1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
3
|
Wozniak W, Sechet E, Kwon YJ, Aulner N, Navarro L, Sperandio B. Identification of human host factors required for beta-defensin-2 expression in intestinal epithelial cells upon a bacterial challenge. Sci Rep 2024; 14:15442. [PMID: 38965312 PMCID: PMC11224401 DOI: 10.1038/s41598-024-66568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.
Collapse
Grants
- This study received fundings from (i) the French Government “Investissement d’Avenir” program, Labex IBEID, with the reference ANR-10-LABX-62-IBEID, (ii) the French Alliance pour les Sciences de la Vie et de la Santé (AVIESAN), ITMO I3M, (iii) the PSL University, through the PSL pré-maturation program, AMPlify project, with the reference C22-78/2022-425, and (iv) the European Union, through the European Innovation Council Pathfinder Open program, MaxImmun project, with the reference 101129622.
- Weronika Wozniak received a Ph.D. funding support from PSL University under the program “Investissement d’Avenir” launched by the French Government and implemented by ANR with the reference ANR-10-IDEX-0001-02 PSL
Collapse
Affiliation(s)
- Weronika Wozniak
- Institut de Biologie de l'École Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Université PSL, Paris, France
| | | | - Yong-Jun Kwon
- Institut Pasteur Korea, Seoul, South Korea
- Luxembourg Institute of Health, Dudelange, Luxembourg
| | | | - Lionel Navarro
- Institut de Biologie de l'École Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Université PSL, Paris, France
| | - Brice Sperandio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Université PSL, Paris, France.
| |
Collapse
|
4
|
Mi C, Zhang QL, Sun MJ, Lv Y, Sun QL, Geng SL, Wang TY. Acevaltrate promotes apoptosis and inhibits proliferation by suppressing HIF-1α accumulation in cancer cells. Int Immunopharmacol 2024; 133:112066. [PMID: 38615377 DOI: 10.1016/j.intimp.2024.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Acevaltrate is a natural product isolated from the roots of Valeriana glechomifolia F.G.Mey. (Valerianaceae) and has been shown to exhibit anti-cancer activity. However, the mechanism by which acevaltrate inhibits tumor growth is not fully understood. We here demonstrated the effect of acevaltrate on hypoxia-inducible factor-1α (HIF-1α) expression. Acevaltrate showed a potent inhibitory activity against HIF-1α induced by hypoxia in various cancer cells. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently. Further analysis revealed that acevaltrate inhibited HIF-1α protein synthesis and promoted degradation of HIF-1α protein, without affecting the expression level of HIF-1α mRNA. Moreover, the phosphorylation levels of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and eIF4E binding protein-1 (4E-BP1) were significantly suppressed by acevaltrate. In addition, acevaltrate promoted apoptosis and inhibited proliferation, which was potentially mediated by suppression of HIF-1α. We also found that acevaltrate administration inhibited tumor growth in mouse xenograft model. Taken together, these results suggested that acevaltrate was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of acevaltrate against cancers.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Valerian/chemistry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chunliu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Qiu-Li Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Meng-Jun Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - You Lv
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Baindara P, Ganguli S, Chakraborty R, Mandal SM. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin Pract 2023; 13:125-147. [PMID: 36648852 PMCID: PMC9844411 DOI: 10.3390/clinpract13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The vast surface area of the respiratory system acts as an initial site of contact for microbes and foreign particles. The whole respiratory epithelium is covered with a thin layer of the airway and alveolar secretions. Respiratory secretions contain host defense peptides (HDPs), such as defensins and cathelicidins, which are the best-studied antimicrobial components expressed in the respiratory tract. HDPs have an important role in the human body's initial line of defense against pathogenic microbes. Epithelial and immunological cells produce HDPs in the surface fluids of the lungs, which act as endogenous antibiotics in the respiratory tract. The production and action of these antimicrobial peptides (AMPs) are critical in the host's defense against respiratory infections. In this study, we have described all the HDPs secreted in the respiratory tract as well as how their expression is regulated during respiratory disorders. We focused on the transcriptional expression and regulation mechanisms of respiratory tract HDPs. Understanding how HDPs are controlled throughout infections might provide an alternative to relying on the host's innate immunity to combat respiratory viral infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO 65211, USA
| | - Sriradha Ganguli
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
6
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells 2021; 10:cells10112991. [PMID: 34831214 PMCID: PMC8616480 DOI: 10.3390/cells10112991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022] Open
Abstract
Studies described so far suggest that human β-defensin 2 is an important protein of innate immune response which provides protection for the human organism against invading pathogens of bacterial, viral, fungal, as well as parasitical origin. Its pivotal role in enhancing immunity was proved in infants. It may also be considered a marker of inflammation. Its therapeutic administration has been suggested for maintenance of the balance of systemic homeostasis based on the appropriate composition of the microbiota. It has been suggested that it may be an important therapeutic tool for modulating the response of the immune system in many inflammatory diseases, offering new treatment modalities. For this reason, its properties and role in the human body discussed in this review should be studied in more detail.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| |
Collapse
|
7
|
Digitoxin promotes apoptosis and inhibits proliferation and migration by reducing HIF-1α and STAT3 in KRAS mutant human colon cancer cells. Chem Biol Interact 2021; 351:109729. [PMID: 34717917 DOI: 10.1016/j.cbi.2021.109729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
Colon cancer patients with mutant KRAS are resistant to cetuximab, an antibody directed against the epidermal growth factor receptor. New treatment options are needed to improve survival in patients with KRAS mutated colorectal cancer. Digitoxin is a cardiotonic drug, which has been demonstrated to exhibit anticancer effects in a number of cancers. However, the anticancer mechanisms of digitoxin in KRAS mutant human colon cancer cells remain elusive. Our result demonstrated that digitoxin but not cetuximab markedly decreased the expression of hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3) and p-STAT3 protein in KRAS mutant colon cancer cells. Further analysis revealed that digitoxin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. The phosphorylation levels of ribosomal protein S6 kinase (p70S6K) and eIF4E binding protein-1 (4E-BP1) were significantly suppressed by digitoxin. Digitoxin inhibited the expression and activation of STAT3 through upregulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN), SHP1 and protein inhibitors of activated STAT3 (PIAS3) and direct binding to STAT3. Meanwhile, digitoxin inhibited HIF-1α in STAT3-independent manner in KRAS mutant colon cancer cells. Moreover, digitoxin promoted apoptosis and inhibited proliferation and migration, which was potentially mediated by suppression of HIF-1α and STAT3. We also found that digitoxin administration inhibited tumor growth in a mouse xenograft model. Taken together, our findings highlight the therapeutic potential of digitoxin for the treatment of cetuximab-resistant human colon cancer.
Collapse
|
8
|
Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm 2021; 2021:8874339. [PMID: 33505220 PMCID: PMC7811571 DOI: 10.1155/2021/8874339] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Causes of mortality from COVID-19 include respiratory failure, heart failure, and sepsis/multiorgan failure. TLR4 is an innate immune receptor on the cell surface that recognizes pathogen-associated molecular patterns (PAMPs) including viral proteins and triggers the production of type I interferons and proinflammatory cytokines to combat infection. It is expressed on both immune cells and tissue-resident cells. ACE2, the reported entry receptor for SARS-CoV-2, is only present on ~1-2% of the cells in the lungs or has a low pulmonary expression, and recently, the spike protein has been proposed to have the strongest protein-protein interaction with TLR4. Here, we review and connect evidence for SARS-CoV-1 and SARS-CoV-2 having direct and indirect binding to TLR4, together with other viral precedents, which when combined shed light on the COVID-19 pathophysiological puzzle. We propose a model in which the SARS-CoV-2 spike glycoprotein binds TLR4 and activates TLR4 signalling to increase cell surface expression of ACE2 facilitating entry. SARS-CoV-2 also destroys the type II alveolar cells that secrete pulmonary surfactants, which normally decrease the air/tissue surface tension and block TLR4 in the lungs thus promoting ARDS and inflammation. Furthermore, SARS-CoV-2-induced myocarditis and multiple-organ injury may be due to TLR4 activation, aberrant TLR4 signalling, and hyperinflammation in COVID-19 patients. Therefore, TLR4 contributes significantly to the pathogenesis of SARS-CoV-2, and its overactivation causes a prolonged or excessive innate immune response. TLR4 appears to be a promising therapeutic target in COVID-19, and since TLR4 antagonists have been previously trialled in sepsis and in other antiviral contexts, we propose the clinical trial testing of TLR4 antagonists in the treatment of severe COVID-19. Also, ongoing clinical trials of pulmonary surfactants in COVID-19 hold promise since they also block TLR4.
