1
|
Hasegawa T, Yoshida M, Watanabe S, Kondo T, Asada H, Nakagawa A, Tomii K, Kameda M, Otsuka M, Kuronuma K, Chiba H, Katayanagi S, Miyazaki Y, Mori A. Development of a new HISCL automated CXCL9 immunoassay. Sci Rep 2023; 13:5342. [PMID: 37005469 PMCID: PMC10066986 DOI: 10.1038/s41598-023-32513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
C-X-C motif chemokine ligand 9 (CXCL9), a candidate biomarker, reflects type 1 (T1) inflammation pathology. Here, we report the analytical performance and clinical characteristics of a new CXCL9 reagent for a fully automated immunoassay device. We evaluated the limits of blank, detection, and quantitation (LoQ) along with other efficacy parameters, and the ability of the assay to report patient health, COVID-19 status, and the presence of asthma and/or interstitial lung diseases (ILDs). The coefficient of variation for 5-day total precision using two instruments was 7% across two controls, serum, and plasma panels. LoQ of 2.2 pg/mL suggested the efficacy of the assay in detecting T1 inflammation in plasma or serum; no cross-reactivity or interference was observed. We identified high serum CXCL9 levels in samples from patients with acute COVID-19 infections (n = 57), chronic bird-related hypersensitivity pneumonitis (n = 61), asthma (n = 194), and ILDs (n = 84) compared to healthy individuals (< 39.0 pg/mL). Furthermore, CXCL9 levels increased with age in asthma patients, and an opposite trend was observed for T2 inflammatory factors. These results suggest the utility of the automated CXCL9 immunoassay for measuring CXCL9 in clinical samples and reflect its role in T1 inflammation.
Collapse
Affiliation(s)
- Takehiro Hasegawa
- Research and Development Division, Sysmex R&D Centre Europe GmbH, Falkenried 88, 20251, Hamburg, Germany.
| | - Maho Yoshida
- Scientific Affairs, Sysmex Corporation, 1-3-2, Murotani, Nishi-Ku, Kobe, Hyogo, 651-14 2241, Japan
| | - Shunsuke Watanabe
- Central Research Laboratories, Sysmex Corporation, 4-4-4, Takatsuka-Dai, Nish Ward, Kobe, Japan
| | - Takami Kondo
- Scientific Affairs, Sysmex Corporation, 1-3-2, Murotani, Nishi-Ku, Kobe, Hyogo, 651-14 2241, Japan
| | - Hideo Asada
- Department of Dermatology, Nara Medical University School of Medicine, 840 Shijo, Kashihara, Nara, 634-8522, Japan
| | - Atsushi Nakagawa
- Kobe City Medical Centre General Hospital, 2-1-1, Minamimachi, Minatojima, Chuo Ward, Kobe, Japan
| | - Keisuke Tomii
- Kobe City Medical Centre General Hospital, 2-1-1, Minamimachi, Minatojima, Chuo Ward, Kobe, Japan
| | - Masami Kameda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shinji Katayanagi
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 10 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 10 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Akio Mori
- National Hospital Organization, Sagamihara National Hospital, Clinical Research Centre, Sagamihara, Japan
| |
Collapse
|
2
|
Gauthier M, Kale SL, Oriss TB, Scholl K, Das S, Yuan H, Hu S, Chen J, Camiolo M, Ray P, Wenzel S, Ray A. Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation. J Allergy Clin Immunol 2022; 149:113-124.e7. [PMID: 34146578 PMCID: PMC8674372 DOI: 10.1016/j.jaci.2021.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Many patients with severe asthma (SA) fail to respond to type 2 inflammation-targeted therapies. We previously identified a cohort of subjects with SA expressing type 1 inflammation manifesting with IFN-γ expression and variable type 2 responses. OBJECTIVE We investigated the role of the chemotactic receptors C-X-C chemokine receptor 3 (CXCR3) and C-C chemokine receptor 5 (CCR5) in establishing type 1 inflammation in SA. METHODS Bronchoalveolar lavage microarray data from the Severe Asthma Research Program I/II were analyzed for pathway expression and paired with clinical parameters. Wild-type, Cxcr3-/-, and Ccr5-/- mice were exposed to a type 1-high SA model with analysis of whole lung gene expression and histology. Wild-type and Cxcr3-/- mice were treated with a US Food and Drug Administration-approved CCR5 inhibitor (maraviroc) with assessment of airway resistance, inflammatory cell recruitment by flow cytometry, whole lung gene expression, and histology. RESULTS A cohort