1
|
Zhang H, Zheng Y, Wang Z, Dong L, Xue L, Tian X, Deng H, Xue Q, Gao S, Gao Y, Li C, He J. KLF12 interacts with TRIM27 to affect cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma by regulating L1CAM expression. Drug Resist Updat 2024; 76:101096. [PMID: 38924996 DOI: 10.1016/j.drup.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China.
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
3
|
Medberry AN, Srivastava A, Diaz-Lara A, Rwahnih MA, Villamor DEV, Tzanetakis IE. A Novel, Divergent Member of the Rhabdoviridae Family Infects Strawberry. PLANT DISEASE 2023; 107:620-623. [PMID: 35857372 DOI: 10.1094/pdis-05-22-1078-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strawberry (Fragaria × ananassa) is the most important berry crop worldwide and viruses pose a constant threat to the industry. In this communication, we describe a novel virus in the family Rhabdoviridae referred to as strawberry virus 3 (StrV-3). The virus does not show significant homology when compared with recognized rhabdoviruses and, therefore, the establishment of a new genus should be considered. A triplex reverse-transcription PCR test was developed and successfully employed in a survey of the National Clonal Germplasm Repository Fragaria collection. A CRISPR-Cas-based protocol was also developed and shown to detect the virus in as little as 1 fg of total RNA, a protocol to be used in the detection of the virus in candidate G1 plants. The strawberry aphid (Chaetosiphon fragaefolii) was evaluated-alas, unsuccessfully-as a potential vector of the virus. This work broadens our understanding of the family Rhabdoviridae and assists in the quest of releasing plant material free of viruses.
Collapse
Affiliation(s)
- Ava N Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| | - Ashish Srivastava
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, UP 284403, India
| | - Alfredo Diaz-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
4
|
Liu S, Zhang Z, Li L, Yao L, Ma Z, Li J. ADAM10- and γ-secretase-dependent cleavage of the transmembrane protein PTPRT attenuates neurodegeneration in the mouse model of Alzheimer's disease. FASEB J 2023; 37:e22734. [PMID: 36583697 DOI: 10.1096/fj.202201396r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022]
Abstract
PTPRT (receptor-type tyrosine-protein phosphatase T), a brain-specific type 1 transmembrane protein, plays an important role in neurodevelopment and synapse formation. However, whether abnormal PTPRT signaling is associated with Alzheimer's disease (AD) remains elusive. Here, we report that Ptprt mRNA expression is found to be downregulated in the brains of both human and mouse models of AD. We further identified that the PTPRT intracellular domain (PICD), which is released by ADAM10- and γ-secretase-dependent cleavage of PTPRT, efficiently translocates to the nucleus via a conserved nuclear localization signal (NLS). We show that inhibition of nuclear translocation of PICD leads to an accumulation of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a substrate of PTPRT-eventually resulting in neuronal cell death. Consistently, RNA sequencing reveals that overexpression of PICD leads to changes in the expression of genes that are functionally associated with synapse formation, cell adhesion, and protein dephosphorylation. Moreover, overexpression of PICD not only decreases the level of phospho-STAT3Y705 and amyloid β production in the hippocampus of APP/PS1 mice but also partially improves synaptic function and behavioral deficits in this mouse model of AD. These findings suggest that a novel role of the ADAM 10- and γ-secretase-dependent cleavage of PTPRT may alleviate the AD-like neurodegenerative processes.
Collapse
Affiliation(s)
- Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhongyu Zhang
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lianwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Li Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Institute on Drug Dependence, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming, China.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Wan S, Li Q, Yu H, Liu S, Kong L. A nuclear receptor heterodimer, CgPPAR2-CgRXR, acts as a regulator of carotenoid metabolism in Crassostrea gigas. Gene 2022; 827:146473. [PMID: 35390448 DOI: 10.1016/j.gene.2022.146473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are mostly ligand-activated transcription factors in animals and play essential roles in metabolism and homeostasis. The NR heterodimer composed of PPAR/RXR (peroxisome proliferator-activated receptor/retinoid X receptor) is considered a key regulator of lipid metabolism in vertebrate. However, in molluscs, how this heterodimer is involved in carotenoid metabolism remains unclear. To elucidate how this heterodimer regulates carotenoid metabolism, we identified a PPAR gene in C. gigas, designated as CgPPAR2 (LOC105323212), and functionally characterized it using two-hybrid and reporter systems. CgPPAR2 is a direct orthologue of vertebrate PPARs and the second PPAR gene identified in C. gigas genome in addition to CgPPAR1 (LOC105317849). The results demonstrated that CgPPAR2 protein can form heterodimer with C. gigas RXR (CgRXR), and then regulate carotenoid metabolism by controlling carotenoid cleavage oxygenases with different carotenoid cleavage efficiencies. This regulation can be affected by retinoid ligands, i.e., carotenoid derivatives, validating a negative feedback regulation mechanism of carotenoid cleavage for retinoid production. Besides, organotins may disrupt this regulatory process through the mediation of CgPPAR2/CgRXR heterodimer. This is the first report of PPAR/RXR heterodimer regulating carotenoid metabolism in mollusks, contributing to a better understanding of the evolution and conservation of this nuclear receptor heterodimer.
