1
|
Novikova SV, Oreshkova NV, Sharov VV, Kuzmin DA, Demidko DA, Bisirova EM, Zhirnova DF, Belokopytova LV, Babushkina EA, Krutovsky KV. Study of the Genetic Mechanisms of Siberian Stone Pine ( Pinus sibirica Du Tour) Adaptation to the Climatic and Pest Outbreak Stresses Using Dendrogenomic Approach. Int J Mol Sci 2024; 25:11767. [PMID: 39519318 PMCID: PMC11546098 DOI: 10.3390/ijms252111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
A joint analysis of dendrochronological and genomic data was performed to identify genetic mechanisms of adaptation and assess the adaptive genetic potential of Siberian stone pine (Pinus sibirica Du Tour) populations. The data obtained are necessary for predicting the effect of climate change and mitigating its negative consequences. Presented are the results of an association analysis of the variation of 84,853 genetic markers (single nucleotide polymorphisms-SNPs) obtained by double digest restriction-site associated DNA sequencing (ddRADseq) and 110 individual phenotypic traits, including dendrophenotypes based on the dynamics of tree-ring widths (TRWs) of 234 individual trees in six natural populations of Siberian stone pine, which have a history of extreme climatic stresses (e.g., droughts) and outbreaks of defoliators (e.g., pine sawfly [Neodiprion sertifer Geoff.]). The genetic structure of studied populations was relatively weak; samples are poorly differentiated and belong to genetically similar populations. Genotype-dendrophenotype associations were analyzed using three different approaches and corresponding models: General Linear Model (GLM), Bayesian Sparse Linear Mixed Model (BSLMM), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), respectively. Thirty SNPs were detected by at least two different approaches, and two SNPs by all three. In addition, three SNPs associated with mean values of recovery dendrophenotype (Rc) averaged across multiple years of climatic stresses were also found by all three methods. The sequences containing these SNPs were annotated using genome annotation of a very closely related species, whitebark pine (P. albicaulis Engelm.). We found that most of the SNPs with supposedly adaptive variation were located in intergenic regions. Three dendrophenotype-associated SNPs were located within the 10 Kbp regions and one in the intron of the genes encoding proteins that play a crucial role in ensuring the integrity of the plant's genetic information, particularly under environmental stress conditions that can induce DNA damage. In addition, we found a correlation of individual heterozygosity with some dendrophenotypes. Heterosis was observed in most of these statistically significant cases; signs of homeostasis were also detected. Although most of the identified SNPs were not assigned to a particular gene, their high polymorphism and association with adaptive traits likely indicate high adaptive potential that can facilitate adaptation of Siberian stone pine populations to the climatic stresses and climate change.
Collapse
Affiliation(s)
- Serafima V. Novikova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia; (S.V.N.); (N.V.O.); (V.V.S.)
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Natalia V. Oreshkova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia; (S.V.N.); (N.V.O.); (V.V.S.)
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vadim V. Sharov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia; (S.V.N.); (N.V.O.); (V.V.S.)
- Krasnoyarsk Regional Center of New Information Technologies, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia;
| | - Dmitry A. Kuzmin
- Krasnoyarsk Regional Center of New Information Technologies, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia;
- Department of High-Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
| | - Denis A. Demidko
- Laboratory of Forest Protection, M.F. Reshetnev Siberian State University of Science and Technology, 660000 Krasnoyarsk, Russia;
- Laboratory of Forest Zoology, V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Elvina M. Bisirova
- Laboratory for Monitoring of the Carbon Balance of Terrestrial Ecosystems, Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia;
- All-Russian Plant Quarantine Center (VNIIKR), Tomsk Branch, 634069 Tomsk, Russia
| | - Dina F. Zhirnova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (L.V.B.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Liliana V. Belokopytova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (L.V.B.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (L.V.B.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Konstantin V. Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Goettingen, 37077 Goettingen, Germany
- Center for Integrated Breeding Research, George-August University of Goettingen, 37075 Goettingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| |
Collapse
|
2
|
Cardenas M, Seibert B, Cowan B, Caceres CJ, Gay LC, Cargnin Faccin F, Perez DR, Baker AL, Anderson TK, Rajao DS. Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket. Commun Biol 2024; 7:1230. [PMID: 39354058 PMCID: PMC11445579 DOI: 10.1038/s42003-024-06928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Amy L Baker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Srivastava SK, Parker C, O'Brien CN, Tucker MS, Thompson PC, Rosenthal BM, Dubey JP, Khan A, Jenkins MC. Chromosomal scale assembly reveals localized structural variants in avian caecal coccidian parasite Eimeria tenella. Sci Rep 2023; 13:22802. [PMID: 38129566 PMCID: PMC10739835 DOI: 10.1038/s41598-023-50117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Eimeria tenella is a major cause of caecal coccidiosis in commercial poultry chickens worldwide. Here, we report chromosomal scale assembly of Eimeria tenella strain APU2, a strain isolated from commercial broiler chickens in the U.S. We obtained 100× sequencing Oxford Nanopore Technology (ONT) and more than 800× Coverage of Illumina Next-Seq. We created the assembly using the hybrid approach implemented in MaSuRCA, achieving a contiguous 51.34 Mb chromosomal-scale scaffolding enabling identification of structural variations. The AUGUSTUS pipeline predicted 8060 genes, and BUSCO deemed the genomes 99% complete; 6278 (78%) genes were annotated with Pfam domains, and 1395 genes were assigned GO-terms. Comparing E. tenella strains (APU2, US isolate and Houghton, UK isolate) derived Houghton strain of E. tenella revealed 62,905 high stringency differences, of which 45,322 are single nucleotide polymorphisms (SNPs) (0.088%). The rate of transitions/transversions among the SNPs are 1.63 ts/tv. The strains possess conserved gene order but have profound sequence heterogeneity in a several chromosomal segments (chr 2, 11 and 15). Genic and intergenic variation in defined gene families was evaluated between the two strains to possibly identify sequences under selection. The average genic nucleotide diversity of 2.8 with average 2 kb gene length (0.145%) at genic level. We examined population structure using available E. tenella sequences in NCBI, revealing that the two E. tenella isolates from the U.S. (E. tenella APU2 and Wisconsin, "ERR296879") share a common maternal inheritance with the E. tenella Houghton. Our chromosomal level assembly promotes insight into Eimeria biology and evolution, hastening drug discovery and vaccine development.
