1
|
Panigrahi P, Pal Y, Pal Kaur S, Vovusha H, Bae H, Nazir S, Lee H, Panigrahi A, Hussain T. Rapid Detection of Explicit Volatile Organic Compounds for Early Diagnosis of Lung Cancer Using MoSi 2N 4 Monolayer. Chem Asian J 2024:e202400956. [PMID: 39353036 DOI: 10.1002/asia.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In this study, we investigate the adsorption and sensing capabilities of pristine (MoSi2N4) and nitrogen-vacancy induced (MoSi2N4-VN) monolayers towards five potential lung cancer volatile organic compounds (VOCs), such as 2,3,4-trimethylhexane (C9H20), 4-methyloctane (C9H20), o-toluidine (C7H9N), Aniline (C6H7N), and Ethylbenzene (C8H10). Spin-polarized density functional theory (DFT) calculations reveal that MoSi2N4 weakly adsorb the mentioned VOCs, whereas the introduction of nitrogen vacancies significantly enhances the adsorption energies (E a d s ${{E}_{ads}}$ ), both in gas phase and aqueous medium. The MoSi2N4-VN monolayers exhibit a reduced bandgap and facilitate charge transfer upon VOCs adsorption, resulting in enhancedE a d s ${{E}_{ads}}$ values of -0.83, -0.76, -0.49, -0.61, and -0.50 eV for 2,3,4-trimethylhexane, 4-methyloctane, o-toluidine, Aniline, and Ethylbenzene, respectively. Bader charge analysis and spin-polarized density of states (SPDOS) elucidate the charge redistribution and hybridization between MoSi2N4-VN and the adsorbed VOCs. The work function of MoSi2N4-VN is significantly reduced upon VOCs adsorption due to induced dipole moments, enabling smooth charge transfer and selective VOCs sensing. Notably, MoSi2N4-VN monolayers exhibit sensor responses ranging from 16.2 % to 26.6 % towards the VOCs, with discernible selectivity. Importantly, the recovery times of the VOCs desorption is minimal, reinforcing the suitability of MoSi2N4-VN as a rapid, and reusable biosensor platform for efficient detection of lung cancer biomarkers. Thermodynamic analysis based on Langmuir adsorption model shows improved adsorption and detection capabilities MoSi2N4-VN under diverse operating conditions of temperatures and pressures.
Collapse
Affiliation(s)
- Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Yash Pal
- School of Aeronautical Sciences, Hindustan Institute of Technology and Science, Chennai, India
| | - Surinder Pal Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hakkim Vovusha
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonhu Bae
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, New South Wales, 2351, Australia
| | - Hoonkyung Lee
- Department of Physics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Akshay Panigrahi
- Central Institute of Brackishwater Aquaculture (ICAR-CIBA), Hindustan Institute of Technology and Science, 75 Santhome High Road, Chennai, Tamilnadu, 600028, India
| | - Tanveer Hussain
- School of Science and Technology, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
2
|
Lombardi M, Segreti A, Miglionico M, Pennazza G, Tocca L, Amendola L, Vergallo R, Di Sciascio G, Porto I, Grigioni F, Antonelli Incalzi R. Breath Analysis via Gas Chromatography-Mass Spectrometry (GC-MS) in Chronic Coronary Syndrome (CCS): A Proof-of-Concept Study. J Clin Med 2024; 13:5857. [PMID: 39407917 PMCID: PMC11477340 DOI: 10.3390/jcm13195857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: This proof-of-concept study aimed to assess the diagnostic potential of gas chromatography-mass spectrometry (GC-MS) in profiling volatile organic compounds (VOCs) from exhaled breath as a diagnostic tool for the chronic coronary syndrome (CCS). Methods: Exhaled air was collected from patients undergoing invasive coronary angiography (ICA), with all samples obtained prior to ICA. Post hoc, patients were divided into groups based on coronary lesion severity and indications for revascularization. VOCs in the breath samples were analyzed using GC-MS. Results: This study included 23 patients, of whom 11 did not require myocardial revascularization and 12 did. GC-MS analysis successfully classified 10 of the 11 patients without the need for revascularization (sensitivity of 91%), and 7 of the 12 patients required revascularization (specificity 58%). In subgroup analysis, GC-MS demonstrated 100% sensitivity in identifying patients with significant coronary lesions requiring intervention when the cohort was divided into three groups. A total of 36 VOCs, including acetone, ethanol, and phenol, were identified as distinguishing markers between patient groups. Conclusions: Patients with CCS exhibited a unique fingerprint of exhaled breath, which was detectable with GC-MS. These findings suggest that GC-MS analysis could be a reliable and non-invasive diagnostic tool for CCS. Further studies with larger cohorts are necessary to validate these results and explore the potential integration of VOC analysis into clinical practice.
Collapse
Affiliation(s)
- Marco Lombardi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (R.V.); (I.P.)
| | - Andrea Segreti
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.M.); (G.D.S.); (F.G.)
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Marco Miglionico
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.M.); (G.D.S.); (F.G.)
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Lorenzo Tocca
- Dipartimento Prevenzione e Laboratorio Integrato, A.R.P.A. Lazio, 00173 Rome , Italy; (L.T.); (L.A.)
| | - Luca Amendola
- Dipartimento Prevenzione e Laboratorio Integrato, A.R.P.A. Lazio, 00173 Rome , Italy; (L.T.); (L.A.)
| | - Rocco Vergallo
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (R.V.); (I.P.)
- Cardiothoracic and Vascular Department (DICATOV), IRCCS Ospedale Policlinico San Martino, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Germano Di Sciascio
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.M.); (G.D.S.); (F.G.)
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Italo Porto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (M.L.); (R.V.); (I.P.)
- Cardiothoracic and Vascular Department (DICATOV), IRCCS Ospedale Policlinico San Martino, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Francesco Grigioni
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (M.M.); (G.D.S.); (F.G.)
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | | |
Collapse
|
3
|
Zhang F, Li P, Lu Y, Han Y, Yan H. Advancing Lung Cancer Diagnosis through NH 2-MON-SPME-GC-MS/MS: Enhanced Sensitivity in Aldehyde Biomarker Detection from Exhaled Breath. Anal Chem 2024. [PMID: 39269845 DOI: 10.1021/acs.analchem.4c03328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The sensitive detection of trace biomarkers in exhaled breath for lung cancer diagnosis represents a critical area of research in life analytical chemistry, with profound implications for early disease detection, therapeutic intervention, and prognosis monitoring. Despite its potential, the analytical process faces significant challenges due to the ultratrace levels of disease biomarkers present and the complex, high-humidity composition of exhaled breath. This study introduces a highly sensitive method for detecting aldehyde biomarkers in exhaled breath by integrating the use of amino-functionalized microporous organic networks (NH2-MON) as a solid-phase microextraction (SPME) fiber coating with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) analysis. The method innovatively combines sample collection and extraction, achieving a dual-step enrichment process that significantly enhances both the enrichment efficiency and reproducibility of biomarker detection while effectively mitigating the interference caused by water vapor in exhaled breath. The NH2-MON, utilized as an SPME fiber coating, demonstrates exceptional enrichment capacity for five key aldehyde biomarkers, facilitating the development of a highly sensitive detection approach for these biomarkers in exhaled breath. Compared to previously reported methods, the proposed technique exhibits significantly lower limits of quantification, ranging from 0.77 to 11.89 pg mL-1, and achieves substantially higher enrichment factors, ranging from 9156- to 35723-fold. The practicality and feasibility of the method were validated through the analysis of exhaled breath samples from lung cancer patients, underscoring its potential application in the early diagnosis and monitoring of lung cancer.
Collapse
Affiliation(s)
- Feiran Zhang
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanke Lu
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Ma TT, Chang Z, Zhang N, Xu H. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: a review. J Cancer Res Clin Oncol 2024; 150:401. [PMID: 39192027 PMCID: PMC11349790 DOI: 10.1007/s00432-024-05925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Electronic noses (eNoses) are electronic bionic olfactory systems that use sensor arrays to produce response patterns to different odors, thereby enabling the identification of various scents. Gastrointestinal diseases have a high incidence rate and occur in 9 out of 10 people in China. Gastrointestinal diseases are characterized by a long course of symptoms and are associated with treatment difficulties and recurrence. This review offers a comprehensive overview of volatile organic compounds, with a specific emphasis on those detected via the eNose system. Furthermore, this review describes the application of bionic eNose technology in the diagnosis and screening of gastrointestinal diseases based on recent local and international research progress and advancements. Moreover, the prospects of bionic eNose technology in the field of gastrointestinal disease diagnostics are discussed.