Collapse
Affiliation(s)
- Sai Wan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
6
|
De Backer J, Van Breusegem F, De Clercq I. Proteolytic Activation of Plant Membrane-Bound Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:927746. [PMID: 35774815 PMCID: PMC9237531 DOI: 10.3389/fpls.2022.927746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/03/2023]
Abstract
Due to the presence of a transmembrane domain, the subcellular mobility plan of membrane-bound or membrane-tethered transcription factors (MB-TFs) differs from that of their cytosolic counterparts. The MB-TFs are mostly locked in (sub)cellular membranes, until they are released by a proteolytic cleavage event or when the transmembrane domain (TMD) is omitted from the transcript due to alternative splicing. Here, we review the current knowledge on the proteolytic activation mechanisms of MB-TFs in plants, with a particular focus on regulated intramembrane proteolysis (RIP), and discuss the analogy with the proteolytic cleavage of MB-TFs in animal systems. We present a comprehensive inventory of all known and predicted MB-TFs in the model plant Arabidopsis thaliana and examine their experimentally determined or anticipated subcellular localizations and membrane topologies. We predict proteolytically activated MB-TFs by the mapping of protease recognition sequences and structural features that facilitate RIP in and around the TMD, based on data from metazoan intramembrane proteases. Finally, the MB-TF functions in plant responses to environmental stresses and in plant development are considered and novel functions for still uncharacterized MB-TFs are forecasted by means of a regulatory network-based approach.
Collapse
Affiliation(s)
- Jonas De Backer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
7
|
Monteiro IP, Sousa S, Borges V, Gonçalves P, Gomes JP, Mota LJ, Franco IS. A Search for Novel Legionella pneumophila Effector Proteins Reveals a Strain Specific Nucleotropic Effector. Front Cell Infect Microbiol 2022; 12:864626. [PMID: 35711665 PMCID: PMC9195298 DOI: 10.3389/fcimb.2022.864626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila is an accidental human pathogen that causes the potentially fatal Legionnaires’ disease, a severe type of pneumonia. The main virulence mechanism of L. pneumophila is a Type 4B Secretion System (T4SS) named Icm/Dot that transports effector proteins into the host cell cytosol. The concerted action of effectors on several host cell processes leads to the formation of an intracellular Legionella-containing vacuole that is replication competent and avoids phagolysosomal degradation. To date over 300 Icm/Dot substrates have been identified. In this study, we searched the genome of a L. pneumophila strain (Pt/VFX2014) responsible for the second largest L. pneumophila outbreak worldwide (in Vila Franca de Xira, Portugal, in 2014) for genes encoding potential novel Icm/Dot substrates. This strain Pt/VFX2014 belongs to serogroup 1 but phylogenetically segregates from all other serogroup 1 strains previously sequenced, displaying a unique mosaic genetic backbone. The ability of the selected putative effectors to be delivered into host cells by the T4SS was confirmed using the TEM-1 β-lactamase reporter assay. Two previously unknown Icm/Dot effectors were identified, VFX05045 and VFX10045, whose homologs Lpp1450 and Lpp3070 in clinical strain L. pneumophila Paris were also confirmed as T4SS substrates. After delivery into the host cell cytosol, homologs VFX05045/Lpp1450 remained diffused in the cell, similarly to Lpp3070. In contrast, VFX10045 localized to the host cell nucleus. To understand how VFX10045 and Lpp3070 (94% of identity at amino acid level) are directed to distinct sites, we carried out a comprehensive site-directed mutagenesis followed by analyses of the subcellular localization of the mutant proteins. This led to the delineation of region in the C-terminal part (residues 380 to 534) of the 583 amino acid-long VFX10045 as necessary and sufficient for nuclear targeting and highlighted the fundamental function of the VFX10045-specific R440 and I441 residues in this process. These studies revealed a strain-specific nucleotropism for new effector VFX10045/Lpp3070, which anticipates distinct functions between these homologs.
Collapse
Affiliation(s)
- Inês P. Monteiro
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sofia Sousa
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Vítor Borges
- Núcleo de Bioinformática, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Paulo Gonçalves
- Laboratório Nacional de Referência de Legionella, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - João Paulo Gomes
- Núcleo de Bioinformática, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Luís Jaime Mota
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Irina S. Franco
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- *Correspondence: Irina S. Franco,
| |
Collapse
|
8
|
Ludwig LS, Lareau CA, Bao EL, Liu N, Utsugisawa T, Tseng AM, Myers SA, Verboon JM, Ulirsch JC, Luo W, Muus C, Fiorini C, Olive ME, Vockley CM, Munschauer M, Hunter A, Ogura H, Yamamoto T, Inada H, Nakagawa S, Ohzono S, Subramanian V, Chiarle R, Glader B, Carr SA, Aryee MJ, Kundaje A, Orkin SH, Regev A, McCavit TL, Kanno H, Sankaran VG. Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood 2022; 139:2534-2546. [PMID: 35030251 PMCID: PMC9029090 DOI: 10.1182/blood.2021013753] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.