of subjects with increased IFN-γ expression showed higher asthma severity. IFN-γ expression was correlated with CXCR3 and CCR5 expression, but in Cxcr3-/- and Ccr5-/- mice type 1 inflammation was preserved in a murine SA model, most likely owing to compensation by the other pathway. Incorporation of maraviroc into the experimental model blunted airway hyperreactivity despite only mild effects on lung inflammation. CONCLUSIONS IFNG expression in asthmatic airways was strongly correlated with expression of both the chemokine receptors CXCR3 and CCR5. Although these pathways provide redundancy for establishing type 1 lung inflammation, inhibition of the CCL5/CCR5 pathway with maraviroc provided unique benefits in reducing airway hyperreactivity. Targeting this pathway may be a novel approach for improving lung function in individuals with type 1-high asthma.
Collapse
Affiliation(s)
- Marc Gauthier
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa.
| | - Sagar Laxman Kale
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Timothy B Oriss
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Kathryn Scholl
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Sudipta Das
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Huijuan Yuan
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Sanmei Hu
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Jie Chen
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Matthew Camiolo
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Sally Wenzel
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; The University of Pittsburgh School of Environmental and Occupational Health, Pittsburgh, Pa
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
3
|
Hasegawa T, Okazawa T, Uga H, Kurata H, Mori A. Serum CXCL9 as a potential marker of Type 1 inflammation in the context of eosinophilic asthma. Allergy 2019; 74:2515-2518. [PMID: 31125435 PMCID: PMC6972734 DOI: 10.1111/all.13924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Hitoshi Uga
- Central Research Laboratories Sysmex Corporation Kobe Japan
| | | | - Akio Mori
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center Sagamihara Japan
| |
Collapse
|
4
|
Liu Y, Zhang M, Lou L, Li L, Zhang Y, Chen W, Zhou W, Bai Y, Gao J. IRAK-M Associates with Susceptibility to Adult-Onset Asthma and Promotes Chronic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 202:899-911. [PMID: 30617222 DOI: 10.4049/jimmunol.1800712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/30/2018] [Indexed: 01/21/2023]
Abstract
IL-1R-associated kinase (IRAK)-M regulates lung immunity during asthmatic airway inflammation. However, the regulatory effect of IRAK-M differs when airway inflammation persists. A positive association between IRAK-M polymorphisms with childhood asthma has been reported. In this study, we investigated the role of IRAK-M in the susceptibility to adult-onset asthma and in chronic airway inflammation using an animal model. Through genetic analysis of IRAK-M polymorphisms in a cohort of adult-onset asthma patients of Chinese Han ethnicity, we identified two IRAK-M single nucleotide polymorphisms, rs1624395 and rs1370128, genetically associated with adult-onset asthma. Functionally, the top-associated rs1624395, with an enhanced affinity to the transcription factor c-Jun, was associated with a higher expression of IRAK-M mRNA in blood monocytes. In contrast to the protective effect of IRAK-M in acute asthmatic inflammation, we found a provoking impact of IRAK-M on chronic asthmatic inflammation. Following chronic OVA stimulation, IRAK-M knockout (KO) mice presented with significantly less inflammatory cells, a lower Th2 cytokine level, a higher IFN-γ concentration, and increased percentage of Th1 cells in the lung tissue than wild type mice. Moreover, lung dendritic cells (DC) from OVA-treated IRAK-M KO mice expressed a higher percentage of costimulatory molecules PD-L1 and PD-L2. Mechanistically, in vitro TLR ligation led to a greater IFN-γ production by IRAK-M KO DCs than wild type DCs. These findings demonstrated a distinctive role of IRAK-M in maintaining chronic Th2 airway inflammation via inhibiting the DC-mediated Th1 activation and indicated a complex role for IRAK-M in the initiation and progression of experimental allergic asthma.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing 100123, China
