1
|
Hillman NH, Kemp MW, Royse E, Grzych H, Usada H, Ikeda H, Takahashi Y, Takahashi T, Jobe AH, Fee E. Postnatal budesonide improved lung function in preterm lambs exposed to antenatal steroids and chorioamnionitis. Pediatr Res 2024; 96:678-684. [PMID: 38368498 DOI: 10.1038/s41390-024-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND A combination of budesonide and surfactant decreases the rates of BPD in infants and lung injury in preterm sheep. Whether this combination will show benefit in the setting of chorioamnionitis and antenatal steroids is not known. METHODS Ewes at 123 ± 1 day gestational age received intra-amniotic (IA) injections of 10 mg LPS before being randomized to receive either 0.25 mg/kg maternal betamethasone phosphate and acetate or saline by intramuscular (IM) injection at 48 and 24 h prior to delivery at 125 ± 1 day. Lambs (N = 6-9/group) underwent intentionally injurious ventilation for 15 min, then lambs received surfactant mixed with either: (1) saline; or (2) Budesonide 0.25 mg/kg and were ventilated for 4 h. RESULTS Compared with LPS-exposed animals that received no IM steroid treatment, betamethasone exposed fetuses had improved hemodynamic stability, lung compliance, and ventilation efficiency. The addition of budesonide to surfactant further improved markers of injury and pro-inflammatory cytokine mRNA in both betamethasone IM or no IM lambs exposed to LPS IA. Antenatal betamethasone and IA LPS exposures decreased budesonide levels in the fetal lung and plasma. CONCLUSION Antenatal betamethasone stabilizes physiologic parameters in LPS treated lambs. Budesonide mixed with surfactant further decreases injury and improves respiratory physiology in betamethasone treated animals. IMPACT Antenatal betamethasone improved lung and systemic physiology in the setting of intra-amniotic LPS. The addition of budesonide to the surfactant further improved lung function. Budesonide levels in the plasma and lung were lower in lambs exposed to either LPS or LPS and Betamethasone animals, and these findings were not explained by increased esterification in the lungs. The combination of antenatal steroids and budesonide with surfactant had the lowest markers of pro-inflammatory cytokines in the lung of LPS exposed animals.
Collapse
Affiliation(s)
- Noah H Hillman
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA.
| | - Matthew W Kemp
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Hayley Grzych
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Haruo Usada
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Hideyuki Ikeda
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Yuki Takahashi
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Tsukasa Takahashi
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Alan H Jobe
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Erin Fee
- School of Women's and Infants' Health, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Hillman NH, Jobe AH. Preterm lung and brain responses to mechanical ventilation and corticosteroids. J Perinatol 2023; 43:1222-1229. [PMID: 37169913 DOI: 10.1038/s41372-023-01692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Mechanical ventilation is necessary to maintain oxygenation and ventilation in many preterm infants. Unfortunately, even short periods of mechanical ventilation can cause lung and airway injury, and initiate the lung inflammation that contributes to the development of bronchopulmonary dysplasia (BPD). The mechanical stretch leads to airway cell differentiation and simplification of the alveoli, and releases cytokines that cause systemic response in other organs. Mechanical ventilation also leads to brain injury (IVH, white and gray matter) and neuronal inflammation that can affect the neurodevelopment of preterm infants. In efforts to decrease BPD, corticosteroids have been used for both prevention and treatment of lung inflammation. Corticosteroids have also been demonstrated to cause neuronal injury, so the clinician must balance the negative effects of both mechanical ventilation and steroids on the brain and lungs. Predictive models for BPD can help assess the infants who will benefit most from corticosteroid exposure. This review describes the lung and brain injury from mechanical ventilation in the delivery room and chronic mechanical ventilation in animal models. It provides updates on the current guidelines for use of postnatal corticosteroids (dexamethasone, hydrocortisone, budesonide, budesonide with surfactant) for the prevention and treatment of BPD, and the effects the timing of each steroid regimen has on neurodevelopment.
Collapse
Affiliation(s)
- Noah H Hillman
- Division of Neonatology, SSM Health Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, MO, 63104, USA.
| | - Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
3
|
Kammala AK, Mosebarger A, Radnaa E, Rowlinson E, Vora N, Fortunato SJ, Sharma S, Safarzadeh M, Menon R. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023; 14:1196453. [PMID: 37600782 PMCID: PMC10437065 DOI: 10.3389/fimmu.2023.1196453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Emma Rowlinson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephen J. Fortunato
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
4
|
Yoon SJ, Han JH, Cho KH, Park J, Lee SM, Park MS. Tools for assessing lung fluid in neonates with respiratory distress. BMC Pediatr 2022; 22:354. [PMID: 35725416 PMCID: PMC9208096 DOI: 10.1186/s12887-022-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Transient tachypnea of the newborn (TTN), as a common cause of neonatal respiratory distress, needs to be distinguished from respiratory distress syndrome (RDS). Various modalities such as lung ultrasonography, cytokine analysis, and electrical cardiometry for the evaluation of lung fluid can be helpful for the exact diagnosis, however, clinical diagnosis has been applied mainly. This study aimed to evaluate the usefulness of the various tools for the diagnosis of TTN and RDS in neonates. Methods This study evaluated 22 late-preterm and term infants admitted to the neonatal intensive care unit of Gangnam Severance Hospital because of respiratory distress. Total 9 neonates were diagnosed with TTN and 13 had RDS. In addition to chest radiography, the LUS score was calculated by a neonatologist using the portable ultrasound device. Cytokines in the bronchoalveolar lavage fluid supernatant were measured. Thoracic fluid content was measured using an electrical cardiometry device. Results We enrolled 22 patients with median gestational age, 37.1 weeks, and birth weight 3100 g. There is no difference in patient characteristics between RDS and TTN group. Lung ultrasound score was significantly higher in RDS than TTN (11 vs 6, p = 0.001). Score 0 is shown in all infants with TTN. Score 1 is shown as significantly more in RDS than TTN. Between the TTN and RDS groups, there were significant differences in the changes of thoracic fluid content (2 vs − 1.5, p < 0.001), IL-1β levels (2.5 vs 11.3, p = 0.02), and TNF-α levels (20.1 vs 11.2, p = 0.04). Conclusion We found lung ultrasound and electrical cardiometry to be reliable diagnostic tools for assessing infants with respiratory distress among late-preterm and term infants. Further studies with a large number of patients are needed to confirm their clinical usefulness.
Collapse
Affiliation(s)
- So Jin Yoon
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Han
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kee Hyun Cho
- Department of Pediatrics, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Joonsik Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Min Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Min Soo Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chavez L, Meguro J, Chen S, de Paiva VN, Zambrano R, Eterno JM, Kumar R, Duncan MR, Benny M, Young KC, Dietrich WD, Brambilla R, Wu S, Schmidt AF. Circulating extracellular vesicles activate the pyroptosis pathway in the brain following ventilation-induced lung injury. J Neuroinflammation 2021; 18:310. [PMID: 34965880 PMCID: PMC8717639 DOI: 10.1186/s12974-021-02364-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mechanical ventilation of preterm newborns causes lung injury and is associated with poor neurodevelopmental outcomes. However, the mechanistic links between ventilation-induced lung injury (VILI) and brain injury is not well defined. Since circulating extracellular vesicles (EVs) are known to link distant organs by transferring their cargos, we hypothesized that EVs mediate inflammatory brain injury associated with VILI. METHODS Neonatal rats were mechanically ventilated with low (10 mL/kg) or high (25 mL/kg) tidal volume for 1 h on post-natal day 7 followed by recovery for 2 weeks. Exosomes were isolated from the plasma of these rats and adoptively transferred into normal newborn rats. We assessed the effect of mechanical ventilation or exosome transfer on brain inflammation and activation of the pyroptosis pathway by western blot and histology. RESULTS Injurious mechanical ventilation induced similar markers of inflammation and pyroptosis, such as increased IL-1β and activated caspase-1/gasdermin D (GSDMD) in both lung and brain, in addition to inducing microglial activation and cell death in the brain. Isolated EVs were enriched for the exosomal markers CD9 and CD81, suggesting enrichment for exosomes. EVs isolated from neonatal rats with VILI had increased caspase-1 but not GSDMD. Adoptive transfer of these EVs led to neuroinflammation with microglial activation and activation of caspase-1 and GSDMD in the brain similar to that observed in neonatal rats that were mechanically ventilated. CONCLUSIONS These findings suggest that circulating EVs can contribute to the brain injury and poor neurodevelopmental outcomes in preterm infants with VILI through activation of GSDMD.
Collapse
Affiliation(s)
- Laura Chavez
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Julia Meguro
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Shaoyi Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Vanessa Nunes de Paiva
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Julia M Eterno
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Rahul Kumar
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Matthew R Duncan
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Karen C Young
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - W Dalton Dietrich
- The Miami Project To Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roberta Brambilla
- The Miami Project To Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA
| | - Augusto F Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, 1611 NW 12th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Pereira-Fantini PM, Pang B, Byars SG, Oakley RB, Perkins EJ, Dargaville PA, Davis PG, Nie S, Williamson NA, Ignjatovic V, Tingay DG. Preterm Lung Exhibits Distinct Spatiotemporal Proteome Expression at Initiation of Lung Injury. Am J Respir Cell Mol Biol 2020; 61:631-642. [PMID: 30995072 DOI: 10.1165/rcmb.2019-0084oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, Vt = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and dependent regions, and assessed for lung injury via histology, quantitative PCR, and proteomic analysis using Orbitrap-mass spectrometry. Ingenuity pathway analysis software was used to identify temporal and region-specific enrichments in pathways and functions. Apoptotic cell numbers were ninefold higher in nondependent lung at 15 and 90 minutes compared with controls, whereas proliferative cells were increased fourfold in the dependent lung at 90 minutes. The relative gene expression of lung injury markers was increased at 90 minutes in nondependent lung and unchanged in gravity-dependent lung. Within the proteome, the number of differentially expressed proteins was fourfold higher in the nondependent lung than the dependent lung. The number of differential proteins increased over time in both lung regions. A total of 95% of enriched canonical pathways and 94% of enriched cellular and molecular functions were identified only in nondependent lung tissue from the 90-minute ventilation group. In conclusion, complex injury pathways are initiated within the preterm lung after 15 minutes of ventilation and amplified by continuing ventilation. Injury development is region specific, with greater alterations within the proteome of nondependent lung.
