulmonary angiography. We investigated lung ventilation and perfusion (LVP) by LVP scintigraphy, and, 24 h later, left and right ventricular function by Tc-99m-labeled albumin-gated blood-pool scintigraphy with late (60 mn) tomographic albumin images on the lungs to evaluate lung albumin retention that could indicate microvascular injuries with secondary edema. Results: We included 20 patients with confirmed SARS-CoV-2 pneumonia. All had CT evidence of organizing pneumonia and normal left ventricular ejection fraction. No patient demonstrated preserved ventilation with perfusion defect (mismatch), which may discard a distal lung thrombosis. Patterns of ventilation and perfusion were heterogeneous in seven patients (35%) with healthy lung segments presenting a relative paradoxical hypoperfusion and hypoventilation compared with segments with organizing pneumonia presenting a relative enhancement in perfusion and preserved ventilation. Lung albumin retention in area of organizing pneumonia was observed in 12 patients (60%), indicating microvascular injuries, increase in vessel permeability, and secondary edema. Conclusion: In hospitalized non-critically ill patients without evidence of superinfection, pulmonary embolism, or cardiac dysfunction, various types of damage may contribute to clinical deterioration including microvascular injuries and secondary edema, inconsistencies in lung segments vascularization suggesting a dysregulation of the balance in perfusion between segments affected by COVID-19 and others. Summary Statement Microvascular injuries and dysregulation of the balance in perfusion between segments affected by COVID-19 and others are present in non-critically ill patients without other known aggravating factors. Key Results In non-critically ill patients without evidence of superinfection, pulmonary embolism, macroscopic distal thrombosis or cardiac dysfunction, various types of damage may contribute to clinical deterioration including 1/ microvascular injuries and secondary edema, 2/ inconsistencies in lung segments vascularization with hypervascularization of consolidated segments contrasting with hypoperfusion of not affected segments, suggesting a dysregulation of the balance in perfusion between segments affected by COVID-19 and others.
Collapse
Affiliation(s)
- Cécile Maincent
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Christophe Perrin
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Gilles Chironi
- Check-up Unit, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marie Baqué-Juston
- Radiology Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Frédéric Berthier
- Department of Biostatistics, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benoît Paulmier
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Florent Hugonnet
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Claire Dittlot
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Ryan Lukas Farhad
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Julien Renvoise
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Valérie Nataf
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - François Mocquot
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Olivia Keita-Perse
- Department of Infectious disease, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Yann-Erik Claessens
- Department of Emergency Medicine, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Avenue Pasteur, BP 480, 98012 Monaco, Monaco
| |
Collapse
|
22
|
Association of abnormal pulmonary vasculature on CT scan for COVID-19 infection with decreased diffusion capacity in follow up: A retrospective cohort study. PLoS One 2021; 16:e0257892. [PMID: 34653196 PMCID: PMC8519442 DOI: 10.1371/journal.pone.0257892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/14/2021] [Indexed: 01/30/2023] Open
Abstract
Background Coronavirus Disease 2019 (COVID-19) is a respiratory viral illness causing pneumonia and systemic disease. Abnormalities in pulmonary function tests (PFT) after COVID-19 infection have been described. The determinants of these abnormalities are unclear. We hypothesized that inflammatory biomarkers and CT scan parameters at the time of infection would be associated with abnormal gas transfer at short term follow-up. Methods We retrospectively studied subjects who were hospitalized for COVID-19 pneumonia and discharged. Serum inflammatory biomarkers, CT scan and clinical characteristics were assessed. CT images were evaluated by Functional Respiratory Imaging with automated tissue segmentation algorithms of the lungs and pulmonary vasculature. Volumes of the pulmonary vessels that were ≤5mm (BV5), 5-10mm (BV5_10), and ≥10mm (BV10) in cross sectional area were analyzed. Also the amount of opacification on CT (ground glass opacities). PFT were performed 2–3 months after discharge. The diffusion capacity of carbon monoxide (DLCO) was obtained. We divided subjects into those with a DLCO <80% predicted (Low DLCO) and those with a DLCO ≥80% predicted (Normal DLCO). Results 38 subjects were included in our cohort. 31 out of 38 (81.6%) subjects had a DLCO<80% predicted. The groups were similar in terms of demographics, body mass index, comorbidities, and smoking status. Hemoglobin, inflammatory biomarkers, spirometry and lung volumes were similar between groups. CT opacification and BV5 were not different between groups, but both Low and Normal DLCO groups had lower BV5 measures compared to healthy controls. BV5_10 and BV10 measures were higher in the Low DLCO group compared to the normal DLCO group. Both BV5_10 and BV10 in the Low DLCO group were greater compared to healthy controls. BV5_10 was independently associated with DLCO<80% in multivariable logistic regression (OR 1.29, 95% CI 1.01, 1.64). BV10 negatively correlated with DLCO% predicted (r = -0.343, p = 0.035). Conclusions Abnormalities in pulmonary vascular volumes at the time of hospitalization are independently associated with a low DLCO at follow-up. There was no relationship between inflammatory biomarkers during hospitalization and DLCO. Pulmonary vascular abnormalities during hospitalization for COVID-19 may serve as a biomarker for abnormal gas transfer after COVID-19 pneumonia.