Collapse
Affiliation(s)
- Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nan Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Alex M Tseng
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Samuel A Myers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- La Jolla Institute for Immunology, La Jolla, CA
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
| | - Wendy Luo
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Christoph Muus
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- John A. Paulson School of Engineering and Applied Sciences, Faculty of Arts and Sciences, Harvard University, Cambridge, MA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Christopher M Vockley
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Mathias Munschauer
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
- Infection and Immunity Department, Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | | | - Hiromi Ogura
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Shinichiro Nakagawa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shuichi Ohzono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Vidya Subramanian
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bertil Glader
- Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Martin J Aryee
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Anshul Kundaje
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Department of Biology and
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, MA; and
| | | | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Vijay G Sankaran
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
9
|
Le Cong Huyen Bao Phan T, Crepin N, Rolland F, Van Dijck P. Two trehalase isoforms, produced from a single transcript, regulate drought stress tolerance in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2022; 108:531-547. [PMID: 35088230 DOI: 10.1007/s11103-022-01243-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Alternative translation initiation of the unique Arabidopsis trehalase gene allows for the production of two isoforms with different subcellular localization, providing enzyme access to both intra- and extra-cellular trehalose. The trehalose-hydrolyzing enzyme trehalase mediates drought stress tolerance in Arabidopsis thaliana by controlling ABA-induced stomatal closure. We now report the existence of two trehalase isoforms, produced from a single transcript by alternative translation initiation. The longer full-length N-glycosylated isoform (AtTRE1L) localizes in the plasma membrane with the catalytic domain in the apoplast. The shorter isoform (AtTRE1S) lacks the transmembrane domain and localizes in the cytoplasm and nucleus. The two isoforms can physically interact and this interaction affects localization of AtTRE1S. Consistent with their role in plant drought stress tolerance, both isoforms are activated by AtCPK10, a stress-induced calcium-dependent guard cell protein kinase. Transgenic plants expressing either isoform indicate that both can mediate ABA-induced stomatal closure in response to drought stress but that the short (cytoplasmic/nuclear) isoform, enriched in those conditions, is significantly more effective.
Collapse
Affiliation(s)
- Tran Le Cong Huyen Bao Phan
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Department of Biology, College of Natural Sciences, Cantho University, Cantho, Vietnam
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Nathalie Crepin
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium.
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.
- KU Leuven Plant Institute (LPI), Leuven, Belgium.
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 38, 3001, Leuven, Belgium.
| |
Collapse
|
10
|
Albarnaz JD, Ren H, Torres AA, Shmeleva EV, Melo CA, Bannister AJ, Brember MP, Chung BYW, Smith GL. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol 2022; 7:154-168. [PMID: 34949827 PMCID: PMC7614822 DOI: 10.1038/s41564-021-01004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Carlos A Melo
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | - Betty Y-W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Ciurkot K, Gorochowski TE, Roubos JA, Verwaal R. Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic Acids Res 2021; 49:7775-7790. [PMID: 34197613 PMCID: PMC8287914 DOI: 10.1093/nar/gkab529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
CRISPR Cas12a is an RNA-programmable endonuclease particularly suitable for gene regulation. This is due to its preference for T-rich PAMs that allows it to more easily target AT-rich promoter sequences, and built-in RNase activity which can process a single CRISPR RNA array encoding multiple spacers into individual guide RNAs (gRNAs), thereby simplifying multiplexed gene regulation. Here, we develop a flexible dCas12a-based CRISPRi system for Saccharomyces cerevisiae and systematically evaluate its design features. This includes the role of the NLS position, use of repression domains, and the position of the gRNA target. Our optimal system is comprised of dCas12a E925A with a single C-terminal NLS and a Mxi1 or a MIG1 repression domain, which enables up to 97% downregulation of a reporter gene. We also extend this system to allow for inducible regulation via an RNAP II-controlled promoter, demonstrate position-dependent effects in crRNA arrays, and use multiplexed regulation to stringently control a heterologous β-carotene pathway. Together these findings offer valuable insights into the design constraints of dCas12a-based CRISPRi and enable new avenues for flexible and efficient gene regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Klaudia Ciurkot
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands.,Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - René Verwaal
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands
| |
Collapse
|
12
|
Wang X, Cheng J, Shen J, Liu L, Li N, Gao N, Jiang F, Jin Q. Characterization of Photorhabdus Virulence Cassette as a causative agent in the emerging pathogen Photorhabdus asymbiotica. SCIENCE CHINA-LIFE SCIENCES 2021; 65:618-630. [PMID: 34185241 DOI: 10.1007/s11427-021-1955-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The extracellular contractile injection systems (eCISs) are encoded in the genomes of a large number of bacteria and archaea. We have previously characterized the overall structure of Photorhabdus Virulence Cassette (PVC), a typical member of the eCIS family. PVC resembles the contractile tail of bacteriophages and exerts its action by the contraction of outer sheath and injection of inner tube plus central spike. Nevertheless, the biological function of PVC effectors and the mechanism of effector translocation are still lacking. By combining cryo-electron microscopy and functional experiments, here we show that the PVC effectors Pdp1 (a new family of widespread dNTP pyrophosphatase effector in eCIS) and Pnf (a deamidase effector) are loaded inside the inner tube lumen in a "Peas in the Pod" mode. Moreover, we observe that Pdp1 and Pnf can be directly injected into J774A.1 murine macrophage and kill the target cells by disrupting the dNTP pools and actin cytoskeleton formation, respectively. Our results provide direct evidence of how PVC cargoes are loaded and delivered directly into mammalian macrophages.
