• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4657932)   Today's Articles (3947)   Subscriber (51242)
For: Giguère S, Marchand M, Laviolette F, Drouin A, Corbeil J. Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinformatics 2013;14:82. [PMID: 23497081 DOI: 10.1186/1471-2105-14-82] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 02/21/2013] [Indexed: 02/01/2023]  Open
Number Cited by Other Article(s)
1
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, Clement David-Olawade A. Leveraging artificial intelligence in vaccine development: A narrative review. J Microbiol Methods 2024;224:106998. [PMID: 39019262 DOI: 10.1016/j.mimet.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
2
Friedman RZ, Ramu A, Lichtarge S, Myers CA, Granas DM, Gause M, Corbo JC, Cohen BA, White MA. Active learning of enhancer and silencer regulatory grammar in photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554146. [PMID: 37662358 PMCID: PMC10473580 DOI: 10.1101/2023.08.21.554146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
3
Choi G, Kim W, Koo J. Investigating the Performance of Machine Learning Methods in Predicting Functional Properties of the Hydrogenase Variants. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
4
Jokinen E, Huuhtanen J, Mustjoki S, Heinonen M, Lähdesmäki H. Predicting recognition between T cell receptors and epitopes with TCRGP. PLoS Comput Biol 2021;17:e1008814. [PMID: 33764977 PMCID: PMC8023491 DOI: 10.1371/journal.pcbi.1008814] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/06/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022]  Open
5
Sharma B, Ma Y, Ferguson AL, Liu AP. In search of a novel chassis material for synthetic cells: emergence of synthetic peptide compartment. SOFT MATTER 2020;16:10769-10780. [PMID: 33179713 DOI: 10.1039/d0sm01644f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
6
Watson OP, Cortes-Ciriano I, Taylor AR, Watson JA. A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery. Bioinformatics 2020;35:4656-4663. [PMID: 31070704 PMCID: PMC6853675 DOI: 10.1093/bioinformatics/btz293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]  Open
7
Zhao T, Cheng L, Zang T, Hu Y. Peptide-Major Histocompatibility Complex Class I Binding Prediction Based on Deep Learning With Novel Feature. Front Genet 2019;10:1191. [PMID: 31850062 PMCID: PMC6892951 DOI: 10.3389/fgene.2019.01191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]  Open
8
Jokinen E, Heinonen M, Lähdesmäki H. mGPfusion: predicting protein stability changes with Gaussian process kernel learning and data fusion. Bioinformatics 2019;34:i274-i283. [PMID: 29949987 PMCID: PMC6022679 DOI: 10.1093/bioinformatics/bty238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
9
Spänig S, Heider D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min 2019;12:7. [PMID: 30867681 PMCID: PMC6399931 DOI: 10.1186/s13040-019-0196-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/24/2019] [Indexed: 01/10/2023]  Open
10
Cichonska A, Pahikkala T, Szedmak S, Julkunen H, Airola A, Heinonen M, Aittokallio T, Rousu J. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics 2018;34:i509-i518. [PMID: 29949975 PMCID: PMC6022556 DOI: 10.1093/bioinformatics/bty277] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
11
Schumacher FR, Delamarre L, Jhunjhunwala S, Modrusan Z, Phung QT, Elias JE, Lill JR. Building proteomic tool boxes to monitor MHC class I and class II peptides. Proteomics 2017;17. [PMID: 27928884 DOI: 10.1002/pmic.201600061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/22/2023]
12
A Novel Phosphorylation Site-Kinase Network-Based Method for the Accurate Prediction of Kinase-Substrate Relationships. BIOMED RESEARCH INTERNATIONAL 2017;2017:1826496. [PMID: 29312990 PMCID: PMC5660750 DOI: 10.1155/2017/1826496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
13
Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors. PLoS Comput Biol 2017;13:e1005678. [PMID: 28787438 PMCID: PMC5560747 DOI: 10.1371/journal.pcbi.1005678] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/17/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023]  Open
14
Kanshin E, Giguère S, Jing C, Tyers M, Thibault P. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates. Mol Cell Proteomics 2017;16:786-798. [PMID: 28265048 PMCID: PMC5417821 DOI: 10.1074/mcp.m116.066233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Indexed: 12/12/2022]  Open
15
Sasse A, de Vries SJ, Schindler CEM, de Beauchêne IC, Zacharias M. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking. PLoS One 2017;12:e0170625. [PMID: 28118389 PMCID: PMC5261736 DOI: 10.1371/journal.pone.0170625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/07/2017] [Indexed: 01/15/2023]  Open
16
Learning from real imbalanced data of 14-3-3 proteins binding specificity. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.03.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
17
Sarkes DA, Hurley MM, Stratis-Cullum DN. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Molecules 2016;21:E1504. [PMID: 27834872 PMCID: PMC6272918 DOI: 10.3390/molecules21111504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022]  Open
18
Li Z, Tang J, Guo F. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach. PLoS One 2016;11:e0147467. [PMID: 26828594 PMCID: PMC4734684 DOI: 10.1371/journal.pone.0147467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]  Open
19
Kuksa PP, Min MR, Dugar R, Gerstein M. High-order neural networks and kernel methods for peptide-MHC binding prediction. Bioinformatics 2015. [PMID: 26206306 DOI: 10.1093/bioinformatics/btv371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
20
Li BYS, Yeung LF, Ko KT. Indefinite kernel ridge regression and its application on QSAR modelling. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
21
Tang Q, Nie F, Kang J, Ding H, Zhou P, Huang J. NIEluter: Predicting peptides eluted from HLA class I molecules. J Immunol Methods 2015;422:22-7. [PMID: 25862605 DOI: 10.1016/j.jim.2015.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/18/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022]
22
Giguère S, Laviolette F, Marchand M, Tremblay D, Moineau S, Liang X, Biron É, Corbeil J. Machine learning assisted design of highly active peptides for drug discovery. PLoS Comput Biol 2015;11:e1004074. [PMID: 25849257 PMCID: PMC4388847 DOI: 10.1371/journal.pcbi.1004074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/05/2014] [Indexed: 01/15/2023]  Open
23
Xu Y, Luo C, Qian M, Huang X, Zhu S. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions. BMC Genomics 2014;15 Suppl 9:S9. [PMID: 25521198 PMCID: PMC4290625 DOI: 10.1186/1471-2164-15-s9-s9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]  Open
24
Petrey D, Honig B. Structural bioinformatics of the interactome. Annu Rev Biophys 2014;43:193-210. [PMID: 24895853 DOI: 10.1146/annurev-biophys-051013-022726] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
25
Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: Predicting peptides naturally processed by the MHC. J Immunol Methods 2013;400-401:30-6. [DOI: 10.1016/j.jim.2013.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
26
Guo L, Luo C, Zhu S. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction. BMC Genomics 2013;14 Suppl 5:S11. [PMID: 24564280 PMCID: PMC3852073 DOI: 10.1186/1471-2164-14-s5-s11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA