1
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
3
|
Nikolova S, Guenther A, Savai R, Weissmann N, Ghofrani HA, Konigshoff M, Eickelberg O, Klepetko W, Voswinckel R, Seeger W, Grimminger F, Schermuly RT, Pullamsetti SS. Correction to: Phosphodiesterase 6 subunits are expressed and altered in idiopathic pulmonary fibrosis. Respir Res 2022; 23:2. [PMID: 34991577 PMCID: PMC8739988 DOI: 10.1186/s12931-021-01907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Andreas Guenther
- University of Giessen Lung Centre (UGLC), Giessen, Germany.,Lung Clinic Waldhof Elgershausen, Greifenstein, Germany
| | - Rajkumar Savai
- University of Giessen Lung Centre (UGLC), Giessen, Germany
| | | | | | - Melanie Konigshoff
- Comprehensive Pneumology Center, University Hospital Grosshadern, Ludwig-Maximilians-University, and Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital Grosshadern, Ludwig-Maximilians-University, and Helmholtz Zentrum München, Munich, Germany
| | - Walter Klepetko
- Department of Cardiothoracic Surgery, University of Vienna, Vienna, Austria
| | - Robert Voswinckel
- University of Giessen Lung Centre (UGLC), Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- University of Giessen Lung Centre (UGLC), Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Ralph T Schermuly
- University of Giessen Lung Centre (UGLC), Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Soni S Pullamsetti
- University of Giessen Lung Centre (UGLC), Giessen, Germany. .,Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
4
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
5
|
Tworowski D, Gorohovski A, Mukherjee S, Carmi G, Levy E, Detroja R, Mukherjee SB, Frenkel-Morgenstern M. COVID19 Drug Repository: text-mining the literature in search of putative COVID19 therapeutics. Nucleic Acids Res 2021; 49:D1113-D1121. [PMID: 33166390 PMCID: PMC7778969 DOI: 10.1093/nar/gkaa969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of COVID-19 has generated an enormous amount of Big Data. To date, the COVID-19 Open Research Dataset (CORD-19), lists ∼130,000 articles from the WHO COVID-19 database, PubMed Central, medRxiv, and bioRxiv, as collected by Semantic Scholar. According to LitCovid (11 August 2020), ∼40,300 COVID19-related articles are currently listed in PubMed. It has been shown in clinical settings that the analysis of past research results and the mining of available data can provide novel opportunities for the successful application of currently approved therapeutics and their combinations for the treatment of conditions caused by a novel SARS-CoV-2 infection. As such, effective responses to the pandemic require the development of efficient applications, methods and algorithms for data navigation, text-mining, clustering, classification, analysis, and reasoning. Thus, our COVID19 Drug Repository represents a modular platform for drug data navigation and analysis, with an emphasis on COVID-19-related information currently being reported. The COVID19 Drug Repository enables users to focus on different levels of complexity, starting from general information about (FDA-) approved drugs, PubMed references, clinical trials, recipes as well as the descriptions of molecular mechanisms of drugs' action. Our COVID19 drug repository provide a most updated world-wide collection of drugs that has been repurposed for COVID19 treatments around the world.
Collapse
Affiliation(s)
- Dmitry Tworowski
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Alessandro Gorohovski
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Sumit Mukherjee
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Gon Carmi
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Eliad Levy
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Sunanda Biswas Mukherjee
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| |
Collapse
|
6
|
Dong G, Chen L, Zhang J, Liu T, Du L, Sheng C, Li M. Discovery of Turn-On Fluorescent Probes for Detecting PDEδ Protein in Living Cells and Tumor Slices. Anal Chem 2020; 92:9516-9522. [PMID: 32571022 DOI: 10.1021/acs.analchem.0c00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first small-molecule fluorescent turn-on probes for detecting PDEδ protein were rationally designed, showing reasonable fluorescent properties and the fluorescent ability has been applied for visualization of the PDEδ protein in living cells and at tissue levels. The qPCR results showed that the mRNA expression of KRAS, PDEδ, AKT1, MAPK1, MEK7, RAF1, and mTOR were downregulated by probes 1-3 through PI3K/AKT/mTOR and MAPK signal pathways. The probes also can downregulate the protein level of pErk and tErk. Therefore, these small-molecule fluorescent probes are expected to be used in the screening of antipancreatic cancer drugs targeting the PDEδ protein, as well as in obtaining a better understanding of the pathological and physiological roles of PDEδ protein.
