1
|
Wang F, Zhao H, Mou Q, Du ZQ, Yang CX. Metabolite of esculetin plays an important role in cytotoxic effects induced by chloroquine on porcine immature Sertoli cells. Toxicol In Vitro 2024; 101:105941. [PMID: 39278285 DOI: 10.1016/j.tiv.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Chloroquine (CQ) is widely used in the therapy against malarial, tumor and recently the COVID-19 pandemic, as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway. We previously reported that CQ (20 μM, 36 h) could reprogram transcriptome, and impair multiple signaling pathways vital to porcine immature Sertoli cells (iSCs). However, whether CQ treatment could affect the metabolomic compositions of porcine iSCs remains unclear. Here, we showed that CQ (20 μM, 36 h) treatment of porcine iSCs induced significant changes of 63 metabolites (11 up and 52 down) by the metabolomics method, which were involved in different metabolic pathways. Caffeic acid and esculetin, the top two up-regulated metabolites, were validated by ELISA. The combined analysis of metabolomics and transcriptome showed caffeic acid and esculetin to be highly correlated with multiple differentially expressed genes (DEGs), including Ndrg1, S100a8, Sqstm1, S100a12, S100a9, Ill1, Lif, Ntn4 and Peg10. Furthermore, esculetin treatment (53 nM, 36 h) significantly decreased the viability and proliferation, suppressed the mitochondrial function, whereas promoted the apoptosis of porcine iSCs, similar to those by CQ treatment (20 μM, 36 h). Collectively, our results showed that CQ treatment induces metabolic changes, and its effect on porcine iSCs could be partially mediated by esculetin.
Collapse
Affiliation(s)
- Fang Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China
| | - Han Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China
| | - Qiao Mou
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
2
|
Vaena SG, Romeo MJ, Mina-Abouda M, Funk EC, Fullbright G, Long DT, Delaney JR. Autophagy unrelated transcriptional mechanisms of hydroxychloroquine resistance revealed by integrated multi-omics of evolved cancer cells. Cell Cycle 2024:1-21. [PMID: 39299930 DOI: 10.1080/15384101.2024.2402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024] Open
Abstract
Hydroxychloroquine (HCQ) and chloroquine are repurposed drugs known to disrupt autophagy, a molecular recycling pathway essential for tumor cell survival, chemotherapeutic resistance, and stemness. We pursued a multi-omic strategy in OVCAR3 ovarian cancer and CCL218 colorectal cancer cells. Two genome-scale screens were performed. In the forward genetic screen, cell populations were passaged for 15 drug pulse-chases with HCQ or vehicle control. Evolved cells were collected and processed for bulk RNA-seq, exome-seq, and single-cell RNA-seq (scRNA-seq). In the reverse genetic screen, a pooled CRISPR-Cas9 library was used in cells over three pulse-chases of HCQ or vehicle control treatments. HCQ evolved cells displayed remarkably few mutational differences, but substantial transcriptional differences. Transcriptomes revealed multiple pathways associated with resistance to HCQ, including upregulation of glycolysis, exocytosis, and chromosome condensation/segregation, or downregulation of translation and apoptosis. The Cas9 screen identified only one autophagy gene. Chromosome condensation and segregation were confirmed to be disrupted by HCQ in live cells and organelle-free in vitro extracts. Transcriptional plasticity was the primary mechanism by which cells evolved resistance to HCQ. Neither autophagy nor the lysosome were substantive hits. Our analysis may serve as a model for how to better position repurposed drugs in oncology.
Collapse
Affiliation(s)
- Silvia G Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mirna Mina-Abouda
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Emma C Funk
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Palomba M, Vecchio D, Allavena G, Capaccio V, De Mei C, Scarpelli R, Grimaldi B. Identification of a Dual Autophagy and REV-ERB Inhibitor with in Vivo Anticancer Efficacy. J Med Chem 2024; 67:349-379. [PMID: 38117953 PMCID: PMC10788905 DOI: 10.1021/acs.jmedchem.3c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The autophagy process appears as a promising target for anticancer interventions. Chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are the only FDA-approved autophagy flux inhibitors. Although diverse anticancer clinical trials are providing encouraging results, several limitations associated with the need of high dosage and long-term administration of these autophagy inhibitors are also emerging. We showed that the inhibition of REV-ERB, a nuclear receptor regulating circadian rhythm and metabolism, enhances CQ-mediated cancer cell death and identified a class of dual inhibitors of autophagy and REV-ERB displaying an in vitro anticancer activity against diverse tumor cells greatly higher than CQ. Herein, we describe our lead optimization strategy that led to the identification of compound 24 as a dual autophagy and REV-ERB inhibitor, showing improved potency in blocking autophagy, enhanced toxicity against cancer cells, optimal drug-like properties, and efficacy in a mouse xenograft model of melanoma as a single anticancer agent.
Collapse
Affiliation(s)
- Martina Palomba
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Donatella Vecchio
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Giulia Allavena
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Vito Capaccio
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Claudia De Mei
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Rita Scarpelli
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Benedetto Grimaldi
- Molecular
Medicine, Medicinal Chemistry and Technologies for Drug Discovery and Delivery
Facility, Nanomaterials for Biomedical Applications, Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
4
|
Effects of chloroquine and hydroxychloroquine on the sensitivity of pancreatic cancer cells to targeted therapies. Adv Biol Regul 2023; 87:100917. [PMID: 36243652 DOI: 10.1016/j.jbior.2022.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
Abstract
Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is a cancer which is difficult to effectively treat as it is often detected late in the disease process. Almost all PDACs (over 90%) have activating mutations in the GTPase gene KRAS. These mutations result in constitutive KRas activation and the mobilization of downstream pathways such as the Raf/MEK/ERK pathway. Small molecule inhibitors of key components of the KRas/Raf/MEK/ERK pathways as well as monoclonal antibodies (MoAbs) specific for upstream growth factor receptors such insulin like growth factor-1 receptor (IGF1-R) and epidermal growth factor receptors (EGFRs) have been developed and have been evaluated in clinical trials. An additional key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, metabolism, cancer progression and other growth regulatory processes. Small molecule mutant TP53 reactivators have been developed which alter the structure of mutant TP53 protein and restore some of its antiproliferative activities. Some mutant TP53 reactivators have been examined in clinical trials with patients with mutant TP53 genes. Inhibitors to the TP53 negative regulator Mouse Double Minute 2 (MDM2) have been developed and analyzed in clinical trials. Chloroquine and hydroxychloroquine are established anti-malarial and anti-inflammatory drugs that also prevent the induction of autophagy which can have effects on cancer survival. Chloroquine and hydroxychloroquine have also been examined in various clinical trials. Recent studies are suggesting effective treatment of PDAC patients may require chemotherapy as well as targeting multiple pathways and biochemical processes.