Collapse
Affiliation(s)
| | | | - Sean G Byars
- Department of Clinical Pathology.,Melbourne Integrative Genomics
| | | | | | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter G Davis
- Neonatal Research, and.,Department of Obstetrics and Gynaecology, and.,The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics
| | - David G Tingay
- Neonatal Research, and.,Department of Paediatrics.,Department of Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Kothe TB, Kemp MW, Schmidt A, Royse E, Salomone F, Clarke MW, Musk GC, Jobe AH, Hillman NH. Surfactant plus budesonide decreases lung and systemic inflammation in mechanically ventilated preterm sheep. Am J Physiol Lung Cell Mol Physiol 2019; 316:L888-L893. [PMID: 30838863 PMCID: PMC6589588 DOI: 10.1152/ajplung.00477.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/14/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation with normal tidal volumes (VT) causes lung and systemic inflammation in preterm sheep. Mechanical ventilation is associated with bronchopulmonary dysplasia (BPD) in preterm infants, and the addition of budesonide to surfactant decreases BPD in clinical trials. Budesonide with surfactant will decrease the lung injury from mechanical ventilation for 24 h in preterm sheep. Lambs at 126 ± 1 day gestational age were delivered and randomized to either: 1) surfactant (200 mg/kg) or 2) surfactant mixed with budesonide (0.25 mg/kg) before mechanical ventilation with VT of 7-8 ml/kg for 2, 6, or 24 h (n = 6 or 7/group). Lung physiology and budesonide levels in the plasma and the lung were measured. Lung tissue, bronchoalveolar lavage fluid (BALF), liver, and brain tissues were evaluated for indicators of injury. High initial budesonide plasma levels of 170 ng/ml decreased to 3 ng/ml at 24 h. Lung tissue budesonide levels were less than 1% of initial dose by 24 h. Although physiological variables were generally similar, budesonide-exposed lambs required lower mean airway pressures, had higher hyperoxia responses, and had more stable blood pressures. Budesonide decreased proinflammatory mRNA in the lung, liver, and brain. Budesonide also decreased total protein and proinflammatory cytokines in BALF, and decreased inducible nitric oxide synthase activation at 24 h. In ventilated preterm lambs, most of the budesonide left the lung within 24 h. The addition of budesonide to surfactant improved physiology, decreased markers of lung injury, and decreased systemic responses in liver and brain.
Collapse
Affiliation(s)
- T Brett Kothe
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University , St. Louis, Missouri
| | - Matthew W Kemp
- School of Women's and Infants' Health, University of Western Australia , Perth, Western Australia , Australia
| | - Augusto Schmidt
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati , Cincinnati, Ohio
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University , St. Louis, Missouri
| | - Fabrizio Salomone
- Department of Preclinical Pharmacology R&D, Chiesi Farmaceutici S.p.A., Parma , Italy
| | - Michael W Clarke
- Metabolomics Australia, Centre for Microscopy, Characterisation and Analysis, The University of Western Australia , Perth, Western Australia , Australia
| | - Gabrielle C Musk
- School of Women's and Infants' Health, University of Western Australia , Perth, Western Australia , Australia
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Alan H Jobe
- School of Women's and Infants' Health, University of Western Australia , Perth, Western Australia , Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati , Cincinnati, Ohio
| | - Noah H Hillman
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University , St. Louis, Missouri
| |
Collapse
|
8
|
Huang J, Wu B, Song J, Wu J. Mechanisms of hyperventilation-induced lung injuries in neonatal rats. Minerva Pediatr (Torino) 2016; 73:73-79. [PMID: 27270839 DOI: 10.23736/s2724-5276.16.04458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to investigate the mechanism of early inflammatory injury in neonatal ventilator-induced lung injuries (VILI). METHODS Newborn rats were randomly assigned to groups and administrated mechanical ventilation with different tidal volumes. Morphological changes in lung tissues were observed, and the levels of interleukin-6 (IL-6), cysteinyl leukotriene mRNA (CysLT1 mRNA), and nuclear factor-κB mRNA (NF-κBp65 mRNA) in lung tissues were analyzed. RESULTS The ventilation groups exhibited different degrees of inflammatory cell infiltration, which was aggravated as the tidal volume and ventilation time increased. The IL-6 levels of the hyperventilation 5H, conventional ventilation 5H, hyperventilation 3H, control, and normal lung-tissue group were 785.33±39.06, 701.6±33.65, 686.65±46.85, 637.63±40.55, and 635.02±65.78 pg/g, respectively. Hyperventilation increased the levels of IL-6 and NF-κBp65 mRNA as the ventilation time increased, and IL-6 was positively correlated with NF-κBp65 mRNA levels (r=0.72, P<0.01). Longer hyperventilation periods upregulate the level of CysLT1 mRNA. CysLT1 mRNA/GAPDH of the hyperventilation 5H group was 2.14±1.45 (P<0.01). CONCLUSIONS Mechanical ventilation with a large tidal volume can cause VILI, characterized at an early stage by inflammatory responses and particularly by the increased secretion and invasion of inflammatory cytokines and inflammatory cells. The activation of the NF-κB-IL-6 signaling pathway was an important mechanism for the initiation of VILI. Additionally, CysLT1 was involved in the inflammatory VILI damage, and its upregulation occurred later than that of IL-6.