Collapse
Affiliation(s)
- Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Long Chen
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jing Zhang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tingting Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Schmidt M, Cattani-Cavalieri I, Nuñez FJ, Ostrom RS. Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:34-42. [PMID: 32622335 PMCID: PMC7529846 DOI: 10.1016/j.coph.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
The second messenger molecule 3'5'-cyclic adenosine monophosphate (cAMP) imparts several beneficial effects in lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). While cAMP is bronchodilatory in asthma and COPD, it also displays anti-fibrotic properties that limit fibrosis. Phosphodiesterases (PDEs) metabolize cAMP and thus regulate cAMP signaling. While some existing therapies inhibit PDEs, there are only broad family specific inhibitors. The understanding of cAMP signaling compartments, some centered around lipid rafts/caveolae, has led to interest in defining how specific PDE isoforms maintain these signaling microdomains. The possible altered expression of PDEs, and thus abnormal cAMP signaling, in obstructive lung diseases has been poorly explored. We propose that inhibition of specific PDE isoforms can improve therapy of obstructive lung diseases by amplifying specific cAMP signals in discreet microdomains.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J Nuñez
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
8
|
Ye N, Xu Q, Li W, Wang P, Zhou J. Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors. Curr Top Med Chem 2019; 19:2114-2127. [PMID: 31475899 DOI: 10.2174/1568026619666190902145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Qingfeng Xu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wanwan Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
9
|
Leung ELH, Luo LX, Li Y, Liu ZQ, Li LL, Shi DF, Xie Y, Huang M, Lu LL, Duan FG, Huang JM, Fan XX, Yuan ZW, Ding J, Yao XJ, Ward DC, Liu L. Identification of a new inhibitor of KRAS-PDEδ interaction targeting KRAS mutant nonsmall cell lung cancer. Int J Cancer 2019; 145:1334-1345. [PMID: 30786019 DOI: 10.1002/ijc.32222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Oncogenic KRAS is considered a promising target for anti-cancer therapy. However, direct pharmacological strategies targeting KRAS-driven cancers remained unavailable. The prenyl-binding protein PDEδ, a transporter of KRAS, has been identified as a potential target for pharmacological inhibitor by selectively binding to its prenyl-binding pocket, impairing oncogenic KRAS signaling pathway. Here, we discovered a novel PDEδ inhibitor (E)-N'-((3-(tert-butyl)-2-hydroxy-6,7,8,9-tetrahydrodibenzo[b,dfuran-1-yl)methylene)-2,4-dihydroxybenzohydrazide(NHTD) by using a high-throughput docking-based virtual screening approach. In vitro and in vivo studies demonstrated that NHTD suppressed proliferation, induced apoptosis and inhibited oncogenic K-RAS signaling pathways by disrupting KRAS-PDEδ interaction in nonsmall cell lung cancer (NSCLC) harboring KRAS mutations. NHTD redistributed the localization of KRAS to endomembranes by targeting the prenyl-binding pocket of PDEδ and exhibited the suppression of abnormal KRAS function. Importantly, NHTD prevented tumor growth in xenograft and KRAS mutant mouse model, which presents an effective strategy targeting KRAS-driven cancer.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China.,Department of Thoracic Surgery, State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lian Xiang Luo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lan Lan Li
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Dan Feng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China
| | - Lin Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fu Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Ju Min Huang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Xing Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Zhong Wen Yuan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China
| | - Xiao Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - David C Ward
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau (SAR), China
| |
Collapse
|
10
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Chen L, Zhuang C, Lu J, Jiang Y, Sheng C. Discovery of Novel KRAS-PDEδ Inhibitors by Fragment-Based Drug Design. J Med Chem 2018; 61:2604-2610. [PMID: 29510040 DOI: 10.1021/acs.jmedchem.8b00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targeting KRAS-PDEδ protein-protein interactions with small molecules represents a promising opportunity for developing novel antitumor agents. However, current KRAS-PDEδ inhibitors are limited by poor cellular antitumor potency and the druggability of the target remains to be validated by new inhibitors. To tackle these challenges, herein, novel, highly potent KRAS-PDEδ inhibitors were identified by fragment-based drug design, providing promising lead compounds or chemical probes for investigating the biological functions and druggability of KRAS-PDEδ interaction.