Collapse
|
5
|
Yuan Z, Cai J, Du Q, Ma Q, Xu L, Cai Y, Zhong X, Guo X. Chloroquine Sensitizes Esophageal Carcinoma EC109 Cells to Paclitaxel by Inhibiting Autophagy. Crit Rev Eukaryot Gene Expr 2023; 33:43-53. [PMID: 37522544 DOI: 10.1615/critreveukaryotgeneexpr.2023046722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
As an autophagy inhibitor, chloroquine (CQ) showed anti-tumor effect on several types of cancer and paclitaxel (PTX) is widely used in the treatment of esophageal carcinoma patients, but chemoresistance remains a major hurdle for PTX application due to the cytoprotective autophagy. Therefore, the aim of this study was to investigate whether CQ could elevate the anti-tumor effect of PTX on esophageal carcinoma cell line EC109 and explore the potential molecular mechanisms. We confirmed the suppressive effect of PTX on EC109 by MTT, scratch test, transwell and soft agar assay. And, we detected the key proteins in Akt/mTOR pathway, as well as the autophagy marker LC3 and p62 through Western Blot. In addition, GFP-LC3 plasmid was transfected into EC109 cells to monitor the autophagosome after CQ and PTX treatment. Ultimately, we observed the alterations in the proliferation and colony formation abilities of EC109 after knocking down mTOR by shRNA. We confirmed PTX could suppress the proliferation, migration and colony formation (all P < 0.05) abilities of EC109, and CQ could sensitize the inhibition effect of PTX by inhibiting autophagy through Akt/mTOR pathway. Furthermore, inhibiting Akt/mTOR pathway initiated autophagy and enhanced the sensitivity of EC109 to CQ and PTX. In summary, we suggest CQ could be used as a potential chemosensitizer for PTX in esophageal carcinoma treatment.
Collapse
Affiliation(s)
- Zichun Yuan
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jiajing Cai
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qin Du
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Ma
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yan Cai
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaowu Zhong
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China; Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
6
|
Al-Bari AA. Inhibition of autolysosomes by repurposing drugs as a promising therapeutic strategy for the treatment of cancers. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2078894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
7
|
Mohamed FEZ, Jalan R, Minogue S, Andreola F, Habtesion A, Hall A, Winstanley A, Damink SO, Malagó M, Davies N, Luong TV, Dhillon A, Mookerjee R, Dhar D, Al-Jehani RM. Inhibition of TLR7 and TLR9 Reduces Human Cholangiocarcinoma Cell Proliferation and Tumor Development. Dig Dis Sci 2022; 67:1806-1821. [PMID: 33939146 DOI: 10.1007/s10620-021-06973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) are key players in innate immunity and modulation of TLR signaling has been demonstrated to profoundly affect proliferation and growth in different types of cancer. However, the role of TLRs in human intrahepatic cholangiocarcinoma (ICC) pathogenesis remains largely unexplored. AIMS We set out to determine if TLRs play any role in ICCs which could potentially make them useful treatment targets. METHODS Tissue microarrays containing samples from 9 human ICCs and normal livers were examined immunohistochemically for TLR4, TLR7, and TLR9 expression. Proliferation of human ICC cell line HuCCT1 was measured by MTS assay following treatment with CpG-ODN (TLR9 agonist), imiquimod (TLR7 agonist), chloroquine (TLR7 and TLR9 inhibitor) and IRS-954 (TLR7 and TLR9 antagonist). The in vivo effects of CQ and IRS-954 on tumor development were also examined in a NOD-SCID mouse xenograft model of human ICC. RESULTS TLR4 was expressed in all normal human bile duct epithelium but absent in the majority (60%) of ICCs. TLR7 and TLR9 were expressed in 80% of human ICCs. However, TLR7 was absent in all cases of normal human bile duct epithelium and only one was TLR9 positive. HuCCT1 cell proliferation in vitro significantly increased following IMQ or CpG-ODN treatment (P < 0.03 and P < 0.002, respectively) but decreased with CQ (P < 0.02). In the mouse xenograft model there was significant reduction in size of tumors from CQ and IRS-954 treated mice compared to untreated controls. CONCLUSION TLR7 and TLR9 should be further explored for their potential as actionable targets in the treatment of ICC.
Collapse
Affiliation(s)
- Fatma El Zahraa Mohamed
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Pathology Department, Minia University, El-Minia, Egypt
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Shane Minogue
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | - Alison Winstanley
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Steven Olde Damink
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Massimo Malagó
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Amar Dhillon
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Rajeshwar Mookerjee
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Dipok Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Rajai Munir Al-Jehani
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
|
9
|
Mou Q, Yang YW, Chen L, Fang T, Yao YC, Du ZQ, Yang CX. Melatonin mitigates Chloroquine-induced defects in porcine immature Sertoli cells. Theriogenology 2022; 177:1-10. [PMID: 34653791 DOI: 10.1016/j.theriogenology.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 μM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be partially rescued by melatonin (MT) (10 nM). Transcriptome profiling identified 1611 differentially expressed genes (DEGs) (776 up- and 835 down-regulated) (20 μM CQ vs. DMSO), mainly involved in MAPK cascade, cell proliferation/apoptosis, HIF-1, PI3K-Akt and lysosome signaling pathways. In contrast, only 467 (224 up- and 243 down-regulated) DEGs (CQ + MT vs. DMSO) could be found after MT (10 nM) addition, enriched in cell cycle, regulation of apoptotic process, lysosome and reproduction pathways. Therefore, the partial rescue effects of MT on CQ treatment were confirmed by multiple assays (cell viability, ROS level, mitochondrial function, apoptosis, and mRNA levels of selected genes). Collectively, CQ treatment could impair porcine iSC viability by deranging the signaling pathways related to apoptosis and autophagy, which could be partially rescued by MT supplementation.
Collapse
Affiliation(s)
- Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yu-Wei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Lu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yu-Chang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China; College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
10
|
Chou KY, Chen PC, Chang AC, Tsai TF, Chen HE, Ho CY, Hwang TIS. Attenuation of chloroquine and hydroxychloroquine on the invasive potential of bladder cancer through targeting matrix metalloproteinase 2 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:2138-2145. [PMID: 34278709 DOI: 10.1002/tox.23328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Bladder cancer (BC), one of the most common urological neoplastic disorders in men, has an extremely low survival rate because of its tendency to metastasize. The anticancer drugs chloroquine (CQ) and hydroxy CQ (HCQ) might inhibit tumor progression and invasiveness. However, the mechanism by which CQ and HCQ influence BC is undetermined. In this study, CQ and HCQ treatments inhibited the migration and invasion of two BC cell types (5637 and T24) through expression modulation of matrix metalloproteinase-2 (MMP-2), which belongs to the matrix MMP family and is a key mediator of cancer progression. Moreover, additional data revealed that the migrative and invasive effects of BC cells treated with CQ or HCQ were abolished after treatment with rapamycin, which induces autophagy, demonstrating that CQ and HCQ functions in BC are based on autophagy inhibition. In conclusion, our research demonstrated that CQ and HCQ regulated cell motility in BC through MMP-2 downregulation by targeting autophagy functions, providing a novel therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chao-Yen Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Urology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
12
|
Hydroxychloroquine Potentiates Apoptosis Induced by PPAR α Antagonist in 786-O Clear Cell Renal Cell Carcinoma Cells Associated with Inhibiting Autophagy. PPAR Res 2021; 2021:6631605. [PMID: 33959154 PMCID: PMC8075691 DOI: 10.1155/2021/6631605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major pathological pattern of renal cell carcinoma. The ccRCC cells exhibit a certain degree of inherent drug resistance due to some genetic mutations. In recent years, peroxisome proliferator-activated receptor-α (PPARα) antagonists have been reported as a targeted therapeutic drug capable of inducing apoptosis and cell cycle arrest in the ccRCC cell line. Autophagy, which can be induced by stress in eukaryotic cells, plays a complex role in the proliferation, survival, and death of tumor cells. In our study, we found that the expression of PPARα was low in highly differentiated ccRCC tissues and 786-O cell line but high in poorly differentiated ccRCC tissues. The level of PPARα expression in ccRCC tissues is correlated to the grade of differentiation, but not to the sex or age of ccRCC patients. The findings also revealed that the PPARα antagonist GW6471 can lower cell viability and induce autophagy in the 786-O ccRCC cell line. This autophagy can be inhibited by hydroxychloroquine. When treated with a combination of hydroxychloroquine and GW6471, the viability of the 786-O cells was decreased further when compared to the treatment with GW6471 or hydroxychloroquine alone, and apoptosis was promoted. Meanwhile, when human kidney 2 cells were cotreated with hydroxychloroquine and GW6471, cell viability was only slightly influenced. Hence, our finding indicates that the combination of GW6471 and hydroxychloroquine may constitute a novel and potentially effective treatment for ccRCC. Furthermore, this approach is likely to be safe owing to its minimal effects on normal renal tissues.