Collapse
Affiliation(s)
- Jinjie Huang
- Department of Neonatology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Benqing Wu
- Department of Neonatology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China -
| | - Jinzhi Song
- Department of Neonatology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Jun Wu
- Department of Neonatology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
9
|
Jobe AH. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease. Front Med (Lausanne) 2015; 2:49. [PMID: 26301222 PMCID: PMC4528292 DOI: 10.3389/fmed.2015.00049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/14/2015] [Indexed: 11/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD.
Collapse
Affiliation(s)
- Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati , Cincinnati, OH , USA
| |
Collapse
|
10
|
Barton SK, Tolcos M, Miller SL, Roehr CC, Schmölzer GM, Davis PG, Moss TJM, LaRosa DA, Hooper SB, Polglase GR. Unraveling the Links Between the Initiation of Ventilation and Brain Injury in Preterm Infants. Front Pediatr 2015; 3:97. [PMID: 26618148 PMCID: PMC4639621 DOI: 10.3389/fped.2015.00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
The initiation of ventilation in the delivery room is one of the most important but least controlled interventions a preterm infant will face. Tidal volumes (V T) used in the neonatal intensive care unit are carefully measured and adjusted. However, the V Ts that an infant receives during resuscitation are usually unmonitored and highly variable. Inappropriate V Ts delivered to preterm infants during respiratory support substantially increase the risk of injury and inflammation to the lungs and brain. These may cause cerebral blood flow instability and initiate a cerebral inflammatory cascade. The two pathways increase the risk of brain injury and potential life-long adverse neurodevelopmental outcomes. The employment of new technologies, including respiratory function monitors, can improve and guide the optimal delivery of V Ts and reduce confounders, such as leak. Better respiratory support in the delivery room has the potential to improve both respiratory and neurological outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Samantha K Barton
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynecology, Monash University , Melbourne, VIC , Australia
| | - Suzie L Miller
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynecology, Monash University , Melbourne, VIC , Australia
| | - Charles C Roehr
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia ; Newborn Services, John Radcliffe Hospital, Oxford University Hospitals , Oxford , UK
| | - Georg M Schmölzer
- Department of Pediatrics, University of Alberta , Edmonton, AB , Canada ; Centre for the Study of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Alberta Health Services , Edmonton, AB , Canada
| | - Peter G Davis
- Neonatal Services, Newborn Research Centre, The Royal Women's Hospital , Melbourne, VIC , Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynecology, Monash University , Melbourne, VIC , Australia
| | - Domenic A LaRosa
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynecology, Monash University , Melbourne, VIC , Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynecology, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
11
|
Hillman NH, Kemp MW, Miura Y, Kallapur SG, Jobe AH. Sustained inflation at birth did not alter lung injury from mechanical ventilation in surfactant-treated fetal lambs. PLoS One 2014; 9:e113473. [PMID: 25419969 PMCID: PMC4242618 DOI: 10.1371/journal.pone.0113473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/23/2014] [Indexed: 01/10/2023] Open
Abstract
Background Sustained inflations (SI) are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation. Hypothesis A 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs. Methods The head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline). Fetal lambs were randomized to one of four 15 minute interventions: 1) PEEP 8 cmH2O; 2) 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3) mechanical ventilation with 7 ml/kg tidal volume; or 4) 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention. Results SI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP) 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury. Conclusion In surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation.