Collapse
Affiliation(s)
- Tan-Tan Ma
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
5
|
Day B, Ahualli NI, Wilmer CE. Multipressure Sampling for Improving the Performance of MOF-based Electronic Noses. ACS Sens 2024; 9:3531-3539. [PMID: 38996224 PMCID: PMC11287752 DOI: 10.1021/acssensors.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Metal-organic frameworks (MOFs) are a promising class of porous materials for the design of gas sensing arrays, which are often called electronic noses. Due to their chemical and structural tunability, MOFs are a highly diverse class of materials that align well with the similarly diverse class of volatile organic compounds (VOCs) of interest in many gas detection applications. In principle, by choosing the right combination of cross-sensitive MOFs, layered on appropriate signal transducers, one can design an array that yields detailed information about the composition of a complex gas mixture. However, despite the vast number of MOFs from which one can choose, gas sensing arrays that rely too heavily on distinct chemistries can be impractical from the cost and complexity perspective. On the other hand, it is difficult for small arrays to have the desired selectivity and sensitivity for challenging sensing applications, such as detecting weakly adsorbing gases with weak signals, or conversely, strongly adsorbing gases that readily saturate MOF pores. In this work, we employed gas adsorption simulations to explore the use of a variable pressure sensing array as a means of improving both sensitivity and selectivity as well as increasing the information content provided by each array. We studied nine different MOFs (HKUST-1, IRMOF-1, MgMOF-74, MOF-177, MOF-801, NU-100, NU-125, UiO-66, and ZIF-8) and four different gas mixtures, each containing nitrogen, oxygen, carbon dioxide, and exactly one of the hydrogen, methane, hydrogen sulfide, or benzene. We found that by lowering the pressure, we can limit the saturation of MOFs, and by raising the pressure, we can concentrate weakly adsorbing gases, in both cases, improving gas detection with the resulting arrays. In many cases, changing the system pressure yielded a better improvement in performance (as measured by the Kullback-Liebler divergence of gas composition probability distributions) than including additional MOFs. We thus demonstrated and quantified how sensing at multiple pressures can increase information content and cross-sensitivity in MOF-based arrays while limiting the number of unique materials needed in the device.
Collapse
Affiliation(s)
- Brian
A. Day
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nicolas I. Ahualli
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Christopher E. Wilmer
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Clinical
and Translational Science Institute, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Liu J, Qin M, Shi Y, Jiang R, Wang Z, Zhang L, Zhao Y, Gao H, Li M, Huang C. Volatile carbonyl metabolites analysis of nanoparticle exposed lung cells in an organ-on-a-chip system. Talanta 2024; 274:126066. [PMID: 38599125 DOI: 10.1016/j.talanta.2024.126066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The evaluation of nanoparticles (NPs) cytotoxicity is crucial for advancing nanotechnology and assessing environmental pollution. However, existing methods for NPs cytotoxicity evaluation suffer from limited accuracy and inadequate information content. In the study, we developed a novel detection platform that enables the identification of cellular carbonyl metabolites at the organ level. The platform is integrated with a cell co-culture lung organ chip (LOC) and a micropillar concentrator. Notably, our work represents the successful measurement of the amounts of cellular metabolites on LOC system. The volatile carbonyl metabolites (VCMs) generated by cells exposure to various types of NPs with different concentrations were captured and detected by high-resolution mass spectrometry (MS). Compared with conventional cell viability and reactive oxygen species (ROS) analysis, our method discerns the toxicological impact of NPs at low concentrations by analyzed VCM at levels as low as ppb level. The LOC system based metabolic gas detection confirmed that low concentrations of NPs have a toxic effect on the cell model, which was not reflected in the fluorescence detection, and the effect of NP material is more significant than the size effect. Furthermore, this method can distinguish different NPs acting on cell models through cluster analysis of multiple VCMs.
Collapse
Affiliation(s)
- Jinlong Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Meiyan Qin
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Yimin Shi
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Rui Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Zizhen Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, China.
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, China; University of Chinese Academy of Science, China
| |
Collapse
|
7
|
Mezmale L, Ślefarska-Wolak D, Bhandari MP, Ager C, Veliks V, Patsko V, Lukashenko A, Dias-Neto E, Nunes DN, Bartelli TF, Pelosof AG, Sztokfisz CZ, Murillo R, Królicka A, Mayhew CA, Leja M, Haick H, Mochalski P. Volatilomic profiles of gastric juice in gastric cancer patients. J Breath Res 2024; 18:026010. [PMID: 38467063 DOI: 10.1088/1752-7163/ad324f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Volatilomics is a powerful tool capable of providing novel biomarkers for the diagnosis of gastric cancer. The main objective of this study was to characterize the volatilomic signatures of gastric juice in order to identify potential alterations induced by gastric cancer. Gas chromatography with mass spectrometric detection, coupled with headspace solid phase microextraction as the pre-concentration technique, was used to identify volatile organic compounds (VOCs) released by gastric juice samples collected from 78 gastric cancer patients and two cohorts of controls (80 and 96 subjects) from four different locations (Latvia, Ukraine, Brazil, and Colombia). 1440 distinct compounds were identified in samples obtained from patients and 1422 in samples provided by controls. However, only 6% of the VOCs exhibited an incidence higher than 20%. Amongst the volatiles emitted, 18 showed differences in their headspace concentrations above gastric juice of cancer patients and controls. Ten of these (1-propanol, 2,3-butanedione, 2-pentanone, benzeneacetaldehyde, 3-methylbutanal, butylated hydroxytoluene, 2-pentyl-furan, 2-ethylhexanal, 2-methylpropanal and phenol) appeared at significantly higher levels in the headspace of the gastric juice samples obtained from patients; whereas, eight species showed lower abundance in patients than found in controls. Given that the difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes or pathways, the former set can be considered potential biomarkers for gastric cancer, which may assist in developing non-invasive breath tests for the diagnosis of this disease. Further studies are required to elucidate further the mechanisms that underlie the changes in the volatilomic profile as a result of gastric cancer.
Collapse
Affiliation(s)
- Linda Mezmale
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
- Riga Stradins University, LV-1007, Riga, Latvia
| | - Daria Ślefarska-Wolak
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Manohar Prasad Bhandari
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Clemens Ager
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | | | - Emmanuel Dias-Neto
- Medical Genomics group and Endoscopy Center, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Diana Noronha Nunes
- Medical Genomics group and Endoscopy Center, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | - Raúl Murillo
- University Hospital San Ignacio, Bogotá, Colombia
| | - Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, Krakow, Poland
| | - Chris A Mayhew
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
- Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Hossam Haick
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pawel Mochalski
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University of Kielce, Kielce, Poland
| |
Collapse
|
8
|
Gallos IK, Tryfonopoulos D, Shani G, Amditis A, Haick H, Dionysiou DD. Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions. Diagnostics (Basel) 2023; 13:3673. [PMID: 38132257 PMCID: PMC10743128 DOI: 10.3390/diagnostics13243673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Early detection of colorectal cancer is crucial for improving outcomes and reducing mortality. While there is strong evidence of effectiveness, currently adopted screening methods present several shortcomings which negatively impact the detection of early stage carcinogenesis, including low uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an important research priority. Recent advancements in the field of breathomics, the study of breath composition and analysis, have paved the way for new avenues for non-invasive cancer detection and effective monitoring. Harnessing the utility of Volatile Organic Compounds in exhaled breath, breathomics has the potential to disrupt colorectal cancer screening practices. Our goal is to outline key research efforts in this area focusing on machine learning methods used for the analysis of breathomics data, highlight challenges involved in artificial intelligence application in this context, and suggest possible future directions which are currently considered within the framework of the European project ONCOSCREEN.