Collapse
Affiliation(s)
- Mohamed M. Aboudounya
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| | - Richard J. Heads
- Department of Cardiology, The Rayne Institute, St Thomas' Hospital, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, UK
| |
Collapse
|
9
|
Wang C, Yang Y, Gao N, Lan J, Dou X, Li J, Shan A. L-Threonine upregulates the expression of β-defensins by activating the NF-κB signaling pathway and suppressing SIRT1 expression in porcine intestinal epithelial cells. Food Funct 2021; 12:5821-5836. [PMID: 34047325 DOI: 10.1039/d1fo00269d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of antimicrobial peptide (AMP), found in all forms of life and playing a pivotal role in the innate immune system, has been developed as a new strategy for maintaining intestinal health and reducing antibiotic usage due to its ability to resist pathogens and commensal microbes. The current study investigated the effects of l-threonine on β-defensin expression, the intestinal mucosal barrier and inflammatory cytokine expression in porcine intestinal epithelial cell lines (IPEC-J2). The results revealed that in IPEC-J2 cells, l-threonine significantly increased the expression of β-defensin (including pBD-1, pBD-2, and pBD-3) in a dose- and time-dependent manner (P < 0.05). By using different concentrations and treatment times of l-threonine, the results showed that the expression of β-defensin was upregulated to the greatest extent in IPEC-J2 cells cultured with 1 mM l-threonine for 24 h. Although the mRNA expression levels of β-defensins were markedly increased (P < 0.05), there was relatively little inducible pBD-1, pBD-2 and pBD-3 mRNA expression at the sub-confluent and confluent densities in comparison with post-confluent densities. Furthermore, we found that l-threonine enhanced the β-defensin expression by suppressing the expression of SIRT1, which increased acetylated p65 expression, and activating the NF-κB signaling pathway, which induced the translocation of p65 from the cytoplasm to the nucleus. In addition, l-threonine significantly prevented LPS-induced intestinal mucosal barrier damage by attenuating the decreasing tendency of the mRNA expression of Mucin1 and Mucin2 (P < 0.05). Simultaneously, l-threonine enhanced the expression of β-defensins upon LPS challenge in IPEC-J2 cells (P < 0.05). l-Threonine obviously decreased the mRNA expression of inflammatory cytokines compared to that in untreated cells (P < 0.05). In conclusion, l-threonine can upregulate β-defensin expression and reduce inflammatory cytokine expression in IPEC-J2 cells; meanwhile, l-threonine alleviates LPS-induced intestinal mucosal barrier damage in porcine intestinal epithelial cells. The l-threonine-mediated modulation of endogenous defensin expression may be a promising approach to reduce antibiotic use, enhance disease resistance and intestinal health in animals.
Collapse
Affiliation(s)
- Chenxi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yang Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jing Lan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
10
|
Wong A, Zamel R, Yeung J, Bader GD, Dos Santos CC, Bai X, Wang Y, Keshavjee S, Liu M. Potential therapeutic targets for lung repair during human ex vivo lung perfusion. Eur Respir J 2020; 55:13993003.02222-2019. [DOI: 10.1183/13993003.02222-2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
IntroductionThe ex vivo lung perfusion (EVLP) technique has been developed to assess the function of marginal donor lungs and has significantly increased donor lung utilisation. EVLP has also been explored as a platform for donor lung repair through injury-specific treatments such as antibiotics or fibrinolytics. We hypothesised that actively expressed pathways shared between transplantation and EVLP may reveal common mechanisms of injury and potential therapeutic targets for lung repair prior to transplantation.Materials and methodsRetrospective transcriptomics analyses were performed with peripheral tissue biopsies from “donation after brain death” lungs, with 46 pre-/post-transplant pairs and 49 pre-/post-EVLP pairs. Pathway analysis was used to identify and compare the responses of donor lungs to transplantation and to EVLP.Results22 pathways were enriched predominantly in transplantation, including upregulation of lymphocyte activation and cell death and downregulation of metabolism. Eight pathways were enriched predominantly in EVLP, including downregulation of leukocyte functions and upregulation of vascular processes. 27 pathways were commonly enriched, including activation of innate inflammation, cell death, heat stress and downregulation of metabolism and protein synthesis. Of the inflammatory clusters, Toll-like receptor/innate immune signal transduction adaptor signalling had the greatest number of nodes and was central to inflammation. These mechanisms have been previously speculated as major mechanisms of acute lung injury in animal models.ConclusionEVLP and transplantation share common molecular features of injury including innate inflammation and cell death. Blocking these pathways during EVLP may allow for lung repair prior to transplantation.
Collapse
|
11
|
Short-Term versus Long-Term Culture of A549 Cells for Evaluating the Effects of Lipopolysaccharide on Oxidative Stress, Surfactant Proteins and Cathelicidin LL-37. Int J Mol Sci 2020; 21:ijms21031148. [PMID: 32050475 PMCID: PMC7036965 DOI: 10.3390/ijms21031148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Alveolar epithelial type II (ATII) cells and their proper function are essential for maintaining lung integrity and homeostasis. However, they can be damaged by lipopolysaccharide (LPS) during Gram-negative bacterial infection. Thus, this study evaluated and compared the effects of LPS on short and long-term cultures of A549 cells by determining the cell viability, levels of oxidative stress and antimicrobial peptide cathelicidin LL-37 and changes in the expression of surfactant proteins (SPs). Moreover, we compared A549 cell response to LPS in the presence of different serum concentrations. Additionally, the effect of N-acetylcysteine (NAC) on LPS-induced oxidative stress as a possible treatment was determined. Our results indicate that A549 cells are relatively resistant to LPS and able to maintain integrity even at high LPS concentrations. Their response to endotoxin is partially dependent on serum concentration. NAC failed to lower LPS-induced oxidative stress in A549 cells. Finally, LPS modulates SP gene expression in A549 cells in a time dependent manner and differences between short and long-term cultures were present. Our results support the idea that long-term cultivation of A549 cells could promote a more ATII-like phenotype and thus could be a more suitable model for ATII cells, especially for in vitro studies dealing with surfactant production.
Collapse
|
12
|
Gowing SD, Cool-Lartigue JJ, Spicer JD, Seely AJE, Ferri LE. Toll-like receptors: exploring their potential connection with post-operative infectious complications and cancer recurrence. Clin Exp Metastasis 2020; 37:225-239. [PMID: 31975313 DOI: 10.1007/s10585-020-10018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Cancer is the leading cause of death in North America. Despite modern advances in cancer therapy, many patients will ultimately develop cancer metastasis resulting in mortality. Surgery to resect early stage solid malignancies remains the cornerstone of cancer treatment. However, surgery places patients at risk of developing post-operative infectious complications that are linked to earlier cancer metastatic recurrence and cancer mortality. Toll-like receptors (TLRs) are evolutionarily-conserved sentinel receptors of the innate immune system that are activated by microbial products present during infection, leading to activation of innate immunity. Numerous types of solid cancer cells also express TLRs, with their activation augmenting their ability to metastasize. Similarly, healthy host-tissue TLRs activated during infection induce a prometastatic environment in the host. Cancer cells additionally secrete TLR activating ligands that activate both cancer TLRs and host TLRs to promote metastasis. Consequently, TLRs are an attractive therapeutic candidate to target infection-induced cancer metastasis and progression.
Collapse
Affiliation(s)
- S D Gowing
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada. .,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| | - J J Cool-Lartigue
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - J D Spicer
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - A J E Seely
- Department of Thoracic Surgery, Ottawa General Hospital, University of Ottawa, Ottawa, Canada
| | - L E Ferri
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| |
Collapse
|
13
|
Kim DH, Gu A, Lee JS, Yang EJ, Kashif A, Hong MH, Kim G, Park BS, Lee SJ, Kim IS. Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma. Int J Med Sci 2020; 17:498-509. [PMID: 32174780 PMCID: PMC7053304 DOI: 10.7150/ijms.37833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
S100A8 and S100A9 are important proteins in the pathogenesis of allergy. Asthma is an allergic lung disease, characterized by bronchial inflammation due to leukocytes, bronchoconstriction, and allergen-specific IgE. In this study, we examined the role of S100A8 and S100A9 in the interaction of cytokine release from bronchial epithelial cells, with constitutive apoptosis of neutrophils. S100A8 and S100A9 induce increased secretion of neutrophil survival cytokines such as MCP-1, IL-6 and IL-8. This secretion is suppressed by TLR4 inhibitor), LY294002, AKT inhibitor, PD98059, SB202190, SP600125, and BAY-11-7085. S100A8 and S100A9 also induce the phosphorylation of AKT, ERK, p38 MAPK and JNK, and activation of NF-κB, which were blocked after exposure to TLR4i, LY294002, AKTi, PD98059, SB202190 or SP600125. Furthermore, supernatants collected from bronchial epithelial cells after S100A8 and S100A9 stimulation suppressed the apoptosis of normal and asthmatic neutrophils. These inhibitory mechanisms are involved in suppression of caspase 9 and caspase 3 activation, and BAX expression. The degradation of MCL-1 and BCL-2 was also blocked by S100A8 and S100A9 stimulation. Essentially, neutrophil apoptosis was blocked by co-culture of normal and asthmatic neutrophils with BEAS-2B cells in the presence of S100A8 and S100A9. These findings will enable elucidation of asthma pathogenesis.