Collapse
Affiliation(s)
- Noah H. Hillman
- Division of Neonatology, Cardinal Glennon Children's Medical Center, Saint Louis University, Saint Louis, Missouri, United States of America
- * E-mail:
| | - Matthew W. Kemp
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Yuichiro Miura
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Suhas G. Kallapur
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Alan H. Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Barton SK, Moss TJM, Hooper SB, Crossley KJ, Gill AW, Kluckow M, Zahra V, Wong FY, Pichler G, Galinsky R, Miller SL, Tolcos M, Polglase GR. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury. PLoS One 2014; 9:e112402. [PMID: 25379714 PMCID: PMC4224447 DOI: 10.1371/journal.pone.0112402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/15/2014] [Indexed: 01/25/2023] Open
Abstract
Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.
Collapse
Affiliation(s)
- Samantha K. Barton
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Timothy J. M. Moss
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
| | - Stuart B. Hooper
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
| | - Kelly J. Crossley
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Andrew W. Gill
- School of Women's and Infants' Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Martin Kluckow
- Department of Neonatal Medicine, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, 2065, Australia
| | - Valerie Zahra
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Flora Y. Wong
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Gerhard Pichler
- Department of Pediatrics, Medical University Graz, Auenbruggerplatz 30, Graz, Austria, 8036
| | - Robert Galinsky
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, 3168, Australia
- * E-mail:
| |
Collapse
|
13
|
Hillman NH, Gisslen T, Polglase GR, Kallapur SG, Jobe AH. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs. PLoS One 2014; 9:e96087. [PMID: 24788984 PMCID: PMC4005755 DOI: 10.1371/journal.pone.0096087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.
Collapse
Affiliation(s)
- Noah H. Hillman
- Division of Neonatology, Saint Louis University, Saint Louis, Missouri, United States of America
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Tate Gisslen
- Division of Neonatology, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Graeme R. Polglase
- School of Women and Infants' Health, University of Western Australia Perth, WA, Australia
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Melbourne, VIC, Australia
| | - Suhas G. Kallapur
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- School of Women and Infants' Health, University of Western Australia Perth, WA, Australia
| | - Alan H. Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- School of Women and Infants' Health, University of Western Australia Perth, WA, Australia
| |
Collapse
|
14
|
Polglase GR, Tingay DG, Bhatia R, Berry CA, Kopotic RJ, Kopotic CP, Song Y, Szyld E, Jobe AH, Pillow JJ. Pressure- versus volume-limited sustained inflations at resuscitation of premature newborn lambs. BMC Pediatr 2014; 14:43. [PMID: 24529320 PMCID: PMC3937019 DOI: 10.1186/1471-2431-14-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sustained inflations (SI) are advocated for the rapid establishment of FRC after birth in preterm and term infants requiring resuscitation. However, the most appropriate way to deliver a SI is poorly understood. We investigated whether a volume-limited SI improved the establishment of FRC and ventilation homogeneity and reduced lung inflammation/injury compared to a pressure-limited SI. METHODS 131 d gestation lambs were resuscitated with either: i) pressure-limited SI (PressSI: 0-40 cmH2O over 5 s, maintained until 20 s); or ii) volume-limited SI (VolSI: 0-15 mL/kg over 5 s, maintained until 20 s). Following the SI, all lambs were ventilated using volume-controlled ventilation (7 mL/kg tidal volume) for 15 min. Lung mechanics, regional ventilation distribution (electrical impedance tomography), cerebral tissue oxygenation index (near infrared spectroscopy), arterial pressures and blood gas values were recorded regularly. Pressure-volume curves were performed in-situ post-mortem and early markers of lung injury were assessed. RESULTS Compared to a pressure-limited SI, a volume-limited SI had increased pressure variability but reduced volume variability. Each SI strategy achieved similar end-inflation lung volumes and regional ventilation homogeneity. Volume-limited SI increased heart-rate and arterial pressure faster than pressure-limited SI lambs, but no differences were observed after 30 s. Volume-limited SI had increased arterial-alveolar oxygen difference due to higher FiO2 at 15 min (p = 0.01 and p = 0.02 respectively). No other inter-group differences in arterial or cerebral oxygenation, blood pressures or early markers of lung injury were evident. CONCLUSION With the exception of inferior oxygenation, a sustained inflation targeting delivery to preterm lambs of 15 mL/kg volume by 5 s did not influence physiological variables or early markers of lung inflammation and injury at 15 min compared to a standard pressure-limited sustained inflation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jane J Pillow
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia.