Collapse
Affiliation(s)
- Ioannis K. Gallos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Dimitrios Tryfonopoulos
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Gidi Shani
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Angelos Amditis
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| | - Hossam Haick
- Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (G.S.); (H.H.)
| | - Dimitra D. Dionysiou
- Institute of Communication and Computer Systems, National Technical University of Athens, Zografos Campus, 15780 Athens, Greece; (D.T.); (A.A.)
| |
Collapse
|
9
|
Tan SY, Ma Q, Li F, Jiang H, Peng XY, Dong J, Ye X, Wang QL, You FM, Fu X, Ren YF. Does the last 20 years paradigm of clinical research using volatile organic compounds to non-invasively diagnose cancer need to change? Challenges and future direction. J Cancer Res Clin Oncol 2023; 149:10377-10386. [PMID: 37273109 DOI: 10.1007/s00432-023-04940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Volatile organic compounds (VOCs) have shown great potential as novel biomarkers for cancer detection; however, comprehensive quantitative analysis is lacking. In this study, we performed a bibliometric analysis of non-invasive cancer diagnosis using VOCs to better characterise international trends and to predict future hotspots in this field, and then we focussed on human studies to analyse clinical characteristics for presenting the current controversies and future perspectives of further clinical work. METHODS Publications, from 2002 to 2022, were retrieved from the Web of Science Core Collection database. CiteSpace and VOSviewer were used to generate network maps and identify the annual publications, top countries, authors, institutions, journals, references, and keywords. Then, we further screened clinical trials, and the key information was extracted into Microsoft Excel for further systematical analysis. RESULTS Six hundred and forty-one articles were identified to evaluate research trends, of which 301 clinical trials were selected for further systematical analysis. Overall, the annual publications in this area increased, with an overall upward trend, while the quality of clinical research remains remarkably uneven. CONCLUSION The study of non-invasive cancer diagnosis using VOCs would continue to be an active field. However, without stringent clinical design criteria, most suitable acquisition and analysis devices and statistical approaches, a list of exclusive, specific, reliable and reproducible VOCs to identify a disease and these VOCs appearing in a breath at detectable levels at early stage disease, the clinical utility of VOC tests will be difficult to have any breakthroughs.
Collapse
Affiliation(s)
- Shi-Yan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xiao-Yun Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Jing Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xin Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiao-Ling Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| | - Yi-Feng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
10
|
Brandt S, Pavlichenko I, Shneidman AV, Patel H, Tripp A, Wong TSB, Lazaro S, Thompson E, Maltz A, Storwick T, Beggs H, Szendrei-Temesi K, Lotsch BV, Kaplan CN, Visser CW, Brenner MP, Murthy VN, Aizenberg J. Nonequilibrium sensing of volatile compounds using active and passive analyte delivery. Proc Natl Acad Sci U S A 2023; 120:e2303928120. [PMID: 37494398 PMCID: PMC10400973 DOI: 10.1073/pnas.2303928120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.
Collapse
Affiliation(s)
- Soeren Brandt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Ida Pavlichenko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Anna V. Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
| | - Haritosh Patel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
| | - Austin Tripp
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Timothy S. B. Wong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Sean Lazaro
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Ethan Thompson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Aubrey Maltz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Thomas Storwick
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Holden Beggs
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Katalin Szendrei-Temesi
- Max Planck Institute for Solid State Research, Stuttgart70569, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München81377, Germany
| | - Bettina V. Lotsch
- Max Planck Institute for Solid State Research, Stuttgart70569, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München81377, Germany
| | - C. Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
| | - Claas W. Visser
- Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede7522 NB, Netherlands
| | - Michael P. Brenner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
| | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
11
|
Walsh CM, Fadel MG, Jamel SH, Hanna GB. Breath Testing in the Surgical Setting: Applications, Challenges, and Future Perspectives. Eur Surg Res 2023; 64:315-322. [PMID: 37311421 PMCID: PMC10614239 DOI: 10.1159/000531504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND The potential for exhaled breath to be a valuable diagnostic tool is often overlooked as it can be difficult to imagine how a barely visible sample of breath could hold such a rich source of information about the state of our health. However, technological advances over the last 50 years have enabled us to detect volatile organic compounds (VOCs) present in exhaled breath, and this provides the key to understanding the wealth of information contained within these readily available samples. SUMMARY VOCs are produced as a by-product of metabolism; hence, changes in the underlying physiological processes will be reflected in the exact composition of VOCs in exhaled breath. It has been shown that characteristic changes occur in the breath VOC profile associated with certain diseases including cancer, which may enable the non-invasive detection of cancer at primary care level for patients with vague symptoms. The use of breath testing as a diagnostic tool has many advantages. It is non-invasive and quick, and the test is widely accepted by patients and clinicians. However, breath samples provide a snapshot of the VOCs present in a particular patient at a given point in time, so this can be heavily influenced by external factors such as diet, smoking, and the environment. These must all be accounted for when attempting to draw conclusions about disease status. This review focuses on the current applications for breath testing in the field of surgery, as well as discussing the challenges encountered with developing a breath test in a clinical environment. The future of breath testing in the surgical setting is also discussed, including the translation of breath research into clinical practice. KEY MESSAGES Analysis of VOCs in exhaled breath can identify the presence of underlying disease including cancer as well as other infectious or inflammatory conditions. Despite the patient factors, environmental factors, storage, and transport considerations that must be accounted for, breath testing demonstrates ideal characteristics for a triage test, being non-invasive, simple, and universally acceptable to patients and clinicians. Many novel biomarkers and diagnostic tests fail to translate into clinical practice because their potential clinical application does not align with the requirements and unmet needs of the healthcare sector. Non-invasive breath testing, however, has the great potential to revolutionise the early detection of diseases, such as cancer, in the surgical setting for patients with vague symptoms.
Collapse
Affiliation(s)
- Caoimhe M Walsh
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael G Fadel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sara H Jamel
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
12
|
Mao P, Li H, Yu Z. A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:3673. [PMID: 37050733 PMCID: PMC10099362 DOI: 10.3390/s23073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The early detection of fatal diseases is crucial for medical diagnostics and treatment, both of which benefit the individual and society. Portable devices, such as thermometers and blood pressure monitors, and large instruments, such as computed tomography (CT) and X-ray scanners, have already been implemented to collect health-related information. However, collecting health information using conventional medical equipment at home or in a hospital can be inefficient and can potentially affect the timeliness of treatment. Therefore, on-time vital signal collection via healthcare monitoring has received increasing attention. As the largest organ of the human body, skin delivers significant signals reflecting our health condition; thus, receiving vital signals directly from the skin offers the opportunity for accessible and versatile non-invasive monitoring. In particular, emerging flexible and stretchable electronics demonstrate the capability of skin-like devices for on-time and continuous long-term health monitoring. Compared to traditional electronic devices, this type of device has better mechanical properties, such as skin conformal attachment, and maintains compatible detectability. This review divides the health information that can be obtained from skin using the sensor aspect's input energy forms into five categories: thermoelectrical signals, neural electrical signals, photoelectrical signals, electrochemical signals, and mechanical pressure signals. We then summarize current skin-wearable health monitoring devices and provide outlooks on future development.
Collapse
Affiliation(s)
- Pengsu Mao
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Haoran Li
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
13
|
Xie Z, Morris JD, Mattingly SJ, Sutaria SR, Huang J, Nantz MH, Fu XA. Analysis of a Broad Range of Carbonyl Metabolites in Exhaled Breath by UHPLC-MS. Anal Chem 2023; 95:4344-4352. [PMID: 36815760 PMCID: PMC10521381 DOI: 10.1021/acs.analchem.2c04604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases. This work reports a method of ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) for the analysis of a broad range of carbonyl metabolites in exhaled breath. Carbonyl compounds in the exhaled breath were captured by a fabricated silicon microreactor with a micropillar array coated with 2-(aminooxy)ethyl-N,N,N-trimethylammonium (ATM) triflate. A total of six subgroups consisting of saturated aldehydes and ketones, hydroxy-aldehydes, and hydroxy-ketones, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals were identified in the exhaled breath. The combination of a silicon microreactor for the selective capture of carbonyl compounds with UHPLC-MS analysis may provide a quantitative method for the analysis of carbonyls to identify disease markers in exhaled breath.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | - James D. Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | | | - Saurin R. Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Michael H. Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
14
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
15
|
Chen LC, Sung AN, Lee KY. A Study of High-Sensitivity Electro-Resistance Type Pre-Annealing ZnO-Doped CsPbBr 3 Perovskite Acetone Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2164. [PMID: 36850762 PMCID: PMC9963739 DOI: 10.3390/s23042164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In this work, acetone gas sensors were fabricated using pre-annealing metal oxide zinc oxide (pa-ZnO)-doped perovskite cesium lead bromide (CsPbBr3). The ZnO nanopowder, before it was doped into CsPbBr3 solution, was first put into a furnace to anneal at different temperatures, and formed the pa-ZnO. The properties of pa-ZnO were different from ZnO. The optimized doping conditions were 2 mg of pa-ZnO nanopowder and pre-annealing at 300 °C. Under these conditions, the highest sensitivity (gas signal current-to-air background current ratio) of the ZnO-doped CsPbBr3 perovskite acetone sensor was 1726. In addition, for the limit test, 100 ppm was the limit of detection of the ZnO-doped CsPbBr3 perovskite acetone sensor and the sensitivity was 101.