Collapse
|
23
|
Nagpal P, Motahari A, Gerard SE, Guo J, Reinhardt JM, Comellas AP, Hoffman EA, Kaczka DW. Case Studies in Physiology: Temporal variations of the lung parenchyma and vasculature in asymptomatic COVID-19 pneumonia: a multispectral CT assessment. J Appl Physiol (1985) 2021; 131:454-463. [PMID: 34166081 PMCID: PMC8384565 DOI: 10.1152/japplphysiol.00147.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
This study reports systematic longitudinal pathophysiology of lung parenchymal and vascular effects of asymptomatic COVID-19 pneumonia in a young, healthy never-smoking male. Inspiratory and expiratory noncontrast along with contrast dual-energy computed tomography (DECT) scans of the chest were performed at baseline on the day of acute COVID-19 diagnosis (day 0), and across a 90-day period. Despite normal vital signs and pulmonary function tests on the day of diagnosis, the CT scans and corresponding quantification metrics detected abnormalities in parenchymal expansion based on image registration, ground-glass (GGO) texture (inflammation) as well as DECT-derived pulmonary blood volume (PBV). Follow-up scans on day 30 showed improvement in the lung parenchymal mechanics as well as reduced GGO and improved PBV distribution. Improvements in lung PBV continued until day 90. However, the heterogeneity of parenchymal mechanics and texture-derived GGO increased on days 60 and 90. We highlight that even asymptomatic COVID-19 infection with unremarkable vital signs and pulmonary function tests can have measurable effects on lung parenchymal mechanics and vascular pathophysiology, which may follow apparently different clinical courses. For this asymptomatic subject, post COVID-19 regional mechanics demonstrated persistent increased heterogeneity concomitant with return of elevated GGOs, despite early improvements in vascular derangement.NEW & NOTEWORTHY We characterized the temporal changes of lung parenchyma and microvascular pathophysiology from COVID-19 infection in an asymptomatic young, healthy nonsmoking male using dual-energy CT. Lung parenchymal mechanics and microvascular disease followed different clinical courses. Heterogeneous perfused blood volume became more uniform on follow-up visits up to 90 days. However, post COVID-19 mechanical heterogeneity of the lung parenchyma increased after apparent improvements in vascular abnormalities, even with normal spirometric indices.
Collapse
Affiliation(s)
- Prashant Nagpal
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amin Motahari
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sarah E Gerard
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Junfeng Guo
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Roy J. Carver Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, Iowa
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, Iowa
| | - Alejandro P Comellas
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Eric A Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Roy J. Carver Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - David W Kaczka
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Roy J. Carver Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, Iowa
- Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
24
|
Price LC, Ridge C, Wells AU. Pulmonary vascular involvement in COVID-19 pneumonitis: Is this the first and final insult? Respirology 2021; 26:832-834. [PMID: 34322959 PMCID: PMC8446977 DOI: 10.1111/resp.14123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023]
Abstract
See relatedarticle See relatedarticle
Collapse
Affiliation(s)
- Laura Claire Price
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK.,National Lung and Heart Institute, Imperial College London, London, UK
| | - Carole Ridge
- National Lung and Heart Institute, Imperial College London, London, UK.,Department of Radiology, Royal Brompton Hospital, London, UK
| | - Athol U Wells
- National Lung and Heart Institute, Imperial College London, London, UK.,Interstitial Lung Disease Service, Royal Brompton Hospital, London, UK
| |
Collapse
|
25
|
Laveneziana P, Straus C, Meiners S. How and to What Extent Immunological Responses to SARS-CoV-2 Shape Pulmonary Function in COVID-19 Patients. Front Physiol 2021; 12:628288. [PMID: 34267671 PMCID: PMC8276038 DOI: 10.3389/fphys.2021.628288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
COVID-19 is a disease caused by a new coronavirus SARS-CoV-2, primarily impacting the respiratory system. COVID-19 can result in mild illness or serious disease leading to critical illness and requires admission to ICU due to respiratory failure. There is intense discussion around potential factors predisposing to and protecting from COVID-19. The immune response and the abnormal respiratory function with a focus on respiratory function testing in COVID-19 patients will be at the center of this Perspective article of the Frontiers in Physiology Series on “The Tribute of Physiology for the Understanding of COVID-19 Disease.” We will discuss current advances and provide future directions and present also our perspective in this field.
Collapse
Affiliation(s)
- Pierantonio Laveneziana
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire APHP-Sorbonne Université, Sites Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christian Straus
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire APHP-Sorbonne Université, Sites Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
26
|
George PM, Desai SR. COVID-19 pneumonia and the pulmonary vasculature - a marriage made in hell. Eur Respir J 2021; 58:13993003.00811-2021. [PMID: 33863736 PMCID: PMC8051183 DOI: 10.1183/13993003.00811-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/05/2022]
Abstract
Automated analysis of medical images is not new [1–3]. Researchers in the respiratory sciences and, particularly, the field of interstitial lung diseases, have long enthused about the potential for computers to analyse medical images thereby revealing “signals” hitherto invisible to the human eye: an enthusiasm only enhanced by recent developments in machine learning and artificial intelligence [4–6]. By leveraging the central importance of computed tomography (CT) scanning for diagnosis, treatment decisions and prognostication, a key aim is to identify imaging biomarkers to more accurately phenotype disease and, in so doing, move a step closer to truly patient-centric medicine. Another goal is to apply novel imaging analyses to pathogenesis, disease “behaviour” and prognostication in the hope that this might unlock new therapeutic approaches. Given the digital nature of the data and the potentially myriad imaging patterns, frequently compounded by patient, therapeutic and disease-based factors, lung imaging is ideally suited to more sophisticated analytic approaches. Quantitative CT of the pulmonary vasculature is potentially important in COVID-19 associated pneumoniahttps://bit.ly/3vUTTRM
Collapse
Affiliation(s)
- Peter M George
- The Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK .,National Heart and Lung Institute, Imperial College London, London, UK
| | - Sujal R Desai
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Radiology, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|