Collapse
Affiliation(s)
- Subodh K Srivastava
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Carolyn Parker
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Celia N O'Brien
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Matthew S Tucker
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Peter C Thompson
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Benjamin M Rosenthal
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Jitender P Dubey
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Asis Khan
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Mark C Jenkins
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
4
|
Wang L, Yeo S, Lee M, Endah S, Alhuda NA, Yue GH. Combination of GWAS and F ST-based approaches identified loci associated with economic traits in sugarcane. Mol Genet Genomics 2023:10.1007/s00438-023-02040-2. [PMID: 37289230 DOI: 10.1007/s00438-023-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Sugarcane is a globally important plant for both sugar and biofuel production. Although conventional breeding has played an important role in increasing the productivity of sugarcane, it takes a long time to achieve breeding goals such as high yield and resistant to diseases. Molecular breeding, including marker-assisted breeding and genomic selection, can accelerate genetic improvement by selecting elites at the seedling stage with DNA markers. However, only a few DNA markers associated with important traits were identified in sugarcane. The purpose of this study was to identify DNA markers associated with sugar content, stalk diameter, and sugarcane top borer resistance. The sugarcane samples with trait records were genotyped using the restriction site-associated DNA sequencing (RADseq) technology. Using FST analysis and genome-wide association study (GWAS), a total of 9, 23 and 9 DNA variants (single nucleotide polymorphisms (SNPs)/insertions and deletions (indels)) were associated with sugar content, stalk diameter, and sugarcane top borer resistance, respectively. The identified genetic variants were on different chromosomes, suggesting that these traits are complex and determined by multiple genetic factors. These DNA markers identified by both approaches have the potential to be used in selecting elite clones at the seeding stage in our sugarcane breeding program to accelerate genetic improvement. Certainly, it is essential to verify the reliability of the identified DNA markers associated with traits before they are used in molecular breeding in other populations.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Shadame Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - S Endah
- Research and Development, PT Gunung Madu Plantations, KM 90 Terusan Nunyai, Central Lampung, Lampung, 34167, Indonesia
| | - N A Alhuda
- Research and Development, PT Gunung Madu Plantations, KM 90 Terusan Nunyai, Central Lampung, Lampung, 34167, Indonesia
| | - G H Yue
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Sudan J, Sharma S, Salgotra RK, Pandey RK, Neelam D, Singh R. Elucidating the process of SNPs identification in non-reference genome crops. J Biomol Struct Dyn 2023; 41:15682-15690. [PMID: 37021361 DOI: 10.1080/07391102.2023.2194002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
Advances in the next generation sequencing technologies, genome reduction techniques and bioinformatics tools have given a big impetus to the identification of genome-wide single nucleotide polymorphisms (SNPs) in crops. NGS technologies can make available a large amount of sequence data in a short span of time. The huge data requires detailed bioinformatics analysis steps, including preprocessing, mapping, and identification of sequence variants. A plethora of available software meant for sequence analysis is used for different sequence analysis steps. However, SNPs identification is far more challenging for orphaned crops or non-reference genome crops. The current article reports different steps for in silico SNPs identification in a sequential manner and proposes some mapping approaches using CLC Genomics software that could provide an alternative method for SNPs identification in orphan crops having no reference genome. The three mapping approaches: Common reference map from progenitor genomes (CRMPG), step-wise use of progenitor genomes (SWPG) and de novo assembly of sequence read (DASR) were validated with the dd-RAD sequenced data of two genotypes from Brassica juncea.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jebi Sudan
- Department of Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Susheel Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| | - Romesh K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Deepesh Neelam
- Department of Microbiology, JECRC University, Jaipur, Rajasthan, India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| |
Collapse
|
6
|
Cereghino C, Roesch F, Carrau L, Hardy A, Ribeiro-Filho HV, Henrion-Lacritick A, Koh C, Marano JM, Bates TA, Rai P, Chuong C, Akter S, Vallet T, Blanc H, Elliott TJ, Brown AM, Michalak P, LeRoith T, Bloom JD, Marques RE, Saleh MC, Vignuzzi M, Weger-Lucarelli J. The E2 glycoprotein holds key residues for Mayaro virus adaptation to the urban Aedes aegypti mosquito. PLoS Pathog 2023; 19:e1010491. [PMID: 37018377 PMCID: PMC10109513 DOI: 10.1371/journal.ppat.1010491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/17/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.
Collapse
Affiliation(s)
- Chelsea Cereghino
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ferdinand Roesch
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
- UMR 1282 ISP, INRAE Centre Val de Loire, Nouzilly, France
| | - Lucía Carrau
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
- Department of Microbiology, New York University Langone Medical Center, New York, New York, United States of America
| | - Alexandra Hardy
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Helder V. Ribeiro-Filho
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Annabelle Henrion-Lacritick
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Cassandra Koh
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Jeffrey M. Marano
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, Virginia, United States of America
| | - Tyler A. Bates
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Bioinformatics and Computational Biology, School of Systems Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Truitt J. Elliott
- Program in Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia, United States of America
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anne M. Brown
- Program in Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pawel Michalak
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, VA-MD Regional College of Veterinary Medicine, Blacksburg, Virginia, Untied States of Ameria
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| |
Collapse
|
7
|
Siegers JY, Ferreri L, Eggink D, Veldhuis Kroeze EJB, te Velthuis AJW, van de Bildt M, Leijten L, van Run P, de Meulder D, Bestebroer T, Richard M, Kuiken T, Lowen AC, Herfst S, van Riel D. Evolution of highly pathogenic H5N1 influenza A virus in the central nervous system of ferrets. PLoS Pathog 2023; 19:e1011214. [PMID: 36897923 PMCID: PMC10032531 DOI: 10.1371/journal.ppat.1011214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lucas Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Aartjan J. W. te Velthuis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Theo Bestebroer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Novikova SV, Sharov VV, Oreshkova NV, Simonov EP, Krutovsky KV. Genetic Adaptation of Siberian Larch ( Larix sibirica Ledeb.) to High Altitudes. Int J Mol Sci 2023; 24:ijms24054530. [PMID: 36901960 PMCID: PMC10003562 DOI: 10.3390/ijms24054530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001).
Collapse
Affiliation(s)
- Serafima V. Novikova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vadim V. Sharov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Department of High-Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3498838, Israel
| | - Natalia V. Oreshkova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Evgeniy P. Simonov
- Laboratory of Evolutionary Trophology, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin V. Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-339-3537
| |
Collapse
|
9
|
Li C, Wang L, Cseke LJ, Vasconcelos F, Huguet-Tapia JC, Gassmann W, Pauwels L, White FF, Dong H, Yang B. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Commun Biol 2023; 6:56. [PMID: 36646768 PMCID: PMC9842757 DOI: 10.1038/s42003-023-04451-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecAp is efficient in creating base edits in strains of Xanthomonas, Pseudomonas, Erwinia and Agrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate in Pseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates of Xanthomonas oryzae pv. oryzae revealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.