| | - Mingqiang Zhang
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Lou
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lun Li
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Youming Zhang
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; and
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jinming Gao
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|
5
|
Zhang M, Chen W, Zhou W, Bai Y, Gao J. Critical Role of IRAK-M in Regulating Antigen-Induced Airway Inflammation. Am J Respir Cell Mol Biol 2017; 57:547-559. [PMID: 28665693 DOI: 10.1165/rcmb.2016-0370oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asthma is an airway epithelium disorder involving allergic lung inflammation. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of Toll-like receptor (TLR) signaling on airway epithelial cells and macrophages, and it is known to limit the overproduction of cytokines during the inflammatory process. However, the direct role of IRAK-M in asthma pathogenesis is unclear. In the present study, we found a significant elevation of IRAK-M expression in mouse lungs after ovalbumin (OVA) exposure. Compared with wild-type mice, IRAK-M knockout (KO) mice responded to OVA challenge with significantly worse infiltration of airway inflammatory cells, greater airway responsiveness, higher proinflammatory cytokine levels in lung homogenates, and more prominent T-helper cell type 2 (Th2) and Th17 deviation. OVA exposure also induced higher activities of dendritic cells (DCs) and macrophages from IRAK-M KO mouse lungs. Furthermore, adoptive transfer of either IRAK-M KO bone-marrow-derived DCs or macrophages into wild-type mice aggravated OVA-induced airway inflammation. In vitro experiments showed that IRAK-M KO naive CD4+ T cells were more prone to differentiate into Th17 cells, but not regulatory T cells. Consistently, activation of IκBζ was significantly increased in the absence of IRAK-M, facilitating Th17 polarization. These findings suggest that IRAK-M plays a crucial role in the regulation of allergic airway inflammation by modifying the function of airway epithelia, DCs, and macrophages, and the differentiation of naive CD4+ T cells. Modulation of IRAK-M may provide a novel target for the control of asthma.
Collapse
Affiliation(s)
| | | | - Weixun Zhou
- 3 Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Yan Bai
- 4 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
6
|
Effect of IRAK-M on Airway Inflammation Induced by Cigarette Smoking. Mediators Inflamm 2017; 2017:6506953. [PMID: 28951634 PMCID: PMC5603328 DOI: 10.1155/2017/6506953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022] Open
Abstract
Background IRAK-M, negatively regulating Toll-like receptor, is shown the dual properties in the varied disease contexts. We studied the effect of IRAK-M deficiency on cigarette smoking- (CS-) induced airway inflammation under acute or subacute conditions in a mouse model. Methods A number of cellular and molecular techniques were used to detect the differences between IRAK-M knockout (KO) and wild type (WT) mice exposed to 3-day or 7-week CS. Results Airway inflammation was comparable between IRAK-M KO and WT mice under 3-day CS exposure. Upon short-term CS exposure and lipopolysaccharide (LPS) inhalation, IRAK-M KO mice demonstrated worse airway inflammation, significantly higher percentage of Th17 cells and concentrations of proinflammatory cytokines in the lungs, and significantly elevated expression of costimulatory molecules CD40 and CD86 by lung dendritic cells (DCs) or macrophages. Conversely, 7-week CS exposed IRAK-M KO mice demonstrated significantly attenuated airway inflammation, significantly lower concentrations of proinflammatory cytokines in the lungs, significantly increased percentage of Tregs, and lower expression of CD11b and CD86 by lung DCs or macrophages. Conclusions IRAK-M plays distinctive effect on CS-induced airway inflammation, and influences Treg/Th17 balance and expression of costimulatory molecules by DCs and macrophages, depending on duration and intensity of stimulus.