| |
Collapse
|
15
|
Dushianthan A, Goss V, Cusack R, Grocott MPW, Postle AD. Phospholipid composition and kinetics in different endobronchial fractions from healthy volunteers. BMC Pulm Med 2014; 14:10. [PMID: 24484629 PMCID: PMC3914358 DOI: 10.1186/1471-2466-14-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/30/2014] [Indexed: 11/21/2022] Open
Abstract
Background Alterations in surfactant phospholipid compositions are a recognized feature of many acute and chronic lung diseases. Investigation of underlying mechanisms requires assessment of surfactant phospholipid molecular composition and kinetics of synthesis and turnover. Such studies have recently become possible in humans due to the development of stable isotope labelling combined with advances in analytical methods in lipidomics. The objectives of this study are to compare phospholipid molecular species composition and phosphatidylcholine synthesis and turnover in surfactant isolated from various endobronchial compartments in healthy adults. Methods Healthy adults (N = 10) were infused with methyl-D9-choline chloride and samples of induced sputum, tracheal wash and small volume bronchoalveolar lavage fluid were obtained subsequently at intervals up to 96 hours. Surfactant phospholipid composition and incorporation of stable isotope into surfactant phosphatidylcholine were determined by electrospray ionisation mass spectrometry. Results While molecular species compositions of phospholipids were similar for all three sample types, dipalmitoylphosphatidylcholine content was highest in lavage, intermediate in tracheal wash and lowest in sputum. Methyl-D9-choline incorporation into surfactant phosphatidylcholine was lower for sputum at 24 hours but reached equilibrium with other sample types by 48 hours. Fractional methyl-D9-dipalmitoylphosphatidylcholine incorporation for all sample types was about 0.5% of the endogenous composition. Lysophosphatidylcholine enrichment was twice than that of phosphatidylcholine. Conclusions Tracheal secretions may be of value as a surrogate to assess bronchoalveolar lavage fluid surfactant molecular composition and metabolism in healthy people. Despite minor differences, the phospholipid molecular composition of induced sputum also showed similarities to that of bronchoalveolar lavage fluid. Detailed analysis of newly synthesized individual phosphatidylcholine species provided novel insights into mechanisms of surfactant synthesis and acyl remodelling. Lysophosphatidylcholine methyl-D9 incorporation patterns suggest that these species are secreted together with other surfactant phospholipids and are not generated in the air spaces by hydrolysis of secreted surfactant phosphatidylcholine. Application into patient populations may elucidate potential underlying pathophysiological mechanisms that lead to surfactant alterations in disease states.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
16
|
Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A 2013; 110:14384-9. [PMID: 23946428 DOI: 10.1073/pnas.1306859110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants, with devastating short- and long-term consequences. The pathogenesis of BPD is multifactorial, but all triggers cause pulmonary inflammation. No therapy exists; therefore, we investigated whether the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD. We precipitated BPD by perinatal inflammation (lipopolysaccharide injection to pregnant dams) and rearing pups in hyperoxia (65% or 85% O2). Pups were treated daily with IL-1Ra or vehicle for up to 28 d. Vehicle-injected animals in both levels of hyperoxia developed a severe BPD-like lung disease (alveolar number and gas exchange area decreased by up to 60%, alveolar size increased up to fourfold). IL-1Ra prevented this structural disintegration at 65%, but not 85% O2. Hyperoxia depleted pulmonary immune cells by 67%; however, extant macrophages and dendritic cells were hyperactivated, with CD11b and GR1 (Ly6G/C) highly expressed. IL-1Ra partially rescued the immune cell population in hyperoxia (doubling the viable cells), reduced the percentage that were activated by up to 63%, and abolished the unexpected persistence of IL-1α and IL-1β on day 28 in hyperoxia/vehicle-treated lungs. On day 3, perinatal inflammation and hyperoxia each triggered a distinct pulmonary immune response, with some proinflammatory mediators increasing up to 20-fold and some amenable to partial or complete reversal with IL-1Ra. In summary, our analysis reveals a pivotal role for IL-1α/β in murine BPD and an involvement for MIP (macrophage inflammatory protein)-1α and TREM (triggering receptor expressed on myeloid cells)-1. Because it effectively shields newborn mice from BPD, IL-1Ra emerges as a promising treatment for a currently irremediable disease that may potentially brighten the prognosis of the tiny preterm patients.
Collapse
|
17
|
Hillman NH, Kemp MW, Noble PB, Kallapur SG, Jobe AH. Sustained inflation at birth did not protect preterm fetal sheep from lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 305:L446-53. [PMID: 23873843 DOI: 10.1152/ajplung.00162.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sustained lung inflations (SI) at birth may recruit functional residual capacity (FRC). Clinically, SI increase oxygenation and decrease need for intubation in preterm infants. We tested whether a SI to recruit FRC would decrease lung injury from subsequent ventilation of fetal, preterm lambs. The preterm fetus (128±1 day gestation) was exteriorized from the uterus, a tracheostomy was performed, and fetal lung fluid was removed. While maintaining placental circulation, fetuses were randomized to one of four 15-min interventions: 1) positive end-expiratory pressure (PEEP) 8 cmH2O (n=4), 2) 20 s SI to 50 cmH2O then PEEP 8 cmH2O (n=10), 3) mechanical ventilation at tidal volume (VT) 7 ml/kg (n=13), or 4) 20 s SI then ventilation at VT 7 ml/kg (n=13). Lambs were ventilated with 95% N2/5% CO2 and PEEP 8 cmH2O. Volume recruitment was measured during SI, and fetal tissues were collected after an additional 30 min on placental support. SI achieved a mean FRC recruitment of 15 ml/kg (range 8-27). Fifty percent of final FRC was achieved by 2 s, 65% by 5 s, and 90% by 15 s, demonstrating prolonged SI times are needed to recruit FRC. SI alone released acute-phase proteins into the fetal lung fluid and increased mRNA expression of proinflammatory cytokines and acute-phase response genes in the lung. Mechanical ventilation further increased all markers of lung injury. SI before ventilation, regardless of the volume of FRC recruited, did not alter the acute-phase and proinflammatory responses to mechanical ventilation at birth.