Collapse
Affiliation(s)
- Long Chen
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Chunlin Zhuang
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Junjie Lu
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Yan Jiang
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Chunquan Sheng
- School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| |
Collapse
|
12
|
Jiang Y, Zhuang C, Chen L, Lu J, Dong G, Miao Z, Zhang W, Li J, Sheng C. Structural Biology-Inspired Discovery of Novel KRAS–PDEδ Inhibitors. J Med Chem 2017; 60:9400-9406. [DOI: 10.1021/acs.jmedchem.7b01243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan Jiang
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Long Chen
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Junjie Lu
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guoqiang Dong
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyuan Miao
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wannian Zhang
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jian Li
- School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Chunquan Sheng
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
14
|
Zimmermann G, Schultz-Fademrecht C, Küchler P, Murarka S, Ismail S, Triola G, Nussbaumer P, Wittinghofer A, Waldmann H. Structure guided design and kinetic analysis of highly potent benzimidazole inhibitors targeting the PDEδ prenyl binding site. J Med Chem 2014; 57:5435-48. [PMID: 24884780 DOI: 10.1021/jm500632s] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
K-Ras is one of the most frequently mutated signal transducing human oncogenes. Ras signaling activity requires correct cellular localization of the GTPase. The spatial organization of K-Ras is controlled by the prenyl binding protein PDEδ, which enhances Ras diffusion in the cytosol. Inhibition of the Ras-PDEδ interaction by small molecules impairs Ras localization and signaling. Here we describe in detail the identification and structure guided development of Ras-PDEδ inhibitors targeting the farnesyl binding pocket of PDEδ with nanomolar affinity. We report kinetic data that characterize the binding of the most potent small molecule ligands to PDEδ and prove their binding to endogenous PDEδ in cell lysates. The PDEδ inhibitors provide promising starting points for the establishment of new drug discovery programs aimed at cancers harboring oncogenic K-Ras.
Collapse
Affiliation(s)
- Gunther Zimmermann
- Max Planck Institute of Molecular Physiology , Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dong H, Claffey KP, Brocke S, Epstein PM. Expression of phosphodiesterase 6 (PDE6) in human breast cancer cells. SPRINGERPLUS 2013; 2:680. [PMID: 24683528 PMCID: PMC3967736 DOI: 10.1186/2193-1801-2-680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022]
Abstract
Considerable epidemiological evidence demonstrates a positive association between artificial light at night (LAN) levels and incidence rates of breast cancer, suggesting that exposure to LAN is a risk factor for breast cancer. There is a 30-50% higher risk of breast cancer in the highest LAN exposed countries compared to the lowest LAN countries, and studies showing higher incidence of breast cancer among shift workers exposed to more LAN have led the International Agency for Research on Cancer to classify shift work as a probable human carcinogen. Nevertheless, the means by which light can affect breast cancer is still unknown. In this study we examined established human breast cancer cell lines and patients’ primary breast cancer tissues for expression of genetic components of phosphodiesterase 6 (PDE6), a cGMP-specific PDE involved in transduction of the light signal, and previously thought to be selectively expressed in photoreceptors. By microarray analysis we find highly significant expression of mRNA for the PDE6B, PDE6C, and PDE6D genes in both the cell lines and patients’ tissues, minimal expression of PDE6A and PDE6G and no expression of PDE6H. Using antibody specific for PDE6β, we find expression of PDE6B protein in a wide range of patients’ tissues by immunohistochemistry, and in MCF-7 breast cancer cells by immunofluorescence and Western blot analysis. Considerable expression of key circadian genes, PERIOD 2, CLOCK, TIMELESS, CRYPTOCHROME 1, and CRYPTOCHROME 2 was also seen in all breast cancer cell lines and all patients’ breast cancer tissues. These studies indicate that genes for PDE6 and control of circadian rhythm are expressed in human breast cancer cells and tissues and may play a role in transducing the effects of light on breast cancer.
Collapse
Affiliation(s)
- Hongli Dong
- Departments of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-3505 USA
| | - Kevin P Claffey
- Departments of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-3505 USA
| | - Stefan Brocke
- Immunology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Paul M Epstein
- Departments of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-3505 USA
| |
Collapse
|
16
|
Shepard AR, Conrow RE, Pang IH, Jacobson N, Rezwan M, Rutschmann K, Auerbach D, SriRamaratnam R, Cornish VW. Identification of PDE6D as a molecular target of anecortave acetate via a methotrexate-anchored yeast three-hybrid screen. ACS Chem Biol 2013; 8:549-58. [PMID: 23301619 DOI: 10.1021/cb300296m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glaucoma and age-related macular degeneration are ocular diseases targeted clinically by anecortave acetate (AA). AA and its deacetylated metabolite, anecortave desacetate (AdesA), are intraocular pressure (IOP)-lowering and angiostatic cortisenes devoid of glucocorticoid activity but with an unknown mechanism of action. We used a methotrexate-anchored yeast three-hybrid (Y3H) technology to search for binding targets for AA in human trabecular meshwork (TM) cells, the target cell type that controls IOP, a major risk factor in glaucoma. Y3H hits were filtered by competitive Y3H screens and coimmunoprecipitation experiments and verified by surface plasmon resonance analysis to yield a single target, phosphodiesterase 6-delta (PDE6D). PDE6D is a prenyl-binding protein with additional function outside the PDE6 phototransduction system. Overexpression of PDE6D in mouse eyes caused elevated IOP, and this elevation was reversed by topical ocular application of either AA or AdesA. The identification of PDE6D as the molecular binding partner of AA provides insight into the role of this drug candidate in treating glaucoma.
Collapse
Affiliation(s)
- Allan R. Shepard
- Alcon,
a Novartis Company, Fort Worth, Texas 76134, United States
| | | | - Iok-Hou Pang
- Alcon,
a Novartis Company, Fort Worth, Texas 76134, United States
| | - Nasreen Jacobson
- Alcon,
a Novartis Company, Fort Worth, Texas 76134, United States
| | | | | | | | - Rohitha SriRamaratnam
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| |
Collapse
|
17
|
Zhang H, Constantine R, Frederick JM, Baehr W. The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking. Vision Res 2012; 75:19-25. [PMID: 22960045 PMCID: PMC3514561 DOI: 10.1016/j.visres.2012.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023]
Abstract
Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d(-/-) mouse.
Collapse
Affiliation(s)
- Houbin Zhang
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City UT 84132, USA
| | - Ryan Constantine
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City UT 84132, USA
- Graduate Program in Neuroscience, University of Utah Health Science Center, Salt Lake City UT 84132, USA
| | - Jeanne M. Frederick
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City UT 84132, USA
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City UT 84132, USA
- Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City UT 84132, USA
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
18
|
Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 2012; 165:1288-305. [PMID: 22014080 DOI: 10.1111/j.1476-5381.2011.01729.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) that specifically inactivate the intracellular messengers cAMP and cGMP in a compartmentalized manner represent an important enzyme class constituted by 11 gene-related families of isozymes (PDE1 to PDE11). Downstream receptors, PDEs play a major role in controlling the signalosome at various levels of phosphorylations and protein/protein interactions. Due to the multiplicity of isozymes, their various intracellular regulations and their different cellular and subcellular distributions, PDEs represent interesting targets in intracellular pathways. Therefore, the investigation of PDE isozyme alterations related to various pathologies and the design of specific PDE inhibitors might lead to the development of new specific therapeutic strategies in numerous pathologies. This manuscript (i) overviews the different PDEs including their endogenous regulations and their specific inhibitors; (ii) analyses the intracellular implications of PDEs in regulating signalling cascades in pathogenesis, exemplified by two diseases affecting cell cycle and proliferation; and (iii) discusses perspectives for future therapeutic developments.
Collapse
Affiliation(s)
- Thérèse Keravis
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
19
|
Ismail SA, Chen YX, Rusinova A, Chandra A, Bierbaum M, Gremer L, Triola G, Waldmann H, Bastiaens PIH, Wittinghofer A. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 2011; 7:942-9. [PMID: 22002721 DOI: 10.1038/nchembio.686] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/31/2011] [Indexed: 01/21/2023]
Abstract
Lipidated Rho and Rab GTP-binding proteins are transported between membranes in complex with solubilizing factors called 'guanine nucleotide dissociation inhibitors' (GDIs). Unloading from GDIs using GDI displacement factors (GDFs) has been proposed but remains mechanistically elusive. PDEδ is a putative solubilizing factor for several prenylated Ras-subfamily proteins. Here we report the structure of fully modified farnesylated Rheb-GDP in complex with PDEδ. The structure explains the nucleotide-independent binding of Rheb to PDEδ and the relaxed specificity of PDEδ. We demonstrate that the G proteins Arl2 and Arl3 act in a GTP-dependent manner as allosteric release factors for farnesylated cargo. We thus describe a new transport system for farnesylated G proteins involving a GDI-like molecule and an unequivocal GDF. Considering the importance of PDEδ for proper Ras and Rheb signaling, this study is instrumental in developing a new target for anticancer therapy.
Collapse
Affiliation(s)
- Shehab A Ismail
- Structural Biology Group, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang XJ, Cote RH. Phosphodiesterase 6H, cone-specific inhibitor: Basis Sequence: Mouse. THE AFCS-NATURE MOLECULE PAGES 2011; 2011:A001758. [PMID: 32377172 PMCID: PMC7201304 DOI: 10.1038/mp.a001758.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Xiu-Jun Zhang
- Molecular, Cellular & Biomedical Sciences, University of New Hampshire, NH 03824, US
| | - Rick H Cote
- Molecular, Cellular & Biomedical Sciences, University of New Hampshire, NH 03824, US
| |
Collapse
|