Collapse
Affiliation(s)
- Lung-Chien Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - An-Ni Sung
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Kun-Yi Lee
- Department of Electrical Engineering, China University of Science and Technology, Taipei 11581, Taiwan
| |
Collapse
|
16
|
Mashhadbani M, Faizabadi E. Early detection of lung cancer biomarkers in exhaled breath by modified armchair stanene nanoribbons. Phys Chem Chem Phys 2023; 25:3875-3889. [PMID: 36647633 DOI: 10.1039/d2cp04940f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we analyze armchair stanene nanoribbons as excellent sensing substances for the early diagnosis of lung cancer using density functional theory and the non-equilibrium Green function. Four modified configurations of surface- and edge-defected armchair stanene nanoribbons were studied to improve the sensing performance. Our probes indicated that the adsorption energy of armchair stanene nanoribbons is at least five times greater than that of other previously reported substances, such as single-wall carbon nanotubes, phosphorene, and silicene. A noticeable reduction in the current was observed, implying the high sensitivity of our sensing configurations. The adsorption energy and current results suggest that configurations with a single vacancy and edge defects improve the sensitivity and selectivity of the system because of their free dangling bonds. The calculated results demonstrate that the both-side edge defected armchair stanene nanoribbons reduce the adsorption energy to -8.35 eV and increase the sensitivity up to 45% for toluene detection. This reduction in adsorption energy and the surge of sensitivity shows ultra-high sensing performance, yielding a more efficient structure for the future design of early-diagnosis lung cancer sensing applications, thus improving lung cancer patients' survival and life expectancy.
Collapse
|
17
|
Laird S, Debenham L, Chandla D, Chan C, Daulton E, Taylor J, Bhat P, Berry L, Munthali P, Covington JA. Breath Analysis of COVID-19 Patients in a Tertiary UK Hospital by Optical Spectrometry: The E-Nose CoVal Study. BIOSENSORS 2023; 13:bios13020165. [PMID: 36831932 PMCID: PMC9953365 DOI: 10.3390/bios13020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 05/31/2023]
Abstract
Throughout the SARS-CoV-2 pandemic, diagnostic technology played a crucial role in managing outbreaks on a national and global level. One diagnostic modality that has shown promise is breath analysis, due to its non-invasive nature and ability to give a rapid result. In this study, a portable FTIR (Fourier Transform Infra-Red) spectrometer was used to detect chemical components in the breath from Covid positive symptomatic and asymptomatic patients versus a control cohort of Covid negative patients. Eighty-five patients who had a nasopharyngeal polymerase chain reaction (PCR) test for the detection of SARS-CoV-2 within the last 5 days were recruited to the study (36 symptomatic PCR positive, 23 asymptomatic PCR positive and 26 asymptomatic PCR negative). Data analysis indicated significant difference between the groups, with SARS-CoV-2 present on PCR versus the negative PCR control group producing an area under the curve (AUC) of 0.87. Similar results were obtained comparing symptomatic versus control and asymptomatic versus control. The asymptomatic results were higher than the symptomatic (0.88 vs. 0.80 AUC). When analysing individual chemicals, we found ethanol, methanol and acetaldehyde were the most important, with higher concentrations in the COVID-19 group, with symptomatic patients being higher than asymptomatic patients. This study has shown that breath analysis can provide significant results that distinguish patients with or without COVID-19 disease/carriage.
Collapse
Affiliation(s)
- Steven Laird
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Luke Debenham
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Danny Chandla
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Cathleen Chan
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Johnathan Taylor
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Palashika Bhat
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Lisa Berry
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Peter Munthali
- University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
- Coventry and Warwickshire Pathology Service, University of Coventry and Warwickshire Hospital Trust, Clifford Bridge Road, Coventry CV2 2DX, UK
| | | |
Collapse
|
18
|
Maller B, Tanvetyanon T. Emerging Approaches to Complement Low-Dose Computerized Tomography for Lung Cancer Screening: A Narrative Review. Cureus 2022; 14:e27309. [PMID: 36042989 PMCID: PMC9410538 DOI: 10.7759/cureus.27309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer screening by low-dose computed tomography (LDCT) can save lives. Nevertheless, the test suffers from low accuracy. Improving its accuracy will reduce unnecessary invasive procedures and allow lung cancer treatment to be delivered sooner. This review describes the principles, advantages, and disadvantages of selected emerging modalities potentially useful to improve the accuracy of LDCT. A literature search was conducted using PubMed and Google scholar for relevant publications. We identified four key emerging approaches: radiomics, breath analysis, urine test, and blood test. Radiomics, which uses a computer program to extract various radiological features from radiographic images, holds the potential to improve the accuracy of LDCT. However, to date, there remains no adequately validated system. Breath analysis and urine tests represent a noninvasive and convenient means of screening by detecting substances such as volatile organic compounds associated with lung cancer. However, the results can be confounded by diets, medications, and concurrent medical conditions. Finally, a blood test to screen for protein biomarkers or methylation profiles such as Galleri® has high specificity. However, its sensitivity is low, especially for detecting early-stage lung cancer. Furthermore, the cost for mass public use can be significant. Based on our review, blood tests may have potential for future clinical utility. Its high specificity may be useful to rule in a suspicious lung nodule as malignant, so that other additional tests can be omitted. Data from a well-designed clinical trial will be needed to understand the clinical utility of this strategy.
Collapse
Affiliation(s)
- Bradley Maller
- Internal Medicine, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
19
|
Arendowski A, Sagandykova G, Mametov R, Rafińska K, Pryshchepa O, Pomastowski P. Nanostructured Layer of Silver for Detection of Small Biomolecules in Surface-Assisted Laser Desorption Ionization Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4076. [PMID: 35744134 PMCID: PMC9227941 DOI: 10.3390/ma15124076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
A facile approach for the synthesis of a silver nanostructured layer for application in surface-assisted laser desorption/ionization mass spectrometry of low-molecular-weight biomolecules was developed using electrochemical deposition. The deposition was carried out using the following silver salts: trifluoroacetate, acetate and nitrate, varying the voltage and time. The plate based on trifluoroacetate at 10 V for 15 min showed intense SALDI-MS responses for standards of various classes of compounds: fatty acids, cyclitols, saccharides and lipids at a concentration of 1 nmol/spot, with values of the signal-to-noise ratio ≥50. The values of the limit of detection were 0.71 µM for adonitol, 2.08 µM for glucose and 0.39 µM for palmitic acid per spot. SEM analysis of the plate showed anisotropic flower-like microstructures with nanostructures on their surface. The reduced chemical background in the low-mass region can probably be explained by the absence of stabilizers and reducing agents during the synthesis. The plate synthesized with the developed approach showed potential for future use in the analysis of low-molecular-weight compounds of biological relevance. The absence of the need for the utilization of sophisticated equipment and the synthesis time (10 min) may benefit large-scale applications of the layer for the detection of various types of small biomolecules.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| | - Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; (A.A.); (R.M.); (O.P.); (P.P.)