Collapse
|
13
|
Ji X, Zhang X, Li Z. ULK1 inhibitor induces spindle microtubule disorganization and inhibits phosphorylation of Ser10 of histone H3. FEBS Open Bio 2020; 10:2452-2463. [PMID: 33040463 PMCID: PMC7609780 DOI: 10.1002/2211-5463.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 01/28/2023] Open
Abstract
Certain tumors are dependent on autophagy for survival; thus, the use of unc‐51‐like autophagy activating kinase (ULK) 1 inhibitors to block autophagy has the potential for tumor treatment. However, ULK1 inhibitors affect processes other than autophagy. Herein, we report that the ULK1 inhibitors SBI‐0206965/MRT68921 not only inhibit phosphorylation of histone H3 (Ser10) and delay chromatin condensation but also induce spindle microtubule disorganization to form short and fragmented microtubule polymers. Although the delay in chromatin condensation also delayed mitotic entry, the disorganized microtubule polymers resulted in unsegregated chromosomes and polyploidy. Although the effect on mitotic entry was moderate, polyploidy formation was decreased in ULK1 knockout cells with or without ULK2 knockdown. In conclusion, it will be helpful to consider the roles of ULK1 inhibitors in mitotic dysregulation, as well as autophagy, when evaluating their antitumor efficacy.
Collapse
Affiliation(s)
- Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Zhiyuan Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
14
|
Zhou W, Wang H, Yang Y, Chen ZS, Zou C, Zhang J. Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 2020; 25:S1359-6446(20)30367-6. [PMID: 32947043 PMCID: PMC7492153 DOI: 10.1016/j.drudis.2020.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Quinoline (QN) derivatives are often used for the prophylaxis and treatment of malaria. Chloroquine (CQ), a protonated, weakly basic drug, exerts its antimalarial effect mainly by increasing pH and accumulating in the food vacuole of the parasites. Repurposing CQ is an emerging strategy for new indications. Given the inhibition of autophagy and its immunomodulatory action, CQ shows positive efficacy against cancer and viral diseases, including Coronavirus 2019 (COVID-19). Here, we review the underlying mechanisms behind the antimalarial, anticancer and antiviral effects of CQ. We also discuss the clinical evidence for the use of CQ and hydroxychloroquine (HCQ) against COVID-19.
Collapse
Affiliation(s)
- Wenmin Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA.
| | - Chang Zou
- The Second Clinical Medical College of Jinan University, Shenzhen, 518020, PR China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
15
|
Al-Bari MAA. Co-targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J Cell Mol Med 2020; 24:11667-11679. [PMID: 32935427 PMCID: PMC7578893 DOI: 10.1111/jcmm.15879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The catabolic autophagy eliminates cytoplasmic components and organelles via lysosomes. Non‐selective bulk autophagy and selective autophagy (mitophagy) are linked in intracellular homeostasis both normal and cancer cells. Autophagy has complex and paradoxical dual role in cancers; it can play either tumour suppressor or tumour promoter depending on the tumour type, stage, microenvironment and genetic context. Cancer stem cells (CSCs) cause tumour recurrence and promote resistant to therapy for driving poor clinical consequences. Thus, new healing strategies are urgently needed to annihilate and eradicate CSCs. As chloroquine (CQ) analogues show positive clinical outcome in several clinical trials either standalone or combination with several chemotherapies. Moreover, CQ analogues are known to eliminate CSCs via altering DNA methylation. However, several obstacles such as higher concentrations and dose‐dependent toxicity are noticeable in the treatment of cancers. As tumour cells predominantly rely on mitochondrial actions, mitochondrial targeting FDA‐approved antibiotics are reported to effectively eradicate CSCs alone or combination with chemotherapy. However, antibiotics cause metabolic glycolytic shift in cancer cells for survival and repopulation. This review will provide a sketch of the inhibiting roles of current chloroquine analogues and antibiotic combination in CSC autophagy process and discuss the possibility that pre‐clinical and clinical potential therapeutic strategy for anticancer therapy.
Collapse
|
16
|
Upregulation of DR5 and Downregulation of Survivin by IITZ-01, Lysosomotropic Autophagy Inhibitor, Potentiates TRAIL-Mediated Apoptosis in Renal Cancer Cells via Ubiquitin-Proteasome Pathway. Cancers (Basel) 2020; 12:cancers12092363. [PMID: 32825566 PMCID: PMC7564912 DOI: 10.3390/cancers12092363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively is able to increase apoptosis in cancer cells as agent with minimum toxicity to noncancerous cells. However, all cancer cells are not sensitive to TRAIL-induced apoptosis. In this study, we showed the sub-lethal concentrations of a lysosomotropic autophagy inhibitor, IITZ-01, sensitizes cancer cells (renal, lung, and breast carcinoma) to TRAIL-induced apoptosis through DR5 upregulation and survivin downregulation through ubiquitin-proteasome pathway. Knockdown of DR5 or overexpression of survivin inhibited combined treatment with IITZ-01 and TRAIL-induced apoptosis. IITZ-01 downregulated protein expression of Cbl, ubiquitin E3 ligase, and decreased expression level of Cbl markedly led to increase DR5 protein expression and TRAIL sensitivity. Moreover, IITZ-01 decreased expression level of survivin protein via downregulation of deubiquitinase ubiquitin-specific protease 9X (USP9X) expression. Taken together, these results provide the first evidence that IITZ-01 enhances TRAIL-mediated apoptosis through DR5 stabilization by downregulation of Cbl and USP9X-dependent survivin ubiquitination and degradation in renal carcinoma cells.