Collapse
|
7
|
Gauthier M, Chakraborty K, Oriss TB, Raundhal M, Das S, Chen J, Huff R, Sinha A, Fajt M, Ray P, Wenzel SE, Ray A. Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight 2017; 2:94580. [PMID: 28679952 DOI: 10.1172/jci.insight.94580] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
We previously showed that Th1/type 1 inflammation marked by increased IFN-γ levels in the airways can be appreciated in 50% of patients with severe asthma, despite high dose corticosteroid (CS) treatment. We hypothesized that a downstream target of IFN-γ, CXCL10, which recruits Th1 cells via the cognate receptor CXCR3, is an important contributor to Th1high asthma and CS unresponsiveness. We show high levels of CXCL10 mRNA closely associated with IFNG levels in the BAL cells of 50% of severe asthmatics and also in the airways of mice subjected to a severe asthma model, both in the context of high-dose CS treatment. The inability of CS to dampen IFNG or CXCL10 expression was not because of impaired nuclear translocation of the glucocorticoid receptor (GR) or its transactivational functions. Rather, in the presence of CS and IFN-γ, STAT1 and GR were recruited on critical regulatory elements in the endogenous CXCL10 promoter in monocytes, albeit without any abatement of CXCL10 gene expression. High CXCL10 gene expression was also associated with a mast cell signature in both humans and mice, CXCR3 being also expressed by mast cells. These findings suggest that the IFN-γ-CXCL10 axis plays a central role in persistent type 1 inflammation that may be facilitated by CS therapy through GR-STAT1 cooperation converging on the CXCL10 promoter.
Collapse
Affiliation(s)
- Marc Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sudipta Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jie Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rachael Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Ayan Sinha
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Merritt Fajt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center (UPMC), and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Liu Z, Chen H, Chen X, Gao J, Guo Z. Characteristics of Allergic Pulmonary Inflammation in CXCR3Knockout Mice Sensitized and Challenged with House Dust Mite Protein. PLoS One 2016; 11:e0162905. [PMID: 27727269 PMCID: PMC5058494 DOI: 10.1371/journal.pone.0162905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Chemokine C-X-C motif receptor 3 (CXCR3) is a chemokine receptor that is mainly expressed by activated T lymphocytes. T cells play important roles in allergic pulmonary inflammation, which is a hallmark of asthma and elicits the localized accumulation of activated T cells in the lung. In China, a marked increase in the incidence rate of chronic allergic pulmonary inflammation has made it a major public health threat. In the present study, we investigated the role of CXCR3 and its ligands in airway inflammation induced by house dust mite protein (HDMP) in a CXCR3 knockout (CXCR3KO) asthma mouse model. Pathological manifestations in the lung, cell counts and bronchoalveolar lavage fluid (BALF) classifications were studied using hematoxylin and eosin (H&E) staining. The levels of IL-4 and IFN-γ in the BALF and splenocyte supernatants were measured using ELISA. CD4+ and CD8+ T cells in the lung and spleen were analyzed by flow cytometry. RT-PCR was applied to measure the mRNA transcript levels of monokines induced by IFN-γ(CXCL9) and IFN-γ inducible protein 10(CXCL10). The total cell counts, eosinophil counts, and IL-4 levels in the BALF and cultured splenocyte supernatants were significantly increased, while the levels of IFN-γ were reduced in the HDMP groups(P<0.01). Changes in the total cell counts, eosinophil counts, and lymphocyte counts, as well as the total protein levels in the BALF, the levels of IL-4 in splenocyte supernatants, and the pathological manifestations in the lung, were all greater in CXCR3KO mice than in C57BL/6 wild-type mice. Furthermore, the expression levels of CXCL9 and CXCL10 mRNA transcripts in the lungs of CXCR3KO mice were lower than those in C57BL/6 wild-type mice (P<0.05). CXCR3 and its ligands (i.e., CXCL9 and CXCL10) may play anti-inflammatory roles in this animal model. Promoting the expression of CXCR3 and its ligands may represent a novel therapeutic approach for preventing and curing asthma.