Collapse
Affiliation(s)
- Xia Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiaxuan Cheng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiawei Shen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Feng Jiang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Anami S, Yamashino T, Suzuki R, Nakai K, Sato K, Wu B, Ryo M, Sugita M, Aoki S. Red light-regulated interaction of Per-Arnt-Sim histidine kinases with partner histidine-containing phosphotransfer proteins in Physcomitrium patens. Genes Cells 2021; 26:698-713. [PMID: 34086383 DOI: 10.1111/gtc.12878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Multi-step phosphorelay (MSP) is a broadly distributed signaling system in organisms. In MSP, histidine kinases (HKs) receive various environmental signals and transmit them by autophosphorylation followed by phosphotransfer to partner histidine-containing phosphotransfer proteins (HPts). Previously, we reported that Per-Arnt-Sim (PAS) domain-containing HK1 (PHK1) and PHK2 of the moss Physcomitrium (Physcomitrella) patens repressed red light-induced protonema branching, a critical step in the moss life cycle. In plants, PHK homolog-encoding genes are conserved only in early-diverging lineages such as bryophytes and lycophytes. PHKs-mediated signaling machineries attract attention especially from an evolutionary viewpoint, but they remain uninvestigated. Here, we studied the P. patens PHKs focusing on their subcellular patterns of localization and interaction with HPts. Yeast two-hybrid analysis, a localization assay with a green fluorescent protein, and a bimolecular fluorescence complementation analysis together showed that PHKs are localized and interact with partner HPts mostly in the nucleus, as unprecedented features for plant HKs. Additionally, red light triggered the interactions between PHKs and HPts in the cytoplasm, and light co-repressed the expression of PHK1 and PHK2 as well as genes encoding their partner HPts. Our results emphasize the uniqueness of PHKs-mediated signaling machineries, and functional implications of this uniqueness are discussed.
Collapse
Affiliation(s)
- Shu Anami
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kota Nakai
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kensuke Sato
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Bowen Wu
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Masashi Ryo
- Graduate School of Information Science, Nagoya University, Nagoya, Japan
| | - Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Landry-Voyer AM, Bergeron D, Yague-Sanz C, Baker B, Bachand F. PDCD2 functions as an evolutionarily conserved chaperone dedicated for the 40S ribosomal protein uS5 (RPS2). Nucleic Acids Res 2020; 48:12900-12916. [PMID: 33245768 PMCID: PMC7736825 DOI: 10.1093/nar/gkaa1108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
PDCD2 is an evolutionarily conserved protein with previously characterized homologs in Drosophila (zfrp8) and budding yeast (Tsr4). Although mammalian PDCD2 is essential for cell proliferation and embryonic development, the function of PDCD2 that underlies its fundamental cellular role has remained unclear. Here, we used quantitative proteomics approaches to define the protein-protein interaction network of human PDCD2. Our data revealed that PDCD2 specifically interacts with the 40S ribosomal protein uS5 (RPS2) and that the PDCD2-uS5 complex is assembled co-translationally. Loss of PDCD2 expression leads to defects in the synthesis of the small ribosomal subunit that phenocopy a uS5 deficiency. Notably, we show that PDCD2 is important for the accumulation of soluble uS5 protein as well as its incorporation into 40S ribosomal subunit. Our findings support that the essential molecular function of PDCD2 is to act as a dedicated ribosomal protein chaperone that recognizes uS5 co-translationally in the cytoplasm and accompanies uS5 to ribosome assembly sites in the nucleus. As most dedicated ribosomal protein chaperones have been identified in yeast, our study reveals that similar mechanisms exist in human cells to assist ribosomal proteins coordinate their folding, nuclear import and assembly in pre-ribosomal particles.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carlo Yague-Sanz
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Breac Baker
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Francois Bachand
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
15
|
Maharjan M, Tanvir RB, Chowdhury K, Duan W, Mondal AM. Computational identification of biomarker genes for lung cancer considering treatment and non-treatment studies. BMC Bioinformatics 2020; 21:218. [PMID: 33272232 PMCID: PMC7713218 DOI: 10.1186/s12859-020-3524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung cancer is the number one cancer killer in the world with more than 142,670 deaths estimated in the United States alone in the year 2019. Consequently, there is an overreaching need to identify the key biomarkers for lung cancer. The aim of this study is to computationally identify biomarker genes for lung cancer that can aid in its diagnosis and treatment. The gene expression profiles of two different types of studies, namely non-treatment and treatment, are considered for discovering biomarker genes. In non-treatment studies healthy samples are control and cancer samples are cases. Whereas, in treatment studies, controls are cancer cell lines without treatment and cases are cancer cell lines with treatment. RESULTS The Differentially Expressed Genes (DEGs) for lung cancer were isolated from Gene Expression Omnibus (GEO) database using R software tool GEO2R. A total of 407 DEGs (254 upregulated and 153 downregulated) from non-treatment studies and 547 DEGs (133 upregulated and 414 downregulated) from treatment studies were isolated. Two Cytoscape apps, namely, CytoHubba and MCODE, were used for identifying biomarker genes from functional networks developed using DEG genes. This study discovered two distinct sets of biomarker genes - one from non-treatment studies and the other from treatment studies, each set containing 16 genes. Survival analysis results show that most non-treatment biomarker genes have prognostic capability by indicating low-expression groups have higher chance of survival compare to high-expression groups. Whereas, most treatment biomarkers have prognostic capability by indicating high-expression groups have higher chance of survival compare to low-expression groups. CONCLUSION A computational framework is developed to identify biomarker genes for lung cancer using gene expression profiles. Two different types of studies - non-treatment and treatment - are considered for experiment. Most of the biomarker genes from non-treatment studies are part of mitosis and play vital role in DNA repair and cell-cycle regulation. Whereas, most of the biomarker genes from treatment studies are associated to ubiquitination and cellular response to stress. This study discovered a list of biomarkers, which would help experimental scientists to design a lab experiment for further exploration of detail dynamics of lung cancer development.
Collapse
Affiliation(s)
- Mona Maharjan
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Raihanul Bari Tanvir
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Kamal Chowdhury
- School of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC, USA
| | - Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ananda Mohan Mondal
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
16
|
Devlin DJ, Nozawa K, Ikawa M, Matzuk MM. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol Reprod 2020; 103:205-222. [PMID: 32588889 PMCID: PMC7401401 DOI: 10.1093/biolre/ioaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Toyko, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Sultana N, Sharma N, Sharma KP, Verma S. A Sequential Ensemble Model for Communicable Disease Forecasting. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191202153824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Ensemble building is a popular method for improving model accuracy for classification problems as well as regression.Objective:In this research work, we propose a sequential ensemble model to predict the number of incidences for communicable diseases like influenza, hand foot and mouth disease (HFMD), and diarrhea and compare it with applied models for prediction.Methods:The weekly dataset of the three diseases, namely, influenza, HFMD, and diarrhea, are collected from the official government site of Hong Kong from the year 2010 to 2018. The data was preprocessed by taking log transformation and z-score transformation. The proposed sequential ensemble model is applied to the processed dataset to predict future occurrences.Results:The result of the proposed ensemble model is compared against standard support vector regression (SVR) using different error metrics such as root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). In the case of all the threedisease datasets, the proposed ensemble model gives better results in comparison to the standard SVR model.Conclusion:The main objective of this research work is to minimize the prediction error; the proposed sequential ensemble model has shown a significant result in terms of prediction errors.
Collapse
Affiliation(s)
- Nashreen Sultana
- Department of Computer Science and Engineering, Dr. B.R. Ambedkar NIT Jalandhar, Punjab, India
| | - Nonita Sharma
- Department of Computer Science and Engineering, Dr. B.R. Ambedkar NIT Jalandhar, Punjab, India
| | - Krishna Pal Sharma
- Department of Computer Science and Engineering, Dr. B.R. Ambedkar NIT Jalandhar, Punjab, India
| | - Shobhit Verma
- Department of Computer Science and Engineering, Dr. B.R. Ambedkar NIT Jalandhar, Punjab, India
| |
Collapse
|
18
|
Subcellular Localization Signals of bHLH-PAS Proteins: Their Significance, Current State of Knowledge and Future Perspectives. Int J Mol Sci 2019; 20:ijms20194746. [PMID: 31554340 PMCID: PMC6801399 DOI: 10.3390/ijms20194746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
The bHLH-PAS (basic helix-loop-helix/ Period-ARNT-Single minded) proteins are a family of transcriptional regulators commonly occurring in living organisms. bHLH-PAS members act as intracellular and extracellular "signals" sensors, initiating response to endo- and exogenous signals, including toxins, redox potential, and light. The activity of these proteins as transcription factors depends on nucleocytoplasmic shuttling: the signal received in the cytoplasm has to be transduced, via translocation, to the nucleus. It leads to the activation of transcription of particular genes and determines the cell response to different stimuli. In this review, we aim to present the current state of knowledge concerning signals that affect shuttling of bHLH-PAS transcription factors. We summarize experimentally verified and published nuclear localization signals/nuclear export signals (NLSs/NESs) in the context of performed in silico predictions. We have used most of the available NLS/NES predictors. Importantly, all our results confirm the existence of a complex system responsible for protein localization regulation that involves many localization signals, which activity has to be precisely controlled. We conclude that the current stage of knowledge in this area is still not complete and for most of bHLH-PAS proteins an experimental verification of the activity of further NLS/NES is needed.
Collapse
|
19
|
Abstract
Background:
Revealing the subcellular location of a newly discovered protein can
bring insight into their function and guide research at the cellular level. The experimental methods
currently used to identify the protein subcellular locations are both time-consuming and expensive.
Thus, it is highly desired to develop computational methods for efficiently and effectively identifying
the protein subcellular locations. Especially, the rapidly increasing number of protein sequences
entering the genome databases has called for the development of automated analysis methods.
Methods:
In this review, we will describe the recent advances in predicting the protein subcellular
locations with machine learning from the following aspects: i) Protein subcellular location benchmark
dataset construction, ii) Protein feature representation and feature descriptors, iii) Common
machine learning algorithms, iv) Cross-validation test methods and assessment metrics, v) Web
servers.
Result & Conclusion:
Concomitant with a large number of protein sequences generated by highthroughput
technologies, four future directions for predicting protein subcellular locations with
machine learning should be paid attention. One direction is the selection of novel and effective features
(e.g., statistics, physical-chemical, evolutional) from the sequences and structures of proteins.
Another is the feature fusion strategy. The third is the design of a powerful predictor and the fourth
one is the protein multiple location sites prediction.
Collapse
Affiliation(s)
- Ting-He Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shao-Wu Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
20
|
Abstract
Two graph theoretic concepts—clique and bipartite graphs—are explored to identify the network biomarkers for cancer at the gene network level. The rationale is that a group of genes work together by forming a cluster or a clique-like structures to initiate a cancer. After initiation, the disease signal goes to the next group of genes related to the second stage of a cancer, which can be represented as a bipartite graph. In other words, bipartite graphs represent the cross-talk among the genes between two disease stages. To prove this hypothesis, gene expression values for three cancers— breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COAD) and glioblastoma multiforme (GBM)—are used for analysis. First, a co-expression gene network is generated with highly correlated gene pairs with a Pearson correlation coefficient ≥ 0.9. Second, clique structures of all sizes are isolated from the co-expression network. Then combining these cliques, three different biomarker modules are developed—maximal clique-like modules, 2-clique-1-bipartite modules, and 3-clique-2-bipartite modules. The list of biomarker genes discovered from these network modules are validated as the essential genes for causing a cancer in terms of network properties and survival analysis. This list of biomarker genes will help biologists to design wet lab experiments for further elucidating the complex mechanism of cancer.
Collapse
|
21
|
Freeman BT, Sokolowski M, Roy-Engel AM, Smither ME, Belancio VP. Identification of charged amino acids required for nuclear localization of human L1 ORF1 protein. Mob DNA 2019; 10:20. [PMID: 31080522 PMCID: PMC6501352 DOI: 10.1186/s13100-019-0159-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background Long Interspersed Element 1 (LINE-1) is a retrotransposon that is present in 500,000 copies in the human genome. Along with Alu and SVA elements, these three retrotransposons account for more than a third of the human genome sequence. These mobile elements are able to copy themselves within the genome via an RNA intermediate, a process that can promote genome instability. LINE-1 encodes two proteins, ORF1p and ORF2p. Association of ORF1p, ORF2p and a full-length L1 mRNA in a ribonucleoprotein (RNP) particle, L1 RNP, is required for L1 retrotransposition. Previous studies have suggested that fusion of a tag to L1 proteins can interfere with L1 retrotransposition. Results Using antibodies detecting untagged human ORF1p, western blot analysis and manipulation of ORF1 sequence and length, we have identified a set of charged amino acids in the C-terminal region of ORF1p that are important in determining its subcellular localization. Mutation of 7 non-identical lysine residues is sufficient to make the resulting ORF1p to be predominantly cytoplasmic, demonstrating intrinsic redundancy of this requirement. These residues are also necessary for ORF1p to retain its association with KPNA2 nuclear pore protein. We demonstrate that this interaction is significantly reduced by RNase treatment. Using co-IP, we have also determined that human ORF1p associates with all members of the KPNA subfamily. Conclusions The prediction of NLS sequences suggested that specific sequences within ORF1p could be responsible for its subcellular localization by interacting with nuclear binding proteins. We have found that multiple charged amino acids in the C-terminus of ORF1p are involved in ORF1 subcellular localization and interaction with KPNA2 nuclear pore protein. Our data demonstrate that different amino acids can be mutated to have the same phenotypic effect on ORF1p subcellular localization, demonstrating that the net number of charged residues or protein structure, rather than their specific location, is important for the ORF1p nuclear localization. We also identified that human ORF1p interacts with all members of the KPNA family of proteins and that multiple KPNA family genes are expressed in human cell lines. Electronic supplementary material The online version of this article (10.1186/s13100-019-0159-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B T Freeman
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - M Sokolowski
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - A M Roy-Engel
- 2Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112 USA
| | - M E Smither
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - V P Belancio
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
22
|
Beckmann PJ, Larson JD, Larsson AT, Ostergaard JP, Wagner S, Rahrmann EP, Shamsan GA, Otto GM, Williams RL, Wang J, Lee C, Tschida BR, Das P, Dubuc AM, Moriarity BS, Picard D, Wu X, Rodriguez FJ, Rosemarie Q, Krebs RD, Molan AM, Demer AM, Frees MM, Rizzardi AE, Schmechel SC, Eberhart CG, Jenkins RB, Wechsler-Reya RJ, Odde DJ, Huang A, Taylor MD, Sarver AL, Largaespada DA. Sleeping Beauty Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors. Cancer Res 2019; 79:905-917. [PMID: 30674530 DOI: 10.1158/0008-5472.can-18-1261] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/07/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
