1
|
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Gan-Or Z. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease? NPJ Parkinsons Dis 2024; 10:201. [PMID: 39455605 PMCID: PMC11512049 DOI: 10.1038/s41531-024-00809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Previous studies have established that rare biallelic SYNJ1 mutations cause autosomal recessive parkinsonism and Parkinson's disease (PD). We analyzed 8165 PD cases, 818 early-onset-PD (EOPD, < 50 years) and 70,363 controls. Burden meta-analysis revealed an association between rare nonsynonymous variants and variants with high Combined Annotation-Dependent Depletion score (> 20) in the Sac1 SYNJ1 domain and PD (Pfdr = 0.040). A meta-analysis of EOPD patients demonstrated an association between all rare heterozygous SYNJ1 variants and PD (Pfdr = 0.029).
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| | - Sitki Cem Parlar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Cloe Chantereault
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, New York, Columbia City, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, New York, Columbia City, NY, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Milesi P, Kastally C, Dauphin B, Cervantes S, Bagnoli F, Budde KB, Cavers S, Fady B, Faivre-Rampant P, González-Martínez SC, Grivet D, Gugerli F, Jorge V, Lesur Kupin I, Ojeda DI, Olsson S, Opgenoorth L, Pinosio S, Plomion C, Rellstab C, Rogier O, Scalabrin S, Scotti I, Vendramin GG, Westergren M, Lascoux M, Pyhäjärvi T. Resilience of genetic diversity in forest trees over the Quaternary. Nat Commun 2024; 15:8538. [PMID: 39402024 PMCID: PMC11473659 DOI: 10.1038/s41467-024-52612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
The effect of past environmental changes on the demography and genetic diversity of natural populations remains a contentious issue and has rarely been investigated across multiple, phylogenetically distant species. Here, we perform comparative population genomic analyses and demographic inferences for seven widely distributed and ecologically contrasting European forest tree species based on concerted sampling of 164 populations across their natural ranges. For all seven species, the effective population size, Ne, increased or remained stable over many glacial cycles and up to 15 million years in the most extreme cases. Surprisingly, the drastic environmental changes associated with the Pleistocene glacial cycles have had little impact on the level of genetic diversity of dominant forest tree species, despite major shifts in their geographic ranges. Based on their trajectories of Ne over time, the seven tree species can be divided into three major groups, highlighting the importance of life history and range size in determining synchronous variation in genetic diversity over time. Altogether, our results indicate that forest trees have been able to retain their evolutionary potential over very long periods of time despite strong environmental changes.
Collapse
Affiliation(s)
- Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Chedly Kastally
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Benjamin Dauphin
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Sandra Cervantes
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Francesca Bagnoli
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
| | - Katharina B Budde
- Department of Forest Genetics and Forest Tree Breeding, Georg-August-University Goettingen, Göttingen, Germany
- Department of Forest Genetic Resources, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, UK
| | - Bruno Fady
- INRAE, URFM, Ecology of Mediterranean Forests, Avignon, France
| | | | | | - Delphine Grivet
- Institute of Forest Sciences (ICIFOR), INIA-CSIC, Madrid, Spain
| | - Felix Gugerli
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Isabelle Lesur Kupin
- University of Bordeaux, INRAE, BIOGECO, Cestas, France
- Helix Venture, Mérignac, France
| | - Dario I Ojeda
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Sanna Olsson
- Institute of Forest Sciences (ICIFOR), INIA-CSIC, Madrid, Spain
| | - Lars Opgenoorth
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Plant Ecology and Geobotany, Philipps-Universität Marburg, Marburg, Germany
| | - Sara Pinosio
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
- Institute of Applied Genomics (IGA), Udine, Italy
| | | | - Christian Rellstab
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | | | - Ivan Scotti
- INRAE, URFM, Ecology of Mediterranean Forests, Avignon, France
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Tanja Pyhäjärvi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Ong SS, Ho PJ, Khng AJ, Tan BKT, Tan QT, Tan EY, Tan SM, Putti TC, Lim SH, Tang ELS, Li J, Hartman M. Genomic Insights into Idiopathic Granulomatous Mastitis through Whole-Exome Sequencing: A Case Report of Eight Patients. Int J Mol Sci 2024; 25:9058. [PMID: 39201744 PMCID: PMC11354296 DOI: 10.3390/ijms25169058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Idiopathic granulomatous mastitis (IGM) is a rare condition characterised by chronic inflammation and granuloma formation in the breast. The aetiology of IGM is unclear. By focusing on the protein-coding regions of the genome, where most disease-related mutations often occur, whole-exome sequencing (WES) is a powerful approach for investigating rare and complex conditions, like IGM. We report WES results on paired blood and tissue samples from eight IGM patients. Samples were processed using standard genomic protocols. Somatic variants were called with two analytical pipelines: nf-core/sarek with Strelka2 and GATK4 with Mutect2. Our WES study of eight patients did not find evidence supporting a clear genetic component. The discrepancies between variant calling algorithms, along with the considerable genetic heterogeneity observed amongst the eight IGM cases, indicate that common genetic drivers are not readily identifiable. With only three genes, CHIT1, CEP170, and CTR9, recurrently altering in multiple cases, the genetic basis of IGM remains uncertain. The absence of validation for somatic variants by Sanger sequencing raises further questions about the role of genetic mutations in the disease. Other potential contributors to the disease should be explored.
Collapse
Affiliation(s)
- Seeu Si Ong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Peh Joo Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
| | - Alexis Jiaying Khng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
| | - Benita Kiat Tee Tan
- Department of General Surgery, Sengkang General Hospital, Singapore 544886, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Qing Ting Tan
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Swee Ho Lim
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | | | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
4
|
Senkevich K, Liu L, Alvarado CX, Leonard HL, Nalls MA, Gan-Or Z. Lack of genetic evidence for NLRP3 inflammasome involvement in Parkinson's disease pathogenesis. NPJ Parkinsons Dis 2024; 10:145. [PMID: 39103393 DOI: 10.1038/s41531-024-00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Activation of the NLRP3 inflammasome has been implicated in Parkinson's disease (PD) based on in vitro and in vivo studies. Clinical trials targeting the NLRP3 inflammasome in PD are ongoing. However, the evidence supporting NLRP3's involvement in PD from human genetics data is limited. We analyzed common and rare variants in NLRP3 inflammasome-related genes in PD cohorts, performed pathway-specific polygenic risk score (PRS) analyses, and studied causal associations using Mendelian randomization (MR) with the NLRP3 components and the cytokines IL-1β and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway PRS with PD. MR suggests that altering the expression of the NLRP3 inflammasome, IL-1β, or IL-18, does not affect PD risk or progression. Therefore, our results do not support a role for the NLRP3 inflammasome in PD pathogenesis or as a target for drug development.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Lang Liu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
- DZNE Tübingen, Tübingen, Germany
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20814, USA
- Data Tecnica, Washington, DC, 200373, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada.
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Correa Abondano M, Ospina JA, Wenzl P, Carvajal-Yepes M. Sampling strategies for genotyping common bean ( Phaseolus vulgaris L.) Genebank accessions with DArTseq: a comparison of single plants, multiple plants, and DNA pools. FRONTIERS IN PLANT SCIENCE 2024; 15:1338332. [PMID: 39055360 PMCID: PMC11269218 DOI: 10.3389/fpls.2024.1338332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Introduction Genotyping large-scale gene bank collections requires an appropriate sampling strategy to represent the diversity within and between accessions. Methods A panel of 44 common bean (Phaseolus vulgaris L.) landraces from the Alliance Bioversity and The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) gene bank was genotyped with DArTseq using three sampling strategies: a single plant per accession, 25 individual plants per accession jointly analyzed after genotyping (in silico-pool), and by pooling tissue from 25 individual plants per accession (seq-pool). Sampling strategies were compared to assess the technical aspects of the samples, the marker information content, and the genetic composition of the panel. Results The seq-pool strategy resulted in more consistent DNA libraries for quality and call rate, although with fewer polymorphic markers (6,142 single-nucleotide polymorphisms) than the in silico-pool (14,074) or the single plant sets (6,555). Estimates of allele frequencies by seq-pool and in silico-pool genotyping were consistent, but the results suggest that the difference between pools depends on population heterogeneity. Principal coordinate analysis, hierarchical clustering, and the estimation of admixture coefficients derived from a single plant, in silico-pool, and seq-pool successfully identified the well-known structure of Andean and Mesoamerican gene pools of P. vulgaris across all datasets. Conclusion In conclusion, seq-pool proved to be a viable approach for characterizing common bean germplasm compared to genotyping individual plants separately by balancing genotyping effort and costs. This study provides insights and serves as a valuable guide for gene bank researchers embarking on genotyping initiatives to characterize their collections. It aids curators in effectively managing the collections and facilitates marker-trait association studies, enabling the identification of candidate markers for key traits.
Collapse
Affiliation(s)
| | | | | | - Monica Carvajal-Yepes
- Genetic Resources Program, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| |
Collapse
|
6
|
Alanazi N, Siyal A, Basit S, Shammas M, Al-Mukhaylid S, Aleem A, Mahmood A, Iqbal Z. Clinical Validation of the Somatic FANCD2 Mutation (c.2022-5C>T) as a Novel Molecular Biomarker for Early Disease Progression in Chronic Myeloid Leukemia: A Case-Control Study. Hematol Rep 2024; 16:465-478. [PMID: 39051418 PMCID: PMC11270283 DOI: 10.3390/hematolrep16030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Chronic myeloid leukemia (CML) results from chromosomal translocation t(9;22) leading to the formation of the BCR-ABL fusion oncogene. CML has three stages: the chronic phase (CP), the accelerated phase (AP), and the blast crisis (BC). Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML. TKIs work well in CP-CML, and these patients have a survival rate similar to the normal population, but TKIs are less effective in advanced-phase CML. Even with current advances in treatment, BC-CML patients have an average overall survival of less than a year. Early recognition of CML patients at risk of disease progression can help in timely interventions with appropriate TKIs or other therapeutic modalities. Although some markers of disease progression like BCR-ABL kinase domain, ASXL1, and GATA2 mutations are available, no universal and exclusively specific molecular biomarkers exist to early diagnose CML patients at risk of CML progression for timely therapeutic interventions to delay or minimize blast crisis transformation in CML. A recent study found that all BC-CML patients harbored the FANCD2 (c.2022-5C>T) mutation. Therefore, the current study was designed to detect this FANCD2 mutant in AP-CML (early progression phase) and to clinically validate its potential as a novel molecular biomarker of early CML progression from CP to AP. Methods: Our study comprised 123 CP-CML (control group) and 60 AP-CML patients (experimental group) from 2 oncology centers, from January 2020 to July 2023. Mean hemoglobin level, WBC count, platelet count, treatment type, hepatomegaly, splenomegaly, and survival status of AP-CML patients were significantly different from those of CP-CML patients. However, as these clinical parameters cannot help in the early detection of patients at risk of CML progression, there was a need for a clinically validated biomarker of AP-CML. DNA was extracted from the patients' blood samples, and the FANCD2 gene was sequenced using an Illumina NextSeq500 next-generation sequencer (NGS). Results: The NGS analysis revealed a unique splice-site mutation in the FANCD2 gene (c.2022-5C>T). This mutation was detected in the majority (98.3%) of AP-CML patients but in none of the CP-CML patients or healthy control sequences from genomic databases. The mutation was confirmed by Sanger sequencing. FANCD2 is a member of the Fanconi anemia pathway genes involved in DNA repair and genomic stability, and aberrations of this gene are associated with many cancers. Conclusions: In conclusion, our study shows that the somatic FANCD2 (c.2022-5C>T) mutation is a new molecular biomarker for early CML progression. We recommend further clinical validation of this biomarker in prospective clinical trials.
Collapse
Affiliation(s)
- Nawaf Alanazi
- Division of Hematology/Oncology, Department of Pediatrics, King Abdulaziz Hospital, College of Applied Medical Sciences (CoAMS), King Saud Bin Abdulaziz University for Health Sciences, Al-Ahsa 36428, Saudi Arabia;
| | - Abdulaziz Siyal
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sulman Basit
- Centre for Genetics and Inherited Diseases, Taiba University, Madinah 42353, Saudi Arabia;
| | - Masood Shammas
- Dana Farbar Cancer Institute, University of Harvard, Boston, MA 02138, USA;
| | - Sarah Al-Mukhaylid
- Clinical Laboratory Department, Johns Hopkins Aramco HealthCare (JHAH), Alahsa 36423, Saudi Arabia;
- Alumni, GEM, CLSP, CoAMS-A, KSAU-HS, Al-Ahsa 36428, Saudi Arabia
| | - Aamer Aleem
- Department of Medicine, Division of Hematology/Oncology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Department of Medicine, Division of Hematology/Oncology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11472, Saudi Arabia;
| | - Zafar Iqbal
- Alumni, GEM, CLSP, CoAMS-A, KSAU-HS, Al-Ahsa 36428, Saudi Arabia
- Genomic & Experimental Medicine Group (GEM) Molecular Oncology/Hematology Group (MOH) & Quality Assurance and Accreditation Unit (QAAA), & Clinical Laboratory Sciences Program (CLSP), College of Applied Medical Sciences (CoAMS-A), King Abdullah International Medical Research Centre (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Saudi Society for Blood and Marrow Transplantation (SSBMT), King Abdulaziz Medical City, National Guard Health Affairs, Al-Ahsa 31982, Saudi Arabia
- Pakistan Society for Molecular and Clinical Hematology, Lahore 54000, Pakistan
- Hematology, Oncology & Pharmacogenetic Engineering Sciences Group (HOPES), Division of Next-Generation Medical Biotechnology (NeMB), Department of Biotechnology, Qarshi University, Lahore 54000, Pakistan
- Hematology, Oncology & Pharmacogenetic Engineering Sciences Group (HOPES), Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
7
|
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Gan-Or Z. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24307986. [PMID: 38853950 PMCID: PMC11160829 DOI: 10.1101/2024.05.29.24307986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have suggested that rare biallelic SYNJ1 mutations may cause autosomal recessive parkinsonism and Parkinson's disease (PD). Our study explored the impact of rare SYNJ1 variants in non-familial settings, including 8,165 PD cases, 818 early-onset PD (EOPD, <50 years) and 70,363 controls. Burden meta-analysis using optimized sequence Kernel association test (SKAT-O) revealed an association between rare nonsynonymous variants in the Sac1 SYNJ1 domain and PD (Pfdr=0.040). Additionally, a meta-analysis focusing on patients with EOPD demonstrated an association between all rare SYNJ1 variants and PD (Pfdr=0.029). Rare SYNJ1 variants may be associated with sporadic PD, and more specifically with EOPD.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sitki Cem Parlar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Cloe Chantereault
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Lior Greenbaum
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Senkevich K, Liu L, Alvarado CX, Leonard HL, Nalls MA, Gan-Or Z. Lack of genetic evidence for NLRP3-inflammasome involvement in Parkinson's disease pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.20.23295790. [PMID: 37886468 PMCID: PMC10602039 DOI: 10.1101/2023.09.20.23295790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Activation of the NLRP3-inflammasome has been implicated in Parkinson's disease based on in vitro and in vivo studies. Clinical trials targeting the NLRP3-inflammasome in Parkinson's disease are ongoing. However, the evidence supporting NLRP3's involvement in Parkinson's disease from human genetics data is limited. In this study, we conducted analyses of common and rare variants in NLRP3-inflammasome related genes in Parkinson's disease cohorts. We performed pathway-specific analyses using polygenic risk scores and studied potential causal associations using Mendelian randomization with the NLRP3 components and the cytokines IL-1β and IL-18. Our findings showed no associations of common or rare variants, nor of the pathway polygenic risk score with Parkinson's disease. Mendelian randomization suggests that altering the expression of the NLRP3-inflammasome, IL-1β or IL-18, does not affect Parkinson's disease risk or progression. Therefore, our results do not support a role for the NLRP3-inflammasome in Parkinson's disease pathogenesis or as a target for drug development.
Collapse
|
9
|
Schijven D, Soheili-Nezhad S, Fisher SE, Francks C. Exome-wide analysis implicates rare protein-altering variants in human handedness. Nat Commun 2024; 15:2632. [PMID: 38565598 PMCID: PMC10987538 DOI: 10.1038/s41467-024-46277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sourena Soheili-Nezhad
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del-Cid Pellitero E, Chen CX, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupre N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, HassinBaer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. RESEARCH SQUARE 2024:rs.3.rs-3979098. [PMID: 38562709 PMCID: PMC10984014 DOI: 10.21203/rs.3.rs-3979098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Methods Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. Results We first identified specific non-coding variants in CTSB that drive the association with PD and are linked to changes in brain CTSB expression levels. Using iPSC-derived dopaminergic neurons we then find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. Moreover, in cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. Similarly, in midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition or knockout potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. Conclusions The results of our genetic and functional studies indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
Affiliation(s)
| | - Kathy He
- Montreal Neurological Institute-Hospital
| | | | | | | | | | | | | | | | | | - Wen Luo
- Montreal Neurological Institute-Hospital
| | | | | | | | | | | | | | | | | | - Cheryl Waters
- Columbia University Medical Center: Columbia University Irving Medical Center
| | - Oury Monchi
- Université de Montréal: Universite de Montreal
| | | | | | - Irina Miliukhina
- Institute of the Human Brain RAS: FGBUN Institut mozga celoveka im N P Behterevoj Rossijskoj akademii nauk
| | | | | | | | - Lior Greenbaum
- Sheba Medical Center: Sheba Medical Center at Tel Hashomer
| | | | - Roy N Alcalay
- Tel Aviv Ichilov-Sourasky Medical Center: Tel Aviv Sourasky Medical Center
| | | | | | - Ziv Gan-Or
- Montreal Neurological Institute-Hospital
| | | |
Collapse
|
11
|
Dorion MF, Yaqubi M, Senkevich K, Kieran NW, MacDonald A, Chen CXQ, Luo W, Wallis A, Shlaifer I, Hall JA, Dudley RWR, Glass IA, Stratton JA, Fon EA, Bartels T, Antel JP, Gan-or Z, Durcan TM, Healy LM. MerTK is a mediator of alpha-synuclein fibril uptake by human microglia. Brain 2024; 147:427-443. [PMID: 37671615 PMCID: PMC10834256 DOI: 10.1093/brain/awad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1β secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.
Collapse
Affiliation(s)
- Marie-France Dorion
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Konstantin Senkevich
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Nicholas W Kieran
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Adam MacDonald
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Carol X Q Chen
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Amber Wallis
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University Health Centers, Montreal H4A 3J1, Canada
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Edward A Fon
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Ziv Gan-or
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
12
|
Lucas-Sánchez M, Abdeli A, Bekada A, Calafell F, Benhassine T, Comas D. The Impact of Recent Demography on Functional Genetic Variation in North African Human Groups. Mol Biol Evol 2024; 41:msad283. [PMID: 38152862 PMCID: PMC10783648 DOI: 10.1093/molbev/msad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The strategic location of North Africa has made the region the core of a wide range of human demographic events, including migrations, bottlenecks, and admixture processes. This has led to a complex and heterogeneous genetic and cultural landscape, which remains poorly studied compared to other world regions. Whole-exome sequencing is particularly relevant to determine the effects of these demographic events on current-day North Africans' genomes, since it allows to focus on those parts of the genome that are more likely to have direct biomedical consequences. Whole-exome sequencing can also be used to assess the effect of recent demography in functional genetic variation and the efficacy of natural selection, a long-lasting debate. In the present work, we use newly generated whole-exome sequencing and genome-wide array genotypes to investigate the effect of demography in functional variation in 7 North African populations, considering both cultural and demographic differences and with a special focus on Amazigh (plur. Imazighen) groups. We detect genetic differences among populations related to their degree of isolation and the presence of bottlenecks in their recent history. We find differences in the functional part of the genome that suggest a relaxation of purifying selection in the more isolated groups, allowing for an increase of putatively damaging variation. Our results also show a shift in mutational load coinciding with major demographic events in the region and reveal differences within and between cultural and geographic groups.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
13
|
Böhne A, Oğuzhan Z, Chrysostomakis I, Vitt S, Meuthen D, Martin S, Kukowka S, Thünken T. Evidence for selfing in a vertebrate from whole-genome sequencing. Genome Res 2023; 33:2133-2142. [PMID: 38190641 PMCID: PMC10760518 DOI: 10.1101/gr.277368.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
A growing number of recent genomic studies report asexual parthenogenetic reproduction in a wide range of taxa, including vertebrate species from the reptile, bird, and fish lineages. Yet, self-fertilization (selfing) has been recorded only in a single vertebrate, the mangrove killifish Kryptolebias marmoratus In cichlid fishes, sex determination is notably diverse and can be influenced by the environment, and sequential hermaphroditism has been reported for some species. Here, we present evidence for a case of facultative selfing in the cichlid fish Benitochromis nigrodorsalis, which is otherwise known as biparentally reproducing ovophilic mouthbrooder from Western Africa. Our laboratory observations revealed that a wild-caught individual produced repeatedly viable offspring in absence of a mating partner. By analyzing genome-wide single-nucleotide polymorphism (SNP) data, we compare that individual and two of its offspring to shed light on its reproductive mode. First, our results confirm uniparental reproduction. Second, overall heterozygosity is reduced in the offspring compared with outbred individuals. Retained maternal heterozygosity in the offspring is ∼51%, which is close to the theoretically expected value of a heterozygosity reduction of 50% by selfing. Heterozygosity patterns along individual chromosomes do not point to alternative parthenogenetic reproductive mechanisms like automixis by terminal or central fusion. Facultative selfing may represent an adaptive strategy ensuring reproduction when mating partners are absent and, hence, contribute to the cichlids' enormous evolutionary success.
Collapse
Affiliation(s)
- Astrid Böhne
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany;
| | - Zeynep Oğuzhan
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Ioannis Chrysostomakis
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Simon Vitt
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany
| | - Denis Meuthen
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Sandra Kukowka
- Leibniz Institute for the Analysis of Biodiversity Change LIB, Museum Koenig Bonn, 53113 Bonn, Germany
| | - Timo Thünken
- Bonn Institute of Organismic Biology (BIOB), Department of Animal Biodiversity, University of Bonn, 53121 Bonn, Germany;
| |
Collapse
|
14
|
Thami PK, Choga WT, Dandara C, O’Brien SJ, Essex M, Gaseitsiwe S, Chimusa ER. Whole genome sequencing reveals population diversity and variation in HIV-1 specific host genes. Front Genet 2023; 14:1290624. [PMID: 38179408 PMCID: PMC10765519 DOI: 10.3389/fgene.2023.1290624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
HIV infection continues to be a major global public health issue. The population heterogeneity in susceptibility or resistance to HIV-1 and progression upon infection is attributable to, among other factors, host genetic variation. Therefore, identifying population-specific variation and genetic modifiers of HIV infectivity can catapult the invention of effective strategies against HIV-1 in African populations. Here, we investigated whole genome sequences of 390 unrelated HIV-positive and -negative individuals from Botswana. We report 27.7 million single nucleotide variations (SNVs) in the complete genomes of Botswana nationals, of which 2.8 million were missing in public databases. Our population structure analysis revealed a largely homogenous structure in the Botswana population. Admixture analysis showed elevated components shared between the Botswana population and the Niger-Congo (65.9%), Khoe-San (32.9%), and Europeans (1.1%) ancestries in the population of Botswana. Statistical significance of the mutational burden of deleterious and loss-of-function variants per gene against a null model was estimated. The most deleterious variants were enriched in five genes: ACTRT2 (the Actin Related Protein T2), HOXD12 (homeobox D12), ABCB5 (ATP binding cassette subfamily B member 5), ATP8B4 (ATPase phospholipid transporting 8B4) and ABCC12 (ATP Binding Cassette Subfamily C Member 12). These genes are enriched in the glycolysis and gluconeogenesis (p < 2.84e-6) pathways and therefore, may contribute to the emerging field of immunometabolism in which therapy against HIV-1 infection is being evaluated. Published transcriptomic evidence supports the role of the glycolysis/gluconeogenesis pathways in the regulation of susceptibility to HIV, and that cumulative effects of genetic modifiers in glycolysis/gluconeogenesis pathways may potentially have effects on the expression and clinical variability of HIV-1. Identified genes and pathways provide novel avenues for other interventions, with the potential for informing the design of new therapeutics.
Collapse
Affiliation(s)
- Prisca K. Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wonderful T. Choga
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- UCT/SAMRC Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council, Cape Town, South Africa
| | - Stephen J. O’Brien
- Laboratory of Genomics Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
- Guy Harvey Oceanographic Center Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Myron Essex
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health AIDS Initiative, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health AIDS Initiative, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Emile R. Chimusa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| |
Collapse
|
15
|
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Pellitero EDC, Chen CXQ, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, Fon EA. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566693. [PMID: 38014143 PMCID: PMC10680785 DOI: 10.1101/2023.11.11.566693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1 ) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
Collapse
|
16
|
Stafford IS, Ashton JJ, Mossotto E, Cheng G, Mark Beattie R, Ennis S. Supervised Machine Learning Classifies Inflammatory Bowel Disease Patients by Subtype Using Whole Exome Sequencing Data. J Crohns Colitis 2023; 17:1672-1680. [PMID: 37205778 PMCID: PMC10637043 DOI: 10.1093/ecco-jcc/jjad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Inflammatory bowel disease [IBD] is a chronic inflammatory disorder with two main subtypes: Crohn's disease [CD] and ulcerative colitis [UC]. Prompt subtype diagnosis enables the correct treatment to be administered. Using genomic data, we aimed to assess machine learning [ML] to classify patients according to IBD subtype. METHODS Whole exome sequencing [WES] from paediatric/adult IBD patients was processed using an in-house bioinformatics pipeline. These data were condensed into the per-gene, per-individual genomic burden score, GenePy. Data were split into training and testing datasets [80/20]. Feature selection with a linear support vector classifier, and hyperparameter tuning with Bayesian Optimisation, were performed [training data]. The supervised ML method random forest was utilised to classify patients as CD or UC, using three panels: 1] all available genes; 2] autoimmune genes; 3] 'IBD' genes. ML results were assessed using area under the receiver operating characteristics curve [AUROC], sensitivity, and specificity on the testing dataset. RESULTS A total of 906 patients were included in analysis [600 CD, 306 UC]. Training data included 488 patients, balanced according to the minority class of UC. The autoimmune gene panel generated the best performing ML model [AUROC = 0.68], outperforming an IBD gene panel [AUROC = 0.61]. NOD2 was the top gene for discriminating CD and UC, regardless of the gene panel used. Lack of variation in genes with high GenePy scores in CD patients was the best classifier of a diagnosis of UC. DISCUSSION We demonstrate promising classification of patients by subtype using random forest and WES data. Focusing on specific subgroups of patients, with larger datasets, may result in better classification.
Collapse
Affiliation(s)
- Imogen S Stafford
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - James J Ashton
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - Enrico Mossotto
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Guo Cheng
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research, University Hospital Southampton, Southampton, UK
| | - Robert Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
17
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Trempe JF, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of Rare Variants in ARSA with Parkinson's Disease. Mov Disord 2023; 38:1806-1812. [PMID: 37381728 PMCID: PMC10615669 DOI: 10.1002/mds.29521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA remains unclear. OBJECTIVES To study rare ARSA variants in PD. METHODS To study rare ARSA variants (minor allele frequency < 0.01) in PD, we performed burden analyses in six independent cohorts with 5801 PD patients and 20,475 controls, followed by a meta-analysis. RESULTS We found evidence for associations between functional ARSA variants and PD in four cohorts (P ≤ 0.05 in each) and in the meta-analysis (P = 0.042). We also found an association between loss-of-function variants and PD in the United Kingdom Biobank cohort (P = 0.005) and in the meta-analysis (P = 0.049). These results should be interpreted with caution as no association survived multiple comparisons correction. Additionally, we describe two families with potential co-segregation of ARSA p.E382K and PD. CONCLUSIONS Rare functional and loss-of-function ARSA variants may be associated with PD. Further replications in large case-control/familial cohorts are required. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montreal H3A 1A3, Canada
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Das S, Biswas NK, Basu A. Mapinsights: deep exploration of quality issues and error profiles in high-throughput sequence data. Nucleic Acids Res 2023; 51:e75. [PMID: 37378434 PMCID: PMC10415152 DOI: 10.1093/nar/gkad539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/16/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023] Open
Abstract
High-throughput sequencing (HTS) has revolutionized science by enabling super-fast detection of genomic variants at base-pair resolution. Consequently, it poses the challenging problem of identification of technical artifacts, i.e. hidden non-random error patterns. Understanding the properties of sequencing artifacts holds the key in separating true variants from false positives. Here, we develop Mapinsights, a toolkit that performs quality control (QC) analysis of sequence alignment files, capable of detecting outliers based on sequencing artifacts of HTS data at a deeper resolution compared with existing methods. Mapinsights performs a cluster analysis based on novel and existing QC features derived from the sequence alignment for outlier detection. We applied Mapinsights on community standard open-source datasets and identified various quality issues including technical errors related to sequencing cycles, sequencing chemistry, sequencing libraries and across various orthogonal sequencing platforms. Mapinsights also enables identification of anomalies related to sequencing depth. A logistic regression-based model built on the features of Mapinsights shows high accuracy in detecting 'low-confidence' variant sites. Quantitative estimates and probabilistic arguments provided by Mapinsights can be utilized in identifying errors, bias and outlier samples, and also aid in improving the authenticity of variant calls.
Collapse
Affiliation(s)
- Subrata Das
- National Institute of Biomedical Genomics, Kalyani, 741251, West Bengal, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, 741251, West Bengal, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, 741251, West Bengal, India
| |
Collapse
|
19
|
Grover SP, Snir O, Hindberg K, Englebert TM, Braekkan SK, Morelli VM, Jensen SB, Wolberg AS, Mollnes TE, Ueland T, Mackman N, Hansen JB. High plasma levels of C1-inhibitor are associated with lower risk of future venous thromboembolism. J Thromb Haemost 2023; 21:1849-1860. [PMID: 37003465 PMCID: PMC11112258 DOI: 10.1016/j.jtha.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND C1-inhibitor (C1INH) is a broad-acting serine protease inhibitor with anticoagulant activity. The impact of C1INH plasma levels within the normal physiological range on risk of venous thromboembolism (VTE) is unknown. We assessed the association of plasma C1INH levels and VTE risk and evaluated the impact of C1INH on thrombin and plasmin generation in ex vivo assays. METHODS A nested case-control study with 405 patients with VTE and 829 age- and sex-matched controls was derived from the Tromsø Study. Odds ratios (ORs) with 95% confidence intervals (95% CI) for VTE were estimated across plasma C1INH quartiles. Genetic regulation of C1INH was explored using quantitative trait loci analysis of whole exome sequencing data. The effect of plasma C1INH levels on coagulation was evaluated ex vivo by calibrated automated thrombography. RESULTS Individuals with C1INH levels in the highest quartile had a lower risk of VTE (OR 0.68, 95% CI: 0.49-0.96) compared with those with C1INH in the lowest quartile. In subgroup analysis, the corresponding ORs were 0.60 (95% CI: 0.39-0.89) for deep vein thrombosis and 0.85 (95% CI: 0.52-1.38) for pulmonary embolism, respectively. No significant genetic determinants of plasma C1INH levels were identified. Addition of exogenous C1INH to normal human plasma reduced thrombin generation triggered by an activator of the intrinsic coagulation pathway, but not when triggered by an activator of the extrinsic coagulation pathway. CONCLUSIONS High plasma levels of C1INH were associated with lower risk of VTE, and C1INH inhibited thrombin generation initiated by the intrinsic coagulation pathway ex vivo.
Collapse
Affiliation(s)
- Steven P Grover
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, USA. https://twitter.com/StevenPGrover
| | - Omri Snir
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Kristian Hindberg
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway. https://twitter.com/KristianHindbe1
| | - Tatianna M Englebert
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, USA. https://twitter.com/OlsonTatianna
| | - Sigrid K Braekkan
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - Vânia M Morelli
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Søren B Jensen
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, USA. https://twitter.com/aswolberg
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Ueland
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway. https://twitter.com/ThorUeland
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, USA. https://twitter.com/NMackman
| | - John-Bjarne Hansen
- Thrombosis Research Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
20
|
Senkevich K, Bandres-Ciga S, Cisterna-García A, Yu E, Bustos BI, Krohn L, Lubbe SJ, Botía JA, Gan-Or Z. Genome-wide association study stratified by MAPT haplotypes identifies potential novel loci in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.14.23288478. [PMID: 37292720 PMCID: PMC10246147 DOI: 10.1101/2023.04.14.23288478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective To identify genetic factors that may modify the effects of the MAPT locus in Parkinson's disease (PD). Methods We used data from the International Parkinson's Disease Genomics Consortium (IPDGC) and the UK biobank (UKBB). We stratified the IPDGC cohort for carriers of the H1/H1 genotype (PD patients n=8,492 and controls n=6,765) and carriers of the H2 haplotype (with either H1/H2 or H2/H2 genotypes, patients n=4,779 and controls n=4,849) to perform genome-wide association studies (GWASs). Then, we performed replication analyses in the UKBB data. To study the association of rare variants in the new nominated genes, we performed burden analyses in two cohorts (Accelerating Medicines Partnership - Parkinson Disease and UKBB) with a total sample size PD patients n=2,943 and controls n=18,486. Results We identified a novel locus associated with PD among MAPT H1/H1 carriers near EMP1 (rs56312722, OR=0.88, 95%CI= 0.84-0.92, p= 1.80E-08), and a novel locus associated with PD among MAPT H2 carriers near VANGL1 (rs11590278, OR=1.69 95%CI=1.40-2.03, p=2.72E-08). Similar analysis of the UKBB data did not replicate these results and rs11590278 near VANGL1 did have similar effect size and direction in carriers of H2 haplotype, albeit not statistically significant (OR= 1.32, 95%CI= 0.94-1.86, p=0.17). Rare EMP1 variants with high CADD scores were associated with PD in the MAPT H2 stratified analysis (p=9.46E-05), mainly driven by the p.V11G variant. Interpretation We identified several loci potentially associated with PD stratified by MAPT haplotype and larger replication studies are required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington DC, USA
| | - Alejandro Cisterna-García
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Bernabe I. Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lynne Krohn
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Steven J. Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juan A. Botía
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | | | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
21
|
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Zakharova E, Alcalay RN, Pchelina S, Gan-Or Z. Association of rare variants in ARSA with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286773. [PMID: 36993451 PMCID: PMC10055435 DOI: 10.1101/2023.03.08.23286773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Background Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA , which encodes for the enzyme arylsulfatase A, remains controversial. Objectives To evaluate the association between rare ARSA variants and PD. Methods To study possible association of rare variants (minor allele frequency<0.01) in ARSA with PD, we performed burden analyses in six independent cohorts with a total of 5,801 PD patients and 20,475 controls, using optimized sequence Kernel association test (SKAT-O), followed by a meta-analysis. Results We found evidence for an association between functional ARSA variants and PD in four independent cohorts (P≤0.05 in each) and in the meta-analysis (P=0.042). We also found an association between loss-of-function variants and PD in the UKBB cohort (P=0.005) and in the meta-analysis (P=0.049). However, despite replicating in four independent cohorts, these results should be interpreted with caution as no association survived correction for multiple comparisons. Additionally, we describe two families with potential co-segregation of the ARSA variant p.E384K and PD. Conclusions Rare functional and loss-of-function ARSA variants may be associated with PD. Further replication in large case-control cohorts and in familial studies is required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Mariia Beletskaia
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Aliza Dworkind
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Oury Monchi
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, Alberta, T2N 4N1 Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Guide-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Alexandr Tyurin
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | | | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center; Tel Aviv, Israel
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
22
|
Vora NL, Norton ME. Prenatal exome and genome sequencing for fetal structural abnormalities. Am J Obstet Gynecol 2023; 228:140-149. [PMID: 36027950 PMCID: PMC9877148 DOI: 10.1016/j.ajog.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
As prenatal exome sequencing becomes integrated into clinical care, it is critical that providers caring for women with fetal anomalies recognize not only the benefits, but also the challenges and considerations related to this technology. This overview of prenatal sequencing includes information about indications for sequencing, methods, diagnostic yield, clinical utility, variant interpretation, ethical considerations and dilemmas, practical considerations (ie, turnaround time and cost), pre- and posttest counseling points, and psychological impact of testing on families.
Collapse
Affiliation(s)
- Neeta L Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Mary E Norton
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
23
|
Ding W, Kaur D, Horvath S, Zhou W. Comparative epigenome analysis using Infinium DNA methylation BeadChips. Brief Bioinform 2023; 24:6974838. [PMID: 36617464 PMCID: PMC10147478 DOI: 10.1093/bib/bbac617] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.
Collapse
Affiliation(s)
- Wubin Ding
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Steve Horvath
- Dept. of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Altos Labs, San Diego, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Senkevich K, Gan-Or Z. No Association Between Rare TWNK Variants and Parkinson's Disease in European Cohorts. Mov Disord 2022; 37:2318-2319. [PMID: 36059153 DOI: 10.1002/mds.29216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
25
|
Ashton JJ, Cheng G, Stafford IS, Kellermann M, Seaby EG, Cummings JRF, Coelho TAF, Batra A, Afzal NA, Beattie RM, Ennis S. Prediction of Crohn's Disease Stricturing Phenotype Using a NOD2-derived Genomic Biomarker. Inflamm Bowel Dis 2022; 29:511-521. [PMID: 36161322 PMCID: PMC10069659 DOI: 10.1093/ibd/izac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Crohn's disease (CD) is highly heterogenous and may be complicated by stricturing behavior. Personalized prediction of stricturing will inform management. We aimed to create a stricturing risk stratification model using genomic/clinical data. METHODS Exome sequencing was performed on CD patients, and phenotype data retrieved. Biallelic variants in NOD2 were identified. NOD2 was converted into a per-patient deleteriousness metric ("GenePy"). Using training data, patients were stratified into risk groups for fibrotic stricturing using NOD2. Findings were validated in a testing data set. Models were modified to include disease location at diagnosis. Cox proportional hazards assessed performance. RESULTS Six hundred forty-five patients were included (373 children and 272 adults); 48 patients fulfilled criteria for monogenic NOD2-related disease (7.4%), 24 of whom had strictures. NOD2 GenePy scores stratified patients in training data into 2 risk groups. Within testing data, 30 of 161 patients (18.6%) were classified as high-risk based on the NOD2 biomarker, with stricturing in 17 of 30 (56.7%). In the low-risk group, 28 of 131 (21.4%) had stricturing behavior. Cox proportional hazards using the NOD2 risk groups demonstrated a hazard ratio (HR) of 2.092 (P = 2.4 × 10-5), between risk groups. Limiting analysis to patients diagnosed aged < 18-years improved performance (HR-3.164, P = 1 × 10-6). Models were modified to include disease location, such as terminal ileal (TI) disease or not. Inclusion of NOD2 risk groups added significant additional utility to prediction models. High-risk group pediatric patients presenting with TI disease had a HR of 4.89 (P = 2.3 × 10-5) compared with the low-risk group patients without TI disease. CONCLUSIONS A NOD2 genomic biomarker predicts stricturing risk, with prognostic power improved in pediatric-onset CD. Implementation into a clinical setting can help personalize management.
Collapse
Affiliation(s)
- James J Ashton
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK.,Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Guo Cheng
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Imogen S Stafford
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Melina Kellermann
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Eleanor G Seaby
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - J R Fraser Cummings
- Department of Gastroenterology, University Hospital Southampton, Southampton, UK
| | - Tracy A F Coelho
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Akshay Batra
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Nadeem A Afzal
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - R Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
26
|
FVC as an adaptive and accurate method for filtering variants from popular NGS analysis pipelines. Commun Biol 2022; 5:975. [PMID: 36114280 PMCID: PMC9481582 DOI: 10.1038/s42003-022-03397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
The quality control of variants from whole-genome sequencing data is vital in clinical diagnosis and human genetics research. However, current filtering methods (Frequency, Hard-Filter, VQSR, GARFIELD, and VEF) were developed to be utilized on particular variant callers and have certain limitations. Especially, the number of eliminated true variants far exceeds the number of removed false variants using these methods. Here, we present an adaptive method for quality control on genetic variants from different analysis pipelines, and validate it on the variants generated from four popular variant callers (GATK HaplotypeCaller, Mutect2, Varscan2, and DeepVariant). FVC consistently exhibited the best performance. It removed far more false variants than the current state-of-the-art filtering methods and recalled ~51-99% true variants filtered out by the other methods. Once trained, FVC can be conveniently integrated into a user-specific variant calling pipeline. FVC is a method for calling specific gene variants from whole genome data, for potential use in clinical diagnosis and human genetics research.
Collapse
|
27
|
Castaneda-Garcia C, Iyer V, Nsengimana J, Trower A, Droop A, Brown KM, Choi J, Zhang T, Harland M, Newton-Bishop JA, Bishop DT, Adams DJ, Iles MM, Robles-Espinoza CD. Defining novel causal SNPs and linked phenotypes at melanoma-associated loci. Hum Mol Genet 2022; 31:2845-2856. [PMID: 35357426 PMCID: PMC9433725 DOI: 10.1093/hmg/ddac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
A number of genomic regions have been associated with melanoma risk through genome-wide association studies; however, the causal variants underlying the majority of these associations remain unknown. Here, we sequenced either the full locus or the functional regions including exons of 19 melanoma-associated loci in 1959 British melanoma cases and 737 controls. Variant filtering followed by Fisher's exact test analyses identified 66 variants associated with melanoma risk. Sequential conditional logistic regression identified the distinct haplotypes on which variants reside, and massively parallel reporter assays provided biological insights into how these variants influence gene function. We performed further analyses to link variants to melanoma risk phenotypes and assessed their association with melanoma-specific survival. Our analyses replicate previously known associations in the melanocortin 1 receptor (MC1R) and tyrosinase (TYR) loci, while identifying novel potentially causal variants at the MTAP/CDKN2A and CASP8 loci. These results improve our understanding of the architecture of melanoma risk and outcome.
Collapse
Affiliation(s)
- Carolina Castaneda-Garcia
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México 76230, USA
| | - Vivek Iyer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BN, UK
| | - Adam Trower
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - Alastair Droop
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Harland
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Julia A Newton-Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - D Timothy Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - David J Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Mark M Iles
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México 76230, USA
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| |
Collapse
|
28
|
Belloy ME, Le Guen Y, Eger SJ, Napolioni V, Greicius MD, He Z. A Fast and Robust Strategy to Remove Variant-Level Artifacts in Alzheimer Disease Sequencing Project Data. Neurol Genet 2022; 8:e200012. [PMID: 35966919 PMCID: PMC9372872 DOI: 10.1212/nxg.0000000000200012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023]
Abstract
Background and Objectives Exome sequencing (ES) and genome sequencing (GS) are expected to be critical to further elucidate the missing genetic heritability of Alzheimer disease (AD) risk by identifying rare coding and/or noncoding variants that contribute to AD pathogenesis. In the United States, the Alzheimer Disease Sequencing Project (ADSP) has taken a leading role in sequencing AD-related samples at scale, with the resultant data being made publicly available to researchers to generate new insights into the genetic etiology of AD. To achieve sufficient power, the ADSP has adapted a study design where subsets of larger AD cohorts are collected and sequenced across multiple centers, using a variety of sequencing platforms. This approach may lead to variable variant quality across sequencing centers and/or platforms. In this study, we sought to implement and evaluate filters that can be applied fast to robustly remove variant-level artifacts in the ADSP data. Methods We implemented a robust quality control procedure to handle ADSP data. We evaluated this procedure while performing exome-wide and genome-wide association analyses on AD risk using the latest ADSP whole ES (WES) and whole GS (WGS) data releases (NG00067.v5). Results We observed that many variants displayed large variation in allele frequencies across sequencing centers/platforms and contributed to spurious association signals with AD risk. We also observed that sequencing platform/center adjustment in association models could not fully account for these spurious signals. To address this issue, we designed and implemented variant filters that could capture and remove these center-specific/platform-specific artifactual variants. Discussion We derived a fast and robust approach to filter variants that represent sequencing center-related or platform-related artifacts underlying spurious associations with AD risk in ADSP WES and WGS data. This approach will be important to support future robust genetic association studies on ADSP data, as well as other studies with similar designs.