Collapse
Affiliation(s)
- Zhongjuan Liu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaxia Chen
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolan Chen
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Gao
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zijian Guo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Clancy-Thompson E, Perekslis TJ, Croteau W, Alexander MP, Chabanet TB, Turk MJ, Huang YH, Mullins DW. Melanoma Induces, and Adenosine Suppresses, CXCR3-Cognate Chemokine Production and T-cell Infiltration of Lungs Bearing Metastatic-like Disease. Cancer Immunol Res 2015; 3:956-67. [PMID: 26048575 DOI: 10.1158/2326-6066.cir-15-0015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022]
Abstract
Despite immunogenicity, melanoma-specific vaccines have demonstrated minimal clinical efficacy in patients with established disease but enhanced survival when administered in the adjuvant setting. Therefore, we hypothesized that organs bearing metastatic-like melanoma may differentially produce T-cell chemotactic proteins over the course of tumor development. Using an established model of metastatic-like melanoma in lungs, we assessed the production of specific cytokines and chemokines over a time course of tumor growth, and we correlated chemokine production with chemokine receptor-specific T-cell infiltration. We observed that the interferon (IFN)-inducible CXCR3-cognate chemokines (CXCL9 and CXCL10) were significantly increased in lungs bearing minimal metastatic lesions, but chemokine production was at or below basal levels in lungs with substantial disease. Chemokine production was correlated with infiltration of the organ compartment by adoptively transferred CD8(+) tumor antigen-specific T cells in a CXCR3- and host IFNγ-dependent manner. Adenosine signaling in the tumor microenvironment (TME) suppressed chemokine production and T-cell infiltration in the advanced metastatic lesions, and this suppression could be partially reversed by administration of the adenosine receptor antagonist aminophylline. Collectively, our data demonstrate that CXCR3-cognate ligand expression is required for efficient T-cell access of tumor-infiltrated lungs, and these ligands are expressed in a temporally restricted pattern that is governed, in part, by adenosine. Therefore, pharmacologic modulation of adenosine activity in the TME could impart therapeutic efficacy to immunogenic but clinically ineffective vaccine platforms.
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Thomas J Perekslis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Walburga Croteau
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew P Alexander
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Tamer B Chabanet
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - David W Mullins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire. Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| |
Collapse
|
10
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Barbarroja-Escudero J, Prieto-Martin A, Monserrat-Sanz J, Reyes-Martin E, Diaz-Martin D, Antolin-Amerigo D, Rodriguez-Rodriguez M, Canseco-Gonzalez F, Kremer L, Martinez-A C, Alvarez-Mon M. Abnormal chemokine receptor profile on circulating T lymphocytes from nonallergic asthma patients. Int Arch Allergy Immunol 2014; 164:228-36. [PMID: 25178112 DOI: 10.1159/000365627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND T lymphocytes are involved in the pathogenesis of nonallergic asthma. The objective of this study was to characterize the subset distribution and pattern of chemokine receptor expression in circulating T lymphocyte subsets from nonallergic asthma patients. METHODS Forty stable nonallergic asthma patients and 16 sex- and age-matched healthy donors were studied. Twelve patients did not receive inhaled steroids (untreated patients), 16 received 50-500 μg b.i.d. of inhaled fluticasone propionate (FP) (standard-dose patients), and 12 received over 500 μg b.i.d. of inhaled FP (high-dose patients) for at least 12 months prior to the beginning of this study and were clinically well controlled. Flow cytometry was performed using a panel of monoclonal antibodies (4 colors). RESULTS Nonallergic asthma patients treated with high doses of inhaled FP showed a significant reduction in the percentages of CD3+ T lymphocytes compared to healthy controls. Untreated patients showed a significant increase in CCR6 expression in CD8+CD25+ and CD8+CD25+bright T cells compared to healthy controls. The results were similar for CXCR3 and CCR5 expression. In patients treated with standard doses of FP, CCR5 expression was significantly increased in CD3+ T lymphocytes relative to healthy controls. CONCLUSIONS The different groups of clinically stable nonallergic asthmatic patients showed distinct patterns of alterations in subset distribution as well as CCR6, CXCR3, and CCR5 expression on circulating T lymphocytes. .