Collapse
|
17
|
Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci 2020; 254:117775. [PMID: 32418894 PMCID: PMC7211740 DOI: 10.1016/j.lfs.2020.117775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
Recent global outbreak of the pandemic caused by coronavirus (COVID-19) emphasizes the urgent need for novel antiviral therapeutics. It can be supplemented by utilization of efficient and validated drug discovery approaches such as drug repurposing/repositioning. The well reported and clinically used anti-malarial aminoquinoline drugs (chloroquine and hydroxychloroquine) have shown potential to be repurposed to control the present pandemic by inhibition of COVID-19. The review elaborates the mechanism of action, safety (side effects, adverse effects, toxicity) and details of clinical trials for chloroquine and hydroxychloroquine to benefit the clinicians, medicinal chemist, pharmacologist actively involved in controlling the pandemic and to provide therapeutics for the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Vaishali M Patil
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Shipra Singhal
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
18
|
Proteomics reveals a therapeutic vulnerability via the combined blockade of APE1 and autophagy in lung cancer A549 cells. BMC Cancer 2020; 20:634. [PMID: 32641008 PMCID: PMC7346405 DOI: 10.1186/s12885-020-07111-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Drug resistance is a major cause of therapeutic failure that is often associated with elevated autophagy and apurinic/apyrimidinic endonuclease 1 (APE1) expression. Herein, we investigated the role of APE1 and autophagy in A549 cells treated with cisplatin. METHODS SILAC proteomics was applied to obtain a panoramic view of cisplatin treatment in KRASG12S-mutant A549 cells. Quantity analysis of cellular apoptosis and autophagy was based on flow cytometry. Western blotting was used to examine the expression levels of apoptosis- and autophagy-related proteins, as well as those of APE1. Knockdown of APE1 was achieved by RNA interference. Immunoprecipitation was further employed to reveal the molecular interaction of APE1, p53, and LC3 when A549 cells were exposed to cisplatin. RESULTS SILAC proteomics revealed that 72 canonical pathways, including base excision repair (BER) and autophagy signalling pathways, were regulated after cisplatin treatment in A549 cells. Cisplatin markedly induced autophagy and apoptosis in A549 cells, accompanied by remarkable APE1 increase. Suppression of autophagy enhanced the inhibition effect of cisplatin on cell growth, proliferation, and colony formation; however, APE1 inhibition enhanced the expression of LC3-I/II, suggesting that APE1 and autophagy are compensatory for cell survival to evade the anticancer action of cisplatin. Immunoprecipitation results revealed the triple complex of APE1-p53-LC3 in response to cisplatin plus CQ in A549 cells. Dual inhibition of APE1 and autophagy significantly enhanced cisplatin-induced apoptosis, which eventually overcame drug resistance in cisplatin-resistant A549 cells. CONCLUSIONS Dual inhibition of APE1 and autophagy greatly enhances apoptosis in parental KRASG12S-mutant A549 cells and cisplatin-resistant A549 cells via regulation of APE1-p53-LC3 complex assembly, providing therapeutic vulnerability to overcome cisplatin resistance in the context of KRASG12S-mutant lung cancer.
Collapse
|
19
|
Pereira BB. Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:177-181. [PMID: 32281481 PMCID: PMC7157945 DOI: 10.1080/10937404.2020.1752340] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a result of the 2019 coronavirus disease pandemic (COVID-19), there has been an urgent worldwide demand for treatments. Due to factors such as history of prescription for other infectious diseases, availability, and relatively low cost, the use of chloroquine (CQ) and hydroxychloroquine (HCQ) has been tested in vivo and in vitro for the ability to inhibit the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, even though investigators noted the therapeutic potential of these drugs, it is important to consider the toxicological risks and necessary care for rational use of CQ and HCQ. This study provides information on the main toxicological and epidemiological aspects to be considered for prophylaxis or treatment of COVID-19 using CQ but mainly HCQ, which is a less toxic derivative than CQ, and was shown to produce better results in inhibiting proliferation of SARS-CoV-2 based upon preliminary tests.
Collapse
Affiliation(s)
- Boscolli Barbosa Pereira
- Institute of Geography, Department of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Uberlândia, Brazil
- Institute of Biotechnology, Department of Genetics and Biochemistry, Federal University of Uberlândia, Umuarama Campus, Uberlândia, Brazil
| |
Collapse
|
20
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Arnaout A, Robertson SJ, Pond GR, Lee H, Jeong A, Ianni L, Kroeger L, Hilton J, Coupland S, Gottlieb C, Hurley B, McCarthy A, Clemons M. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res Treat 2019; 178:327-335. [PMID: 31392517 DOI: 10.1007/s10549-019-05381-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Chloroquine has demonstrated anti-tumor activities through autophagy inhibition and cell cycle disruption. This study aimed to assess the effect of single-agent chloroquine on breast tumor cellular proliferation in a randomized, phase II, double-blind, placebo-controlled, pre-surgical window of opportunity trial. METHODS Patients with newly diagnosed breast cancer were randomized 2:1 to chloroquine 500 mg daily or placebo for 2- to 6-weeks prior to their breast surgery. The primary outcome was the relative change in measures of proliferation (Ki67) in primary breast cancer cells pre- and post-treatment. Adverse events and toxicity profiles were also evaluated. RESULTS From September 2015 to December 2016, 70 patients were randomized [46 (66%) chloroquine and 24 (34%) placebo]. Ten patients who were randomized to chloroquine withdrew from study due to adverse events. Mean duration of drug intake was 15 days (range 14-29 days). There were no significant differences between the chloroquine or placebo arms with respect to either the percentage change (- 0.4 vs. - 1.2, p = 0.088) or absolute change (- 2.0% vs. - 5.2%, p = 0.066) in Ki67 index pre- and post-drug treatment. Although adverse effects were minimal and all classified as grade 1, the effects were significant enough to cause nearly 15% of patients to discontinue therapy. CONCLUSIONS Treatment with single-agent chloroquine 500 mg daily in the preoperative setting was not associated with any significant effects on breast cancer cellular proliferation. It was, however, associated with toxicity that may affect its broader use in oncology.
Collapse
Affiliation(s)
- Angel Arnaout
- Division of Surgical Oncology, Department of Surgery, Ottawa Hospital, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Gregory R Pond
- Department of Oncology, McMaster University, Hamilton, Canada
| | - Hoyun Lee
- Health Sciences North Research Institute, Sudbury, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Ahwon Jeong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Luisa Ianni
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Ottawa Hospital Breast Health Centre, Ottawa, Canada
| | - Lynne Kroeger
- Ottawa Hospital Breast Health Centre, Ottawa, Canada
| | - John Hilton
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Division of Medical Oncology, Department of Medicine, University of Ottawa and Ottawa Hospital Cancer Center, The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa, Canada
| | - Stuart Coupland
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Chloe Gottlieb
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, Ottawa, Canada
| | - Anne McCarthy
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital, Ottawa, Canada
| | - Mark Clemons
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada. .,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada. .,Division of Medical Oncology, Department of Medicine, University of Ottawa and Ottawa Hospital Cancer Center, The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa, Canada.