Collapse
|
29
|
Damoah CE, Snir O, Hindberg K, Garred P, Ludviksen JK, Brækkan SK, Morelli VM, Eirik Mollnes T, Hansen JB. High Levels of Complement Activating Enzyme MASP-2 Are Associated With the Risk of Future Incident Venous Thromboembolism. Arterioscler Thromb Vasc Biol 2022; 42:1186-1197. [PMID: 35861070 DOI: 10.1161/atvbaha.122.317746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Experimental studies have shown that the complement activating enzyme MASP-2 (mannose-binding lectin associated serine protease 2) exhibits a thrombin-like activity and that inhibition of MASP-2 protects against thrombosis. In this study, we investigated whether plasma MASP-2 levels were associated with risk of future venous thromboembolism (VTE) and whether genetic variants linked to MASP-2 levels were associated with VTE risk. METHODS We conducted a population-based nested case-control study involving 410 VTE patients and 842 age- and sex-matched controls derived from the Norwegian Tromsø Study. Logistic regression was used to estimate odds ratios (ORs) of VTE across MASP-2 quartiles. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic variants associated with MASP-2 levels. A 2-sample Mendelian randomization study, also including data from the INVENT consortium (International Network of Venous Thrombosis), was performed to assess causality. RESULTS Subjects with plasma MASP-2 in the highest quartile had a 48% higher OR of VTE (OR, 1.48 [95% CI, 1.06-2.06]) and 83% higher OR of deep vein thrombosis (OR, 1.83 [95% CI, 1.23-2.73]) compared with those with MASP-2 levels in the lowest quartile. The protein quantitative trait loci analysis revealed that 3 previously described gene variants, rs12711521 (minor allele frequency, 0.153), rs72550870 (minor allele frequency, 0.045; missense variants in the MASP2 gene), and rs2275527 (minor allele frequency, 0.220; exon variant in the adjacent MTOR gene) explained 39% of the variation of MASP-2 plasma concentration. The OR of VTE per 1 SD increase in genetically predicted MASP-2 was 1.03 ([95% CI, 1.01-1.05] P=0.0011). CONCLUSIONS Our findings suggest that high plasma MASP-2 levels are causally associated with risk of future VTE.
Collapse
Affiliation(s)
- Christabel Esi Damoah
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Omri Snir
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Kristian Hindberg
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark (P.G.)
| | | | - Sigrid K Brækkan
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Vânia M Morelli
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Research Laboratory, Nordland Hospital, Bodø, Norway (J.K.L., T.E.M.).,Department of Immunology, Oslo University Hospital and University of Oslo, Norway (T.E.M.).,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.)
| | - John-Bjarne Hansen
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | | |
Collapse
|
30
|
Ashton JJ, Boukas K, Stafford IS, Cheng G, Haggarty R, Coelho TAF, Batra A, Afzal NA, Williams AP, Polak ME, Beattie RM, Ennis S. Deleterious Genetic Variation Across the NOD Signaling Pathway Is Associated With Reduced NFKB Signaling Transcription and Upregulation of Alternative Inflammatory Transcripts in Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:912-922. [PMID: 34978330 PMCID: PMC9165556 DOI: 10.1093/ibd/izab318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease may arise with inadequate immune response to intestinal bacteria. NOD2 is an established gene in Crohn's disease pathogenesis, with deleterious variation associated with reduced NFKB signaling. We hypothesized that deleterious variation across the NOD2 signaling pathway impacts on transcription. METHODS Treatment-naïve pediatric inflammatory bowel disease patients had ileal biopsies for targeted autoimmune RNA-sequencing and blood for whole exome sequencing collected at diagnostic endoscopy. Utilizing GenePy, a per-individual, per-gene score, genes within the NOD signaling pathway were assigned a quantitative score representing total variant burden. Where multiple genes formed complexes, GenePy scores were summed to create a "complex" score. Normalized transcript expression of 95 genes within this pathway was retrieved. Regression analysis was performed to determine the impact of genomic variation on gene transcription. RESULTS Thirty-nine patients were included. Limited clustering of patients based on NOD signaling transcripts was related to underlying genomic variation. Patients harboring deleterious variation in NOD2 had reduced NOD2 (β = -0.702, P = 4.3 × 10-5) and increased NFKBIA (β = 0.486, P = .001), reflecting reduced NFKB signal activation. Deleterious variation in the NOD2-RIPK2 complex was associated with increased NLRP3 (β = 0.8, P = 3.1475 × 10-8) and TXN (β = -0.417, P = 8.4 × 10-5) transcription, components of the NLRP3 inflammasome. Deleterious variation in the TAK1-TAB complex resulted in reduced MAPK14 transcription (β = -0.677, P = 1.7 × 10-5), a key signal transduction protein in the NOD2 signaling cascade and increased IFNA1 (β = 0.479, P = .001), indicating reduced transcription of NFKB activators and alternative interferon transcription in these patients. CONCLUSIONS Data integration identified perturbation of NOD2 signaling transcription correlated with genomic variation. A hypoimmune NFKB signaling transcription response was observed. Alternative inflammatory pathways were activated and may represent therapeutic targets in specific patients.
Collapse
Affiliation(s)
- James J Ashton
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, United Kingdom
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, United Kingdom
| | - Konstantinos Boukas
- Wessex Investigational Sciences Hub laboratory (WISH lab), University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Imogen S Stafford
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdomand
| | - Guo Cheng
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdomand
| | - Rachel Haggarty
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdomand
| | - Tracy A F Coelho
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, United Kingdom
| | - Akshay Batra
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, United Kingdom
| | - Nadeem A Afzal
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, United Kingdom
| | - Anthony P Williams
- Wessex Investigational Sciences Hub laboratory (WISH lab), University of Southampton, Faculty of Medicine, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - R Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, United Kingdom
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
31
|
Schiabor Barrett KM, Masnick M, Hatchell KE, Savatt JM, Banet N, Buchanan A, Willard HF. Clinical validation of genomic functional screen data: analysis of observed BRCA1 variants in an unselected population cohort. HGG ADVANCES 2022; 3:100086. [PMID: 35128484 PMCID: PMC8804171 DOI: 10.1016/j.xhgg.2022.100086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Functional assessment of genomic variants provides a promising approach to systematically examine the potential pathogenicity of variants independent of associated clinical data. However, making such conclusions requires validation with appropriate clinical findings. To this end, here, we use variant calls from exome data and BRCA1-related cancer diagnoses from electronic health records to demonstrate an association between published laboratory-based functional designations of BRCA1 variants and BRCA1-related cancer diagnoses in an unselected cohort of patient-participants. These findings validate and support further exploration of functional assay data to better understand the pathogenicity of rare variants. This information may be valuable in the context of healthy population genomic screening, where many rare, potentially pathogenic variants may not have sufficient associated clinical data to inform their interpretation directly.
Collapse
|
32
|
Integrated Genomic Analysis Identifies ANKRD36 Gene as a Novel and Common Biomarker of Disease Progression in Chronic Myeloid Leukemia. BIOLOGY 2021; 10:biology10111182. [PMID: 34827175 PMCID: PMC8615070 DOI: 10.3390/biology10111182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Chronic myeloid leukemia is a type of blood cancer that is regarded as a success story in determining the exact biological origin, pathogenesis and development of a molecularly targeted (mutation-specific) therapy that has led to successful treatment of this fatal cancer. It is caused by the BCR-ABL fusion gene, which is formed from the translocation between chromosomes 9 and 22. Anti-BCR-ABL drugs, known as tyrosine kinase inhibitors (TKIs), have led to long-term remissions in more than 80% of CML patients and even cure in about one-third of patients. Nevertheless, many patients face drug resistance, and disease progression occurs in about 30% of CML patients, leading to morbidities and mortality. Unfortunately, no biomarkers of CML progression are available due to a poor understanding of the mechanism of progression. Therefore, finding reliable molecular biomarkers of CML progression is one of the most attractive research areas in 21st-century cancer research. In this study, we report novel genomic variants exclusively found in all our advanced-phase CML patients. This study will help in identifying CML patients at risk of disease progression and timely therapeutic interventions to avoid or at least delay fatal disease progression in this cancer. Abstract Background: Chronic myeloid leukemia (CML) is initiated in bone marrow due to chromosomal translocation t(9;22) leading to fusion oncogene BCR-ABL. Targeting BCR-ABL by tyrosine kinase inhibitors (TKIs) has changed fatal CML into an almost curable disease. Despite that, TKIs lose their effectiveness due to disease progression. Unfortunately, the mechanism of CML progression is poorly understood and common biomarkers for CML progression are unavailable. This study was conducted to find novel biomarkers of CML progression by employing whole-exome sequencing (WES). Materials and Methods: WES of accelerated phase (AP) and blast crisis (BC) CML patients was carried out, with chronic-phase CML (CP-CML) patients as control. After DNA library preparation and exome enrichment, clustering and sequencing were carried out using Illumina platforms. Statistical analysis was carried out using SAS/STAT software version 9.4, and R package was employed to find mutations shared exclusively by all AP-/BC-CML patients. Confirmation of mutations was carried out using Sanger sequencing and protein structure modeling using I-TASSER followed by mutant generation and visualization using PyMOL. Results: Three novel genes (ANKRD36, ANKRD36B and PRSS3) were mutated exclusively in all AP-/BC-CML patients. Only ANKRD36 gene mutations (c.1183_1184 delGC and c.1187_1185 dupTT) were confirmed by Sanger sequencing. Protein modeling studies showed that mutations induce structural changes in ANKRD36 protein. Conclusions: Our studies show that ANKRD36 is a potential common biomarker and drug target of early CML progression. ANKRD36 is yet uncharacterized in humans. It has the highest expression in bone marrow, specifically myeloid cells. We recommend carrying out further studies to explore the role of ANKRD36 in the biology and progression of CML.
Collapse
|
33
|
Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation. Sci Rep 2021; 11:21125. [PMID: 34702931 PMCID: PMC8548440 DOI: 10.1038/s41598-021-00576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Human populations are genetically affected by their demographic history, which shapes the distribution of their functional genomic variation. However, the genetic impact of recent demography is debated. This issue has been studied in different populations, but never in North Africans, despite their relevant cultural and demographic diversity. In this study we address the question by analyzing new whole-exome sequences from two culturally different Tunisian populations, an isolated Amazigh population and a close non-isolated Arab-speaking population, focusing on the distribution of functional variation. Both populations present clear differences in their variant frequency distribution, in general and for putatively damaging variation. This suggests a relevant effect in the Amazigh population of genetic isolation, drift, and inbreeding, pointing to relaxed purifying selection. We also discover the enrichment in Imazighen of variation associated to specific diseases or phenotypic traits, but the scarce genetic and biomedical data in the region limits further interpretation. Our results show the genomic impact of recent demography and reveal a clear genetic differentiation probably related to culture. These findings highlight the importance of considering cultural and demographic heterogeneity within North Africa when defining population groups, and the need for more data to improve knowledge on the region's health and disease landscape.