Collapse
Affiliation(s)
- Chenhao Li
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA ,grid.27871.3b0000 0000 9750 7019Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu P. R. China
| | - Longfei Wang
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Leland J. Cseke
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Fernanda Vasconcelos
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Jose Carlos Huguet-Tapia
- grid.15276.370000 0004 1936 8091Department of Plant Pathology, University of Florida, Gainesville, Florida USA
| | - Walter Gassmann
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Laurens Pauwels
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium ,grid.511033.5Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Frank F. White
- grid.15276.370000 0004 1936 8091Department of Plant Pathology, University of Florida, Gainesville, Florida USA
| | - Hansong Dong
- grid.27871.3b0000 0000 9750 7019Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu P. R. China
| | - Bing Yang
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA ,grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, St. Louis, Missouri USA
| |
Collapse
|
10
|
Ferreri LM, Geiger G, Seibert B, Obadan A, Rajao D, Lowen AC, Perez DR. Intra- and inter-host evolution of H9N2 influenza A virus in Japanese quail. Virus Evol 2022; 8:veac001. [PMID: 35223084 PMCID: PMC8865083 DOI: 10.1093/ve/veac001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) are constantly evolving. Crucial steps in the infection cycle, such as sialic acid (SA) receptor binding on the host cell surface, can either promote or hamper the emergence of new variants. We previously assessed the relative fitness in Japanese quail of H9N2 variant viruses differing at a single amino acid position, residue 216 in the hemagglutinin (HA) viral surface protein. This site is known to modulate SA recognition. Our prior study generated a valuable set of longitudinal samples from quail transmission groups where the inoculum comprised different mixed populations of HA 216 variant viruses. Here, we leveraged these samples to examine the evolutionary dynamics of viral populations within and between inoculated and naïve contact quails. We found that positive selection dominated HA gene evolution, but fixation of the fittest variant depended on the competition mixture. Analysis of the whole genome revealed further evidence of positive selection acting both within and between hosts. Positive selection drove fixation of variants in non-HA segments within inoculated and contact quails. Importantly, transmission bottlenecks were modulated by the molecular signature at HA 216, revealing viral receptor usage as a determinant of transmitted diversity. Overall, we show that selection strongly shaped the evolutionary dynamics within and between quails. These findings support the notion that selective processes act effectively on IAV populations in poultry hosts, facilitating rapid viral evolution in this ecological niche.
Collapse
Affiliation(s)
| | - Ginger Geiger
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Brittany Seibert
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | | | - Daniela Rajao
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
11
|
Bourgeois YXC, Warren BH. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol Ecol 2021; 30:6036-6071. [PMID: 34009688 DOI: 10.1111/mec.15989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Characterizing the population history of a species and identifying loci underlying local adaptation is crucial in functional ecology, evolutionary biology, conservation and agronomy. The constant improvement of high-throughput sequencing techniques has facilitated the production of whole genome data in a wide range of species. Population genomics now provides tools to better integrate selection into a historical framework, and take into account selection when reconstructing demographic history. However, this improvement has come with a profusion of analytical tools that can confuse and discourage users. Such confusion limits the amount of information effectively retrieved from complex genomic data sets, and impairs the diffusion of the most recent analytical tools into fields such as conservation biology. It may also lead to redundancy among methods. To address these isssues, we propose an overview of more than 100 state-of-the-art methods that can deal with whole genome data. We summarize the strategies they use to infer demographic history and selection, and discuss some of their limitations. A website listing these methods is available at www.methodspopgen.com.
Collapse
Affiliation(s)
| | - Ben H Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP 51, Paris, France
| |
Collapse
|
12
|
Ferrão LFV, Johnson TS, Benevenuto J, Edger PP, Colquhoun TA, Munoz PR. Genome-wide association of volatiles reveals candidate loci for blueberry flavor. THE NEW PHYTOLOGIST 2020; 226:1725-1737. [PMID: 31999829 DOI: 10.1111/nph.16459] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
Plants produce a range of volatile organic compounds (VOCs), some of which are perceived by the human olfactory system, contributing to a myriad flavors. Despite the importance of flavor for consumer preference, most plant breeding programs have neglected it, mainly because of the costs of phenotyping and the complexity of disentangling the role of VOCs in human perception. To develop molecular breeding tools aimed at improving fruit flavor, we carried out target genotyping of and VOC extraction from a blueberry population. Metabolite genome-wide association analysis was used to elucidate the genetic architecture, while predictive models were tested to prove that VOCs can be accurately predicted using genomic information. A historical sensory panel was considered to assess how the volatiles influenced consumers. By gathering genomics, metabolomics, and the sensory panel, we demonstrated that VOCs are controlled by a few major genomic regions, some of which harbor biosynthetic enzyme-coding genes; can be accurately predicted using molecular markers; and can enhance or decrease consumers' overall liking. Here we emphasized how the understanding of the genetic basis and the role of VOCs in consumer preference can assist breeders in developing more flavorful cultivars at a more inexpensive and accelerated pace.
Collapse
Affiliation(s)
- Luís Felipe V Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy S Johnson
- Environmental Horticulture Department, Plant Innovation Center, University of Florida, Gainesville, FL, 32611, USA
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Patrick P Edger
- Department of Horticulture, University of Michigan, Michigan State University, East Lansing, MI, 48824, USA
| | - Thomas A Colquhoun
- Environmental Horticulture Department, Plant Innovation Center, University of Florida, Gainesville, FL, 32611, USA
| | - Patricio R Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
Rodríguez A, Mundy NI, Ibáñez R, Pröhl H. Being red, blue and green: the genetic basis of coloration differences in the strawberry poison frog (Oophaga pumilio). BMC Genomics 2020; 21:301. [PMID: 32293261 PMCID: PMC7158012 DOI: 10.1186/s12864-020-6719-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Animal coloration is usually an adaptive attribute, under strong local selection pressures and often diversified among species or populations. The strawberry poison frog (Oophaga pumilio) shows an impressive array of color morphs across its distribution in Central America. Here we quantify gene expression and genetic variation to identify candidate genes involved in generating divergence in coloration between populations of red, green and blue O. pumilio from the Bocas del Toro archipelago in Panama. RESULTS We generated a high quality non-redundant reference transcriptome by mapping the products of genome-guided and de novo transcriptome assemblies onto a re-scaffolded draft genome of O. pumilio. We then measured gene expression in individuals of the three color phenotypes and identified color-associated candidate genes by comparing differential expression results against a list of a priori gene sets for five different functional categories of coloration - pteridine synthesis, carotenoid synthesis, melanin synthesis, iridophore pathways (structural coloration), and chromatophore development. We found 68 candidate coloration loci with significant expression differences among the color phenotypes. Notable upregulated examples include pteridine synthesis genes spr, xdh and pts (in red and green frogs); carotenoid metabolism genes bco2 (in blue frogs), scarb1 (in red frogs), and guanine metabolism gene psat1 (in blue frogs). We detected significantly higher expression of the pteridine synthesis gene set in red and green frogs versus blue frogs. In addition to gene expression differences, we identified 370 outlier SNPs on 162 annotated genes showing signatures of diversifying selection, including eight pigmentation-associated genes. CONCLUSIONS Gene expression in the skin of the three populations of frogs with differing coloration is highly divergent. The strong signal of differential expression in pteridine genes is consistent with a major role of these genes in generating the coloration differences among the three morphs. However, the finding of differentially expressed genes across pathways and functional categories suggests that multiple mechanisms are responsible for the coloration differences, likely involving both pigmentary and structural coloration. In addition to regulatory differences, we found potential evidence of differential selection acting at the protein sequence level in several color-associated loci, which could contribute to the color polymorphism.