Collapse
|
12
|
The increased type-1 and type-2 chemokine levels in children with acute RSV infection alter the development of adaptive immune responses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:750521. [PMID: 25013801 PMCID: PMC4071813 DOI: 10.1155/2014/750521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/16/2022]
Abstract
Severe RSV infections and frequent recurrence could be related to the altered polarization of type-2/type-1 T cells. This increases the importance of determining distinctive chemokines and chemokine receptor profiles on memory T cells. We analyzed systemic adaptive T cell response in the acute (n = 17) and convalescent phase (n = 7) of RSV-infected children, in the acute (n = 11) and convalescent phase (n = 6) of children with other viral respiratory infections (adenovirus and influenza virus), and in healthy children (n = 18). Expression of CCR4 and CXCR3 on effector-memory (TEM) and central-memory (TCM) T cells was compared between tested groups. Serum concentrations of specific chemokines were determined. High CXCL10 levels were detected in acutely infected children regardless of virus pathogen, whereas increased CCL17 production was RSV-specific. Higher percentages of CCR4+ CD4 TEM cells in acute RSV infection were accompanied with higher percentages of CXCR3+ CD8 TEM cells, whereas the development of long-lived memory CXCR3+ CD4 and CD8 TCM cells seems to be compromised, as only children with other viral infections had higher percentages in the convalescent phase. Presence of type-2 and type-1 adaptive antiviral immune response, together with insufficient development of long-lived type-1 T cell memory, could play an important role in RSV pathogenesis and reinfection.
Collapse
|
13
|
Miller M, Rosenthal P, Beppu A, Mueller JL, Hoffman HM, Tam AB, Doherty TA, McGeough MD, Pena CA, Suzukawa M, Niwa M, Broide DH. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. THE JOURNAL OF IMMUNOLOGY 2014; 192:3475-87. [PMID: 24623133 DOI: 10.4049/jimmunol.1303047] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Orosomucoid-like (ORMDL)3 has been strongly linked with asthma in genetic association studies. Because allergen challenge induces lung ORMDL3 expression in wild-type mice, we have generated human ORMDL3 zona pellucida 3 Cre (hORMDL3(zp3-Cre)) mice that overexpress human ORMDL3 universally to investigate the role of ORMDL3 in regulating airway inflammation and remodeling. These hORMDL3(zp3-Cre) mice have significantly increased levels of airway remodeling, including increased airway smooth muscle, subepithelial fibrosis, and mucus. hORMDL3(zp3-Cre) mice had spontaneously increased airway responsiveness to methacholine compared to wild-type mice. This increased airway remodeling was associated with selective activation of the unfolded protein response pathway transcription factor ATF6 (but not Ire1 or PERK). The ATF6 target gene SERCA2b, implicated in airway remodeling in asthma, was strongly induced in the lungs of hORMDL3(zp3-Cre) mice. Additionally, increased levels of expression of genes associated with airway remodeling (TGF-β1, ADAM8) were detected in airway epithelium of these mice. Increased levels of airway remodeling preceded increased levels of airway inflammation in hORMDL3(zp3-Cre) mice. hORMDL3(zp3-Cre) mice had increased levels of IgE, with no change in levels of IgG, IgM, and IgA. These studies provide evidence that ORMDL3 plays an important role in vivo in airway remodeling potentially through ATF6 target genes such as SERCA2b and/or through ATF6-independent genes (TGF-β1, ADAM8).