Collapse
Affiliation(s)
- Da Hye Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, 54538
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan, 38610
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Beom Seok Park
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824.,Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135
| | - Soo Jin Lee
- Department of Pediatrics, School of Medicine, Eulji University, Daejeon, 301-746
| | - In Sik Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824.,Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| |
Collapse
|
14
|
Hou Y, Li X, Liu X, Zhang Y, Zhang W, Man C, Jiang Y. Transcriptomic responses of Caco-2 cells to Lactobacillus rhamnosus GG and Lactobacillus plantarum J26 against oxidative stress. J Dairy Sci 2019; 102:7684-7696. [PMID: 31255276 DOI: 10.3168/jds.2019-16332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022]
Abstract
Oxidative stress is the basic reason for aging and age-related diseases. In this study, we investigated the protective effect of 2 strains of lactic acid bacteria (LAB), Lactobacillus rhamnosus GG and L. plantarum J26, against oxidative stress in Caco-2 cells, and gave an overview of the mechanisms of lactic acid bacteria antioxidant activity using digital gene expression profiling. The 2 LAB strains provided significant protection against hydrogen peroxide (H2O2)-induced reduction in superoxide dismutase activity and increase in glutathione peroxidase activity in Caco-2 cells. However, inactive bacteria had little effect on alleviating oxidation stress in Caco-2 cells. Eight genes related to oxidative stress-FOSB, TNF, PPP1R15A, NUAK2, ATF3, TNFAIP3, EGR2, and FBN2-were significantly upregulated in H2O2-induced Caco-2 cells compared with untreated Caco-2 cells. After incubation of the H2O2-induced Caco-2 cells with L. rhamnosus GG and L. plantarum J26, 5 genes (TNF, EGR2, NUAK2, FBN2, and TNFAIP3) and 2 genes (NUAK2 and FBN2) were downregulated, respectively. In addition, the Kyoto Encyclopedia of Genes and Genomes indicated that some signaling pathways associated with inflammation, immune response, and apoptosis, such as Janus kinase/signal transducers and activators of transcription (Jak-STAT), mitogen-activated protein kinase (MAPK), nuclear factor-κB, and tumor necrosis factor, were all negatively modulated by the 2 strains, especially L. rhamnosus GG. In this paper, we reveal the mechanism of LAB in relieving oxidative stress and provide a theoretical basis for the rapid screening and evaluation of new LAB resources.
Collapse
Affiliation(s)
- Yichao Hou
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xuesong Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yashuo Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
15
|
Polak D, Zigron A, Eli-Berchoer L, Shapira L, Nussbaum G. Myd88 plays a major role in the keratinocyte response to infection with Porphyromonas gingivalis. J Periodontal Res 2019; 54:396-404. [PMID: 30793777 DOI: 10.1111/jre.12641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/11/2018] [Accepted: 01/13/2019] [Indexed: 11/28/2022]
Abstract
AIM To explore the role of keratinocyte myeloid differentiation primary response 88 (MyD88) expression in the adhesion of Porphyromonas gingivalis to the cells and its subsequent invasion and intracellular survival. MATERIALS AND METHODS Primary mouse keratinocytes from wild-type (WT) or Myd88-/- mice were infected with P gingivalis alone or co-infected with Fusobacterium nucleatum. Bacterial adhesion and invasion were measured using fluorescent microscopy and flow cytometry, and intracellular survival in keratinocytes was quantified by an antibiotic protection assay. Keratinocyte expression of antimicrobial peptides was measured by real-time PCR. RESULTS In the absence of MyD88, P gingivalis adherence, invasion, and intracellular survival were enhanced compared with WT keratinocytes. The presence of F nucleatum during infection increased the adhesion of P gingivalis to WT keratinocytes but reduced the adhesion to Myd88-/- keratinocytes. Fusobacterium nucleatum improved mildly the invasion and survival of P gingivalis in both cell types. Baseline expression of beta-defensin 2, 3, 4 and RegIII-γ was elevated in Myd88-/- keratinocytes compared to WT cells; however, following infection beta-defensin expression was strongly induced in WT cells but decreased dramatically in the MyD88 deficient cells. CONCLUSION In the absence of MyD88 expression, P gingivalis adhesion to keratinocytes is improved, and invasion and intracellular survival are increased. Furthermore, keratinocyte infection by P gingivalis induces antimicrobial peptide expression in a MyD88-dependent manner. Thus, MyD88 plays a key role in the interaction between P gingivalis and keratinocytes.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Asaf Zigron
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel.,Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
16
|
Gomes Dos Reis L, Lee WH, Svolos M, Moir LM, Jaber R, Windhab N, Young PM, Traini D. Nanotoxicologic Effects of PLGA Nanoparticles Formulated with a Cell-Penetrating Peptide: Searching for a Safe pDNA Delivery System for the Lungs. Pharmaceutics 2019; 11:E12. [PMID: 30609825 PMCID: PMC6359528 DOI: 10.3390/pharmaceutics11010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
The use of cell-penetrating peptides (CPPs) in combination with nanoparticles (NPs) shows great potential for intracellular delivery of DNA. Currently, its application is limited due to the potential toxicity and unknown long-term side effects. In this study NPs prepared using a biodegradable polymer, poly(lactic⁻co⁻glycolic acid (PLGA) in association with a CPP, was assessed on two lung epithelial cell lines (adenocarcinomic human alveolar basal epithelial cells (A549) and normal bronchial epithelial cells (Beas-2B cells)). Addition of CPP was essential for intracellular internalization. No effects were observed on the mitochondrial activity and membrane integrity. Cells exposed to the NPs⁻DNA⁻CPP showed low inflammatory response, low levels of apoptosis and no activation of caspase-3. Increase in necrotic cells (between 10%⁻15%) after 24 h of incubation and increase in autophagy, induced by NPs⁻DNA⁻CPP, are likely to be related to the lysosomal escape mechanism. Although oxidative stress is one of the main toxic mechanisms of NPs, NPs⁻DNA⁻CPP showed decreased reactive oxygen species (ROS) production on Beas-2B cells, with potential antioxidant effect of CPP and no effect on A549 cells. This NP system appears to be safe for intracellular delivery of plasmid DNA to the lung epithelial cells. Further investigations should be conducted in other lung-related systems to better understand its potential effects on the lungs.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, (UniKL-RCMP), 30450 Ipoh, Perak, Malaysia.
| | - Maree Svolos
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Lyn Margaret Moir
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Rima Jaber
- Evonik Industries AG, Kirschenallee, 64293 Darmstadt, Germany.
| | - Norbert Windhab
- Evonik Industries AG, Kirschenallee, 64293 Darmstadt, Germany.
| | - Paul Michael Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2037, Australia.
| |
Collapse
|
17
|
Zang L, Wang J, Ren Y, Liu W, Yu Y, Zhao S, Otkur W, Zhao Y, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Activated toll-like receptor 4 is involved in oridonin-induced phagocytosis via promotion of migration and autophagy-lysosome pathway in RAW264.7 macrophages. Int Immunopharmacol 2019; 66:99-108. [DOI: 10.1016/j.intimp.2018.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
|
18
|
Yu Z, Deslouches B, Walton WG, Redinbo MR, Di YP. Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS One 2018; 13:e0203621. [PMID: 30216370 PMCID: PMC6138395 DOI: 10.1371/journal.pone.0203621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
SPLUNC1 is a multifunctional protein of the airway with antimicrobial properties. We previously reported that it displayed antibiofilm activities against P. aeruginosa. The goal of this study was to determine whether (1) the antibiofilm property is broad (including S. aureus, another prevalent organism in cystic fibrosis); (2) the α4 region is responsible for such activity; and (3), if so, this motif could be structurally optimized as an antimicrobial peptide with enhanced activities. We used S. aureus biofilm-prevention assays to determine bacterial biomass in the presence of SPLUNC1 and SPLUNC1Δα4 recombinant proteins, or SPLUNC1-derived peptides (α4 and α4M1), using the well-established crystal-violet biofilm detection assay. The SPLUNC1Δα4 showed markedly reduced biofilm prevention compared to the parent protein. Surprisingly, the 30-residue long α4 motif alone demonstrated minimal biofilm prevention activities. However, structural optimization of the α4 motif resulted in a modified peptide (α4M1) with significantly enhanced antibiofilm properties against methicillin–sensitive (MSSA) and–resistant (MRSA) S. aureus, including six different clinical strains of MRSA and the well-known USA300. Hemolytic activity was undetectable at up to 100μM for the peptides. The data warrant further investigation of α4-derived AMPs to explore the potential application of antimicrobial peptides to combat bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William G. Walton
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Y. Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yang X, Chen GT, Wang YQ, Xian S, Zhang L, Zhu SM, Pan F, Cheng YX. TLR4 promotes the expression of HIF-1α by triggering reactive oxygen species in cervical cancer cells in vitro-implications for therapeutic intervention. Mol Med Rep 2017; 17:2229-2238. [PMID: 29207048 PMCID: PMC5783462 DOI: 10.3892/mmr.2017.8108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
The present study investigated the mechanism underlying Toll-like receptor 4 (TLR4)-mediated stimulation of hypoxia-inducible factor-1α (HIF-1α) activity and its association with reactive oxygen species (ROS) in cervical cancer cells. SiHa cells were cultured and randomized to control, lipopolysaccharide (LPS), methyl-β-cyclodextrin (MβCD)+LPS, ammonium pyrrolidinedithiocarbamate (PDTC)+LPS, ST2825+LPS and small interfering (si) RNA TLR4+LPS treatment groups. Cell proliferation was quantified using an MTT assay, cell cloning was performed using soft agar colony formation and HIF-1α expression was detected by immunocytochemical staining and western blot analyses. Dichloro-dihydro-fluorescein diacetate and lucigenin luminescence assays were used to detect alterations in ROS and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase content, respectively. Co-localization of TLR4 and HIF-1α was detected by immunofluorescence staining and observed using fluorescence microscopy. Compared with the control group, cell proliferation was enhanced in the LPS-treated group and was not altered in the PDTC+LPS treatment group. Cell proliferation was reduced in all other treatment groups (P<0.05). Compared with the LPS group, cell proliferation decreased in all other groups. Compared with the PDTC+LPS treatment group, cell proliferation significantly decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.01). Treatment with MβCD+LPS exhibited an increased inhibitory effect on cell activity and proliferation. Compared with the control group, HIF-1α expression was enhanced following treatment with LPS, although it decreased when LPS was co-administered with ST2825, siTLR4 and MβCD (P<0.05). HIF-1α expression decreased following treatment with ST2825, siTLR4, MβCD and PDTC+LPS, compared with treatment with LPS alone. Compared with the PDTC+LPS group, HIF-1α activity decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase and ROS levels increased in cells treated with LPS, compared with the control group, at 24 and 12 h following treatment, respectively, and decreased at 12 h when LPS was co-administered with ST2825, siTLR4 and MβCD. There was no difference between the LPS and PDTC+LPS groups with respect to NADPH and ROS levels. Compared with the PDTC+LPS group, NADPH oxidase activity and ROS content decreased when LPS was co-administered with ST2825, siTLR4 and MβCD. NADPH oxidase activity and ROS content were lowest in the MβCD+LPS treatment group, and immunofluorescent staining demonstrated that TLR4 was localized to the cell surface and HIF-1α was primarily localized to the cytoplasm. TLR4 was co-expressed with HIF-1α in cervical cancer cells. The results of the present study suggested that TLR4 signaling primarily promoted HIF-1α activity via activation of lipid rafts/NADPH oxidase redox signaling and may be associated with the initiation and progression of cervical cancer. This promoting effect was stronger in TLR4/lipid rafts/NADPH oxidase pathway than that in TLR4-NF-κB signaling pathway. Therefore, the TLR4/lipid raft-associated redox signal may be a target for therapeutic intervention to prevent the growth of cervical cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gan Tao Chen
- Department of Gastroenterology, The Third Renmin Hospital of Xiantao City, Xiantao, Hubei 433000, P.R. China
| | - Yan Qing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shu Xian
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao Ming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Pan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
KOLOMAZNIK M, NOVA Z, CALKOVSKA A. Pulmonary Surfactant and Bacterial Lipopolysaccharide: The Interaction and its Functional Consequences. Physiol Res 2017; 66:S147-S157. [DOI: 10.33549/physiolres.933672] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The respiratory system is constantly exposed to pathogens which enter the lungs by inhalation or via blood stream. Lipopolysaccharide (LPS), also named endotoxin, can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local inflammation and systemic toxicity. LPS affects alveolar type II (ATII) cells and pulmonary surfactant and although surfactant molecule has the effective protective mechanisms, excessive amount of LPS interacts with surfactant film and leads to its inactivation. From immunological point of view, surfactant specific proteins (SPs) SP-A and SP-D are best characterized, however, there is increasing evidence on the involvement of SP-B and SP-C and certain phospholipids in immune reactions. In animal models, the instillation of LPS to the respiratory system induces acute lung injury (ALI). It is of clinical importance that endotoxin-induced lung injury can be favorably influenced by intratracheal instillation of exogenous surfactant. The beneficial effect of this treatment was confirmed for both natural porcine and synthetic surfactants. It is believed that the surfactant preparations have anti-inflammatory properties through regulating cytokine production by inflammatory cells. The mechanism by which LPS interferes with ATII cells and surfactant layer, and its consequences are discussed below.
Collapse
Affiliation(s)
| | | | - A. CALKOVSKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
21
|
Quintar AA, Maldonado CA. Androgen regulation of host defenses and response to inflammatory stimuli in the prostate gland. Cell Biol Int 2017; 41:1223-1233. [PMID: 28244686 DOI: 10.1002/cbin.10755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
The prostate gland is a strictly androgen-dependent organ which is also the main target of infectious and inflammatory diseases in the male reproductive tract. Host defenses and immunity of the gland have unique features to maintain a constant balance between response and tolerance to diverse antigens. In this context, the effects of reproductive hormones on the male tract are thus complex and have just started to be defined. From the classical description of "the prostatic antibacterial factor," many host defense proteins with potent microbicidal and anti-tumoral activities have been described in the organ. Indeed, it has been proposed a central role for resident cells, that is, epithelial and smooth muscle cells, in the prostatic response against injuries. However, these cells also represent the target of the inflammatory damage, leading to the development of a Proliferative Inflammatory Atrophy-like process in the epithelium and a myofibroblastic-like reactive stroma. Available data on androgen regulation of inflammation led to a model of the complex control, in which the final effect will depend on the tissue microenvironment, the cause of inflammation, and the levels of androgens among other factors. In this paper, we review the current scientific literature about the inflammatory process in the gland, the modulation of host defense proteins, and the influence of testosterone on the resolution of prostatitis.
Collapse
Affiliation(s)
- Amado A Quintar
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón de Biología Celular. E. Barros esq. Enfermera Gordillo 1 piso Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón de Biología Celular. E. Barros esq. Enfermera Gordillo 1 piso Ciudad Universitaria, 5000, Córdoba, Argentina
| |
Collapse
|
22
|
Pace E, Ferraro M, Di Vincenzo S, Siena L, Gjomarkaj M. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke. Toxicol Lett 2016; 258:216-226. [PMID: 27397760 DOI: 10.1016/j.toxlet.2016.06.2105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
Abstract
The tobacco smoking habit interferes with the innate host defence system against infections. Recurrent infections accelerated the functional respiratory decline. The present study assessed the effects of ceftaroline on TLR2 and TLR4 and on pro-inflammatory responses in airway epithelial cells (16HBE cell line and primary bronchial epithelial cells) with or without cigarette smoke extracts (CSE 10%). TLR2, TLR4, LPS binding and human beta defensin 2 (HBD2) were assessed by flow cytometry, NFkB nuclear translocation by western blot analysis, IL-8 and HBD2 mRNA by Real Time PCR; the localization of NFkB on the HBD2 and IL-8 promoters by ChiP Assay. CSE increased TLR4, TLR2 expression, LPS binding and IL-8 mRNA; CSE decreased HBD2 (protein and mRNA), activated NFkB and promoted the localization of NFkB on IL-8 promoter and not on HBD2 promoter. Ceftaroline counteracted the CSE effect on TLR2 expression, on LPS binding, on IL-8 mRNA, HBD2 and NFkB in 16HBE. The effects of ceftaroline on HBD2 protein and on IL-8 mRNA were confirmed in primary bronchial epithelial cells. In conclusion, ceftaroline is able to counteract the effects of CSE on the innate immunity and pro-inflammatory responses modulating TLR2, LPS binding, NFkB activation and activity, HBD2 and IL-8 expression in bronchial epithelial cells.
Collapse
Affiliation(s)
- E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - M Ferraro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - L Siena
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
23
|
Gu J, Huang Y. β-Defensin-2 is overexpressed in human vocal cord polyps. Eur Arch Otorhinolaryngol 2016; 274:901-907. [PMID: 27586391 DOI: 10.1007/s00405-016-4270-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/16/2016] [Indexed: 01/26/2023]
Abstract
The objective of the study is to investigate the expression of human β-defensin-1 (hBD-1) and human β-defensin-2 (hBD-2) in vocal cord polyps using tissue microarray. Tissue specimens from vocal cord polyps (N = 51), vocal cord nodules (N = 26), and healthy vocal cords (N = 8) were retrieved from the biobank of the Department of Pathology of Tianjin Tianhe Hospital between 2003 and 2006 and immunostained on tissue microarrays for the quantitative analysis of hBD-1 and hBD-2 expression. hBD-1 expression did not differ significantly between healthy vocal cords, vocal cord nodules, and vocal cord polyps (p = 0.904). In contrast, hBD-2 expression was significantly higher in vocal cord polyps compared to vocal cord nodules and healthy vocal cords (p < 0.001). The expression of hBD-2, but not hBD-1, is elevated in vocal cord polyp epithelium. This suggests that hBD-1 has a more constitutive role in host defense in the vocal cords, whereas hBD-2 expression may be a result of local inflammation or the presence of invading pathogens.