Collapse
Affiliation(s)
- Ariel Rodríguez
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Nicholas I. Mundy
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ England
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092 Panamá, República de Panamá
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Apartado, 0816-02852 Panamá, República de Panamá
| | - Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
14
|
Cornetti L, Tschirren B. Combining genome-wide association study and F ST -based approaches to identify targets of Borrelia-mediated selection in natural rodent hosts. Mol Ecol 2020; 29:1386-1397. [PMID: 32163646 DOI: 10.1111/mec.15410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in high-throughput sequencing technologies provide opportunities to gain novel insights into the genetic basis of phenotypic trait variation. Yet to date, progress in our understanding of genotype-phenotype associations in nonmodel organisms in general and natural vertebrate populations in particular has been hampered by small sample sizes typically available for wildlife populations and a resulting lack of statistical power, as well as a limited ability to control for false-positive signals. Here we propose to combine a genome-wide association study (GWAS) and FST -based approach with population-level replication to partly overcome these limitations. We present a case study in which we used this approach in combination with genotyping-by-sequencing (GBS) single nucleotide polymorphism (SNP) data to identify genomic regions associated with Borrelia afzelii resistance or susceptibility in the natural rodent host of this Lyme disease-causing spirochete, the bank vole (Myodes glareolus). Using this combined approach we identified four consensus SNPs located in exonic regions of the genes Slc26a4, Tns3, Wscd1 and Espnl, which were significantly associated with the voles' Borrelia infectious status within and across populations. Functional links between host responses to bacterial infections and most of these genes have previously been demonstrated in other rodent systems, making them promising new candidates for the study of evolutionary host responses to Borrelia emergence. Our approach is applicable to other systems and may facilitate the identification of genetic variants underlying disease resistance or susceptibility, as well as other ecologically relevant traits, in wildlife populations.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
15
|
Chikungunya virus populations experience diversity- dependent attenuation and purifying intra-vector selection in Californian Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007853. [PMID: 31751338 PMCID: PMC6894883 DOI: 10.1371/journal.pntd.0007853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/05/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (Togaviridae, Alphavirus; CHIKV) is a mosquito-borne global health threat that has been transmitted transiently in the southeastern United States. A primary CHIKV mosquito vector, Aedes aegypti, was recently established in the populous state of California, but the vector competence of Californian mosquitoes is unknown. Explosive CHIKV epidemics since 2004 have been associated with the acquisition of mosquito-adaptive mutations that enhance transmission by Ae. aegypti or Ae. albopictus. As a highly mutable RNA virus, CHIKV has the potential for extensive and rapid genetic diversification in vertebrate hosts and mosquito vectors. We previously demonstrated that expansion of CHIKV diversity in cell culture allows for greater adaptability to novel selection pressures, and that CHIKV fidelity variants are able to diversify more than wildtype (WT) CHIKV in mice. The evolution of intra-vector CHIKV populations and the correlation between CHIKV population diversity and infectivity and transmissibility in mosquitoes has not yet been studied. Here, we address these gaps in knowledge via experimental infection of Ae. aegypti from California with WT and fidelity variant CHIKV. We show that Ae. aegypti from California are highly competent vectors for CHIKV. We also report that CHIKV fidelity variants diversify more than WT in mosquitoes and exhibit attenuated infectivity at the level of the midgut. Furthermore, we demonstrate that intra-vector populations of CHIKV are subjected to purifying selection in mosquito bodies, and sequences of non-coding CHIKV regions are highly conserved. These findings will inform public health risk assessment for CHIKV in California and improve our understanding of constraints to CHIKV evolution in mosquitoes. Chikungunya virus (CHIKV) is transmitted by Aedes aegypti mosquitoes and has caused explosive epidemics in Asia and the Americas since 2004. During mosquito infection, the CHIKV genome replicates with a high mutation rate to produce virus populations with high genetic diversity that facilitate virus evolution. With this study, we address three gaps in knowledge: 1) are Ae. aegypti mosquitoes from Los Angeles, California, capable of transmitting CHIKV, 2) what effect does increased CHIKV population diversity have on virus infection and transmission by mosquitoes, and 3) are there constraints to CHIKV evolution in mosquitoes? We use oral infection of Ae. aegypti mosquitoes originating from Los Angeles, California to demonstrate high laboratory transmission competence of CHIKV. We also show that oral infection of mosquitoes with CHIKV variants that produce more diverse populations are less able to infect mosquitoes than wildtype CHIKV populations. Lastly, our study provides evidence of genome-wide and regional constraints to CHIKV evolution within Ae. aegypti mosquitoes. Our results will inform public health risk assessments for potential CHIKV introduction in southern California and advance our understanding of the role of mosquitoes in CHIKV evolution.
Collapse
|
16
|
Riemersma KK, Steiner C, Singapuri A, Coffey LL. Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and Adult Mice. J Virol 2019; 93:e01606-18. [PMID: 30429348 PMCID: PMC6340026 DOI: 10.1128/jvi.01606-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging global health threat that produces debilitating arthritis in people. Like other RNA viruses with high mutation rates, CHIKV produces populations of genetically diverse genomes within a host. While several known CHIKV mutations influence disease severity in vertebrates and transmission by mosquitoes, the role of intrahost diversity in chikungunya arthritic disease has not been studied. In this study, high- and low-fidelity CHIKV variants, previously characterized by altered in vitro population mutation frequencies, were used to evaluate how intrahost diversity influences clinical disease, CHIKV replication, and antibody neutralization in immunocompetent adult mice inoculated in the rear footpads. Both high- and low-fidelity mutations were hypothesized to attenuate CHIKV arthritic disease, replication, and neutralizing antibody levels compared to wild-type (WT) CHIKV. Unexpectedly, high-fidelity mutants elicited more severe arthritic disease than the WT despite comparable CHIKV replication, whereas a low-fidelity mutant produced attenuated disease and replication. Serum antibody developed against both high- and low-fidelity CHIKV exhibited reduced neutralization of WT CHIKV. Using next-generation sequencing (NGS), the high-fidelity mutations were demonstrated to be genetically stable but produced more genetically diverse populations than WT CHIKV in mice. This enhanced diversification was subsequently reproduced after serial in vitro passage. The NGS results contrast with previously reported population diversities for fidelity variants, which focused mainly on part of the E1 gene, and highlight the need for direct measurements of mutation rates to clarify CHIKV fidelity phenotypes.IMPORTANCE CHIKV is a reemerging global health threat that elicits debilitating arthritis in humans. There are currently no commercially available CHIKV vaccines. Like other RNA viruses, CHIKV has a high mutation rate and is capable of rapid intrahost diversification during an infection. In other RNA viruses, virus population diversity associates with disease progression; however, potential impacts of intrahost viral diversity on CHIKV arthritic disease have not been studied. Using previously characterized CHIKV fidelity variants, we addressed whether CHIKV population diversity influences the severity of arthritis and host antibody response in an arthritic mouse model. Our findings show that CHIKV populations with greater genetic diversity can cause more severe disease and stimulate antibody responses with reduced neutralization of low-diversity virus populations in vitro The discordant high-fidelity phenotypes in this study highlight the complexity of inferring replication fidelity indirectly from population diversity.
Collapse
Affiliation(s)
- Kasen K Riemersma
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cody Steiner
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
17
|
Beck AS, Wood TG, Widen SG, Thompson JK, Barrett ADT. Analysis By Deep Sequencing of Discontinued Neurotropic Yellow Fever Vaccine Strains. Sci Rep 2018; 8:13408. [PMID: 30194325 PMCID: PMC6128858 DOI: 10.1038/s41598-018-31085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022] Open
Abstract
Deep sequencing of live-attenuated viral vaccines has focused on vaccines in current use. Here we report characterization of a discontinued live yellow fever (YF) vaccine associated with severe adverse events. The French neurotropic vaccine (FNV) strain of YF virus was derived empirically in 1930 by 260 passages of wild-type French viscerotropic virus (FVV) in mouse brain. The vaccine was administered extensively in French-speaking Africa until discontinuation in 1982, due to high rates of post-vaccination encephalitis in children. Using rare archive strains of FNV, viral RNAs were sequenced and analyzed by massively parallel, in silico methods. Diversity and specific population structures were compared in reference to the wild-type parental strain FVV, and between the vaccine strains themselves. Lower abundance of polymorphism content was observed for FNV strains relative to FVV. Although the vaccines were of lower diversity than FVV, heterogeneity between the vaccines was observed. Reversion to wild-type identity was variably observed in the FNV strains. Specific population structures were recovered from vaccines with neurotropic properties; loss of neurotropism in mice was associated with abundance of wild-type RNA populations. The analysis provides novel sequence evidence that FNV is genetically unstable, and that adaptation of FNV contributed to the neurotropic adverse phenotype.
Collapse
Affiliation(s)
- Andrew S Beck
- Department of Pathology, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas G Wood
- Molecular Genomics Core Facility, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Steven G Widen
- Molecular Genomics Core Facility, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jill K Thompson
- Molecular Genomics Core Facility, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan D T Barrett
- Department of Pathology, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, and World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, Galveston, TX, 77555, USA.
- University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
18
|
Wang XM, Tu JC. TNFSF15 is likely a susceptibility gene for systemic lupus erythematosus. Gene 2018; 670:106-113. [PMID: 29803925 DOI: 10.1016/j.gene.2018.05.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
We aim to explore the correlation of TNFSF15 genetic polymorphisms with susceptibility to systemic lupus erythematosus (SLE). This study enrolled SLE patients and healthy individuals to detect three single nucleotide polymorphisms (SNPs) of TNFSF15 (rs3810936, rs6478108 and rs4979462) through using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the possible association of these three SNPs with the risk of SLE and the mRNA level of TNFSF15 was quantified by real-time PCR. The rs3810936 T allele carrier greatly decreased risk of SLE (OR = 0.620, 95% CI = 0.454-0.849, P = 0.003), while the risk of SLE for rs4979462 T allele carrier was significantly increased (OR = 1.66, 95% CI = 1.243-2.218, P < 0.001). The mRNA level of TNFSF15 was obviously higher in SLE patients, and specifically, the patients who carried the CC genotype of TNFSF15 rs3810936 had a higher TNFSF15 mRNA, but the rs4979462 CC genotype carriers appeared to be associated with the decreased TNFSF15 mRNA (all P < 0.05). Besides, the genotypes of rs3810936 and rs4979462 of TNFSF15 were significantly associated with butterfly rash, arthritis, serositis, renal nephritis, hematological disorder, immunological disorder and positive antinuclear antibody (ANA) of SLE patients (all P < 0.05). CCT and CTT haplotypes were risk factors of SLE, but CCC and TTT were protective factors of SLE (all P < 0.05). Logistic regression analysis showed that rs3810936 and rs4979462 of TNFSF15, histories of chilblain and wet living environment were independently associated with the risk of SLE (all P < 0.05).The current results suggested that TNFSF15 (rs3810936 and rs4979462) SNPs may confer susceptibility to SLE risk, which were significantly associated with the clinical phenotypes of SLE.
Collapse
Affiliation(s)
- Xian-Mo Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, PR China
| | - Jian-Cheng Tu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, PR China.
| |
Collapse
|
19
|
Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, Creason AL, Belcher MS, Serdani M, Wiseman MS, Grünwald NJ, Putnam ML, Chang JH. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 2017; 6:30925. [PMID: 29231813 PMCID: PMC5726852 DOI: 10.7554/elife.30925] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. All organisms live in a world teeming with bacteria. Some bacteria are beneficial and, for example, provide their hosts with nutrients. Others cause harm, for example, by stealing nutrients and causing disease. Many bacteria can also gain DNA from other bacteria, and the genes encoded within the new DNA can help them to live with other organisms. This can start the bacteria on an evolutionary path to becoming beneficial or harmful. Rhodococcus are bacteria that live in association with many species of plants, including trees. Most are harmless but some cause disease. Plants infected with harmful Rhodococcus can show deformed growth, which causes major losses to the nursery industry. Savory, Fuller, Weisberg et al. set out to understand how disease-causing Rhodococcus are introduced into nurseries, if they are transferred between nurseries, whether they persist in nurseries, and how to limit their spread. It turns out that harmless Rhodococcus are beneficial to plants. However, if these harmless bacteria gain a certain DNA molecule – called a virulence plasmid – they can convert into harmful bacteria. Further analysis showed that some nurseries repeatedly acquired the harmful bacteria. The pattern of affected nurseries suggested that some might have purchased diseased plants from a common provider. In other cases, the sources remained a mystery. Savory et al. also report that, contrary to previous findings, there is no evidence to support the diagnosis that Rhodococcus without a virulence plasmid are responsible for an unusual growth problem that has plagued the pistachio industry. In recent years, this incorrect diagnosis led to trees being unnecessarily destroyed, worsening the economic losses. These findings suggest that genes moving between bacteria can dramatically change how those bacteria interact with the organisms in which they live. It needs to be shown whether this is an exceptional process, unique to only certain groups of bacteria, or if it is more widespread in nature. These findings could inform future disease management strategies to better protect agricultural systems.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Skylar L Fuller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - William J Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Michael I Gordon
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Allison L Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Michael S Belcher
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Maryna Serdani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Michele S Wiseman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture and Agricultural Research Service, Corvallis, United States
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States.,Center for Genome Research, Oregon State University, Corvallis, United States
| |
Collapse
|
20
|
Bocsanczy AM, Huguet-Tapia JC, Norman DJ. Comparative Genomics of Ralstonia solanacearum Identifies Candidate Genes Associated with Cool Virulence. FRONTIERS IN PLANT SCIENCE 2017; 8:1565. [PMID: 28955357 PMCID: PMC5601409 DOI: 10.3389/fpls.2017.01565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/28/2017] [Indexed: 06/01/2023]
Abstract
Strains of the Ralstonia solanacearum species complex in the phylotype IIB group are capable of causing Bacterial Wilt disease in potato and tomato at temperatures lower than 24°C. The capability of these strains to survive and to incite infection at temperatures colder than their normally tropical boundaries represents a threat to United States agriculture in temperate regions. In this work, we used a comparative genomics approach to identify orthologous genes linked to the lower temperature virulence phenotype. Six R. solanacearum cool virulent (CV) strains were compared to six strains non-pathogenic at low temperature (NPLT). CV strains can cause Bacterial Wilt symptoms at temperatures below 24°C, while NPLT cannot. Four R. solanacearum strains were sequenced for this work in order to complete the comparison. An orthologous genes comparison identified 44 genes present only in CV strains and 19 genes present only in NPLT strains. Gene annotation revealed a high percentage of genes compared with whole genomes in the transcriptional regulator and transport categories. A single nucleotide polymorphism (SNP) analysis identified 265 genes containing conserved non-synonymous SNPs in CV strains. Ten genes in the pathogenicity category were identified in this group. Comparisons of type 3 secretion system, type 6 secretion system (T6SS) clusters, and associated effectors did not indicate a correlation with the CV phenotype except for one T6SS VGR effector potentially associated with the CV phenotype. This is the first R. solanacearum genomic comparative analysis of multiple strains with different temperature related virulence. The candidate genes identified by this comparison are potential factors involved in virulence at low temperatures that need to be investigated. The high percentage of transcriptional regulators among the genes present only in CV strains supports the hypothesis that temperature dependent regulation of virulence genes explains the differential virulence phenotype at low temperatures. This comparison contributes to find new possible connections of temperature dependent virulence to the previously described complex regulatory system involving quorum-sensing, phenotype conversion (phcA), acyl-HSL production and responses to SA. It also added novel candidate T6SS effectors and useful detailed information about the T6SS in R. solanacearum.