| |
Collapse
|
20
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
21
|
Janssens E, Mol Z, Vandermeersch L, Lagniau S, Vermaelen KY, van Meerbeeck JP, Walgraeve C, Marcq E, Lamote K. Headspace Volatile Organic Compound Profiling of Pleural Mesothelioma and Lung Cancer Cell Lines as Translational Bridge for Breath Research. Front Oncol 2022; 12:851785. [PMID: 35600344 PMCID: PMC9120820 DOI: 10.3389/fonc.2022.851785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a lethal cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs) in breath proved to be potential biomarkers for MPM diagnosis, but translational studies are needed to elucidate which VOCs originate from the tumor itself and thus are specifically related to MPM cell metabolism.MethodsAn in vitro model was set-up to characterize the headspace VOC profiles of six MPM and two lung cancer cell lines using thermal desorption-gas chromatography-mass spectrometry. A comparative analysis was carried out to identify VOCs that could discriminate between MPM and lung cancer, as well as between the histological subtypes within MPM (epithelioid, sarcomatoid and biphasic).ResultsVOC profiles were identified capable of distinguishing MPM (subtypes) and lung cancer cells with high accuracy. Alkanes, aldehydes, ketones and alcohols represented many of the discriminating VOCs. Discrepancies with clinical findings were observed, supporting the need for studies examining breath and tumor cells of the same patients and studying metabolization and kinetics of in vitro discovered VOCs in a clinical setting.ConclusionWhile the relationship between in vitro and in vivo VOCs is yet to be established, both could complement each other in generating a clinically useful breath model for MPM.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Zoë Mol
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Sabrina Lagniau
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Karim Y. Vermaelen
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Christophe Walgraeve
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- *Correspondence: Kevin Lamote,
| |
Collapse
|
22
|
Kabir KM, Baker MJ, Donald WA. Micro- and nanoscale sensing of volatile organic compounds for early-stage cancer diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
pyAIR-A New Software Tool for Breathomics Applications-Searching for Markers in TD-GC-HRMS Analysis. Molecules 2022; 27:molecules27072063. [PMID: 35408461 PMCID: PMC9000534 DOI: 10.3390/molecules27072063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Volatile metabolites in exhaled air have promising potential as diagnostic biomarkers. However, the combination of low mass, similar chemical composition, and low concentrations introduces the challenge of sorting the data to identify markers of value. In this paper, we report the development of pyAIR, a software tool for searching for volatile organic compounds (VOCs) markers in multi-group datasets, tailored for Thermal-Desorption Gas-Chromatography High Resolution Mass-Spectrometry (TD-GC-HRMS) output. pyAIR aligns the compounds between samples by spectral similarity coupled with retention times (RT), and statistically compares the groups for compounds that differ by intensity. This workflow was successfully tested and evaluated on gaseous samples spiked with 27 model VOCs at six concentrations, divided into three groups, down to 0.3 nL/L. All analytes were correctly detected and aligned. More than 80% were found to be significant markers with a p-value < 0.05; several were classified as possibly significant markers (p-value < 0.1), while a few were removed due to background level. In all group comparisons, low rates of false markers were found. These results showed the potential of pyAIR in the field of trace-level breathomics, with the capability to differentially examine several groups, such as stages of illness.
Collapse
|
24
|
Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit Rev Anal Chem 2022; 53:1828-1839. [PMID: 35201946 DOI: 10.1080/10408347.2022.2043145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomarkers are biological molecules associated with physiological changes of the body and aids in the detecting the onset of disease in patients. There is an urgent need for self-monitoring and early detection of cardiovascular and other health complications. Several blood-based biomarkers have been well established in diagnosis and monitoring the onset of diseases. However, the detection level of biomarkers in bed-side analysis is difficult and complications arise due to the endothelial dysfunction. Currently single volatile organic compounds (VOCs) based sensors are available for the detection of human diseases and no dedicated nanosensor is available for the elderly. Moreover, accuracy of the sensors based on a single analyte is limited. Hence, breath analysis has received enormous attention in healthcare due to its relatively inexpensive, rapid, and noninvasive methods for detecting diseases. This review gives a detailed analysis of how biomarker imprinted nanosensor can be used as a noninvasive method for detecting VOC to health issues early using exhaled breath analysis.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan
| | - Palaniappan Ramasamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education & Research, Chennai, Tamil Nadu, India
| | - Narayanan Rajnish
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vaseeharan Baskaralingam
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
25
|
Modular Point-of-Care Breath Analyzer and Shape Taxonomy-Based Machine Learning for Gastric Cancer Detection. Diagnostics (Basel) 2022; 12:diagnostics12020491. [PMID: 35204584 PMCID: PMC8871298 DOI: 10.3390/diagnostics12020491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Gastric cancer is one of the deadliest malignant diseases, and the non-invasive screening and diagnostics options for it are limited. In this article, we present a multi-modular device for breath analysis coupled with a machine learning approach for the detection of cancer-specific breath from the shapes of sensor response curves (taxonomies of clusters). Methods: We analyzed the breaths of 54 gastric cancer patients and 85 control group participants. The analysis was carried out using a breath analyzer with gold nanoparticle and metal oxide sensors. The response of the sensors was analyzed on the basis of the curve shapes and other features commonly used for comparison. These features were then used to train machine learning models using Naïve Bayes classifiers, Support Vector Machines and Random Forests. Results: The accuracy of the trained models reached 77.8% (sensitivity: up to 66.54%; specificity: up to 92.39%). The use of the proposed shape-based features improved the accuracy in most cases, especially the overall accuracy and sensitivity. Conclusions: The results show that this point-of-care breath analyzer and data analysis approach constitute a promising combination for the detection of gastric cancer-specific breath. The cluster taxonomy-based sensor reaction curve representation improved the results, and could be used in other similar applications.
Collapse
|
26
|
Breath Sensor Technology for the Use in Mechanical Lung Ventilation Equipment for Monitoring Critically Ill Patients. Diagnostics (Basel) 2022; 12:diagnostics12020430. [PMID: 35204521 PMCID: PMC8870831 DOI: 10.3390/diagnostics12020430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The need for mechanical lung ventilation is common in critically ill patients, either with COVID-19 infection or due to other causes. Monitoring of patients being ventilated is essential for timely and improved management. We here propose the use of a novel breath volatile organic compound sensor technology to be used in a mechanical lung ventilation machine for this purpose; the technology was evaluated in critically ill COVID-19 patients on mechanical lung ventilation. Methods: Based on the consistency results of our study data, the breath sensor device with metal oxide gas sensors and environment-controlling sensors was mounted on the ventilation exhaust port of the ventilation machine; this allowed to ensure additional safety since the device was placed outside the contour between the patient and equipment. Results: The sensors allowed stable registration of the signals for up to several weeks for 10 patients in total, depending on the storage amount; a proportion of patients were intubated or received tracheostoma during the evaluation period. Future studies are on the way to correlate sensor readings to other parameters characterizing the severity of the patient condition and outcome. Conclusions: We suppose that such technology will allow patient monitoring in real-time for timely identification of deterioration, potentially requiring some change of management. The obtained results are preliminary and further studies are needed to examine their clinical significance.
Collapse
|
27
|
Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath Analysis: A Promising Tool for Disease Diagnosis-The Role of Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1238. [PMID: 35161984 PMCID: PMC8840008 DOI: 10.3390/s22031238] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/07/2023]
Abstract
Early-stage disease diagnosis is of particular importance for effective patient identification as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however, limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One of the most promising non-invasive diagnostic methods that has also attracted great research interest during the last years is breath analysis; the method detects gas-analytes such as exhaled volatile organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques and especially sensors has been widely discussed in the literature; however, the incorporation of novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both selective and cross-reactive applications. The aim of the first part of this review is to provide an up-to-date overview of the main categories of sensors studied for disease diagnosis applications via the detection of exhaled gas-analytes and to highlight the role of nanomaterials. The second and most novel part of this review concentrates on the remarkable applicability of breath analysis in differential diagnosis, phenotyping, and the staging of several disease-types, which are currently amongst the most pressing challenges in the field.