Medulloblastoma and central nervous system primitive neuroectodermal tumors (CNS-PNET) are aggressive, poorly differentiated brain tumors with limited effective therapies. Using Sleeping Beauty (SB) transposon mutagenesis, we identified novel genetic drivers of medulloblastoma and CNS-PNET. Cross-species gene expression analyses classified SB-driven tumors into distinct medulloblastoma and CNS-PNET subgroups, indicating they resemble human Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with FOXR2 activation. This represents the first genetically induced mouse model of CNS-PNET and a rare model of group 3 and 4 medulloblastoma. We identified several putative proto-oncogenes including Arhgap36, Megf10, and Foxr2. Genetic manipulation of these genes demonstrated a robust impact on tumorigenesis in vitro and in vivo. We also determined that FOXR2 interacts with N-MYC, increases C-MYC protein stability, and activates FAK/SRC signaling. Altogether, our study identified several promising therapeutic targets in medulloblastoma and CNS-PNET. SIGNIFICANCE: A transposon-induced mouse model identifies several novel genetic drivers and potential therapeutic targets in medulloblastoma and CNS-PNET.
Collapse
Affiliation(s)
- Pauline J Beckmann
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jon D Larson
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alex T Larsson
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jason P Ostergaard
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Sandra Wagner
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Eric P Rahrmann
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - George M Otto
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California
| | - Rory L Williams
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Department of Bioengineering, California Institute of Technology, Pasadena, California
| | - Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Catherine Lee
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Barbara R Tschida
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Paramita Das
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Xiaochong Wu
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Quincy Rosemarie
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan D Krebs
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Amy M Molan
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Addison M Demer
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Michelle M Frees
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Anthony E Rizzardi
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Stephen C Schmechel
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota.,Department of Clinical Sciences, College of Medicine, Florida State University, Sarasota, Florida
| | - Charles G Eberhart
- Department of Pathology, Ophthalmology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, 200 First Street Southwest, Rochester, Minnesota
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Annie Huang
- Division of Hematology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aaron L Sarver
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
23
|
Naalden D, Haegeman A, de Almeida‐Engler J, Birhane Eshetu F, Bauters L, Gheysen G. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. MOLECULAR PLANT PATHOLOGY 2018; 19:2416-2430. [PMID: 30011122 PMCID: PMC6638014 DOI: 10.1111/mpp.12719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 05/06/2023]
Abstract
On invasion of roots, plant-parasitic nematodes secrete effectors to manipulate the cellular regulation of the host to promote parasitism. The root-knot nematode Meloidogyne graminicola is one of the most damaging nematodes of rice. Here, we identified a novel effector of this nematode, named Mg16820, expressed in the nematode subventral glands. We localized the Mg16820 effector in the apoplast during the migration phase of the second-stage juvenile in rice roots. In addition, during early development of the feeding site, Mg16820 was localized in giant cells, where it accumulated in the cytoplasm and the nucleus. Using transient expression in Nicotiana benthamiana leaves, we demonstrated that Mg16820 directed to the apoplast was able to suppress flg22-induced reactive oxygen species production. In addition, expression of Mg16820 in the cytoplasm resulted in the suppression of the R2/Avr2- and Mi-1.2-induced hypersensitive response. A potential target protein of Mg16820 identified with the yeast two-hybrid system was the dehydration stress-inducible protein 1 (DIP1). Bimolecular fluorescence complementation resulted in a strong signal in the nucleus. DIP1 has been described as an abscisic acid (ABA)-responsive gene and ABA is involved in the biotic and abiotic stress response. Our results demonstrate that Mg16820 is able to act in two cellular compartments as an immune suppressor and targets a protein involved in the stress response, therefore indicating an important role for this effector in parasitism.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Annelies Haegeman
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitCaritasstraat 399090MelleBelgium
| | | | - Firehiwot Birhane Eshetu
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| | - Lander Bauters
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| |
Collapse
|
24
|
Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL, Hahner L, Hoch K, Dubinsky W, Narkar VA, Bickel PE. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun 2016; 7:12723. [PMID: 27554864 PMCID: PMC4999519 DOI: 10.1038/ncomms12723] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Violeta I. Gallardo-Montejano
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Geetu Saxena
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - Christine M. Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Chaofeng Yang
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John L. McAfee
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lisa Hahner
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kathleen Hoch
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - William Dubinsky
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - Vihang A. Narkar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - Perry E. Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
25
|
Chen CT, Kelly M, Leon JD, Nwagbara B, Ebbert P, Ferguson DJP, Lowery LA, Morrissette N, Gubbels MJ. Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation. Mol Biol Cell 2015; 26:4562-76. [PMID: 26466679 PMCID: PMC4678015 DOI: 10.1091/mbc.e15-06-0437] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 11/11/2022] Open
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii divides by intertwined closed mitosis and internal budding. Centrosome positioning and MT acetylation control spindle dynamics, and the MT-associated protein TgEB1 residing in the nucleus contributes to mitotic fidelity by bundling the spindle MTs. Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end–binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1’s MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity.