Collapse
Affiliation(s)
- Ana M. Bocsanczy
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, ApopkaFL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, GainesvilleFL, United States
| | - David J. Norman
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, ApopkaFL, United States
| |
Collapse
|
21
|
Bourgeois YXC, Delahaie B, Gautier M, Lhuillier E, Malé PJG, Bertrand JAM, Cornuault J, Wakamatsu K, Bouchez O, Mould C, Bruxaux J, Holota H, Milá B, Thébaud C. A novel locus on chromosome 1 underlies the evolution of a melanic plumage polymorphism in a wild songbird. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160805. [PMID: 28386436 PMCID: PMC5367300 DOI: 10.1098/rsos.160805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
Understanding the mechanisms responsible for phenotypic diversification within and among species ultimately rests with linking naturally occurring mutations to functionally and ecologically significant traits. Colour polymorphisms are of great interest in this context because discrete colour patterns within a population are often controlled by just a few genes in a common environment. We investigated how and why phenotypic diversity arose and persists in the Zosterops borbonicus white-eye of Reunion (Mascarene archipelago), a colour polymorphic songbird in which all highland populations contain individuals belonging to either a brown or a grey plumage morph. Using extensive phenotypic and genomic data, we demonstrate that this melanin-based colour polymorphism is controlled by a single locus on chromosome 1 with two large-effect alleles, which was not previously described as affecting hair or feather colour. Differences between colour morphs appear to rely upon complex cis-regulatory variation that either prevents the synthesis of pheomelanin in grey feathers, or increases its production in brown ones. We used coalescent analyses to show that, from a 'brown' ancestral population, the dominant 'grey' allele spread quickly once it arose from a new mutation. Since colour morphs are always found in mixture, this implies that the selected allele does not go to fixation, but instead reaches an intermediate frequency, as would be expected under balancing selection.
Collapse
Affiliation(s)
- Yann X. C. Bourgeois
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Boris Delahaie
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Mathieu Gautier
- INRA, UMR 1062 CBGP (INRA, IRD, Cirad, Montpellier SupAgro), Campus de Baillarguet, 34988 Montferrier-sur-Lez, France
| | - Emeline Lhuillier
- INRA, GeT-PlaGe, Genotoul, 24 chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan, France
- INRA, UAR1209, 24 chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan, France
| | - Pierre-Jean G. Malé
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Joris A. M. Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Josselin Cornuault
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University, School of Health Sciences, Toyoake Aichi 470-1192, Japan
| | - Olivier Bouchez
- INRA, GeT-PlaGe, Genotoul, 24 chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan, France
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, 24 chemin de Borde Rouge, Auzeville, CS 52627, 31326 Castanet-Tolosan, France
| | - Claire Mould
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Jade Bruxaux
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Hélène Holota
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Christophe Thébaud
- Laboratoire Évolution et Diversité Biologique, UMR5174 CNRS, Université Paul Sabatier – ENFA, 31062 Toulouse Cedex 9, France
| |
Collapse
|
22
|
Rubino F, Carberry C, M Waters S, Kenny D, McCabe MS, Creevey CJ. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME JOURNAL 2017; 11:932-944. [PMID: 28085156 PMCID: PMC5364355 DOI: 10.1038/ismej.2016.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.
Collapse
Affiliation(s)
- Francesco Rubino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK.,Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Ciara Carberry
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture, University College Dublin, Dublin, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David Kenny
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Matthew S McCabe
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
23
|
Xu N, Ye C, Chen X, Liu J, Liu L, Chen J. Genome Sequencing of the Pyruvate-producing Strain Candida glabrata CCTCC M202019 and Genomic Comparison with Strain CBS138. Sci Rep 2016; 6:34893. [PMID: 27713500 PMCID: PMC5054605 DOI: 10.1038/srep34893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022] Open
Abstract
Candida glabrata CCTCC M202019 as an industrial yeast strain that is widely used to produce α-oxocarboxylic acid. Strain M202019 has been proven to have a higher pyruvate-producing capacity than the reference strain CBS138. To characterize the genotype of the M202019 strain, we generated a draft sequence of its genome, which has a size of 12.1 Mbp and a GC content of 38.47%. Evidence accumulated during genome annotation suggests that strain M202019 has strong capacities for glucose transport and pyruvate biosynthesis, defects in pyruvate catabolism, as well as variations in genes involved in nutrient and dicarboxylic acid transport, oxidative phosphorylation, and other relevant aspects of carbon metabolism, which might promote pyruvate accumulation. In addition to differences in its central carbon metabolism, a genomic analysis revealed genetic differences in adhesion metabolism. Forty-nine adhesin-like proteins of strain M202019 were identified classified into seven subfamilies. Decreased amounts of adhesive proteins, and deletions or changes of low-complexity repeats and functional domains might lead to lower adhesion and reduced pathogenicity. Further virulence experiments validated the biological safety of strain M202019. Analysis of the C. glabrata CCTCC M202019 genome sequence provides useful insights into its genetic context, physical characteristics, and potential metabolic capacity.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Genetic structure and viability selection in the golden eagle (Aquila chrysaetos), a vagile raptor with a Holarctic distribution. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0863-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Wang L, Wan ZY, Lim HS, Yue GH. Genetic variability, local selection and demographic history: genomic evidence of evolving towards allopatric speciation in Asian seabass. Mol Ecol 2016; 25:3605-21. [PMID: 27262162 DOI: 10.1111/mec.13714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022]
Abstract
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South-East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South-East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South-East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South-East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South-East Asia during mid-Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the 'genomic islands' scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid-Pleistocene.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Huan Sein Lim
- Marine Aquaculture Center, Agri-Food & Veterinary Authority of Singapore, 5 Maxwell Road, Singapore, 069110, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
26
|
Lequime S, Fontaine A, Ar Gouilh M, Moltini-Conclois I, Lambrechts L. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes. PLoS Genet 2016; 12:e1006111. [PMID: 27304978 PMCID: PMC4909269 DOI: 10.1371/journal.pgen.1006111] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. During infection of their arthropod vectors, arthropod-borne viruses (arboviruses) such as dengue viruses traverse several anatomical barriers that are believed to cause dramatic reductions in population size. Such population bottlenecks challenge the maintenance of viral genetic diversity, which is considered critical for fitness and adaptability of arboviruses. Anatomical barriers in the vector were previously associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. However, the relative role of random processes and natural selection, and the influence of vector genetic heterogeneity have not been elucidated. In this study, we used high-throughput sequencing to monitor dengue virus genetic diversity during infection of several genetic backgrounds of their mosquito vector. Our results show that initial infection of the vector is randomly founded by only a few tens of individual virus genomes. The overall level of viral genetic diversity generated during infection was predominantly under purifying selection but differed significantly between mosquito genetic backgrounds. Thus, in addition to random evolutionary forces and the purging of deleterious mutations that shape dengue virus genetic diversity during vector infection, our results also point to a novel role for vector genetic factors in the genetic breadth of virus populations.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
- * E-mail: (SL); (LL)
| | - Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Equipe Résidente de Recherche d’Infectiologie Tropicale, Division Expertise, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Meriadeg Ar Gouilh
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
- EA4655, Unité Risques Microbiens U2RM, Université de Caen Normandie, Caen, France
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- * E-mail: (SL); (LL)
| |
Collapse
|
27
|
Edwards T, Tollis M, Hsieh P, Gutenkunst RN, Liu Z, Kusumi K, Culver M, Murphy RW. Assessing models of speciation under different biogeographic scenarios; an empirical study using multi-locus and RNA-seq analyses. Ecol Evol 2016; 6:379-96. [PMID: 26843925 PMCID: PMC4729248 DOI: 10.1002/ece3.1865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022] Open
Abstract
Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA‐seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best‐fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).