Collapse
Affiliation(s)
- Maria Kaloumenou
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Nefeli Lagopati
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Efstathios Efstathopoulos
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| |
Collapse
|
28
|
Roquencourt C, Grassin-Delyle S, Thévenot EA. ptairMS: real-time processing and analysis of PTR-TOF-MS data for biomarker discovery in exhaled breath. Bioinformatics 2022; 38:1930-1937. [PMID: 35043937 PMCID: PMC8963316 DOI: 10.1093/bioinformatics/btac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 11/14/2022] Open
Abstract
Motivation Analysis of volatile organic compounds (VOCs) in exhaled breath by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is of increasing interest for real-time, non-invasive diagnosis, phenotyping and therapeutic drug monitoring in the clinics. However, there is currently a lack of methods and software tools for the processing of PTR-TOF-MS data from cohorts and suited for biomarker discovery studies. Results We developed a comprehensive suite of algorithms that process raw data from patient acquisitions and generate the table of feature intensities. Notably, we included an innovative two-dimensional peak deconvolution model based on penalized splines signal regression for accurate estimation of the temporal profile and feature quantification, as well as a method to specifically select the VOCs from exhaled breath. The workflow was implemented as the ptairMS software, which contains a graphical interface to facilitate cohort management and data analysis. The approach was validated on both simulated and experimental datasets, and we showed that the sensitivity and specificity of the VOC detection reached 99% and 98.4%, respectively, and that the error of quantification was below 8.1% for concentrations down to 19 ppb. Availability and implementation The ptairMS software is publicly available as an R package on Bioconductor (doi: 10.18129/B9.bioc.ptairMS), as well as its companion experiment package ptairData (doi: 10.18129/B9.bioc.ptairData). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Camille Roquencourt
- CEA, LIST, Laboratoire Sciences des Données et de la Décision, F-91191 Gif-Sur-Yvette, France
| | - Stanislas Grassin-Delyle
- Hôpital Foch, Exhalomics, Département des maladies des voies respiratoires, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis)
| | - Etienne A Thévenot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, F-91191 Gif sur Yvette, France
| |
Collapse
|
29
|
Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a post-nanotechnology concept, nanoarchitectonics has emerged from the 20th century to the 21st century. This review summarizes the recent progress in the field of metal-free porous carbon nanoarchitectonics.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
30
|
Papayan G, Akopov A. Photodynamic Theranostics of Central Lung Cancer: Capabilities of Early Diagnosis and Minimally Invasive Therapy (Review). Sovrem Tekhnologii Med 2021; 13:78-86. [PMID: 35265362 PMCID: PMC8858399 DOI: 10.17691/stm2021.13.6.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to assess the prospects for central lung cancer (CLC) screening using fluorescent diagnostics and its treatment by endobronchial photodynamic therapy (PDT). Bronchoscopic fluorescent diagnostics using chlorin e6 photosensitizers and a developed instrumental system enable to reveal tumor changes in large bronchi mucosa at early stages, and a developed PDT technique performed under fluorescent control helps achieve personalized treatment. Such an approach is considered as a theranostic technique - photodynamic theranostics. central lung cancer screening requires a fluorescent dye characterized by availability and can be used directly within the examination. Indocyanine green can be used as a dye, its peculiarity is the necessity to excite and record fluorescence in the near-infrared (NIR) wavelength band. First experiments using NIR bands to diagnose a bronchoscopic system showed the detectability of tumor areas using on-site bronchoscopic photodynamic theranostics, which consists in NIR imaging of tumor foci when a standard dose of indocyanine green is administered during the examination. Conclusion Further progress of early diagnostics and minimally invasive CLC therapy will be determined by the development of new photosensitizers, which should be characterized by a high absorption band in NIR area, quick accumulation in a tumor, high yield of single oxygen in NIR illumination, bright fluorescence, high potential in terms of the induction of an anti-tumor immune response.
Collapse
Affiliation(s)
- G.V. Papayan
- Senior Researcher, Laser Medicine Center; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia; Senior Researcher, Research Department of Myocardial Microcirculation and Metabolism; Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - A.L. Akopov
- Professor, Head of Thoracic Surgery Department, Research Institute for Surgery and Emergency Medicine; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia
| |
Collapse
|
31
|
Murdocca M, De Masi C, Pucci S, Mango R, Novelli G, Di Natale C, Sangiuolo F. LOX-1 and cancer: an indissoluble liaison. Cancer Gene Ther 2021; 28:1088-1098. [PMID: 33402733 PMCID: PMC8571092 DOI: 10.1038/s41417-020-00279-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Recently, a strong correlation between metabolic disorders, tumor onset, and progression has been demonstrated, directing new therapeutic strategies on metabolic targets. OLR1 gene encodes the LOX-1 receptor protein, responsible for the recognition, binding, and internalization of ox-LDL. In the past, several studied, aimed to clarify the role of LOX-1 receptor in atherosclerosis, shed light on its role in the stimulation of the expression of adhesion molecules, pro-inflammatory signaling pathways, and pro-angiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. In recent years, LOX-1 upregulation in different tumors evidenced its involvement in cancer onset, progression and metastasis. In this review, we outline the role of LOX-1 in tumor spreading and metastasis, evidencing its function in VEGF induction, HIF-1alpha activation, and MMP-9/MMP-2 expression, pushing up the neoangiogenic and the epithelial-mesenchymal transition process in glioblastoma, osteosarcoma prostate, colon, breast, lung, and pancreatic tumors. Moreover, our studies contributed to evidence its role in interacting with WNT/APC/β-catenin axis, highlighting new pathways in sporadic colon cancer onset. The application of volatilome analysis in high expressing LOX-1 tumor-bearing mice correlates with the tumor evolution, suggesting a closed link between LOX-1 upregulation and metabolic changes in individual volatile compounds and thus providing a viable method for a simple, non-invasive alternative monitoring of tumor progression. These findings underline the role of LOX-1 as regulator of tumor progression, migration, invasion, metastasis formation, and tumor-related neo-angiogenesis, proposing this receptor as a promising therapeutic target and thus enhancing current antineoplastic strategies.
Collapse
Affiliation(s)
- M Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.
| | - C De Masi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - S Pucci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - R Mango
- Cardiology Unit, Department of Emergency and Critical Care, Tor Vergata Hospital, Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - C Di Natale
- Department of Electronic Engineering, Tor Vergata University, Rome, Italy
| | - F Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
32
|
Breath-Taking Perspectives and Preliminary Data toward Early Detection of Chronic Liver Diseases. Biomedicines 2021; 9:biomedicines9111563. [PMID: 34829792 PMCID: PMC8615034 DOI: 10.3390/biomedicines9111563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The gold standard method for chronic liver diseases diagnosis and staging remains liver biopsy, despite the spread of less invasive surrogate modalities based on imaging and blood biomarkers. Still, more than 50% of chronic liver disease cases are detected at later stages when patients exhibit episodes of liver decompensation. Breath analysis represents an attractive means for the development of non-invasive tests for several pathologies, including chronic liver diseases. In this perspective review, we summarize the main findings of studies that compared the breath of patients with chronic liver diseases against that of control subjects and found candidate biomarkers for a potential breath test. Interestingly, identified compounds with best classification performance are of exogenous origin and used as flavoring agents in food. Therefore, random dietary exposure of the general population to these compounds prevents the establishment of threshold levels for the identification of disease subjects. To overcome this limitation, we propose the exogenous volatile organic compounds (EVOCs) probe approach, where one or multiple of these flavoring agent(s) are administered at a standard dose and liver dysfunction associated with chronic liver diseases is evaluated as a washout of ingested compound(s). We report preliminary results in healthy subjects in support of the potential of the EVOC Probe approach.
Collapse
|
33
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
34
|
Mougang YK, Di Zazzo L, Minieri M, Capuano R, Catini A, Legramante JM, Paolesse R, Bernardini S, Di Natale C. Sensor array and gas chromatographic detection of the blood serum volatolomic signature of COVID-19. iScience 2021; 24:102851. [PMID: 34308276 PMCID: PMC8272622 DOI: 10.1016/j.isci.2021.102851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Volatolomics is gaining consideration as a viable approach to diagnose several diseases, and it also shows promising results to discriminate COVID-19 patients via breath analysis. This paper extends the study of the relationship between volatile compounds (VOCs) and COVID-19 to blood serum. Blood samples were collected from subjects recruited at the emergency department of a large public hospital. The VOCs were analyzed with a gas chromatography mass spectrometer (GC/MS). GC/MS data show that in more than 100 different VOCs, the pattern of abundances of 17 compounds identifies COVID-19 from non-COVID with an accuracy of 89% (sensitivity 94% and specificity 83%). GC/MS analysis was complemented by an array of gas sensors whose data achieved an accuracy of 89% (sensitivity 94% and specificity 80%).