Collapse
Affiliation(s)
- Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Megan Kelly
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Jessica de Leon
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | | | - Patrick Ebbert
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | - Naomi Morrissette
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
26
|
Whalen S, Pandey OP, Pandey G. Predicting protein function and other biomedical characteristics with heterogeneous ensembles. Methods 2015; 93:92-102. [PMID: 26342255 DOI: 10.1016/j.ymeth.2015.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/03/2015] [Accepted: 08/23/2015] [Indexed: 12/29/2022] Open
Abstract
Prediction problems in biomedical sciences, including protein function prediction (PFP), are generally quite difficult. This is due in part to incomplete knowledge of the cellular phenomenon of interest, the appropriateness and data quality of the variables and measurements used for prediction, as well as a lack of consensus regarding the ideal predictor for specific problems. In such scenarios, a powerful approach to improving prediction performance is to construct heterogeneous ensemble predictors that combine the output of diverse individual predictors that capture complementary aspects of the problems and/or datasets. In this paper, we demonstrate the potential of such heterogeneous ensembles, derived from stacking and ensemble selection methods, for addressing PFP and other similar biomedical prediction problems. Deeper analysis of these results shows that the superior predictive ability of these methods, especially stacking, can be attributed to their attention to the following aspects of the ensemble learning process: (i) better balance of diversity and performance, (ii) more effective calibration of outputs and (iii) more robust incorporation of additional base predictors. Finally, to make the effective application of heterogeneous ensembles to large complex datasets (big data) feasible, we present DataSink, a distributed ensemble learning framework, and demonstrate its sound scalability using the examined datasets. DataSink is publicly available from https://github.com/shwhalen/datasink.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institutes, University of California, San Francisco, CA, USA.
| | - Om Prakash Pandey
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gaurav Pandey
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Kim NH, Yoshimaru T, Chen YA, Matsuo T, Komatsu M, Miyoshi Y, Tanaka E, Sasa M, Mizuguchi K, Katagiri T. BIG3 Inhibits the Estrogen-Dependent Nuclear Translocation of PHB2 via Multiple Karyopherin-Alpha Proteins in Breast Cancer Cells. PLoS One 2015; 10:e0127707. [PMID: 26052702 PMCID: PMC4460025 DOI: 10.1371/journal.pone.0127707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
We recently reported that brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) binds Prohibitin 2 (PHB2) in cytoplasm, thereby causing a loss of function of the PHB2 tumor suppressor in the nuclei of breast cancer cells. However, little is known regarding the mechanism by which BIG3 inhibits the nuclear translocation of PHB2 into breast cancer cells. Here, we report that BIG3 blocks the estrogen (E2)-dependent nuclear import of PHB2 via the karyopherin alpha (KPNA) family in breast cancer cells. We found that overexpressed PHB2 interacted with KPNA1, KPNA5, and KPNA6, thereby leading to the E2-dependent translocation of PHB2 into the nuclei of breast cancer cells. More importantly, knockdown of each endogenous KPNA by siRNA caused a significant inhibition of E2-dependent translocation of PHB2 in BIG3-depleted breast cancer cells, thereby enhancing activation of estrogen receptor alpha (ERα). These data indicated that BIG3 may block the KPNAs (KPNA1, KPNA5, and KPNA6) binding region(s) of PHB2, thereby leading to inhibition of KPNAs-mediated PHB2 nuclear translocation in the presence of E2 in breast cancer cells. Understanding this regulation of PHB2 nuclear import may provide therapeutic strategies for controlling E2/ERα signals in breast cancer cells.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, Osaka, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Masato Komatsu
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Japan
| | | | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
28
|
Predicting human protein subcellular locations by the ensemble of multiple predictors via protein-protein interaction network with edge clustering coefficients. PLoS One 2014; 9:e86879. [PMID: 24466278 PMCID: PMC3900678 DOI: 10.1371/journal.pone.0086879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods.
Collapse
|