Collapse
Affiliation(s)
- Taylor Edwards
- School of Natural Resources and the Environment The University of Arizona Tucson Arizona 85721; University of Arizona Genetics Core University of Arizona Tucson Arizona 85721
| | - Marc Tollis
- School of Life Sciences Arizona State University Tempe Arizona 85287
| | - PingHsun Hsieh
- Department of Ecology and Evolutionary Biology The University of Arizona Tucson Arizona 85721
| | - Ryan N Gutenkunst
- Department of Ecology and Evolutionary Biology The University of Arizona Tucson Arizona 85721; Department of Molecular and Cellular Biology The University of Arizona Tucson Arizona 85721
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Kenro Kusumi
- School of Life Sciences Arizona State University Tempe Arizona 85287
| | - Melanie Culver
- School of Natural Resources and the Environment The University of Arizona Tucson Arizona 85721; Arizona Cooperative Fish & Wildlife Research Unit USGS University of Arizona Tucson Arizona 85721
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China; Centre for Biodiversity and Conservation Biology Royal Ontario Museum Toronto ON Canada
| |
Collapse
|
28
|
AlMomin S, Kumar V, Al-Amad S, Al-Hussaini M, Dashti T, Al-Enezi K, Akbar A. Draft genome sequence of the silver pomfret fish, Pampus argenteus. Genome 2015; 59:51-8. [PMID: 26692342 DOI: 10.1139/gen-2015-0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.
Collapse
Affiliation(s)
- Sabah AlMomin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Sami Al-Amad
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Mohsen Al-Hussaini
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Talal Dashti
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Khaznah Al-Enezi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Abrar Akbar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
29
|
Wang L, Wan ZY, Bai B, Huang SQ, Chua E, Lee M, Pang HY, Wen YF, Liu P, Liu F, Sun F, Lin G, Ye BQ, Yue GH. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci Rep 2015; 5:16358. [PMID: 26553309 PMCID: PMC4639833 DOI: 10.1038/srep16358] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023] Open
Abstract
A high-density genetic map is essential for comparative genomic studies and fine mapping of QTL, and can also facilitate genome sequence assembly. Here, a high density genetic map of Asian seabass was constructed with 3321 SNPs generated by sequencing 144 individuals in a F2 family. The length of the map was 1577.67 cM with an average marker interval of 0.52 cM. A high level of genomic synteny among Asian seabass, European seabass, Nile tilapia and stickleback was detected. Using this map, one genome-wide significant and five suggestive QTL for growth traits were detected in six linkage groups (i.e. LG4, LG5, LG11, LG13, LG14 and LG15). These QTL explained 10.5–16.0% of phenotypic variance. A candidate gene, ACOX1 within the significant QTL on LG5 was identified. The gene was differentially expressed between fast- and slow-growing Asian seabass. The high-density SNP-based map provides an important tool for fine mapping QTL in molecular breeding and comparative genome analysis.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Zi Yi Wan
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Bin Bai
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Shu Qing Huang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Elaine Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - May Lee
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Hong Yan Pang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Yan Fei Wen
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Peng Liu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Feng Liu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Fei Sun
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Grace Lin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Bao Qing Ye
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543.,School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, Singapore 637551
| |
Collapse
|
30
|
Mac Aogáin M, Kilkenny S, Walsh C, Lindsay S, Moloney G, Morris T, Jones S, Rogers TR. Identification of a novel mutation at the primary dimer interface of GyrA conferring fluoroquinolone resistance in Clostridium difficile. J Glob Antimicrob Resist 2015; 3:295-299. [PMID: 27842877 DOI: 10.1016/j.jgar.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022] Open
Abstract
The aim of this study was to determine whether alternative resistance mechanisms, other than mutation in the quinolone resistance-determining region (QRDR) of DNA gyrase, could confer fluoroquinolone resistance in Clostridium difficile. An in vitro-generated C. difficile mutant exhibiting increased fluoroquinolone resistance was isolated through antibiotic selection on ciprofloxacin. The QRDR of this mutant was investigated by chain-termination sequencing and was found to be devoid of mutation. To determine the nature of the non-QRDR resistance mechanism in this strain, the genomes of the mutant and wild-type strains were sequenced. The gyrBA region from a collection of clinical isolates exhibiting variable fluoroquinolone resistance levels was also sequenced and was compared with that present in 918 publicly available C. difficile genomic data sets. Whole-genome sequence analysis of the fluoroquinolone-resistant mutant revealed a single non-synonymous substitution (Ala384Asp) at the predicted primary dimer interface of GyrA, far beyond the classically defined QRDR. This novel mutation caused increased resistance to ciprofloxacin, ofloxacin, levofloxacin and moxifloxacin while conferring hypersusceptibility to novobiocin. Several novel extra-QRDR polymorphisms in C. difficile DNA gyrase were identified among clinical isolates, whilst observed fluoroquinolone resistance in strains devoid of gyrBA mutations confirmed the existence of DNA gyrase-independent resistance mechanisms in this species. In conclusion, we report the first non-QRDR mutation to confer fluoroquinolone resistance in C. difficile. Although the Ala384Asp substitution was not detected in clinical isolates, this study revealed a diversity of alternative extra-QRDR polymorphisms in DNA gyrase whose association with fluoroquinolone resistance warrants further investigation.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Clinical Microbiology, Sir Patrick Dun Translational Research Laboratory, School of Medicine, Trinity College Dublin, Ireland.