Collapse
Affiliation(s)
- Jinjin Gu
- Department of Otorhinolaryngology, Second Hospital, Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Yongwang Huang
- Department of Otorhinolaryngology, Second Hospital, Tianjin Medical University, Tianjin, 300211, People's Republic of China
| |
Collapse
|
24
|
Li Q, Bao F, Zhi D, Liu M, Yan Q, Zheng X, Ren L, Cong S, Li Y, Cao G. Lipopolysaccharide induces SBD-1 expression via the P38 MAPK signaling pathway in ovine oviduct epithelial cells. Lipids Health Dis 2016; 15:127. [PMID: 27514378 PMCID: PMC4981948 DOI: 10.1186/s12944-016-0294-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Background Beta defensins are secreted from ovine oviduct epithelial cells (OOECs) in response to microbial infection, and are potential alternatives to antibiotic agents in the treatment of microorganism infection, particularly given the abuse of antibiotic agents and the increasing number of drug-resistant bacteria. The aberrant expression of defensins may result in disorders involving organ and oviduct inflammation, such as salpingitis. Methods In the present study, we investigated the effects of LPS on the mRNA expression levels of sheep β-defensin-1 (SBD-1) in ovine oviduct epithelial cells. The OOECs in vitro culturing system were established and treated with different concentrations of LPS for indicated time. In addition, MAPK inhibitors and TLR4 antibodies were pretreated to investigate the potential mechanism which involves in LPS regulating SBD-1 expression. Results LPS markedly upregulated SBD-1 expression in a concentration- and time-dependent manner. Treatment with 100 ng/mL LPS resulted in the phosphorylation of JNK, ERK and P38 MAPK. Interestingly, the LPS stimulated SBD-1 expression was attenuated by pretreatment with the P38 MAPK inhibitors SB203580 and SB202190 but not the JNK inhibitor SP600125, while the ERK inhibitor PD98059 had a minor effect. Furthermore, treatment with a Toll-like receptor 4 (TLR4) neutralizing antibody significantly decreased P38 MAPK phosphorylation and LPS induced SBD-1 expression. Conclusions Together, these findings suggest that SBD-1 is upregulated by LPS via the TLR4 receptor, mainly through the P38 MAPK signaling pathway in ovine oviduct epithelial cells to protect the ovine oviduct epithelium from pathogen invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0294-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Fuxiang Bao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Dafu Zhi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Moning Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Qin Yan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Xinxin Zheng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Lixin Ren
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Shan Cong
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Yan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China. .,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, No. 306, Zhaowuda Road, Huhhot, 010018, People's Republic of China.
| |
Collapse
|
25
|
Primary Paediatric Bronchial Airway Epithelial Cell in Vitro Responses to Environmental Exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:359. [PMID: 27023576 PMCID: PMC4847021 DOI: 10.3390/ijerph13040359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
The bronchial airway epithelial cell (BAEC) is the site for initial encounters between inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of pro inflammatory interleukins (IL)-6 and IL-8 from primary BAEC cultured from children will be increased after in vitro exposure to common environmental factors. Primary BAEC were obtained from children undergoing clinically indicated routine general anaesthetic procedures. Cells were exposed to three different concentrations of lipopolysaccharide (LPS) or house dust mite allergen (HDM) or particulates extracted from side stream cigarette smoke (SSCS). BAEC were obtained from 24 children (mean age 7.0 years) and exposed to stimuli. Compared with the negative control, there was an increase in IL-6 and IL-8 release after exposure to HDM (p ≤ 0.001 for both comparisons). There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023). There was no change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures.
Collapse
|
26
|
Donnarumma G, Paoletti I, Fusco A, Perfetto B, Buommino E, de Gregorio V, Baroni A. β-Defensins: Work in Progress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 901:59-76. [DOI: 10.1007/5584_2015_5016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Sung DK, Chang YS, Sung SI, Yoo HS, Ahn SY, Park WS. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 2015; 18:424-36. [PMID: 26350435 PMCID: PMC5057339 DOI: 10.1111/cmi.12522] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood‐ derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli‐ induced acute lung injury primarily by down‐ modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up‐ regulation of toll‐ like receptors (TLR)‐ 2 and TLR‐ 4, and β‐ defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA‐ mediated knockdown of TLR‐ 4, but not TLR‐ 2, and restored by BD2 supplementation. The in vivo down‐ modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli‐ induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR‐ 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR‐ 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR‐ 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli‐ induced pneumonia and the ensuing acute lung injury through both its anti‐ inflammatory and antibacterial effects.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| |
Collapse
|
28
|
Wagner C, Goldmann T, Rohmann K, Rupp J, Marwitz S, Rotta detto Loria J, Limmer S, Zabel P, Dalhoff K, Dr�mann D. Budesonide Inhibits Intracellular Infection with Non-Typeable Haemophilus influenzae despite Its Anti-Inflammatory Effects in Respiratory Cells and Human Lung Tissue: A Role for p38 MAP Kinase. Respiration 2015; 90:416-25. [DOI: 10.1159/000439226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
|
29
|
Zhou H, Luo M, Wen Y, Ma A, Luo Y, Yi Q, Chen J, Xiao L. [Expression of TLR5 in different types of non-small cell lung cancer cell lines and its activation mechanism]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:8-15. [PMID: 25603867 PMCID: PMC5999743 DOI: 10.3779/j.issn.1009-3419.2015.01.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND It has been proven that toll-like receptor 5 (TLR5) plaied an important role in the development of tumor. In our previous study, we found that the expression of TLR5 was remarkably higher in non-small cell lung cancer (NSCLC) tissues than that in normal tissues, but the activation of TLR5 signaling pathway in NSCLC was still unknown. The aim of this study is to investigate the expression of TLR5 in different types of NSCLC cell lines, and analyze the activity of the signaling pathway after stimulated by its specific exogenous ligand flagellin. METHODS The TLR5 protein was detected by immunofluorescence and Western blot in three kinds of NSCLC cell lines, and the TLR5 mRNA was detected by RT-PCR. Select the cell line of TLR5 highest expression as the research object, and select the suitable concentration of flagellin. NF-κB luciferase activity was detected to validate the TLR5 activation pathway through inhibitory signaling pathways by 0 μg/mL, 0.01 μg/mL, 0.1 μg/mL, 1 μg/mL, 10 μg/mL TLR5 antibody. The chosen cell line was transfected by TLR5 shRNA plasmid, and p-IKBα, IKBα, p-ERK1/2, ERK1/2 and p-JNK of untrasfected and transfected cells were detected in the activity of TLR5 signaling pathway by Western blot at 0 min, 10 min, 30 min and 60 min, respectively. RESULTS The expression of TLR5 was the highest in the lung adenocarcinoma cell line SPC-A-1 by immunofluorescence, mainly expressed on the cell membrane. NF-κB luciferase activity of SPC-A-1 cells was the highest, and the activity was increased in a dose-dependent manner. 0.1 μg/mL flagellin could significantly increase the NF-κB luciferase activity (P<0.05), while its activity could be inhibited by the TLR5 antibody in a negative correlation. Treated by 0.1 μg/mL flagellin, compared with that of 0 min group, the levels of p-IKBα, p-ERK1/2, p-JNK of SPC-A-1 cells increased significantly after 10 min, reached the peak at 30 min, and declined at 60 min (P<0.05). Compared with that of 10 min and 60 min group, the levels of p-IKBα, p-ERK1/2, p-JNK significantly increased at 30 min (P<0.05). While the levels of IKBα, ERK1/2 at 0 min, 10 min, 30 min and 60 min had no significant changes (P>0.05). SPC-A-1 cells transfected TLR5-shRNA were also stimulated by flagellin (0.1 μg/mL). At 0 min, 10 min, 30 min and 60 min, p-IKBα and p-JNK proteins could not be detected, and the levels of IKBα and ERK1/2 had no significant changes (P>0.05), but the levels of p-ERK1/2 significantly increased as time went on (P<0.05). CONCLUSIONS Exogenous ligand flagellin can activate TLR5 protein in NSCLC cell lines and initiate downstream signaling pathways. It may be relative to the development of NSCLC.
Collapse
Affiliation(s)
- Hui Zhou
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;State Key Laboratory of Medical Genetics Central South University, Changsha 410078, China
| | - Mei Luo
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yige Wen
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Andi Ma
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yongzhong Luo
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qing Yi
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jianhua Chen
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ling Xiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
30
|
The Effect of a Human Antibacterial Neuropeptide SL-21 on the Expression of Pro-inflammatory Factors in Airway Epithelial Cells. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology 2015; 144:79-90. [PMID: 24975020 DOI: 10.1111/imm.12352] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 01/15/2023] Open
Abstract
Airway mucus hyperproduction is a common feature of chronic airway diseases such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis, which are closely associated with neutrophilic airway inflammation. S100A8, S100A9 and S100A12 are highly abundant proteins released by neutrophils and have been identified as important biomarkers in many inflammatory diseases. Herein, we report a new role for S100A8, S100A9 and S100A12 for producing MUC5AC, a major mucin protein in the respiratory tract. All three S100 proteins induced MUC5AC mRNA and the protein in normal human bronchial epithelial cells as well as NCI-H292 lung carcinoma cells in a dose-dependent manner. A Toll-like receptor 4 (TLR4) inhibitor almost completely abolished MUC5AC expression by all three S100 proteins, while neutralization of the receptor for advanced glycation end-products (RAGE) inhibited only S100A12-mediated production of MUC5AC. The S100 protein-mediated production of MUC5AC was inhibited by the pharmacological agents that block prominent signalling molecules for MUC5AC expression, such as mitogen-activated protein kinases, nuclear factor-κB (NF-κB) and epidermal growth factor receptor. S100A8, S100A9 and S100A12 equally elicited both phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear translocation of NF-κB/degradation of cytosolic IκB with similar kinetics through TLR4. In contrast, S100A12 preferentially activated the ERK pathway rather than the NF-κB pathway through RAGE. Collectively, these data reveal the capacity of these three S100 proteins to induce MUC5AC production in airway epithelial cells, suggesting that they all serve as key mediators linking neutrophil-dominant airway inflammation to mucin hyperproduction.