Collapse
Affiliation(s)
- Noah H Hillman
- Saint Louis Univ., Cardinal Glennon-Neonatology, 1100 South Grand, Saint Louis, MO 63104.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The degree of perioperative lung injury that patients sustain results from a complex interaction between their current physiologic state, comorbidities, lifestyle choices, underlying surgical diagnosis, operative, and ultimately their cardiopulmonary interaction with a mechanical ventilator. This review addresses primarily the pathophysiology of perioperative lung injury with reference to ventilator-induced lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Kayode Adeniji
- Interdepartmental Division of Critical Care, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Hillman N, Kallapur SG, Jobe A. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol 2012; 39:769-83. [PMID: 23164177 PMCID: PMC3504352 DOI: 10.1016/j.clp.2012.09.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The transition from fetus to newborn is the most complex adaptation that occurs in human experience. Lung adaptation requires coordinated clearance of fetal lung fluid, surfactant secretion, and onset of consistent breathing. The cardiovascular response requires striking changes in blood flow, pressures, and pulmonary vasodilation. Energy metabolism and thermoregulation must be quickly controlled. The primary mediators that prepare the fetus for birth and support the multiorgan transition are cortisol and catecholamine. Abnormalities in adaptation are frequently found following preterm birth or cesarean delivery at term, and many of these infants need delivery room resuscitation to assist in this transition.
Collapse
|
20
|
Abstract
BACKGROUND Preterm infants often receive mechanical ventilation and oxygen at birth. Exposure to large tidal volumes (V(T)s) at birth causes lung inflammation, and oxygen may amplify the injury. We hypothesized that normal V(T) ventilation at birth causes lung injury that is exacerbated by 95% oxygen. METHODS The head and chest of anesthetized preterm fetal sheep (129 ± 1 d gestation) were surgically exteriorized while maintaining the placental circulation. Fetuses were randomized to four groups with either V(T) ventilation to 6 ml/kg or continuous positive airway pressure of 5 cm H2O, and either 95%O2/5%CO2 or 95%N2/5%CO2. Age-matched fetuses were used as controls. After a 15-min intervention, the fetal lamb was returned to the uterus for 1 h 45 min. RESULTS In ventilated lambs, V(T) was 6.2 ± 0.4 ml/kg at 15 min. Ventilation increased proinflammatory cytokines as compared with controls and lambs on continuous positive airway pressure, with recruitment of primarily monocytes to bronchoalveolar lavage fluid. Early response protein 1 was activated around the bronchioles in V(T)-ventilated animals. The 15-min oxygen exposure did not change inflammatory mediators or other markers of lung and oxidative stress. CONCLUSION A V(T) of 6-7 ml/kg at birth increased early markers of injury and lung inflammation. Brief exposure to 95% oxygen did not alter lung inflammation.
Collapse
|
21
|
Chen X, Threlkeld SW, Cummings EE, Sadowska GB, Lim YP, Padbury JF, Sharma S, Stonestreet BS. In-vitro validation of cytokine neutralizing antibodies by testing with ovine mononuclear splenocytes. J Comp Pathol 2012; 148:252-8. [PMID: 22819013 DOI: 10.1016/j.jcpa.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/26/2012] [Accepted: 06/04/2012] [Indexed: 02/08/2023]
Abstract
Cytokines have gained increasing attention as therapeutic targets in inflammation-related disorders and inflammatory conditions have been investigated in sheep. Monoclonal antibodies (mAbs) specific for the ovine pro-inflammatory cytokines interleukin (IL)-1β and IL-6 could be used to study the effects of blocking pro-inflammatory cytokines in sheep. Ovine-specific IL-1β and IL-6 proteins and mAbs specific for these molecules were produced and the ability of the mAbs to neutralize the proteins was tested in cultures of ovine splenic mononuclear cells. Expression of nuclear factor (NF)-κβ and signal transducer and activator of transcription (STAT)-3 was evaluated by western blotting and densitometric quantification. Treatment with purified IL-1β and IL-6 proteins increased NF-κβ (P < 0.001) and STAT-3 (P < 0.01) expression, respectively, in cell culture. Treatment with these proteins that were pre-incubated with IL-1β and IL-6 mAbs attenuated (P < 0.01) these effects. These results confirm the bioactivity of ovine IL-1β and IL-6 proteins and the neutralizing capacity of anti-ovine-IL-1β and -IL-6 mAbs in vitro. These mAbs could be used to investigate anti-inflammatory strategies for attenuation of the effects of these pro-inflammatory cytokines in sheep.