| |
Collapse
|
22
|
Brun S, Bassissi F, Serdjebi C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, Raymond E, Halfon P. GNS561, a new lysosomotropic small molecule, for the treatment of intrahepatic cholangiocarcinoma. Invest New Drugs 2019; 37:1135-1145. [DOI: 10.1007/s10637-019-00741-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
23
|
Papanagnou P, Papadopoulos GE, Stivarou T, Pappas A. Toward fully exploiting the therapeutic potential of marketed pharmaceuticals: the use of octreotide and chloroquine in oncology. Onco Targets Ther 2018; 12:319-339. [PMID: 30643430 PMCID: PMC6317484 DOI: 10.2147/ott.s182685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pleiotropy in biological systems and their targeting allows many pharmaceuticals to be used for multiple therapeutic purposes. Fully exploiting the therapeutic properties of drugs that are already marketed would be highly advantageous. This is especially the case in the field of oncology, where the ineffectiveness of typical anticancer agents is a common issue, while the development of novel anticancer agents is a costly and particularly time-consuming process. Octreotide and chloroquine are two pharmaceuticals that exhibit profound antitumorigenic activities. However, the current therapeutic use of octreotide is restricted primarily to the management of acromegaly and neuroendocrine tumors, both of which are rare medical conditions. Similarly, chloroquine is used mainly for the treatment of malaria, which is designated as a rare disease in Western countries. This limited exploitation contradicts the experimental findings of numerous studies outlining the possible expansion of the use of octreotide to include the treatment of common human malignancies and the repositioning of chloroquine in oncology. Herein, we review the current knowledge on the antitumor function of these two agents stemming from preclinical or clinical experimentation. In addition, we present in silico evidence on octreotide potentially binding to multiple Wnt-pathway components. This will hopefully aid in the design of new efficacious anticancer therapeutic regimens with minimal toxicity, which represents an enormous unmet demand in oncology.
Collapse
Affiliation(s)
| | | | - Theodora Stivarou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Anastasios Pappas
- Department of Urology, Agios Savvas Cancer Hospital, Athens 11522, Greece,
| |
Collapse
|
24
|
Wang J, Qi Q, Zhou W, Feng Z, Huang B, Chen A, Zhang D, Li W, Zhang Q, Jiang Z, Bjerkvig R, Prestegarden L, Thorsen F, Wang X, Li X, Wang J. Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy 2018; 14:2007-2022. [PMID: 30025493 PMCID: PMC6152528 DOI: 10.1080/15548627.2018.1501133] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Flavokawain B (FKB), a natural kava chalcone, displays potent antitumor activity in various types of cancer. The mechanism of action, however, remains unclear. Here, we evaluated the efficacy of FKB in the treatment of human glioblastoma multiforme (GBM) as well as the molecular basis for its inhibitory effects in cancer. Approximately 60% of GBM cells became senescent after treatment with FKB as assessed in the senescence-associated (SA)-GLB1/SA-β-galactosidase assay. The cellular process of autophagy potentially contributed to the establishment of senescence. Transmission electron microscopy revealed the formation of autophagic vesicles under FKB treatment, and MAP1LC3B (microtubule associated protein 1 light chain 3 beta)-II was increased. Transfection of ATG5 or ATG7 small interfering RNAs (siRNAs) inhibited FKB-induced autophagy in U251 cells. Western blot revealed that molecular components of the endoplasmic reticulum stress pathway were activated, including ATF4 (activating transcription factor 4) and DDIT3 (DNA damage inducible transcript 3), while levels of TRIB3 (tribbles pseudokinase 3) increased. In addition, based on the phosphorylation status, the AKT-MTOR-RPS6KB1 pathway was inhibited, which induced autophagy in GBM cells. Inhibition of autophagy by autophagy inhibitors 3-methyladenine and chloroquine or knockdown of ATG5 or ATG7 caused FKB-treated U251 cells to switch from senescence to apoptosis. Finally, knockdown of ATG5 or treatment with chloroquine in combination with FKB, significantly inhibited tumor growth in vivo. Our results demonstrated that FKB induced protective autophagy through the ATF4-DDIT3-TRIB3-AKT-MTOR-RPS6KB1 signaling pathway in GBM cells, indicating that the combination treatment of FKB with autophagy inhibitors may potentially be an effective therapeutic strategy for GBM. ABBREVIATIONS 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATF4: activating transcription factor 4; ATG: autophagy related; CASP3: caspase 3; CCK-8: cell counting kit-8; CDKN1A: cyclin-dependent kinase inhibitor 1A; CQ: chloroquine; DDIT3: DNA damage inducible transcript 3; DMEM: Dulbecco's modified Eagle's medium; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FKB: flavokawain B; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBM: glioblastoma multiforme; GFP: green fluorescent protein; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PARP1: poly(ADP-ribose) polymerase; 1RPS6KB1: ribosomal protein S6 kinase B1; SA-GLB1: senescence-associated galactosidase beta 1; siRNA: short interfering RNA; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TRIB3: tribbles pseudokinase 3; TUNEL: deoxynucleotidyl transferase-mediated dUTP nick-end labeling.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Wenjing Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong, P.R. China
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Li L, Chen X, Gu H. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 2018; 7:50682-50697. [PMID: 27191982 PMCID: PMC5226613 DOI: 10.18632/oncotarget.9330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.
Collapse
Affiliation(s)
- Li Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
26
|
Wan B, Dai L, Wang L, Zhang Y, Huang H, Qian G, Yu T. Knockdown of BRCA2 enhances cisplatin and cisplatin-induced autophagy in ovarian cancer cells. Endocr Relat Cancer 2018; 25:69-82. [PMID: 29066501 DOI: 10.1530/erc-17-0261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Clinical implications of the BRCA2 expression level on treatments of ovarian cancer are controversial. Here, we demonstrated that platinum-resistant cancer had a higher percentage of high BRCA2 level (87.5% vs 43.6%, P = 0.001), and that patients with a low BRCA2 level in cancer tissues had longer progression-free survival (with a median time of 28.0 vs 12.0 months, P < 0.001) and platinum-free duration (with a median time of 19.0 vs 5.0 months, P < 0.001) compared with those with a high BRCA2 level. In human ovarian cancer cell lines CAOV-3 and ES-2, cisplatin induced an upregulation of the RAD51 protein, which was inhibited after silencing BRCA2; silencing BRCA2 enhanced the action of cisplatin in vitro and in vivo Knockdown of BRCA2 promoted cisplatin-induced autophagy. Interestingly, the autophagy blocker chloroquine enhanced cisplatin in BRCA2-silenced cells accompanied by an increase in apoptotic cells, which did not occur in BRCA2-intact cells; chloroquine enhanced the efficacy of cisplatin against BRCA2-silenced CAOV-3 tumors in vivo, with an increase in LC3-II level in tumor tissues. Sensitization of cisplatin was also observed in BRCA2-silenced CAOV-3 cells after inhibiting ATG7, confirming that chloroquine modulated the sensitivity via the autophagy pathway. These data suggest that a low BRCA2 level can predict better platinum sensitivity and prognosis, and that the modulation of autophagy can be a chemosensitizer for certain cancers.