Collapse
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chu X, Jiang L, Wei M, Yang X, Guan M, Xie X, Wei J, Liu D, Wang D. Attenuation of allergic airway inflammation in a murine model of asthma by Licochalcone A. Immunopharmacol Immunotoxicol 2013; 35:653-61. [PMID: 24028304 DOI: 10.3109/08923973.2013.834929] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CONTEXT Licochalcone A (Lico A) is a major and biogenetically characteristic chalcone isolated from the root of Xinjiang liquorice, Glycyrrhiza inflata. OBJECTIVE We focused on investigating whether Lico A possesses distinct anti-inflammatory activity on a non-infectious mouse model of asthma, and we aimed to elucidate its involvement with the mitogen-activated protein kinases pathway. METHODS BALB/c mice that were sensitized and challenged to ovalbumin (OVA) were treated with Lico A (50 mg/kg) 1 h before they were challenged with OVA. RESULTS Our study demonstrated that Lico A may effectively inhibit the increase in T-helper type 2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13 in bronchoalveolar lavage fluid, and reduced serum levels of OVA-specific IgE and IgG. Furthermore, Lico A substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. Meanwhile, pretreatment with Lico A resulted in a significant reduction in mRNA expression of acidic mammalian chitinase, chitinase 3-like protein 4 (Ym2), E-selectin, Muc5ac, CCL11 and CCR3 in lung tissues and airway hyper-responsiveness to methacholine. CONCLUSIONS These findings suggest that Lico A may effectively delay the progression of airway inflammation and could be used as a therapy for patients with allergic airway inflammation.
Collapse
Affiliation(s)
- Xiao Chu
- College of Animal Science and Veterinary Medicine, Jilin University , Changchun , China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 2012; 109:16648-53. [PMID: 23011799 DOI: 10.1073/pnas.1204151109] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orosomucoid like 3 (ORMDL3) has been strongly linked with asthma in genetic association studies, but its function in asthma is unknown. We demonstrate that in mice ORMDL3 is an allergen and cytokine (IL-4 or IL-13) inducible endoplasmic reticulum (ER) gene expressed predominantly in airway epithelial cells. Allergen challenge induces a 127-fold increase in ORMDL3 mRNA in bronchial epithelium in WT mice, with lesser 15-fold increases in ORMDL-2 and no changes in ORMDL-1. Studies of STAT-6-deficient mice demonstrated that ORMDL3 mRNA induction highly depends on STAT-6. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of metalloproteases (MMP-9, ADAM-8), CC chemokines (CCL-20), CXC chemokines (IL-8, CXCL-10, CXCL-11), oligoadenylate synthetases (OAS) genes, and selectively activated activating transcription factor 6 (ATF6), an unfolded protein response (UPR) pathway transcription factor. siRNA knockdown of ATF-6α in lung epithelial cells inhibited expression of SERCA2b, which has been implicated in airway remodeling in asthma. In addition, transfection of ORMDL3 in lung epithelial cells activated ATF6α and induced SERCA2b. These studies provide evidence of the inducible nature of ORMDL3 ER expression in particular in bronchial epithelial cells and suggest an ER UPR pathway through which ORMDL3 may be linked to asthma.
Collapse
|
16
|
Yeganeh B, Xia C, Movassagh H, Koziol-White C, Chang Y, Al-Alwan L, Bourke JE, Oliver BGG. Emerging mediators of airway smooth muscle dysfunction in asthma. Pulm Pharmacol Ther 2012; 26:105-11. [PMID: 22776693 DOI: 10.1016/j.pupt.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022]
Abstract
Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that constitute asthma - namely inflammation, airway wall remodelling and bronchial hyperresponsiveness. In vitro and in vivo studies have shown that the proliferative, secretory and contractile functions of airway smooth muscle are dysfunctional in asthma. These functions can be modulated by various mediators whose levels are altered in asthma, derived from inflammatory cells or produced by airway smooth muscle itself. In this review, we describe the emerging roles of the CXC chemokines (GROs, IP-10), Th17-derived cytokines (IL-17, IL-22) and semaphorins, as well as the influence of viral infection on airway smooth muscle function, with a view to identifying new opportunities for therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|