Collapse
Affiliation(s)
- X Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Joss-Moore LA, Albertine KH, Lane RH. Epigenetics and the developmental origins of lung disease. Mol Genet Metab 2011; 104:61-6. [PMID: 21835665 PMCID: PMC3171512 DOI: 10.1016/j.ymgme.2011.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 01/08/2023]
Abstract
The developmental origins of disease hypothesis have recently been expanded to include the early origins of lung disease, particularly early events that alter lung development. Intrauterine growth restriction (IUGR), preterm birth with the need for prolonged mechanical ventilation, and maternal tobacco smoke (MTS) or nicotine exposure produce neonatal and adult lung disease. These perinatal insults are characterized by alterations in alveolar formation and changes in the expression of genes that regulate alveolarization, including IGF1 and PPARγ. A potential mechanism for such changes in gene expression is epigenetics. IGF1 and PPARγ have altered epigenetic states in response to these perinatal insults. Identification of the specific epigenetic mechanisms involved in the developmental origin of lung disease may facilitate identification of molecular biomarkers with the potential to personalize respiratory disease risk assessment and treatment. The purpose of this review is to summarize what is known about the developmental origins of lung disease, the epigenetic contributions to lung disease, and areas that need further investigation.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- University of Utah, Division of Neonatology, Salt Lake City, Utah 84108, USA.
| | | | | |
Collapse
|
23
|
Hillman NH, Nitsos I, Berry C, Pillow JJ, Kallapur SG, Jobe AH. Positive end-expiratory pressure and surfactant decrease lung injury during initiation of ventilation in fetal sheep. Am J Physiol Lung Cell Mol Physiol 2011; 301:L712-20. [PMID: 21856815 DOI: 10.1152/ajplung.00157.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The initiation of ventilation in preterm, surfactant-deficient sheep without positive end-expiratory pressure (PEEP) causes airway injury and lung inflammation. We hypothesized that PEEP and surfactant treatment would decrease the lung injury from initiation of ventilation with high tidal volumes. Fetal sheep at 128-day gestational age were randomized to ventilation with: 1) no PEEP, no surfactant; 2) 8-cmH(2)O PEEP, no surfactant; 3) no PEEP + surfactant; 4) 8-cmH(2)O PEEP + surfactant; or 5) control (2-cmH(2)O continuous positive airway pressure) (n = 6-7/group). After maternal anesthesia and hysterotomy, the head and chest were exteriorized, and the fetus was intubated. While maintaining placental circulation, the fetus was ventilated for 15 min with a tidal volume escalating to 15 ml/kg using heated, humidified, 100% nitrogen. The fetus then was returned to the uterus, and tissue was collected after 30 min for evaluation of early markers of lung injury. Lambs receiving both surfactant and PEEP had increased dynamic compliance, increased static lung volumes, and decreased total protein and heat shock proteins 70 and 60 in bronchoalveolar lavage fluid compared with other groups. Ventilation, independent of PEEP or surfactant, increased mRNA expression of acute phase response genes and proinflammatory cytokine mRNA in the lung tissue compared with controls. PEEP decreased mRNA for cytokines (2-fold) compared with groups receiving no PEEP. Surfactant administration further decreased some cytokine mRNAs and changed the distribution of early growth response protein-1 expression. The use of PEEP during initiation of ventilation at birth decreased early mediators of lung injury. Surfactant administration changed the distribution of injury and had a moderate additive protective effect.
Collapse
Affiliation(s)
- Noah H Hillman
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Karcz M, Vitkus A, Papadakos PJ, Schwaiberger D, Lachmann B. State-of-the-art mechanical ventilation. J Cardiothorac Vasc Anesth 2011; 26:486-506. [PMID: 21601477 DOI: 10.1053/j.jvca.2011.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/01/2023]
Affiliation(s)
- Marcin Karcz
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
25
|
Hillman NH, Polglase GR, Jane Pillow J, Saito M, Kallapur SG, Jobe AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 2011; 300:L232-41. [PMID: 21131401 PMCID: PMC3043810 DOI: 10.1152/ajplung.00294.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.
Collapse
Affiliation(s)
- Noah H. Hillman
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and
| | - Graeme R. Polglase
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - J. Jane Pillow
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Masatoshi Saito
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Suhas G. Kallapur
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and ,2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and ,2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| |
Collapse
|