Collapse
Affiliation(s)
- Biao Wan
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Leheyi Dai
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Huang
- Hospital of StomatologyChongqing Medical University, Chongqing, China
| | - Guanhua Qian
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Key Medical Laboratory of Obstetrics and GynecologyThe Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Jang M, Kim H, Park R, Jo D, Lee EJ, Oh WK, Park J. 2,2'-Methylenebis (6-tert-butyl 4-methylphenol) enhances the antitumor efficacy of belotecan, a derivative of camptothecin, by inducing autophagy. Oncotarget 2017; 8:115068-115078. [PMID: 29383142 PMCID: PMC5777754 DOI: 10.18632/oncotarget.22858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy regulation is important for tumor cell survival. Activation and inhibition of autophagy can sensitize tumor cells to anticancer drugs. However, few autophagy-regulating small molecules are available to increase the efficacy of anticancer drugs. Here, we report that 2,2′-methylenebis (6-tert-butyl 4-methylphenol), hereafter referred to as methylenebis, is a novel autophagy-regulating small molecule that sensitizes tumor cells to belotecan, which is a derivative of camptothecin, a topoisomerase I inhibitor. Methylenebis activates autophagic flux by increasing the level of LC3-II and forming autolysosome puncta. Moreover, methylenebis enhances the antitumor efficacy of belotecan by activating both autophagy and apoptosis. Interestingly, methylenebis increased the level of LC3-II and belotecan independently decreased the level of p62, suggesting that methylenebis and belotecan target different steps of autophagy. Finally, we searched for compounds that are structurally similar to methylenebis. Our results imply that the specific structure of methylenebis contributes to its ability to activate autophagy.
Collapse
Affiliation(s)
- Minsu Jang
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Hyunju Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Rackhyun Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Daum Jo
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Chung-Ang University School of Medicine, Seoul 06980, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
28
|
Fardet L, Nazareth I, Petersen I. Effects of chronic exposure of hydroxychloroquine/chloroquine on the risk of cancer, metastasis, and death: a population-based cohort study on patients with connective tissue diseases. Clin Epidemiol 2017; 9:545-554. [PMID: 29138600 PMCID: PMC5679565 DOI: 10.2147/clep.s143563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Hydroxychloroquine and chloroquine may reduce the risk of cancer as they inhibit autophagy, in particular, in people with connective tissue diseases. Methods The hazard ratios of cancers, metastases, and death were assessed in adults with connective tissue diseases prescribed hydroxychloroquine/chloroquine for at least 1 year in comparison with unexposed individuals with the same underlying conditions. A competing risk survival regression analysis was performed. Data were extracted from the Health Improvement Network UK primary care database. Results Eight thousand nine hundred and ninety-nine individuals exposed to hydroxychloroquine (98.6%) or chloroquine (1.4%) and 24,118 unexposed individuals were included in the study (median age: 56 [45–66] years, women: 76.8%). When compared to the unexposed group, individuals exposed to hydroxychloroquine/chloroquine were not at lower risk of non-skin cancers (adjusted sub-distribution hazard ratio [sHR]: 1.04 [0.92–1.18], p=0.54), hematological malignancies (adjusted sHR: 1.00 [0.73–1.38], p=0.99), or skin cancers (adjusted sHR: 0.92 [0.78–1.07], p=0.26). The risk of metastasis was not significantly different between the two groups. However, it was significantly lower during the exposure period when compared with the unexposed (adjusted sHR: 0.64 [0.44–0.95] for the overall population and 0.61 [0.38–1.00] for those diagnosed with incident cancers). The risk of death was also significantly lower in those exposed to hydroxychloroquine/chloroquine (adjusted HR: 0.90 [0.81–1.00] in the overall population and 0.78 [0.64–0.96] in those diagnosed with incident cancer). Conclusion Individuals on long-term exposure to hydroxychloroquine/chloroquine are not at lower risk of cancer. However, hydroxychloroquine/chloroquine may lower the risk of metastatic cancer and death.
Collapse
Affiliation(s)
- L Fardet
- Department of Primary Care and Population Health, University College London, UK.,Department of Dermatology, Henri Mondor Hospital AP-HP, Créteil, France.,Equipe d'Accueil 7379 EpiDermE, Université Paris Est Créteil, Créteil, France
| | - I Nazareth
- Department of Primary Care and Population Health, University College London, UK
| | - I Petersen
- Department of Primary Care and Population Health, University College London, UK
| |
Collapse
|
29
|
Zheng Y, Su C, Zhao L, Shi Y. mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. J Nanobiotechnology 2017; 15:66. [PMID: 28978341 PMCID: PMC5628454 DOI: 10.1186/s12951-017-0302-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) that act against the epithelial growth factor receptor (EGFR) were once widely used in chemotherapy for many human cancers. However, acquired chemoresistance occurred in almost all patients, limiting the clinical application of EGFR-TKI. Thus far, no effective methods existing can resolve this problem. Designing a therapeutic treatment with a specific multi-target profile has been regarded as a possible strategy to overcome acquired EGFR-TKI resistance. METHODS MDR1 antibody-modified chitosan nanoparticles loading gefitinib and autophagy inhibitor chloroquine were prepared by ionic crosslinking and electrostatic attracting method. MTT assay, flow cytometry analysis and western blot assay were all performed to confirm the effect of different formulations of gefitinib on the proliferation of SMMC-7721/gefitinib cells. The preparations demonstrated their multi-target potential to achieve both tumor-targeting selectivity and the desired antitumor effects by blocking cell-surface MDR1 and inhibiting autophagy. RESULTS mAb MDR1-modified CS NPs, when combined with the co-delivery of gefitinib and chloroquine, showed targeting and therapeutic potential on enhancing the delivery of anticancer drugs and inducing significant cell apoptosis against acquired EGFR-TKI resistance through the modulation of autophagy and while blocking the activity of the MDR1 receptor. CONCLUSIONS A new approach to design an excellent nanoparticle drug-delivery system can overcome acquired EGFR-TKI resistance against various multiple antitumor targets.
Collapse
Affiliation(s)
- Yan Zheng
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
30
|
Di Zanni E, Bianchi G, Ravazzolo R, Raffaghello L, Ceccherini I, Bachetti T. Targeting of PHOX2B expression allows the identification of drugs effective in counteracting neuroblastoma cell growth. Oncotarget 2017; 8:72133-72146. [PMID: 29069774 PMCID: PMC5641117 DOI: 10.18632/oncotarget.19922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The pathogenic role of the PHOX2B gene in neuroblastoma is indicated by heterozygous mutations in neuroblastoma patients and by gene overexpression in both neuroblastoma cell lines and tumor samples. PHOX2B encodes a transcription factor which is crucial for the correct development and differentiation of sympathetic neurons. PHOX2B overexpression is considered a prognostic marker for neuroblastoma and it is also used by clinicians to monitor minimal residual disease. Furthermore, it has been observed that neuronal differentiation in neuroblastoma is dependent on down-regulation of PHOX2B expression, which confirms that PHOX2B expression may be considered a target in neuroblastoma. Here, PHOX2B promoter or 3′ untranslated region were used as molecular targets in an in vitro high-throughput approach that led to the identification of molecules able to decrease PHOX2B expression at transcriptional and likely even at post-transcriptional levels. Further functional investigations carried out on PHOX2B mRNA levels and biological consequences, such as neuroblastoma cell apoptosis and growth, showed that chloroquine and mycophenolate mofetil are most promising agents for neuroblastoma therapy based on down-regulation of PHOX2B expression. Finally, a strong correlation between the effect of drugs in terms of down-regulation of PHOX2B expression and of biological consequences in neuroblastoma cells confirms the role of PHOX2B as a potential molecular target in neuroblastoma.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy.,Present Address: Istituto di Biofisica, CNR, Genova, Italy
| | | | - Roberto Ravazzolo
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy
| | | | | | - Tiziana Bachetti
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
31
|
Lysosomes as Oxidative Targets for Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3749157. [PMID: 28757908 PMCID: PMC5516749 DOI: 10.1155/2017/3749157] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/31/2017] [Indexed: 01/13/2023]
Abstract
Lysosomes are membrane-bound vesicles that contain hydrolases for the degradation and recycling of essential nutrients to maintain homeostasis within cells. Cancer cells have increased lysosomal function to proliferate, metabolize, and adapt to stressful environments. This has made cancer cells susceptible to lysosomal membrane permeabilization (LMP). There are many factors that mediate LMP such as Bcl-2 family member, p53; sphingosine; and oxidative stress which are often altered in cancer. Upon lysosomal disruption, reactive oxygen species (ROS) levels increase leading to lipid peroxidation, mitochondrial dysfunction, autophagy, and reactive iron. Cathepsins are also released causing degradation of macromolecules and cellular structures. This ultimately kills the cancer cell through different types of cell death (apoptosis, autosis, or ferroptosis). In this review, we will explore the contributions lysosomes play in inducing cell death, how this is regulated by ROS in cancer, and how lysosomotropic agents might be utilized to treat cancers.