Collapse
|
34
|
Elevated plasma concentration of complement factor C5 is associated with risk of future venous thromboembolism. Blood 2021; 138:2129-2137. [PMID: 34339498 DOI: 10.1182/blood.2021010822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
The role of complement in the pathogenesis of venous thromboembolism (VTE) is unclear. We aimed to (i) investigate whether plasma complement component C5 levels are influenced by genetic variants or chronic inflammation, and (ii) investigate the association between plasma C5 and risk of future VTE in a nested case-control study with 415 VTE patients and 848 age- and sex-matched controls derived from the Tromsø study. Plasma C5 levels were measured at inclusion. Odds ratios (ORs) with 95% confidence intervals (95% CI) for provoked and unprovoked VTE across tertiles of C5 concentrations were estimated using logistic regression. C-reactive protein (CRP) was adjusted for as a proxy for general inflammation. Whole exome sequencing and protein quantitative trait loci analyses were performed to assess genetic influence on C5 concentrations. There was no association between genome-wide or C5-related gene variants and C5 levels. The association between plasma C5 levels and VTE risk displayed a threshold effect, where subjects with C5 levels above the lowest tertile had increased VTE risk. Subjects in tertile 3 (highest C5 levels) had an age and sex-adjusted OR of 1.45 (95% CI 1.07-1.96) compared to tertile 1 (lowest). This was more pronounced for unprovoked VTE (OR 1.70, 95% CI 1.11-2.60). Adjustments for body mass index and CRP had minor impact on risk estimates. The ORs increased substantially with shorter time between blood sampling and VTE event. In conclusion, plasma C5 was associated with risk of future VTE. C5 levels were not genetically regulated and only slightly influenced by chronic inflammation.
Collapse
|
35
|
Sun Y, Liu F, Fan C, Wang Y, Song L, Fang Z, Han R, Wang Z, Wang X, Yang Z, Xu Z, Peng J, Shi C, Zhang H, Dong W, Huang H, Li Y, Le Y, Sun J, Peng Z. Characterizing sensitivity and coverage of clinical WGS as a diagnostic test for genetic disorders. BMC Med Genomics 2021; 14:102. [PMID: 33849535 PMCID: PMC8045368 DOI: 10.1186/s12920-021-00948-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Due to its reduced cost and incomparable advantages, WGS is likely to lead to changes in clinical diagnosis of rare and undiagnosed diseases. However, the sensitivity and breadth of coverage of clinical WGS as a diagnostic test for genetic disorders has not been fully evaluated. METHODS Here, the performance of WGS in NA12878, the YH cell line, and the Chinese trios were measured by assessing their sensitivity, PPV, depth and breadth of coverage using MGISEQ-2000. We also compared the performance of WES and WGS using NA12878. The sensitivity and PPV were tested using the family-based trio design for the Chinese trios. We further developed a systematic WGS pipeline for the analysis of 8 clinical cases. RESULTS In general, the sensitivity and PPV for SNV/indel detection increased with mean depth and reached a plateau at an ~ 40X mean depth using down-sampling samples of NA12878. With a mean depth of 40X, the sensitivity of homozygous and heterozygous SNPs of NA12878 was > 99.25% and > 99.50%, respectively, and the PPV was 99.97% and 98.96%. Homozygous and heterozygous indels showed lower sensitivity and PPV. The sensitivity and PPV were still not 100% even with a mean depth of ~ 150X. We also observed a substantial variation in the sensitivity of CNV detection across different tools, especially in CNVs with a size less than 1 kb. In general, the breadth of coverage for disease-associated genes and CNVs increased with mean depth. The sensitivity and coverage of WGS (~ 40X) was better than WES (~ 120X). Among the Chinese trios with an ~ 40X mean depth, the sensitivity among offspring was > 99.48% and > 96.36% for SNP and indel detection, and the PPVs were 99.86% and 97.93%. All 12 previously validated variants in the 8 clinical cases were successfully detected using our WGS pipeline. CONCLUSIONS The current standard of a mean depth of 40X may be sufficient for SNV/indel detection and identification of most CNVs. It would be advisable for clinical scientists to determine the range of sensitivity and PPV for different classes of variants for a particular WGS pipeline, which would be useful when interpreting and delivering clinical reports.
Collapse
Affiliation(s)
- Yan Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Fengxia Liu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Chunna Fan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Yaoshen Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Lijie Song
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhonghai Fang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Rui Han
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhonghua Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Xiaodan Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Ziying Yang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Zhenpeng Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiguang Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chaonan Shi
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | | | - Wei Dong
- BGI-Beijing Clinical Laboratories, BGI-Shenzhen, Beijing, 101300, China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanqun Le
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China.
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China.
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
36
|
Quinodoz M, Peter VG, Bedoni N, Royer Bertrand B, Cisarova K, Salmaninejad A, Sepahi N, Rodrigues R, Piran M, Mojarrad M, Pasdar A, Ghanbari Asad A, Sousa AB, Coutinho Santos L, Superti-Furga A, Rivolta C. AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data. Nat Commun 2021; 12:518. [PMID: 33483490 PMCID: PMC7822856 DOI: 10.1038/s41467-020-20584-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Homozygosity mapping is a powerful method for identifying mutations in patients with recessive conditions, especially in consanguineous families or isolated populations. Historically, it has been used in conjunction with genotypes from highly polymorphic markers, such as DNA microsatellites or common SNPs. Traditional software performs rather poorly with data from Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS), which are now extensively used in medical genetics. We develop AutoMap, a tool that is both web-based or downloadable, to allow performing homozygosity mapping directly on VCF (Variant Call Format) calls from WES or WGS projects. Following a training step on WES data from 26 consanguineous families and a validation procedure on a matched cohort, our method shows higher overall performances when compared with eight existing tools. Most importantly, when tested on real cases with negative molecular diagnosis from an internal set, AutoMap detects three gene-disease and multiple variant-disease associations that were previously unrecognized, projecting clear benefits for both molecular diagnosis and research activities in medical genetics. Homozygosity mapping is a useful tool for identifying candidate mutations in recessive conditions, however application to next generation sequencing data has been sub-optimal. Here, the authors present AutoMap, which efficiently identifies runs of homozygosity in whole exome/genome sequencing data.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Institute of Experimental Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nicola Bedoni
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Béryl Royer Bertrand
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katarina Cisarova
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Sepahi
- Noncommunicable Diseases Research Center, Fasa University of Sciences, Fasa, Iran
| | - Raquel Rodrigues
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal
| | - Mehran Piran
- Noncommunicable Diseases Research Center, Fasa University of Sciences, Fasa, Iran.,Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| | - Ali Ghanbari Asad
- Noncommunicable Diseases Research Center, Fasa University of Sciences, Fasa, Iran
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Center (CAML), Lisbon, Portugal.,Medical Faculty, Lisbon University, Lisbon, Portugal
| | | | - Andrea Superti-Furga
- Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland. .,Department of Ophthalmology, University of Basel, Basel, Switzerland. .,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
37
|
Weeks AL, Francis RW, Neri JICF, Costa NMC, Arrais NMR, Lassmann T, Blackwell JM, Jeronimo SMB. Reference exome data for a Northern Brazilian population. Sci Data 2020; 7:360. [PMID: 33087711 PMCID: PMC7578642 DOI: 10.1038/s41597-020-00703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Exome sequencing is widely used in the diagnosis of rare genetic diseases and provides useful variant data for analysis of complex diseases. There is not always adequate population-specific reference data to assist in assigning a diagnostic variant to a specific clinical condition. Here we provide a catalogue of variants called after sequencing the exomes of 45 babies from Rio Grande do Nord in Brazil. Sequence data were processed using an 'intersect-then-combine' (ITC) approach, using GATK and SAMtools to call variants. A total of 612,761 variants were identified in at least one individual in this Brazilian Cohort, including 559,448 single nucleotide variants (SNVs) and 53,313 insertion/deletions. Of these, 58,111 overlapped with nonsynonymous (nsSNVs) or splice site (ssSNVs) SNVs in dbNSFP. As an aid to clinical diagnosis of rare diseases, we used the American College of Medicine Genetics and Genomics (ACMG) guidelines to assign pathogenic/likely pathogenic status to 185 (0.32%) of the 58,111 nsSNVs and ssSNVs. Our data set provides a useful reference point for diagnosis of rare diseases in Brazil. (169 words).
Collapse
Affiliation(s)
- Alexia L Weeks
- Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, Western Australia, Perth, Australia
| | - Richard W Francis
- Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, Western Australia, Perth, Australia
| | - Joao I C F Neri
- Institute of Tropical Medicine of Rio Grande do Norte and Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio de Grande do Norte, Natal, Brazil
| | - Nathaly M C Costa
- Institute of Tropical Medicine of Rio Grande do Norte and Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio de Grande do Norte, Natal, Brazil
| | - Nivea M R Arrais
- Department of Pediatrics, Federal University of Rio Grande do Norte and Empresa Brasileira de Serviços Hospitalares, Natal, Brazil
| | - Timo Lassmann
- Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, Western Australia, Perth, Australia
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, Western Australia, Perth, Australia.
| | - Selma M B Jeronimo
- Institute of Tropical Medicine of Rio Grande do Norte and Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio de Grande do Norte, Natal, Brazil
- National Institute of Science and Technology of Tropical Diseases, Natal, RN, Brazil
| |
Collapse
|
38
|
Sandberg A, Ling H, Gearing M, Dombroski B, Cantwell L, R'Bibo L, Levey A, Schellenberg GD, Hardy J, Wood N, Fernius J, Nyström S, Svensson S, Thor S, Hammarström P, Revesz T, Mok KY. Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiol Dis 2020; 146:105079. [PMID: 32961270 DOI: 10.1016/j.nbd.2020.105079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 11/26/2022] Open
Abstract
Microtubule Associated Protein Tau (MAPT) forms proteopathic aggregates in several diseases. The G273R tau mutation, located in the first repeat region, was found by exome sequencing in a patient who presented with dementia and parkinsonism. We herein return to pathological examination which demonstrated tau immunoreactivity in neurons and glia consistent of mixed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) features. To rationalize the pathological findings, we used molecular biophysics to characterize the mutation in more detail in vitro and in Drosophila. The G273R mutation increases the aggregation propensity of 4-repeat (4R) tau and alters the tau binding affinity towards microtubules (MTs) and F-actin. Tau aggregates in PSP and CBD are predominantly 4R tau. Our data suggest that the G273R mutation induces a shift in pool of 4R tau by lower F-actin affinity, alters the conformation of MT bound 4R tau, while increasing chaperoning of 3R tau by binding stronger to F-actin. The mutation augmented fibrillation of 4R tau initiation in vitro and in glial cells in Drosophila and showed preferential seeding of 4R tau in vitro suggestively causing a late onset 4R tauopathy reminiscent of PSP and CBD.
Collapse
Affiliation(s)
- Alexander Sandberg
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Helen Ling
- Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology and Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Beth Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea R'Bibo
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - Allan Levey
- Department of Neurology and Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - Josefin Fernius
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Samuel Svensson
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden; CBD Solutions, Stockholm, Sweden
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Per Hammarström
- Department of Physics Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK.
| | - Kin Y Mok
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China.
| |
Collapse
|
39
|
Ibrahim O, Sutherland HG, Maksemous N, Smith R, Haupt LM, Griffiths LR. Exploring Neuronal Vulnerability to Head Trauma Using a Whole Exome Approach. J Neurotrauma 2020; 37:1870-1879. [PMID: 32233732 PMCID: PMC7462038 DOI: 10.1089/neu.2019.6962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are associated with oxidative stress and a need to restore neuronal homeostasis. Mutations in ion channel genes, in particular CACNA1A, have been implicated in familial hemiplegic migraine (FHM) and in the development of concussion-related symptoms in response to trivial head trauma. The aim of this study was to explore the potential role of variants in other ion channel genes in the development of such responses. We conducted whole exome sequencing (WES) on16 individuals who developed a range of neurological and concussion-related symptoms following minor or trivial head injuries. All individuals were initially tested and shown to be negative for mutations in known FHM genes. Variants identified from the WES results were filtered to identify rare variants (minor allele frequency [MAF] <0.01) in genes related to neural processes as well as genes highly expressed in the brain using a combination of in silico prediction tools (SIFT, PolyPhen, PredictSNP, Mutation Taster, and Mutation Assessor). Rare (MAF <0.001) or novel heterozygous variants in 7 ion channel genes were identified in 37.5% (6/16) of the cases (CACNA1I, CACNA1C, ATP10A, ATP7B, KCNAB1, KCNJ10, and SLC26A4), rare variants in neurotransmitter genes were found in 2 cases (GABRG1 and GRIK1), and rare variants in 3 ubiquitin-related genes identified in 4 cases (SQSTM1, TRIM2, and HECTD1). In this study, the largest proportion of potentially pathogenic variants in individuals with severe responses to minor head trauma were identified in genes previously implicated in migraine and seizure-related autosomal recessive neurological disorders. Together with results implicating variants in the hemiplegic migraine genes, CACNA1A and ATP1A2, in severe head trauma response, our results support a role for heterozygous deleterious mutations in genes implicated in neurological dysfunction and potentially increasing the risk of poor response to trivial head trauma.
Collapse
Affiliation(s)
- Omar Ibrahim
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Neven Maksemous
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Robert Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| |
Collapse
|
40
|
Daw Elbait G, Henschel A, Tay GK, Al Safar HS. Whole Genome Sequencing of Four Representatives From the Admixed Population of the United Arab Emirates. Front Genet 2020; 11:681. [PMID: 32754195 PMCID: PMC7367215 DOI: 10.3389/fgene.2020.00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/03/2020] [Indexed: 01/21/2023] Open
Abstract
Whole genome sequences (WGS) of four nationals of the United Arab Emirates (UAE) at an average coverage of 33X have been completed and described. The selection of suitable subpopulation representatives was informed by a preceding comprehensive population structure analysis. Representatives were chosen based on their central location within the subpopulation on a principal component analysis (PCA) and the degree to which they were admixed. Novel genomic variations among the different subgroups of the UAE population are reported here. Specifically, the WGS analysis identified 4,161,067-4,798,806 variants in the four individual samples, where approximately 80% were single nucleotide polymorphisms (SNPs) and 20% were insertions or deletions (indels). An average of 2.75% was found to be novel variants according to dbSNP (build 151). This is the first report of structural variants (SV) from WGS data from UAE nationals. There were 15,677-20,339 called SVs, of which around 13.5% were novel. The four samples shared 1,399,178 variants, each with distinct variants as follows: 1,085,524 (for the individual denoted as UAE S011), 1,228,559 (UAE S012), 791,072 (UAE S013), and 906,818 (UAE S014). These results show a previously unappreciated population diversity in the region. The synergy of WGS and genotype array data was demonstrated through variant annotation of the former using 2.3 million allele frequencies for the local population derived from the latter technology platform. This novel approach of combining breadth and depth of array and WGS technologies has guided the choice of population genetic representatives and provides complementary, regionalized allele frequency annotation to new genomes comprising millions of loci.
Collapse
Affiliation(s)
- Gihan Daw Elbait
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Genetics and Molecular Biology, Collage of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Nath N, Hagenau L, Weiss S, Tzvetkova A, Jensen LR, Kaderali L, Port M, Scherthan H, Kuss AW. Ionizing Radiation Alters the Transition/Transversion Ratio in the Exome of Human Gingiva Fibroblasts. HEALTH PHYSICS 2020; 119:109-117. [PMID: 32483046 DOI: 10.1097/hp.0000000000001251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Little is known about the mutational impact of ionizing radiation (IR) exposure on a genome-wide level in mammalian tissues. Recent advancements in sequencing technology have provided powerful tools to perform exome-wide analyses of genetic variation. This also opened up new avenues for studying and characterizing global genomic IR-induced effects. However, genotypes generated by next generation sequencing (NGS) studies can contain errors, which may significantly impact the power to detect signals in common and rare variant analyses. These genotyping errors are not explicitly detected by the standard Genotype Analysis ToolKit (GATK) and Variant Quality Score Recalibration (VQSR) tool and thus remain a potential source of false-positive variants in whole exome sequencing (WES) datasets. In this context, the transition-transversion ratio (Ti/Tv) is commonly used as an additional quality check. In case of IR experiments, this is problematic when Ti/Tv itself might be influenced by IR treatment. It was the aim of this study to determine a suitable threshold for variant filters for NGS datasets from irradiated cells in order to achieve high data quality using Ti/Tv, while at the same time being able to investigate radiation-specific effects on the Ti/Tv ratio for different radiation doses. By testing a variety of filter settings and comparing the obtained results with publicly available datasets, we observe that a coverage filter setting of depth (DP) 3 and genotype quality (GQ) 20 is sufficient for high quality single nucleotide variants (SNVs) calling in an analysis combining GATK and VSQR and that Ti/Tv values are a consistent and useful indicator for data quality assessment for all tested NGS platforms. Furthermore, we report a reduction in Ti/Tv in IR-induced mutations in primary human gingiva fibroblasts (HGFs), which points to an elevated proportion of transversions among IR-induced SNVs and thus might imply that mismatch repair (MMR) plays a role in the cellular damage response to IR-induced DNA lesions.
Collapse
Affiliation(s)
| | - Lisa Hagenau
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Lars R Jensen
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Port
- Bundeswehr Institute for Radiobiology, University of Ulm, München, Germany
| | - Harry Scherthan
- Bundeswehr Institute for Radiobiology, University of Ulm, München, Germany
| | - Andreas W Kuss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
42
|
Muskens IS, de Smith AJ, Zhang C, Hansen HM, Morimoto L, Metayer C, Ma X, Walsh KM, Wiemels JL. Germline cancer predisposition variants and pediatric glioma: a population-based study in California. Neuro Oncol 2020; 22:864-874. [PMID: 31970404 PMCID: PMC7283023 DOI: 10.1093/neuonc/noaa014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pediatric astrocytoma constitutes a majority of malignant pediatric brain tumors. Previous studies that investigated pediatric cancer predisposition have primarily been conducted in tertiary referral centers and focused on cancer predisposition genes. In this study, we investigated the contribution of rare germline variants to risk of malignant pediatric astrocytoma on a population level. METHODS DNA samples were extracted from neonatal dried bloodspots from 280 pediatric astrocytoma patients (predominantly high grade) born and diagnosed in California and were subjected to whole-exome sequencing. Sequencing data were analyzed using agnostic exome-wide gene-burden testing and variant identification for putatively pathogenic variants in 175 a priori candidate cancer-predisposition genes. RESULTS We identified 33 putatively pathogenic germline variants among 31 patients (11.1%) which were located in 24 genes largely involved in DNA repair and cell cycle control. Patients with pediatric glioblastoma were most likely to harbor putatively pathogenic germline variants (14.3%, N = 9/63). Five variants were located in tumor protein 53 (TP53), of which 4 were identified among patients with glioblastoma (6.3%, N = 4/63). The next most frequently mutated gene was neurofibromatosis 1 (NF1), in which putatively pathogenic variants were identified in 4 patients with astrocytoma not otherwise specified. Gene-burden testing also revealed that putatively pathogenic variants in TP53 were significantly associated with pediatric glioblastoma on an exome-wide level (odds ratio, 32.8, P = 8.04 × 10-7). CONCLUSION A considerable fraction of pediatric glioma patients, especially those of higher grade, harbor a putatively pathogenic variant in a cancer predisposition gene. Some of these variants may be clinically actionable or may warrant genetic counseling.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, Berkeley, California
| | | | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale University, New Haven, Connecticut
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Children’s Health and Discovery Institute, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
43
|
Reference exome data for Australian Aboriginal populations to support health-based research. Sci Data 2020; 7:129. [PMID: 32350262 PMCID: PMC7190730 DOI: 10.1038/s41597-020-0463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/24/2020] [Indexed: 11/29/2022] Open
Abstract
Whole exome sequencing (WES) is a popular and successful technology which is widely used in both research and clinical settings. However, there is a paucity of reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 50 Aboriginal individuals from the Northern Territory (NT) of Australia and compare these to 72 previously published exomes from a Western Australian (WA) population of Martu origin. Sequence data for both NT and WA samples were processed using an ‘intersect-then-combine’ (ITC) approach, using GATK and SAMtools to call variants. A total of 289,829 variants were identified in at least one individual in the NT cohort and 248,374 variants in at least one individual in the WA cohort. Of these, 166,719 variants were present in both cohorts, whilst 123,110 variants were private to the NT cohort and 81,655 were private to the WA cohort. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. Measurement(s) | Aboriginal Australian • DNA • sequence feature annotation | Technology Type(s) | Whole Exome Sequencing • DNA sequencing • sequence annotation | Factor Type(s) | ancestry • sex • age | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | Northern Territory |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12040638
Collapse
|
44
|
Heo WI, Park KY, Lee MK, Bae YJ, Moon NJ, Seo SJ. Association of DOCK8, IL17RA, and KLK12 Polymorphisms with Atopic Dermatitis in Koreans. Ann Dermatol 2020; 32:197-205. [PMID: 33911738 PMCID: PMC7992614 DOI: 10.5021/ad.2020.32.3.197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
Background Early-onset and severe atopic dermatitis (AD) in patients increase the probability of the development of allergic rhinitis or asthma. Treatment and prevention strategies in infants and young children with AD are targeted toward treating the symptoms, restoring skin barrier functions, and reducing the absorption of environmental allergens in an attempt to attenuate or block the onset of asthma and food allergy. Objective Given that the initiating events in AD remain poorly understood, identifying those at risk and implementing strategies to prevent AD is necessary. Methods Whole-exome sequencing (WES) was performed in a 43 control group and a disease group with 20 AD patients without atopic march (AM) and 20 with AM. Sanger sequencing was carried out to validate found variants in cohorts. Results DOCK8, IL17RA, and KLK12 single-nucleotide polymorphisms were identified by WES as missense mutations: c.1289C>A, p.P97T (rs529208); c.1685C>A, p.P562G (rs12484684); and c.457+27>C, rs3745540, respectively. A case-control study show that total immunoglobulin E (IgE) level was significantly increased in the AA genotype of DOCK8 compared to the CA genotype in allergic patients. The rs12484684 of IL17RA increased risk of adult-onset AD (odds ratio: 1.63) compared to the control for (A) allele frequency. AD and AM Patients with the IL17RA CA genotype also had elevated IgE levels. rs3745540 of KLK12 was associated with AD in dominant model (odds ratio: 2.86). Conclusion DOCK8 (rs529208), IL17RA (rs12484684), and KLK12 (rs3745540), were identified using a new WES filtering method. the result suggests that polymorphism of DOCK8 and IL17RA might be related to increase the total IgE level.