Collapse
Affiliation(s)
- Yolande Ketchanji Mougang
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Lorena Di Zazzo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Jacopo Maria Legramante
- Department of Medicine's Systems, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.,Emerging Technologies Division of International Federation Clinical Chemistry and Laboratory Medicine (IFCC), Milano, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
35
|
Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021; 11:21216-21234. [PMID: 35478818 PMCID: PMC9034087 DOI: 10.1039/d1ra02554f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials. The trace level selective detection of volatile organic compounds (VOCs) in breath facilitates the study of physiological disorder and real-time health monitoring. This review focuses on advancements in chemiresistive gas sensor technology for biomarker detection associated with different diseases. Emphasis is placed on selective biomarker detection by semiconducting metal oxide (SMO) nanostructures, 2-dimensional nanomaterials (2DMs) and nanocomposites through various optimization strategies and sensing mechanisms. Their synergistic properties for incorporation in a portable breathalyzer have been elucidated. Furthermore, the socio-economic demands of a breathalyzer in terms of recent establishment of startups globally and challenges of a breathalyzer are critically reviewed. This initiative is aimed at highlighting the challenges and scope for improvement to realize a high performance chemiresistive gas sensor for non-invasive disease diagnosis. Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials.![]()
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India +91-9840-959832
| | - Radhakrishnan Kothalam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India.,Centre for Nanoscience and Nanotechnology, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India
| | - Saravana Kumar Jaganathan
- Bionanotechnology Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Department of Engineering, Faculty of Science and Engineering, University of Hull HU6 7RX UK
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
36
|
Segreti A, Incalzi RA, Lombardi M, Miglionico M, Nusca A, Pennazza G, Santonico M, Grasso S, Grigioni F, Di Sciascio G. Characterization of inflammatory profile by breath analysis in chronic coronary syndromes. J Cardiovasc Med (Hagerstown) 2021; 21:675-681. [PMID: 32740499 DOI: 10.2459/jcm.0000000000001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Exhaled breath contains thousands of volatile organic compounds (VOCs) produced during various metabolic processes both in health and disease.Analysis of breath with electronic nose BIONOTE-V allows modifications of exhaled VOCs to be studied, which are clinically recognized to be a marker for several disorders, including heart failure. New noninvasive tests based on VOCs analysis might be a useful tool for early detection of chronic coronary syndromes (CCS). METHODS Exhaled air was collected and measured in individuals with an indication to perform invasive coronary angiography (ICA). All patients' samples were obtained before ICA. RESULTS Analysis with BIONOTE-V was performed in a total cohort of 42 patients consecutively enrolled, of whom 19 did not require myocardial revascularization and 23 with indication for myocardial revascularization. BIONOTE-V was able to correctly identify 18 out of 23 patients affected by severe coronary artery disease (sensitivity = 78.3% and specificity = 68.4%). Our predicted model had a tight correlation with SYNTAX score (error of the BIONOTE-V = 15). CONCLUSION CCS patients have a distinctive fingerprint of exhaled breath, and analysis by BIONOTE-V has the potential for identifying these patients. Moreover, it seems that this technique can correctly identify patients according to anatomical disease severity at ICA. If the preliminary data of this proof of concept study will be confirmed, this rapid and noninvasive diagnostic tool able to identify CCS might have an impact in routine clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Giorgio Pennazza
- Unit of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marco Santonico
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University of Rome, Rome, Italy
| | - Simone Grasso
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University of Rome, Rome, Italy
| | | | | |
Collapse
|
37
|
Einoch-Amor R, Broza YY, Haick H. Detection of Single Cancer Cells in Blood with Artificially Intelligent Nanoarray. ACS NANO 2021; 15:7744-7755. [PMID: 33787212 DOI: 10.1021/acsnano.1c01741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Detection and monitoring of single cancer cells (SCCs), such as circulating tumor cells (CTCs), would be of aid in an efficient early detection of cancer, a tailored (personalized) therapy, and in a fast bedside assessment of treatment efficacy. Nevertheless, currently available techniques, which mostly rely on the isolation of SCCs based on their physical or biological properties, suffer from low sensitivity, complicated technical procedures, low cost-effectiveness, and being unsuitable for continuous monitoring. We report here on the design and use of an artificially intelligent nanoarray based on a heterogeneous set of chemisensitive nanostructured films for the detection of SCCs using volatile organic compounds emanating in the air trapped above blood samples containing SCCs. For demonstration purposes, we have focused on samples containing A549 lung cancer cells (hereafter, SCCA549). The nanoarray developed to detect SCCA549 has >90% accuracy, >85% sensitivity, and >95% specificity. Detection works irrespective of the medium and/or the environment. These results were validated by complementary mass spectrometry. The ability to continuously record, store, and preprocess the signals increases the chances that this nanotechnology might also be useful in the early detection of cancer cells in the blood and continuous monitoring of their possible progression.
Collapse
Affiliation(s)
- Reef Einoch-Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
38
|
Reeve C, Wilson C, Hanna D, Gadbois S. Dog Owners' Survey reveals Medical Alert Dogs can alert to multiple conditions and multiple people. PLoS One 2021; 16:e0249191. [PMID: 33852599 PMCID: PMC8046193 DOI: 10.1371/journal.pone.0249191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
Medical Alert Dogs (MADs) are a promising support system for a variety of medical conditions. Emerging anecdotal reports suggest that dogs may alert to additional health conditions and different people other than those that they were trained for or initially began alerting. As the use of medical alert dogs increases, it is imperative that such claims are documented empirically. The overall aims of this study were to record the proportion of MAD owners who have a dog that alerts to multiple health conditions or to people other than the target person and to determine whether any sociodemographic variables were associated with dogs alerting to multiple conditions, multiple people, or both. MAD owners completed an online survey that contained a series of forced choice questions. Sixty-one participants reported a total of 33 different conditions to which dogs alerted. Eighty-four percent of participants reported that their dog alerted to multiple conditions and 54% reported that their dog alerted to multiple people. This is the first study to document that a large percentage of people report that their MAD alerts to multiple conditions and/or to multiple people. We present a discussion of how these alerting abilities could develop, but questions about the underlying mechanisms remain.
Collapse
Affiliation(s)
- Catherine Reeve
- The School of Psychology, Queen’s University Belfast, Belfast, Northern Ireland
- * E-mail:
| | - Clara Wilson
- The School of Psychology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Donncha Hanna
- The School of Psychology, Queen’s University Belfast, Belfast, Northern Ireland
| | - Simon Gadbois
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| |
Collapse
|
39
|
Leja M, Kortelainen JM, Polaka I, Turppa E, Mitrovics J, Padilla M, Mochalski P, Shuster G, Pohle R, Kashanin D, Klemm R, Ikonen V, Mezmale L, Broza YY, Shani G, Haick H. Sensing gastric cancer via point-of-care sensor breath analyzer. Cancer 2021; 127:1286-1292. [PMID: 33739456 DOI: 10.1002/cncr.33437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Detection of disease by means of volatile organic compounds from breath samples using sensors is an attractive approach to fast, noninvasive and inexpensive diagnostics. However, these techniques are still limited to applications within the laboratory settings. Here, we report on the development and use of a fast, portable, and IoT-connected point-of-care device (so-called, SniffPhone) to detect and classify gastric cancer to potentially provide new qualitative solutions for cancer screening. METHODS A validation study of patients with gastric cancer, patients with high-risk precancerous gastric lesions, and controls was conducted with 2 SniffPhone devices. Linear discriminant analysis (LDA) was used as a classifying model of the sensing signals obatined from the examined groups. For the testing step, an additional device was added. The study group included 274 patients: 94 with gastric cancer, 67 who were in the high-risk group, and 113 controls. RESULTS The results of the test set showed a clear discrimination between patients with gastric cancer and controls using the 2-device LDA model (area under the curve, 93.8%; sensitivity, 100%; specificity, 87.5%; overall accuracy, 91.1%), and acceptable results were also achieved for patients with high-risk lesions (the corresponding values for dysplasia were 84.9%, 45.2%, 87.5%, and 65.9%, respectively). The test-phase analysis showed lower accuracies, though still clinically useful. CONCLUSION Our results demonstrate that a portable breath sensor device could be useful in point-of-care settings. It shows a promise for detection of gastric cancer as well as for other types of disease. LAY SUMMARY A portable sensor-based breath analyzer for detection of gastric cancer can be used in point-of-care settings. The results are transferrable between devices via advanced IoT technology. Both the hardware and software of the reported breath analyzer could be easily modified to enable detection and monitirng of other disease states.
Collapse
Affiliation(s)
- Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia.,Riga East University Hospital, Riga, Latvia.,Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Juha M Kortelainen
- Smart Health, VTT Technical Research Centre of Finland, Tampere, Finland
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Emmi Turppa
- Smart Health, VTT Technical Research Centre of Finland, Tampere, Finland
| | | | | | - Pawel Mochalski
- Institute of Breath Research, University of Innsbruck, Innsbruck, Austria.,Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | | | - Roland Pohle
- Research in Digitalization and Automation, Siemens, Munich, Germany
| | | | | | - Veikko Ikonen
- Ethics and Responsibility of Innovations, VTT Technical Research Centre of Finland, Tampere, Finland
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia.,Riga East University Hospital, Riga, Latvia
| | - Yoav Y Broza
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gidi Shani
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
40
|
van den Broek J, Weber IC, Güntner AT, Pratsinis SE. Highly selective gas sensing enabled by filters. MATERIALS HORIZONS 2021; 8:661-684. [PMID: 34821311 DOI: 10.1039/d0mh01453b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Portable and inexpensive gas sensors are essential for the next generation of non-invasive medical diagnostics, smart air quality monitoring & control, human search & rescue and food quality assessment to name a few of their immediate applications. Therein, analyte selectivity in complex gas mixtures like breath or indoor air remains the major challenge. Filters are an effective and versatile, though often unrecognized, route to overcome selectivity issues by exploiting additional properties of target analytes (e.g., molecular size and surface affinity) besides reactivity with the sensing material. This review provides a tutorial for the material engineering of sorption, size-selective and catalytic filters. Of specific interest are high surface area sorbents (e.g., activated carbon, silica gels and porous polymers) with tunable properties, microporous materials (e.g., zeolites and metal-organic frameworks) and heterogeneous catalysts, respectively. Emphasis is placed on material design for targeted gas separation, portable device integration and performance. Finally, research frontiers and opportunities for low-cost gas sensing systems in emerging applications are highlighted.