Collapse
|
32
|
Niklaus M, Adams O, Berezowska S, Zlobec I, Graber F, Slotta-Huspenina J, Nitsche U, Rosenberg R, Tschan MP, Langer R. Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer. Oncotarget 2017; 8:54604-54615. [PMID: 28903368 PMCID: PMC5589607 DOI: 10.18632/oncotarget.17554] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a lysosomal degradation and recycling process implicated in cancer progression and therapy resistance. We assessed the impact of basal autophagy in colon cancer (CC) in vitro and ex vivo. Functional autophagy was demonstrated in CC cell lines (LoVo; HT-29) showing a dose-dependent increase of the autophagy markers LC3B, p62 and autophagic vesciles upon increasing concentrations of the autophagy inhibitor chloroquine, which was demonstrated by immunoblotting, immunofluorescence and electron microscopy. Next, tissue microarrays with 292 primary resected CC, with cores from different tumor regions, and normal mucosa were analyzed by immunohistochemistry for LC3B and p62. CC tissue showed LC3B dot-like, p62 dot-like, cytoplasmic and nuclear staining in various levels without significant intratumoral heterogeneity. Tumoral LC3B and p62 expression was significantly higher than in normal tissue (p<0.001). No associations between staining patterns and pathological features (e.g. TNM categories; grading) were observed. Both low LC3B dot-like and low p62 dot-like-cytoplasmic staining were associated with worse overall survival (p=0.005 and p=0.002). The best prognostic discrimination, however, was seen for a combination of LC3B dot-like/p62 dot-like-cytoplasmic staining: high expression of both markers, indicative of impaired activated autophagy, was associated with the best overall survival. In contrast, high LC3B dot-like/low p62 dot-like-cytoplasmic expression, indicative of intact activated autophagy, was associated with the worst outcome (p<0.001 in univariate and HR=0.751; CI=0.607-0.928; p=0.008 in multivariate analysis). These specific expression patterns of LC3B and p62 pointing to different states of autophagy associated with diverging clinical outcomes highlighte the potential significance of basal autophagy in CC biology.
Collapse
Affiliation(s)
- Monique Niklaus
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Olivia Adams
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3008 Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3008 Bern, Switzerland
| | - Franziska Graber
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | | | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, D-81675 München, Germany
| | - Robert Rosenberg
- Department of Surgery, Kantonsspital Liestal, CH-4410 Liestal, Switzerland
| | - Mario P Tschan
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3008 Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| |
Collapse
|
33
|
Lin YC, Lin JF, Wen SI, Yang SC, Tsai TF, Chen HE, Chou KY, Hwang TIS. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis. Kaohsiung J Med Sci 2017; 33:215-223. [PMID: 28433067 DOI: 10.1016/j.kjms.2017.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/19/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer.
Collapse
Affiliation(s)
- Yi-Chia Lin
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Sheng-I Wen
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shan-Che Yang
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Te-Fu Tsai
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hung-En Chen
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kuang-Yu Chou
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Thomas I-Sheng Hwang
- Department of Urology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
34
|
Di Meco A, Li JG, Blass BE, Abou-Gharbia M, Lauretti E, Praticò D. 12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice. Biol Psychiatry 2017; 81:92-100. [PMID: 27499089 DOI: 10.1016/j.biopsych.2016.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The 12/15-lipoxygenase (12/15-LO) enzyme is upregulated in the brains of patients with Alzheimer's disease (AD), and its expression levels influence the onset of the AD-like phenotype in mouse models. However, whether targeting this pathway after the neuropathology and behavioral impairments have been established remains to be investigated. METHODS Triple transgenic (3xTg) mice received either PD146176-a selective and specific pharmacological inhibitor of 12/15-LO-or placebo starting at 12 months of age for 12 weeks. They were then assessed for the effect of the treatment on neuropathologies and behavioral impairments. RESULTS At the end of the study, mice in the control group showed a worsening of memory and learning abilities, whereas mice receiving PD146176 were undistinguishable from wild-type mice. The same group also had significantly lower amyloid beta levels and deposition, less tau neuropathology, increased synaptic integrity, and autophagy activation. Ex vivo and in vitro genetic and pharmacological studies found that the mechanism involved in these effects was the activation of neuronal autophagy. CONCLUSIONS Our findings provide new insights into the disease-modifying action of 12/15-LO pharmacological inhibition and establish it as a viable therapeutic approach for patients with AD.
Collapse
Affiliation(s)
- Antonio Di Meco
- Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jian-Guo Li
- Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Benjamin E Blass
- The Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Magid Abou-Gharbia
- The Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Elisabetta Lauretti
- Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Domenico Praticò
- Center for Translational Medicine, Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Abstract
Maintenance of proper cellular homeostasis requires constant surveillance and precise regulation of intracellular protein content. Protein monitoring and degradation is performed by two distinct pathways in a cell: the autophage-lysosome pathway and the ubiquitin-proteasome pathway. Protein degradation pathways are frequently dysregulated in multiple cancer types and can be both tumor suppressive and tumor promoting. This knowledge has presented the ubiquitin proteasome system (UPS) and autophagy as attractive cancer therapeutic targets. Deubiquitinating enzymes of the UPS have garnered recent attention in the field of cancer therapeutics due to their frequent dysregulation in multiple cancer types. The content of this chapter discusses reasoning behind and advances toward targeting autophagy and the deubiquitinating enzymes of the UPS in cancer therapy, as well as the compelling evidence suggesting that simultaneous targeting of these protein degradation systems may deliver the most effective, synergistic strategy to kill cancer cells.
Collapse
Affiliation(s)
- Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
36
|
Makowska A, Eble M, Prescher K, Hoß M, Kontny U. Chloroquine Sensitizes Nasopharyngeal Carcinoma Cells but Not Nasoepithelial Cells to Irradiation by Blocking Autophagy. PLoS One 2016; 11:e0166766. [PMID: 27902742 PMCID: PMC5130215 DOI: 10.1371/journal.pone.0166766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/03/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Treatment of nasopharyngeal carcinoma requires the application of high dosages of radiation, leading to severe long-term complications in the majority of patients. Sensitizing tumor cells to radiation could be a means to increase the therapeutic window of radiation. Nasopharyngeal carcinoma cells display alterations in autophagy and blockade of autophagy has been shown to sensitize them against chemotherapy. METHODS We investigated the effect of chloroquine, a known inhibitor of autophagy, on sensitization against radiation-induced apoptosis in a panel of five nasopharyngeal carcinoma cell lines and a SV40-transformed nasoepithelial cell line. Autophagy was measured by immunoblot of autophagy-related proteins, immunofluorescence of autophagosomic microvesicles and electron microscopy. Autophagy was blocked by siRNA against autophagy-related proteins 3, 5, 6 and 7 (ATG3, ATG5, ATG6 and ATG7). RESULTS Chloroquine sensitized four out of five nasopharyngeal cancer cell lines towards radiation-induced apoptosis. The sensitizing effect was based on the blockade of autophagy as inhibition of ATG3, ATG5, ATG6 and ATG7 by specific siRNA could substitute for the effect of chloroquine. No sensitization was seen in nasoepithelial cells. CONCLUSION Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells towards radiation-induced apoptosis by blocking autophagy. Further studies in a mouse-xenograft model are warranted to substantiate this effect in vivo.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kirsten Prescher
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mareike Hoß
- Electron Microscopic Facility, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
37
|
Ding C, Li F, Long Y, Zheng J. Chloroquine attenuates lipopolysaccharide-induced inflammatory responses through upregulation of USP25. Can J Physiol Pharmacol 2016; 95:481-491. [PMID: 28134560 DOI: 10.1139/cjpp-2016-0303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS) is a key pathogenic factor in sepsis, and its recognition by toll-like receptor 4 (TLR4) can activate two district signaling pathways, leading to activation of transcription factors including NF-κB and interferon regulatory factor 3 (IRF3). Chloroquine (CQ) has been shown to affect LPS-TLR4 colocalization and inhibit both MyD88-dependent and TRAM/TRIF-dependent pathways, though the mechanism involved is still poorly understood. Here, we found that the ubiquitin-proteasome system might be involved in this process. CQ increased USP25, a deubiquitinating enzyme, as well as mRNA and protein expression in a dose-dependent manner, which might to some degree be involved in CQ attenuation of LPS-induced macrophage activation. Overexpression of USP25 decreased LPS-induced inflammatory cytokines like TNF-α, IL-6, and IFN-β, while specific siRNA-mediated USP25 silencing increased TNF-α, IL-6, and IFN-β production and secretion. In addition, USP25 deletion strengthened mitogen-activated protein kinase (MAPKs) phosphorylation and IκB degradation. Moreover, USP25 interference increased NF-κB and IRF3 nuclear translocation. Taken together, our data demonstrated a new possible regulator of LPS-induced macrophage activation mediated by CQ, through upregulation of USP25.
Collapse
Affiliation(s)
- Changyu Ding
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| | - Fangfang Li
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| | - Yupeng Long
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| |
Collapse
|
38
|
Zhang Y, Cao Y, Sun X, Feng Y, Du Y, Liu F, Yu C, Jin F. Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int Immunopharmacol 2016; 42:100-107. [PMID: 27912145 DOI: 10.1016/j.intimp.2016.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
CQ is an anti-malaria drug, which has been used for years. However, there are published articles about its activity in anti-cancers. The aim of this approach was to look at possibility and related mechanisms of anti-breast cancer (mouse breast cancer cell line 4T1) by CQ alone. The studies of anti 4T1 in vitro and in vivo by CQ were performed. The growth of 4T1 in vitro and in vivo, survival of mice post treatment with CQ, changes of immune parameters and microenvironment in mice were evaluated. Our results demonstrate that CQ could markedly inhibit growth of 4T1 in vitro through inducing apoptosis of cells, inhibiting secretion of TGF-β and prolong the mice survival in vivo through boosting immune system by upregulating CD8+ T cell, and through down-regulating tumor associated macrophages (TAM), myeloid derived suppressing cells (MDSC) and Tregs, in microenvironment of mice bearing tumor. This provides a new mode of action for CQ and it is therefore concluded that CQ could be with potential in breast cancer therapy.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiaodan Sun
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yonghui Feng
- Department of Medical Examination Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yunting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Chunyun Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
39
|
Li Q, Yuan DM, Ma LH, Ma CH, Liu YF, Lv TF, Song Y. Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion. Tumour Biol 2016; 37:10.1007/s13277-016-5441-z. [PMID: 27771855 DOI: 10.1007/s13277-016-5441-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/23/2016] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural effusion (MPE) is associated with a poor prognosis in lung cancer. Currently, no effective cure exists for MPE. Chloroquine (CQ) has been demonstrated to induce vascular normalization and inhibit tumor growth. The aim of this study was to assess whether CQ affects MPE. The xenografts mice were divided into normal saline (NS), CQ, or bevacizumab (BE) group. Tumor growth and microvascular density (MVD) were monitored. We explored the effect of CQ on the proliferation, survival, and proangiogenic signaling of tumor cells in vitro. We further evaluated the effects of CQ on the viability, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). A chicken chorioallantoic membrane (CAM) model was used to elucidate the effects of CQ on angiogenesis. Finally, an MPE mouse model were treated by CQ, BE, or NS. The volume of pleural effusion, tumor foci, and MVD was evaluated. CQ therapy group exhibited decreased tumor volume, tumor weight, and MVD in the mouse xenografts. CQ inhibited the proliferation of the tumor cells. However, the expression of vascular endothelial growth factor was not affected. Additionally, CQ inhibited the proliferation, migration, and tube formation of HUVECs and also restrained angiogenesis in the CAM. Western blot showed that CQ might suppress angiogenesis by downregulating p-Akt, Jagged1, and Ang2 in HUVECs. In MPE mice, the volume of the pleural effusion, the number of pleural tumor foci, and the MVD were significantly reduced in the CQ group. Our work demonstrated that CQ played the role of an efficient treatment for MPE.
Collapse
Affiliation(s)
- Qian Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dong-Mei Yuan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Li-Hong Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chen-Hui Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ya-Fang Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University (Guangzhou), Nanjing, China
| | - Tang-Feng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Department of Respiratory Medicine, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
40
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
41
|
Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol Res 2016; 105:164-75. [PMID: 26826398 DOI: 10.1016/j.phrs.2016.01.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved cellular degradative process in which intracellular components (cellular proteins and organelles) are engulfed in autophagosomes which then fuse with lysosomes to form autolysosome for degradation. Autophagy is closely implicated in various physio-pathological processes and human diseases. Among them, the roles of autophagy in cancer have been extensively studied. Increasing evidence has demonstrated that inhibiting autophagy is a novel and promising approach in cancer therapy, based on the notion that autophagy is a pro-survival mechanism in cancer cells under therapeutic stress, and induction of autophagy is associated with chemoresistance of cancer cells to chemotherapeutic agents. Thus, suppression of autophagy would sensitize resistance tumor cells to cancer therapeutic agents, thereby supporting the clinical application of autophagy inhibitors. In recent years, significant progress has been achieved in developing autophagy inhibitors and testing their therapeutical potential, either as standalone or as adjuvant therapeutic agents, in cell and animal models, and more importantly in clinical trials. In this review, we will discuss some of these recent advances in development of novel small molecules autophagy inhibitors and their mechanisms of action, together with their applications in clinical trials.
Collapse
|