Collapse
Affiliation(s)
- Jin Hyun Kang
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | |
Collapse
|
32
|
Li A, Gan Y, Wang R, Liu Y, Ma T, Huang M, Cui X. IL-22 Up-Regulates β-Defensin-2 Expression in Human Alveolar Epithelium via STAT3 but Not NF-κB Signaling Pathway. Inflammation 2015; 38:1191-200. [PMID: 25510212 DOI: 10.1007/s10753-014-0083-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human β-defensin-2(HBD-2) is one of the two major vertebrate antimicrobial peptide families (α and β), which is highly expressed by proinflammatory induction in the lung and exhibit broad-spectrum antimicrobial activity. We observed that IL-22 receptors high expressed on the membrane of A549 cells; HBD-2 mRNA was expressed in a time- and concentration-dependent manners in A549 cells when treated with IL-22; further studies demonstrated that HBD-2 expression was attenuated by AG490, but to JSH-23, inhibitors of p-STAT3 DNA binding and NF-κB/p65 subunit nuclear translocation, respectively. These results support that IL-22-mediated signalling pathway of HBD-2 gene expression involved STAT3 but not NF-κB in human alveolar epithelium. These findings provide a new insight into how IL-22 may play an important link between innate and adaptive immunity, thereby anti-infection locally in the alveolar epithelium.
Collapse
Affiliation(s)
- Amin Li
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Bengbu Medical College, Huainan, 232000, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Gottipati KR, Bandari SK, Nonnenmann MW, Levin JL, Dooley GP, Reynolds SJ, Boggaram V. Transcriptional mechanisms and protein kinase signaling mediate organic dust induction of IL-8 expression in lung epithelial and THP-1 cells. Am J Physiol Lung Cell Mol Physiol 2015; 308:L11-21. [PMID: 25398986 PMCID: PMC4281698 DOI: 10.1152/ajplung.00215.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/08/2014] [Indexed: 01/01/2023] Open
Abstract
Exposure to the agricultural work environment is a risk factor for the development of respiratory symptoms and chronic lung diseases. Inflammation is an important contributor to the pathogenesis of tissue injury and disease. Cellular and molecular mechanisms mediating lung inflammatory responses to agricultural dust are not yet fully understood. We studied the effects of poultry dust extract on molecular regulation of interleukin-8 (IL-8), a proinflammatory cytokine, in A549 and Beas2B lung epithelial and THP-1 monocytic cells. Our findings indicate that poultry dust extract potently induces IL-8 levels by increasing IL-8 gene transcription without altering IL-8 mRNA stability. Increase in IL-8 promoter activity was due to enhanced binding of activator protein 1 and NF-κB. IL-8 induction was associated with protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation and inhibited by PKC and MAPK inhibitors. IL-8 increase was not inhibited by polymyxin B or l-nitroarginine methyl ester, indicating lack of involvement of lipopolysaccharide and nitric oxide in the induction. Lung epithelial and THP-1 cells share common mechanisms for induction of IL-8 levels. Our findings identify key roles for transcriptional mechanisms and protein kinase signaling pathways for IL-8 induction and provide insights into the mechanisms regulating lung inflammatory responses to organic dust exposure.
Collapse
Affiliation(s)
- Koteswara R Gottipati
- Department of Cell and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shiva Kumar Bandari
- Department of Cell and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Matthew W Nonnenmann
- Department of Occupational Health Sciences, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Jeffrey L Levin
- Department of Occupational Health Sciences, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Gregory P Dooley
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Stephen J Reynolds
- High Plains Intermountain Center for Agricultural Health and Safety, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Vijay Boggaram
- Department of Cell and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas;
| |
Collapse
|
34
|
Chow SC, Gowing SD, Cools-Lartigue JJ, Chen CB, Berube J, Yoon HW, Chan CHF, Rousseau MC, Bourdeau F, Giannias B, Roussel L, Qureshi ST, Rousseau S, Ferri LE. Gram negative bacteria increase non-small cell lung cancer metastasis via Toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation. Int J Cancer 2014; 136:1341-50. [PMID: 25082668 DOI: 10.1002/ijc.29111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/26/2014] [Indexed: 12/13/2022]
Abstract
Surgery is required for the curative treatment of lung cancer but is associated with high rates of postoperative pneumonias predominantly caused by gram negative bacteria. Recent evidence suggests that these severe infectious complications may decrease long term survival after hospital discharge via cancer recurrence, but the mechanism is unclear. Lung cancer cells have recently been demonstrated to express Toll-like receptors (TLR) that mediate pathogen recognition. We hypothesized that incubation of non-small cell lung cancer (NSCLC) cells with heat-inactivated Escherichia coli can augment cancer cell adhesion, migration and metastasis via TLR4 signaling. Incubation of murine and human NSCLC cells with E. coli increased in vitro cell adhesion to collagen I, collagen IV and fibronectin, and enhanced in vitro migration. Using hepatic intravital microscopy, we demonstrated that NSCLC cells have increased in vivo adhesion to hepatic sinusoids after coincubation with gram negative bacteria. These enhanced cell adhesion and migration phenotypes following incubation with E. coli were attenuated at three levels: inhibition of TLR4 (Eritoran), p38 MAPK (BIRB0796) and ERK1/2 phosphorylation (PD184352). Incubation of murine NSCLC cells in vitro with E. coli prior to intrasplenic injection significantly augmented formation of in vivo hepatic metastases 2 weeks later. This increase was abrogated by NSCLC TLR4 blockade using Eritoran. TLR4 represents a potential therapeutic target to help prevent severe postoperative infection driven cancer metastasis.
Collapse
Affiliation(s)
- Simon C Chow
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma. J Membr Biol 2014; 247:591-9. [PMID: 24878539 DOI: 10.1007/s00232-014-9675-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Toll-like receptors are expressed in human immune cells and many tumors, but the role of toll-like receptor 4 (TLR4) in the development of tumors is controversial. We demonstrated the expression, distribution, and functional activity of TLR4 in tissues of normal cervix, cervical intraepithelial neoplasia (CIN), invasion cervical cancers (ICC), and different human papillomavirus (HPV)-infected cervical cancer cells. The results showed that TLR4 expression was in accordance with the histopathological grade: higher in ICC than in CIN, and low in normal cervical tissues and malignant cervical stroma. Expression was higher in SiHa (HPV16+) than in HeLa (HPV18+) cells, but was not observed in C33A (HPV-) cells. After treatment with its agonist, lipopolysaccharide (LPS), the expression levels of TLR4 was increased and apoptosis resistance was induced in SiHa cells, but not in HeLa or C33A cells. Meanwhile, LPS treatment did not alter the cell cycle distribution in SiHa cells. The mechanism of apoptosis resistance may be related to HPV16 infection and not correlated with the cell cycle distribution. Targeting TLR4 in combination with traditional drug treatment may serve as a novel strategy for more effectively killing cancer cells.
Collapse
|
36
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|
37
|
Dalcin D, Ulanova M. The Role of Human Beta-Defensin-2 in Pseudomonas aeruginosa Pulmonary Infection in Cystic Fibrosis Patients. Infect Dis Ther 2013; 2:159-66. [PMID: 25134478 PMCID: PMC4108104 DOI: 10.1007/s40121-013-0015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 11/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disease affecting the Caucasian population. Chronic Pseudomonas aeruginosa pulmonary infection is the major cause of morbidity and mortality in CF patients. Human beta-defensin-2 (hBD-2) is an inducible pulmonary antimicrobial peptide that exerts bacteriostatic activity in a concentration-dependent manner. The decreased expression and compromised function of hBD-2 contributes to the pathogenesis of P. aeruginosa infection in the CF lung. The purpose of this review is to outline the significance of hBD-2 in P. aeruginosa chronic pulmonary infection in CF patients.