Collapse
Affiliation(s)
- Jan van den Broek
- Particle Technology Laboratory, Institute of Energy & Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
41
|
Liu L, Li W, He Z, Chen W, Liu H, Chen K, Pi X. Detection of lung cancer with electronic nose using a novel ensemble learning framework. J Breath Res 2021; 15. [PMID: 33578407 DOI: 10.1088/1752-7163/abe5c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 02/02/2023]
Abstract
Breath analysis based on electronic nose (e-nose) is a promising new technology for the detection of lung cancer that is non-invasive, simple to operate and cost-effective. Lung cancer screening by e-nose relies on predictive models established using machine learning methods. However, using only a single machine learning method to detect lung cancer has some disadvantages, including low detection accuracy and high false negative rate. To address these problems, groups of individual learning models with excellent performance were selected from classic models, including Support Vector Machine, Decision Tree, Random Forest, Logistic Regression and K-nearest neighbor regression, to build an ensemble learning framework (PCA-SVE). The output result of the PCA-SVE framework was obtained by voting. To test this approach, we analyzed 214 breath samples measured by e-nose with 11 gas sensors of four types using the proposed PCA-SVE framework. Experimental results indicated that the accuracy, sensitivity, and specificity of the proposed framework were 95.75%, 94.78%, and 96.96%, respectively. This framework overcomes the disadvantages of a single model, thereby providing an improved, practical alternative for exhaled breath analysis by e-nose.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China, Chongqing, Chongqing, 400044, CHINA
| | - Wang Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| | - ZiChun He
- Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing Red Cross Hospital, 168 Hai'er Rd, Chongqing, 400020 , CHINA
| | - Weimin Chen
- Kunming University, No.727 South Jingming Rd, Chenggong District, Kunming, Yunnan, 650500, CHINA
| | - Hongying Liu
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| | - Ke Chen
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, , Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| | - Xitian Pi
- Key Laboratory of Biotechnology Science and Technology, Ministry of Education, College of Bioengineering, , Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, Chongqing, 400044, CHINA
| |
Collapse
|
42
|
Mule NM, Patil DD, Kaur M. A comprehensive survey on investigation techniques of exhaled breath (EB) for diagnosis of diseases in human body. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100715] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
43
|
Walker HJ, Burrell MM. Could breath analysis by MS could be a solution to rapid, non-invasive testing for COVID-19? Bioanalysis 2020; 12:1213-1217. [PMID: 32734782 PMCID: PMC7466950 DOI: 10.4155/bio-2020-0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 01/13/2023] Open
Affiliation(s)
- Heather J Walker
- biOMICS Facility, Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael M Burrell
- biOMICS Facility, Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
44
|
Gharra A, Broza YY, Yu G, Mao W, Shen D, Deng L, Wu C, Wang Q, Sun X, Huang J, Xuan Z, Huang B, Wu S, Milyutin Y, Kloper-Weidenfeld V, Haick H. Exhaled breath diagnostics of lung and gastric cancers in China using nanosensors. Cancer Commun (Lond) 2020; 40:273-278. [PMID: 32459390 PMCID: PMC7307230 DOI: 10.1002/cac2.12030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/23/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alaa Gharra
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Guiping Yu
- Department of Chest Surgery, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Weidong Mao
- Department of Oncology, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Dong Shen
- Department of Oncology, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Lichun Deng
- Department of Oncology, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Chun Wu
- Department of Oncology, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Qiong Wang
- Department of Oncology, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Xia Sun
- Department of Oncology, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Jianming Huang
- Department of Gastrointestinal Surgery, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Zhuoqi Xuan
- Department of Gastrointestinal Surgery, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Bing Huang
- Department of Chest Surgery, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Song Wu
- Department of Chest Surgery, Jiangyin Hospital Affiliated to Southeast University Medical College, Jiangyin, Jiangsu, 214400, P. R. China
| | - Yana Milyutin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Viki Kloper-Weidenfeld
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Li W, Jia Z, Xie D, Chen K, Cui J, Liu H. Recognizing lung cancer using a homemade e-nose: A comprehensive study. Comput Biol Med 2020; 120:103706. [PMID: 32250850 DOI: 10.1016/j.compbiomed.2020.103706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023]
Abstract
In recent years, breath analysis has been used as a tool for lung cancer detection and many gas sensors were developed for this purpose. Although they are fabricated with advanced materials, for now, gas sensors are still limited in their medical application due to their unfavorable performance. Here, we hypothesized that a combination of diverse types of sensors could aid in improving the detection performance. We fabricated an e-nose based on 10 gas sensors of 4 types and directly tested it using samples from 153 healthy participants and 115 lung cancer patients, without gas pre-concentration. Additionally, we studied and compared five feature extraction algorithms. The extracted features were then used in 2 optimized clustering algorithms and 3 supervised classification strategies, and their performance was investigated. As a result, "breath-prints" for all subjects were successfully obtained. The combined features extracted by LDA and Fast ICA formed the best feature space. Within this feature space, both clustering algorithms grouped all "breath-prints" into exactly 2 clusters with an Adjusted Rand Index greater than 0.95. Among the 3 supervised classification strategies, random forest with 3-fold cross validation showed the best performance with 86.42% of mean classification accuracy and 0.87 of AUC, which was somewhat better than many recently reported sensor arrays. It can be concluded that, the diversity of sensors may play a role in improving the performance of the e-nose though to what extent still requires evaluation.
Collapse
Affiliation(s)
- Wang Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, PR China
| | - Ziru Jia
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Dandan Xie
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Ke Chen
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jianguo Cui
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, PR China
| | - Hongying Liu
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
46
|
Shiba S, Yamada K, Matsuguchi M. Humidity-Resistive Optical NO Gas Sensor Devices Based on Cobalt Tetraphenylporphyrin Dispersed in Hydrophobic Polymer Matrix. SENSORS 2020; 20:s20051295. [PMID: 32120957 PMCID: PMC7085509 DOI: 10.3390/s20051295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
We report on an optical nitrogen oxide (NO) gas sensor device using cobalt tetraphenylporphyrin (CoTPP) dispersed in three kinds of hydrophobic polymer film matrix (polystyrene (PSt), ethylcellulose (EC), and polycyclohexyl methacrylate (PCHMA)) to improve humidity resistance. Our approach is very effective because it allows us to achieve not only high humidity resistance, but also a more than sixfold increase in sensitivity compared with CoTPP film due to the high dispersion of CoTPP in the polymer film. The limit of detection was calculated as 33 ppb for the CoTPP-dispersed EC film, which is lower than that of CoTPP film (92 ppb).
Collapse
|
47
|
A Low-Cost Breath Analyzer Module in Domiciliary Non-Invasive Mechanical Ventilation for Remote COPD Patient Monitoring. SENSORS 2020; 20:s20030653. [PMID: 31991608 PMCID: PMC7038329 DOI: 10.3390/s20030653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Smart Breath Analyzers were developed as sensing terminals of a telemedicine architecture devoted to remote monitoring of patients suffering from Chronic Obstructive Pulmonary Disease (COPD) and home-assisted by non-invasive mechanical ventilation via respiratory face mask. The devices based on different sensors (CO2/O2 and Volatile Organic Compounds (VOCs), relative humidity and temperature (R.H. & T) sensors) monitor the breath air exhaled into the expiratory line of the bi-tube patient breathing circuit during a noninvasive ventilo-therapy session; the sensor raw signals are transmitted pseudonymized to National Health Service units by TCP/IP communication through a cloud remote platform. The work is a proof-of-concept of a sensors-based IoT system with the perspective to check continuously the effectiveness of therapy and/or any state of exacerbation of the disease requiring healthcare. Lab tests in controlled experimental conditions by a gas-mixing bench towards CO2/O2 concentrations and exhaled breath collected in a sampling bag were carried out to test the realized prototypes. The Smart Breath Analyzers were also tested in real conditions both on a healthy volunteer subject and a COPD suffering patient.
Collapse
|