| | - Shauna Kilkenny
- Department of Clinical Microbiology, Sir Patrick Dun Translational Research Laboratory, School of Medicine, Trinity College Dublin, Ireland
| | - Claire Walsh
- Department of Clinical Microbiology, Sir Patrick Dun Translational Research Laboratory, School of Medicine, Trinity College Dublin, Ireland
| | - Sinéad Lindsay
- Department of Clinical Microbiology, Sir Patrick Dun Translational Research Laboratory, School of Medicine, Trinity College Dublin, Ireland
| | - Geraldine Moloney
- Department of Clinical Microbiology, Sir Patrick Dun Translational Research Laboratory, School of Medicine, Trinity College Dublin, Ireland
| | - Trefor Morris
- Anaerobe Reference Laboratory, Public Health Wales, University Hospital of Wales, Cardiff, UK
| | - Sophie Jones
- Anaerobe Reference Laboratory, Public Health Wales, University Hospital of Wales, Cardiff, UK
| | - Thomas R Rogers
- Department of Clinical Microbiology, Sir Patrick Dun Translational Research Laboratory, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
31
|
Cornetti L, Valente LM, Dunning LT, Quan X, Black RA, Hébert O, Savolainen V. The Genome of the "Great Speciator" Provides Insights into Bird Diversification. Genome Biol Evol 2015; 7:2680-91. [PMID: 26338191 PMCID: PMC4607525 DOI: 10.1093/gbe/evv168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Among birds, white-eyes (genus Zosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the "great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Luis M Valente
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Luke T Dunning
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Xueping Quan
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Richard A Black
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom Royal Society for the Protection of Birds, Pavilion View, Brighton, Bedfordshire, United Kingdom NERC Biomolecular Analysis Facility (NBAF) Department of Animal & Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Olivier Hébert
- Waco me Wela Association, Tribu de Luecila, Lifou, New Caledonia
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
32
|
Podicheti R, Mockaitis K. FEATnotator: A tool for integrated annotation of sequence features and variation, facilitating interpretation in genomics experiments. Methods 2015; 79-80:11-7. [PMID: 25934264 DOI: 10.1016/j.ymeth.2015.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/25/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022] Open
Abstract
As approaches are sought for more efficient and democratized uses of non-model and expanded model genomics references, ease of integration of genomic feature datasets is especially desirable in multidisciplinary research communities. Valuable conclusions are often missed or slowed when researchers refer experimental results to a single reference sequence that lacks integrated pan-genomic and multi-experiment data in accessible formats. Association of genomic positional information, such as results from an expansive variety of next-generation sequencing experiments, with annotated reference features such as genes or predicted protein binding sites, provides the context essential for conclusions and ongoing research. When the experimental system includes polymorphic genomic inputs, rapid calculation of gene structural and protein translational effects of sequence variation from the reference can be invaluable. Here we present FEATnotator, a lightweight, fast and easy to use open source software program that integrates and reports overlap and proximity in genomic information from any user-defined datasets including those from next generation sequencing applications. We illustrate use of the tool by summarizing whole genome sequence variation of a widely used natural isolate of Arabidopsis thaliana in the context of gene models of the reference accession. Previous discovery of a protein coding deletion influencing root development is replicated rapidly. Appropriate even in investigations of a single gene or genic regions such as QTL, comprehensive reports provided by FEATnotator better prepare researchers for interpretation of their experimental results. The tool is available for download at http://featnotator.sourceforge.net.
Collapse
Affiliation(s)
- Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, 919 E. Tenth Street, Bloomington, IN 47408, USA.
| | - Keithanne Mockaitis
- Pervasive Technology Institute, Indiana University, 2709 E. Tenth Street, Bloomington, IN 47408, USA; Department of Biology, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
33
|
Tine M, Kuhl H, Gagnaire PA, Louro B, Desmarais E, Martins RST, Hecht J, Knaust F, Belkhir K, Klages S, Dieterich R, Stueber K, Piferrer F, Guinand B, Bierne N, Volckaert FAM, Bargelloni L, Power DM, Bonhomme F, Canario AVM, Reinhardt R. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun 2014; 5:5770. [PMID: 25534655 PMCID: PMC4284805 DOI: 10.1038/ncomms6770] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 11/05/2014] [Indexed: 01/30/2023] Open
Abstract
The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation. The European sea bass is an economically important fish species, which is subject to intense selective breeding. Here, the authors sequence the genome of the European sea bass and highlight gene family expansions underlying adaptation to salinity change, as well as the genomic architecture of speciation between two divergent sea bass lineages.
Collapse
Affiliation(s)
- Mbaye Tine
- 1] Max Planck Genome-centre Cologne, Carl-von-Linné-Weg 10, D-50829 Köln, Germany [2] Max Planck Institute for Molecular Genetics, Ihnestrasse 63, D-14195 Berlin, Germany [3]
| | - Heiner Kuhl
- 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63, D-14195 Berlin, Germany [2]
| | - Pierre-Alexandre Gagnaire
- 1] Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095 Montpellier, France [2] Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200 Sète, France [3]
| | - Bruno Louro
- CCMAR-Centre of Marine Sciences, University of Algarve, Building 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Erick Desmarais
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Rute S T Martins
- CCMAR-Centre of Marine Sciences, University of Algarve, Building 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jochen Hecht
- 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63, D-14195 Berlin, Germany [2] BCRT, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Florian Knaust
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63, D-14195 Berlin, Germany
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63, D-14195 Berlin, Germany
| | - Roland Dieterich
- Max Planck Genome-centre Cologne, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Kurt Stueber
- Max Planck Genome-centre Cologne, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain
| | - Bruno Guinand
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Nicolas Bierne
- 1] Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095 Montpellier, France [2] Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200 Sète, France
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, I-35124 Padova, Italy
| | - Deborah M Power
- CCMAR-Centre of Marine Sciences, University of Algarve, Building 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - François Bonhomme
- 1] Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095 Montpellier, France [2] Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200 Sète, France
| | - Adelino V M Canario
- CCMAR-Centre of Marine Sciences, University of Algarve, Building 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Richard Reinhardt
- 1] Max Planck Genome-centre Cologne, Carl-von-Linné-Weg 10, D-50829 Köln, Germany [2] Max Planck Institute for Molecular Genetics, Ihnestrasse 63, D-14195 Berlin, Germany
| |
Collapse
|
34
|
Beck A, Tesh RB, Wood TG, Widen SG, Ryman KD, Barrett ADT. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing. J Infect Dis 2013; 209:334-44. [PMID: 24141982 DOI: 10.1093/infdis/jit546] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. METHODS The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. RESULTS Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. CONCLUSIONS Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.
Collapse
|