Collapse
Affiliation(s)
- Daniel Dalcin
- Northern Ontario School of Medicine, Lakehead University, 955 Oliver Rd, Thunder Bay, P7B 5E1, ON, Canada,
| | | |
Collapse
|
38
|
Kim JH, Kim SJ, Lee KM, Chang IH. Human β-defensin 2 may inhibit internalisation of bacillus Calmette-Guérin (BCG) in bladder cancer cells. BJU Int 2013; 112:781-90. [PMID: 23819923 DOI: 10.1111/bju.12196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate whether secretion of human β-defensin 2 (HBD-2) is induced by bacillus Calmette-Guérin (BCG) and to determine whether HBD-2 affects BCG internalisation in bladder cancer cells. MATERIALS AND METHODS Reverse transcription-polymerase chain reaction analysis was used to determine whether HBD-2 mRNA increases after incubation with BCG. HBD-2 proteins in 5637 and T24 human bladder cancer cell lines were assayed by enzyme-linked immunosorbent assay. The internalisation rate was evaluated by double immunofluorescence assay and confocal microscopy to test the optimal dose of HBD-2 for BCG internalisation. We also investigated the difference in internalisation rates and cell viability between recombinant HBD-2 protein, anti-HBD-2 antibody, and HBD-2 plus anti-HBD-2 antibody pretreatments. RESULTS BCG induced HBD-2 mRNA expression and HBD-2 production dose and time-dependently in bladder cancer cells and affected BCG internalisation. Pretreatment with recombinant HBD-2 protein lowered internalisation of BCG dose-dependently. Moreover, anti-HBD-2 antibody prevented the effect of HBD-2 on BCG internalisation in bladder cancer cells. The internalisation rate of BCG pretreated with anti-HBD-2 antibody was higher than that in the control in 5637 (P < 0.01) and T24 cells (P < 0.05). The BCG internalisation rate in cells pretreated with anti-HBD-2 antibody plus recombinant HBD-2 protein was higher than that in the control in 5637 (P < 0.01) and T24 cells (P < 0.05). Mycobacterium bovis BCG decreased bladder cancer cell viability, and anti-HBD-2 antibody prevented the inhibitory role of HBD-2 on the anti-proliferative effects of M. bovis BCG in bladder cancer cells CONCLUSION Bladder cancer cells produce HBD-2 when they are infected by BCG to defend themselves against BCG internalisation, which plays an important role during the initiation and propagation of the immunotherapeutic response in bladder cancer cells.
Collapse
Affiliation(s)
- Jung Hoon Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Kim YJ, Shin HS, Lee JH, Jung YW, Kim HB, Ha UH. Pneumolysin-mediated expression of β-defensin 2 is coordinated by p38 MAP kinase-MKP1 in human airway cells. J Microbiol 2013; 51:194-9. [DOI: 10.1007/s12275-013-2579-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
|
40
|
Bradburne CE, Verhoeven AB, Manyam GC, Chaudhry SA, Chang EL, Thach DC, Bailey CL, van Hoek ML. Temporal transcriptional response during infection of type II alveolar epithelial cells with Francisella tularensis live vaccine strain (LVS) supports a general host suppression and bacterial uptake by macropinocytosis. J Biol Chem 2013; 288:10780-91. [PMID: 23322778 DOI: 10.1074/jbc.m112.362178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F. tularensis. A549 cells were infected and analyzed for global transcriptional response at multiple time points up to 16 h following infection. At 15 min and 2 h, a strong transcriptional response was observed including cytoskeletal rearrangement, intracellular transport, and interferon signaling. However, at later time points (6 and 16 h), very little differential gene expression was observed, indicating a general suppression of the host response consistent with other reported cell lines and murine tissues. Genes for macropinocytosis and actin/cytoskeleton rearrangement were highly up-regulated and common to the 15 min and 2 h time points, suggesting the use of this method for bacterial entry into cells. We demonstrate macropinocytosis through the uptake of FITC-dextran and amiloride inhibition of Francisella LVS uptake. Our results suggest that macropinocytosis is a potential mechanism of intracellular entry by LVS and that the host cell response is suppressed during the first 2-6 h of infection. These results suggest that the attenuated Francisella LVS induces significant host cell signaling at very early time points after the bacteria's interaction with the cell.
Collapse
Affiliation(s)
- Christopher E Bradburne
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Quinolone-induced upregulation of osteopontin gene promoter activity in human lung epithelial cell line A549. Antimicrob Agents Chemother 2012; 56:2868-72. [PMID: 22430970 DOI: 10.1128/aac.06062-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolones, in addition to their antibacterial activities, act as immunomodulators. Osteopontin (OPN), a member of the extracellular matrix proteins, was found to play a role in the immune and inflammatory response. We found that quinolones significantly enhanced OPN secretion, namely, garenoxacin (220%), moxifloxacin (62%), gatifloxacin (82%), sparfloxacin, (79%), and sitafloxacin (60%). Enhancement of OPN secretion was shown to be due to the effect of quinolones on the OPN gene promoter activity. We also examined the role of quinolones on apoptosis and found that sparfloxacin decreased the late apoptosis of A549 cells, but garenoxacin did not show the antiapoptotic effect. The antiapoptotic effects of quinolones do not appear to be associated with OPN elevation.
Collapse
|
42
|
Pace E, Ferraro M, Minervini MI, Vitulo P, Pipitone L, Chiappara G, Siena L, Montalbano AM, Johnson M, Gjomarkaj M. Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS One 2012; 7:e33601. [PMID: 22438960 PMCID: PMC3306426 DOI: 10.1371/journal.pone.0033601] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/13/2012] [Indexed: 01/21/2023] Open
Abstract
Background Altered pulmonary defenses in chronic obstructive pulmonary disease (COPD) may promote distal airways bacterial colonization. The expression/activation of Toll Like receptors (TLR) and beta 2 defensin (HBD2) release by epithelial cells crucially affect pulmonary defence mechanisms. Methods The epithelial expression of TLR4 and of HBD2 was assessed in surgical specimens from current smokers COPD (s-COPD; n = 17), ex-smokers COPD (ex-s-COPD; n = 8), smokers without COPD (S; n = 12), and from non-smoker non-COPD subjects (C; n = 13). Results In distal airways, s-COPD highly expressed TLR4 and HBD2. In central airways, S and s-COPD showed increased TLR4 expression. Lower HBD2 expression was observed in central airways of s-COPD when compared to S and to ex-s-COPD. s-COPD had a reduced HBD2 gene expression as demonstrated by real-time PCR on micro-dissected bronchial epithelial cells. Furthermore, HBD2 expression positively correlated with FEV1/FVC ratio and inversely correlated with the cigarette smoke exposure. In a bronchial epithelial cell line (16 HBE) IL-1β significantly induced the HBD2 mRNA expression and cigarette smoke extracts significantly counteracted this IL-1 mediated effect reducing both the activation of NFkB pathway and the interaction between NFkB and HBD2 promoter. Conclusions This study provides new insights on the possible mechanisms involved in the alteration of innate immunity mechanisms in COPD.
Collapse
Affiliation(s)
- Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Plasminogen activator inhibitor type-1 deficiency exaggerates LPS-induced acute lung injury through enhancing Toll-like receptor 4 signaling pathway. Blood Coagul Fibrinolysis 2011; 22:480-6. [PMID: 21577093 DOI: 10.1097/mbc.0b013e328346ef56] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mice lacking plasminogen activator inhibitor-1 (PAI-1) did not affect lung injury induced by gram-positive bacteria pneumococcal pneumonia but worsened lung injury induced by gram-negative bacteria Klebsiella. The exact mechanisms have not been completely elucidated. In this study, we examined the signaling pathway of Toll-like receptor 4 (TLR4) with/without PAI-1 in acute lung injury (ALI) induced by lipopolysaccharides (LPS) in mice. PAI-1 knockout mice (n=60) and wild-type mice (n=60) were exposed to LPS intratracheal instillation. Different groups of mice were then sacrificed at 0 and 8 h after LPS instillation. PAI-1-/- mice showed increased excess lung water and elevated cytokines production and release. In addition, expression of TLR4 was up-regulated and the phosphorylation activation of extracellular regulating kinase (ERK) and c-Jun N-terminal kinase (JNK) were also increased in PAI-1 knockout mice compared to wild-type mice. Inversely, interleukin (IL)-1 receptor-associated kinase-M (IRAK-M) and suppressor of cytokine signaling 1 (SOCS1) were both significantly reduced in PAI-1-/-mice after LPS challenge. PAI-1 deletion increased lung injury induced by LPS through up-regulation of TLR4, ERK and C-JNK and down-regulation of TLR4 negative regulators.