Collapse
Affiliation(s)
- Won Il Heo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Nam Ju Moon
- Department of Ophthalmology, Chung-Ang University Hospital, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
45
|
Chen J, Glémin S, Lascoux M. From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution? Genetics 2020; 214:1005-1018. [PMID: 32015019 PMCID: PMC7153929 DOI: 10.1534/genetics.119.302869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its inception in 1973, the slightly deleterious model of molecular evolution, also known as the nearly neutral theory of molecular evolution, remains a central model to explain the main patterns of DNA polymorphism in natural populations. This is not to say that the quantitative fit to data are perfect. A recent study used polymorphism data from Drosophila melanogaster to test whether, as predicted by the nearly neutral theory, the proportion of effectively neutral mutations depends on the effective population size (Ne ). It showed that a nearly neutral model simply scaling with Ne variation across the genome could not alone explain the data, but that consideration of linked positive selection improves the fit between observations and predictions. In the present article, we extended the work in two main directions. First, we confirmed the observed pattern on a set of 59 species, including high-quality genomic data from 11 animal and plant species with different mating systems and effective population sizes, hence a priori different levels of linked selection. Second, for the 11 species with high-quality genomic data we also estimated the full distribution of fitness effects (DFE) of mutations, and not solely the DFE of deleterious mutations. Both Ne and beneficial mutations contributed to the relationship between the proportion of effectively neutral mutations and local Ne across the genome. In conclusion, the predictions of the slightly deleterious model of molecular evolution hold well for species with small Ne , but for species with large Ne , the fit is improved by incorporating linked positive selection to the model.
Collapse
Affiliation(s)
- Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Sylvain Glémin
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, F-35000 Rennes, France
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
46
|
Lim HC, Shakya SB, Harvey MG, Moyle RG, Fleischer RC, Braun MJ, Sheldon FH. Opening the door to greater phylogeographic inference in Southeast Asia: Comparative genomic study of five codistributed rainforest bird species using target capture and historical DNA. Ecol Evol 2020; 10:3222-3247. [PMID: 32273983 PMCID: PMC7141000 DOI: 10.1002/ece3.5964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Indochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: Arachnothera longirostra, Irena puella, Brachypodius atriceps, Niltava grandis, and Stachyris nigriceps. We accomplished relatively thorough sampling and data collection by sequencing ultraconserved elements (UCEs) using DNA extracted from modern and older (historical) specimens. We obtained a genome-wide set of 753-4,501 variable loci and 3,919-18,472 single nucleotide polymorphisms. The formation of major within-species lineages occurred within a similar span of time (0.5-1.5 mya). Major patterns in population genetic structure are largely consistent with the dispersal potential and habitat requirements of the study species. A population break across the Isthmus of Kra was shared only by the two hill/submontane insectivores (N. grandis and S. nigriceps). Across Sundaland, there is little structure in B. atriceps, which is a eurytopic and partially frugivorous species that often utilizes forest edges. Two other eurytopic species, A. longirostra and I. puella, possess highly divergent populations in peripheral Sunda Islands (Java and/or Palawan) and India. These species probably possess intermediate dispersal abilities that allowed them to colonize new areas, and then remained largely isolated subsequently. We also observed an east-west break in Indochina that was shared by B. atriceps and S. nigriceps, species with very different habitat requirements and dispersal potential. By analyzing high-throughput DNA data, our study provides an unprecedented comparative perspective on the process of avian population divergence across Southeast Asia, a process that is determined by geography, species characteristics, and the stochastic nature of dispersal and vicariance events.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of BiologyGeorge Mason UniversityFairfaxVirginia
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | - Subir B. Shakya
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Michael G. Harvey
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
| | - Robert C. Fleischer
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | - Michael J. Braun
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
| | - Frederick H. Sheldon
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
47
|
Serra EG, Schwerd T, Moutsianas L, Cavounidis A, Fachal L, Pandey S, Kammermeier J, Croft NM, Posovszky C, Rodrigues A, Russell RK, Barakat F, Auth MKH, Heuschkel R, Zilbauer M, Fyderek K, Braegger C, Travis SP, Satsangi J, Parkes M, Thapar N, Ferry H, Matte JC, Gilmour KC, Wedrychowicz A, Sullivan P, Moore C, Sambrook J, Ouwehand W, Roberts D, Danesh J, Baeumler TA, Fulga TA, Carrami EM, Ahmed A, Wilson R, Barrett JC, Elkadri A, Griffiths AM, Snapper SB, Shah N, Muise AM, Wilson DC, Uhlig HH, Anderson CA. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nat Commun 2020; 11:995. [PMID: 32081864 PMCID: PMC7035382 DOI: 10.1038/s41467-019-14275-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10-10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10-10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis.
Collapse
Affiliation(s)
| | - Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig Maximilians University, Munich, Germany
| | | | - Athena Cavounidis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Laura Fachal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Nicholas M Croft
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Farah Barakat
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- The Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | | | | | | | - Krzysztof Fyderek
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, UK
| | - Miles Parkes
- IBD Research Unit, Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Helen Ferry
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Julie C Matte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Andrzej Wedrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Krakow, Poland
| | - Peter Sullivan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carmel Moore
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer Sambrook
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Willem Ouwehand
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David Roberts
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant - Oxford Centre, Level 2, John Radcliffe Hospital, Oxford, UK
- Biomedical Research Centre, Oxford - Haematology Theme, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Toni A Baeumler
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Eli M Carrami
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ahmed Ahmed
- Weatherall Institute of Molecular Medicine and the Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, Surgical Innovation and Evaluation and Molecular Diagnostics Themes, University of Oxford, Oxford, UK
| | - Rachel Wilson
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Abdul Elkadri
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Anne M Griffiths
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Neil Shah
- Great Ormond Street Hospital, London, UK
| | - Aleixo M Muise
- Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Carl A Anderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
48
|
Yan MY, Ferguson B, Bimber BN. VariantQC: a visual quality control report for variant evaluation. Bioinformatics 2019; 35:5370-5371. [PMID: 31309221 DOI: 10.1093/bioinformatics/btz560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 11/12/2022] Open
Abstract
SUMMARY Large scale genomic studies produce millions of sequence variants, generating datasets far too massive for manual inspection. To ensure variant and genotype data are consistent and accurate, it is necessary to evaluate variants prior to downstream analysis using quality control (QC) reports. Variant call format (VCF) files are the standard format for representing variant data; however, generating summary statistics from these files is not always straightforward. While tools to summarize variant data exist, they generally produce simple text file tables, which still require additional processing and interpretation. VariantQC fills this gap as a user friendly, interactive visual QC report that generates and concisely summarizes statistics from VCF files. The report aggregates and summarizes variants by dataset, chromosome, sample and filter type. The VariantQC report is useful for high-level dataset summary, quality control and helps flag outliers. Furthermore, VariantQC operates on VCF files, so it can be easily integrated into many existing variant pipelines. AVAILABILITY AND IMPLEMENTATION DISCVRSeq's VariantQC tool is freely available as a Java program, with the compiled JAR and source code available from https://github.com/BimberLab/DISCVRSeq/. Documentation and example reports are available at https://bimberlab.github.io/DISCVRSeq/.
Collapse
Affiliation(s)
| | - Betsy Ferguson
- Division of Genetics, Beaverton, OR, USA.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Molecular and Medical Genetics Department, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin N Bimber
- Division of Genetics, Beaverton, OR, USA.,Division of Pathobiology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
49
|
Identification of novel FBN1 variations implicated in congenital scoliosis. J Hum Genet 2019; 65:221-230. [PMID: 31827250 PMCID: PMC6983459 DOI: 10.1038/s10038-019-0698-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Congenital scoliosis (CS) is a form of scoliosis caused by congenital vertebral malformations. Genetic predisposition has been demonstrated in CS. We previously reported that TBX6 loss-of-function causes CS in a compound heterozygous model; however, this model can explain only 10% of CS. Many monogenic and polygenic CS genes remain to be elucidated. In this study, we analyzed exome sequencing (ES) data of 615 Chinese CS from the Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) project. Cosegregation studies for 103 familial CS identified a novel heterozygous nonsense variant, c.2649G>A (p.Trp883Ter) in FBN1. The association between FBN1 and CS was then analyzed by extracting FBN1 variants from ES data of 574 sporadic CS and 828 controls; 30 novel variants were identified and prioritized for further analyses. A mutational burden test showed that the deleterious FBN1 variants were significantly enriched in CS subjects (OR = 3.9, P = 0.03 by Fisher’s exact test). One missense variant, c.2613A>C (p.Leu871Phe) was recurrent in two unrelated CS subjects, and in vitro functional experiments for the variant suggest that FBN1 may contribute to CS by upregulating the transforming growth factor beta (TGF-β) signaling. Our study expanded the phenotypic spectrum of FBN1, and provided nove insights into the genetic etiology of CS.
Collapse
|
50
|
Empirical design of a variant quality control pipeline for whole genome sequencing data using replicate discordance. Sci Rep 2019; 9:16156. [PMID: 31695094 PMCID: PMC6834861 DOI: 10.1038/s41598-019-52614-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
The success of next-generation sequencing depends on the accuracy of variant calls. Few objective protocols exist for QC following variant calling from whole genome sequencing (WGS) data. After applying QC filtering based on Genome Analysis Tool Kit (GATK) best practices, we used genotype discordance of eight samples that were sequenced twice each to evaluate the proportion of potentially inaccurate variant calls. We designed a QC pipeline involving hard filters to improve replicate genotype concordance, which indicates improved accuracy of genotype calls. Our pipeline analyzes the efficacy of each filtering step. We initially applied this strategy to well-characterized variants from the ClinVar database, and subsequently to the full WGS dataset. The genome-wide biallelic pipeline removed 82.11% of discordant and 14.89% of concordant genotypes, and improved the concordance rate from 98.53% to 99.69%. The variant-level read depth filter most improved the genome-wide biallelic concordance rate. We also adapted this pipeline for triallelic sites, given the increasing proportion of multiallelic sites as sample sizes increase. For triallelic sites containing only SNVs, the concordance rate improved from 97.68% to 99.80%. Our QC pipeline removes many potentially false positive calls that pass in GATK, and may inform future WGS studies prior to variant effect analysis.
Collapse
|