Collapse
|
44
|
Cormet-Boyaka E, Jolivette K, Bonnegarde-Bernard A, Rennolds J, Hassan F, Mehta P, Tridandapani S, Webster-Marketon J, Boyaka PN. An NF-κB-independent and Erk1/2-dependent mechanism controls CXCL8/IL-8 responses of airway epithelial cells to cadmium. Toxicol Sci 2011; 125:418-29. [PMID: 22094458 DOI: 10.1093/toxsci/kfr310] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Airway epithelial cells in the lung are the first line of defense against pathogens and environmental pollutants. Inhalation of the environmental pollutant cadmium has been linked to the development of lung cancer and chronic obstructive pulmonary disease, which are diseases characterized by chronic inflammation. To address the role of airway epithelial cells in cadmium-induced lung inflammation, we investigated how cadmium regulates secretion of interleukin 8 (IL-8) by airway epithelial cells. We show that exposure of human airway epithelial cells to subtoxic doses of cadmium in vitro promotes a characteristic inflammatory cytokine response consisting of IL-8, but not IL-1β or tumor necrosis factor-alpha. We also found that intranasal delivery of cadmium increases lung levels of the murine IL-8 homologs macrophage inflammatory protein-2 and keracinocyte-derived chemokine and results in an influx of Gr1+ cells into the lung. We determined that inhibition of the nuclear factor-κB (NF-κB) pathway had no effect on cadmium-induced IL-8 secretion by human airway epithelial cells, suggesting that IL-8 production was mediated through an NF-κB-independent pathway. Mitogen-activated protein kinases (MAPKs) are often involved in proinflammatory signaling. Cadmium could activate the main MAPKs (i.e., p38, JNK, and Erk1/2) in human airway epithelial cells. However, only pharmacological inhibition of Erk1/2 pathway or knockdown of the expression of Erk1 and Erk2 using small interfering RNAs suppressed secretion of IL-8 induced by cadmium. Our findings identify cadmium as a potent activator of the proinflammatory cytokine IL-8 in lung epithelial cells and reveal for the first time the role of an NF-κB-independent but Erk1/2-dependent pathway in cadmium-induced lung inflammation.
Collapse
Affiliation(s)
- Estelle Cormet-Boyaka
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Andersson M, Lutay N, Hallgren O, Westergren-Thorsson G, Svensson M, Godaly G. Mycobacterium bovis bacilli Calmette-Guerin regulates leukocyte recruitment by modulating alveolar inflammatory responses. Innate Immun 2011; 18:531-40. [PMID: 22058091 PMCID: PMC3548393 DOI: 10.1177/1753425911426591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leukocyte migration into the epithelial compartment is an important feature in the active phase of mycobacterial infections. In this study, we used the Transwell model to investigate the mechanisms behind mycobacteria-induced leukocyte recruitment and investigated the role of TLR2 and TLR4 in this process. Infection of epithelial cells resulted in significantly increased secretion of the neutrophil chemotactic CXCL8 and IL-6, but no secretion of monocyte chemotactic CCL2 or TNF-α was observed. In contrast to epithelial response, mycobacteria-infected neutrophils and monocytes secreted all these cytokines. Corresponding with epithelial cytokine response, mycobacterial infection of the epithelial cells increased neutrophil diapedesis, but decreased monocyte recruitment. However, monocyte recruitment towards mycobacteria infected epithelial cells significantly increased following addition of neutrophil pre-conditioned medium. Mycobacterial infection also increases alveolar epithelial expression of TLR2, but not TLR4, as analyzed by flow cytometry, Western blotting and visualized by confocal microscopy. Blocking of TLR2 inhibited neutrophil recruitment and cytokine secretion, while blocking of TLR4 had a lesser effect. To summarize, we found that primary alveolar epithelial cells produced a selective TLR2-dependent cytokine secretion upon mycobacterial infection. Furthermore, we found that cooperation between cells of the innate immunity is required in mounting proper antimicrobial defence.
Collapse
Affiliation(s)
- Märta Andersson
- Department of Microbiology Immunology and Glycobiology, Division of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Thorley AJ, Grandolfo D, Lim E, Goldstraw P, Young A, Tetley TD. Innate immune responses to bacterial ligands in the peripheral human lung--role of alveolar epithelial TLR expression and signalling. PLoS One 2011; 6:e21827. [PMID: 21789185 PMCID: PMC3137597 DOI: 10.1371/journal.pone.0021827] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/07/2011] [Indexed: 01/30/2023] Open
Abstract
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.
Collapse
Affiliation(s)
- Andrew J. Thorley
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Davide Grandolfo
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Peter Goldstraw
- Department of Thoracic Surgery, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Alan Young
- AstraZeneca R&D, Loughborough, United Kingdom
| | - Teresa D. Tetley
- Lung Cell Biology, Section of Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
47
|
Hostanska K, Melzer J, Amon A, Saller R. Suppression of interleukin (IL)-8 and human beta defensin-2 secretion in LPS-and/or IL-1β-stimulated airway epithelial A549 cells by a herbal formulation against respiratory infections (BNO 1030). JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:228-233. [PMID: 21167927 DOI: 10.1016/j.jep.2010.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/19/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY A special ethanolic-aqueous extract from seven traditional medicinal plants (BNO 1030) has been used for several decades to treat recurrent infections of the respiratory tract. Considering the potential role of interleukin-8 (IL-8) and human beta defensin-2 (hBD-2) in inflammation, we investigated the effect of BNO 1030 on lipopolysaccharide (LPS) from Pseudomonas aeruginosa or IL-1β-induced inflammatory mediators in A549 human type II alveolar epithelial cells. MATERIALS AND METHODS A549 cells were stimulated with LPS (100 μg/ml) or IL-1β (50 ng/ml) in the presence of the preparation and the secretion of IL-8 and hBD-2 were measured after 18 h and 24h in cell free supernatants using enzyme-linked immunosorbent assays (ELISA). Cell viability and cell growth was investigated by propidium iodide uptake and WST-1 assay, respectively. RESULTS BNO 1030 inhibited the secretion of IL-8 and hBD-2 at non-cytotoxic concentrations (0.1-100 μg/ml; cell growth inhibitory concentration, 50% (IC(50))=678 ± 87.6 μg/ml). Stimulation by IL-1β led to a 7-fold activation of IL-8 secretion, which was reduced by 37.7 ± 4.1% (p<0.05) after incubation with 100 μg/ml BNO 1030. Inducible hBD-2 was suppressed by 91.8 ± 15.6% (p<0.01) at the same concentration of BNO 1030 (IC(50)=0.7 ± 0.1 μg/ml). The 2-fold increase of IL-8 secretion by LPS-stimulated cells was completely abolished at concentration of 50 μg/ml BNO 1030 (IC(50)=5.7±3.6 μg/ml). CONCLUSION BNO 1030 suppressed the secretion of IL-8 and hBD-2 in cultured epithelial A549 cells. These results support its use as a phytotherapeutic product prepared from traditional remedies in inflammatory diseases, especially those affecting the respiratory tract.
Collapse
Affiliation(s)
- Katarina Hostanska
- Department of Internal Medicine, Institute for Complementary Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| | | | | | | |
Collapse
|
48
|
Abstract
The airway epithelium represents the first point of contact for inhaled foreign organisms. The protective arsenal of the airway epithelium is provided in the form of physical barriers and a vast array of receptors and antimicrobial compounds that constitute the innate immune system. Many of the known innate immune receptors, including the Toll-like receptors and nucleotide oligomerization domain-like receptors, are expressed by the airway epithelium, which leads to the production of proinflammatory cytokines and chemokines that affect microorganisms directly and recruit immune cells, such as neutrophils and T cells, to the site of infection. The airway epithelium also produces a number of resident antimicrobial proteins, such as lysozyme, lactoferrin, and mucins, as well as a swathe of cationic proteins. Dysregulation of the airway epithelial innate immune system is associated with a number of medical conditions that can result in compromised immunity and chronic inflammation of the lung. This review focuses on the innate immune capabilities of the airway epithelium and its role in protecting the lung from infection as well as the outcomes when its function is compromised.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
49
|
Kim HJ, Jung JR, Kim HJ, Lee SY, Chang IH, Lee TJ, Kim W, Myung SC. Expression of human β-defensin-2 in the prostate. BJU Int 2010; 107:144-9. [DOI: 10.1111/j.1464-410x.2010.09469.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 2010; 59:791-808. [PMID: 20593217 DOI: 10.1007/s00011-010-0208-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/06/2010] [Accepted: 04/22/2010] [Indexed: 12/17/2022] Open
Abstract
Due to the rapid increase of new information on the multiple roles of Toll-like receptors (TLRs), this paper reviews several main properties of TLRs and their ligands and signaling pathways. The investigation of pathogen infections in knockout mice suggests that specific TLRs play a key role in the activation of immune responses. Although the investigation of TLR biology is just beginning, a number of important findings are emerging. This review focuses on the following seven aspects of this emerging field: (a) a history of TLR and ligand studies; (b) the molecular basis of recognition by TLRs: TLR structures, pathogen-associated molecular pattern binding sites, TLR locations and functional responses; (c) cell types in TLR expression; (d) an overview of TLRs and their ligands: expression and ligands of cell-surface TLRs and of intracellular TLRs; (e) TLR-signaling pathways; (f) discussion: TLRs control of innate and adaptive systems; the trafficking of intracellular TLRs to endolysosomes; investigation of TLRs in regulating microRNA; investigation of crystal structure of TLRs with ligand binding; incidence of infectious diseases associated with single nucleotide polymorphisms (SNPs) in TLR genes; risk of cancer related to SNPs in TLR genes; TLR-ligand mediated anti-cancer effects; and TLR-ligand induced chronic inflammation and tumorigenesis; and (g) conclusions.
Collapse
Affiliation(s)
- Z L Chang
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|