1
|
Míčková K, Jelínek V, Tomášek O, Stopková R, Stopka P, Albrecht T. Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine. Sci Rep 2024; 14:14259. [PMID: 38902251 PMCID: PMC11190206 DOI: 10.1038/s41598-024-62244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Collapse
Affiliation(s)
- Kristýna Míčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Jelínek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
2
|
Nagel M, Niestroj M, Bansal R, Fleck D, Lampert A, Stopkova R, Stopka P, Ben-Shaul Y, Spehr M. Deciphering the chemical language of inbred and wild mouse conspecific scents. eLife 2024; 12:RP90529. [PMID: 38747258 PMCID: PMC11095937 DOI: 10.7554/elife.90529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.
Collapse
Affiliation(s)
- Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Marco Niestroj
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Rohini Bansal
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen UniversityAachenGermany
- Research Training Group 2416 MultiSenses – MultiScales, RWTH Aachen UniversityAachenGermany
| | - Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen UniversityAachenGermany
- Research Training Group 2416 MultiSenses – MultiScales, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
3
|
Peng H, Wang H, Kong W, Li J, Goh WWB. Optimizing differential expression analysis for proteomics data via high-performing rules and ensemble inference. Nat Commun 2024; 15:3922. [PMID: 38724498 PMCID: PMC11082229 DOI: 10.1038/s41467-024-47899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Identification of differentially expressed proteins in a proteomics workflow typically encompasses five key steps: raw data quantification, expression matrix construction, matrix normalization, missing value imputation (MVI), and differential expression analysis. The plethora of options in each step makes it challenging to identify optimal workflows that maximize the identification of differentially expressed proteins. To identify optimal workflows and their common properties, we conduct an extensive study involving 34,576 combinatoric experiments on 24 gold standard spike-in datasets. Applying frequent pattern mining techniques to top-ranked workflows, we uncover high-performing rules that demonstrate optimality has conserved properties. Via machine learning, we confirm optimal workflows are indeed predictable, with average cross-validation F1 scores and Matthew's correlation coefficients surpassing 0.84. We introduce an ensemble inference to integrate results from individual top-performing workflows for expanding differential proteome coverage and resolve inconsistencies. Ensemble inference provides gains in pAUC (up to 4.61%) and G-mean (up to 11.14%) and facilitates effective aggregation of information across varied quantification approaches such as topN, directLFQ, MaxLFQ intensities, and spectral counts. However, further development and evaluation are needed to establish acceptable frameworks for conducting ensemble inference on multiple proteomics workflows.
Collapse
Affiliation(s)
- Hui Peng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - He Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Weijia Kong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jinyan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Wilson Wen Bin Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Center for Biomedical Informatics, Nanyang Technological University, Singapore, Singapore.
- Center of AI in Medicine, Nanyang Technological University, Singapore, Singapore.
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
4
|
Schiksnis C, Xu M, Saito MA, McIlvin M, Moran D, Bian X, John SG, Zheng Q, Yang N, Fu F, Hutchins DA. Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation. Front Microbiol 2024; 15:1323499. [PMID: 38444803 PMCID: PMC10912551 DOI: 10.3389/fmicb.2024.1323499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria Synechococcus will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study, Synechococcus isolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations in Synechococcus strains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.
Collapse
Affiliation(s)
- Cara Schiksnis
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Min Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Matthew McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Dawn Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Xiaopeng Bian
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Seth G. John
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nina Yang
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Feixue Fu
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - David A. Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Matějková T, Dodoková A, Kreisinger J, Stopka P, Stopková R. Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice. Microbiol Spectr 2024; 12:e0203723. [PMID: 38171017 PMCID: PMC10846187 DOI: 10.1128/spectrum.02037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.
Collapse
Affiliation(s)
- Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
6
|
Rao D, Füssy Z, Brisbin MM, McIlvin MR, Moran DM, Allen AE, Follows MJ, Saito MA. Flexible B 12 ecophysiology of Phaeocystis antarctica due to a fusion B 12-independent methionine synthase with widespread homologues. Proc Natl Acad Sci U S A 2024; 121:e2204075121. [PMID: 38306482 PMCID: PMC10861871 DOI: 10.1073/pnas.2204075121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.
Collapse
Affiliation(s)
- Deepa Rao
- Earth Atmospheric Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA02139
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| | - Zoltán Füssy
- Microbial and Environmental Genomics Department, J.C. Venter Institute, La Jolla, CA92037
| | | | | | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| | - Andrew E. Allen
- Microbial and Environmental Genomics Department, J.C. Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Instition of Oceanography, University of California San Diego, La Jolla, CA92037
| | - Michael J. Follows
- Earth Atmospheric Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| |
Collapse
|
7
|
Mao C, Li Q, Komijani M, Huang J, Li T. Metagenomic analysis reveals the dissemination mechanisms and risks of resistance genes in plateau lakes. iScience 2023; 26:107508. [PMID: 37664620 PMCID: PMC10470376 DOI: 10.1016/j.isci.2023.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging as environmental pollutants that can persist and disseminate in aquatic environments. Lakes, as important sources of freshwater, also serve as potential natural reservoirs of ARGs. In this study, we analyzed the distribution and potential risks of resistance genes in five typical freshwater lakes on the Yunnan-Guizhou Plateau. Our findings revealed that multidrug and MLS ARGs dominated in the studied lakes. Notably, while Lugu Lake exhibited higher abundance of ARGs, mobile genetic elements (MGEs), and metal resistance genes (MRGs), a greater resistome risk was observed in the eutrophic Xingyun Lake. The dissemination processes of ARGs and MRGs are primarily driven by microbial communities and the horizontal gene transfer via MGEs. Limnohabitans, Flavobacterium, and Acinetobacter were identified as key players in the dissemination of ARGs. Our study highlights the persistence of ARGs and provides valuable baseline data and risk assessment of ARGs in plateau freshwater lakes.
Collapse
Affiliation(s)
- Chengzhi Mao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Majid Komijani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Jie Huang
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Stopková R, Matějková T, Dodoková A, Talacko P, Zacek P, Sedlacek R, Piálek J, Stopka P. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Sci Rep 2023; 13:8573. [PMID: 37237091 DOI: 10.1038/s41598-023-35450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In most mammals and particularly in mice, chemical communication relies on the detection of ethologically relevant fitness-related cues from other individuals. In mice, urine is the primary source of these signals, so we employed proteomics and metabolomics to identify key components of chemical signalling. We show that there is a correspondence between urinary volatiles and proteins in the representation of genetic background, sex and environment in two house mouse subspecies Mus musculus musculus and M. m. domesticus. We found that environment has a strong influence upon proteomic and metabolomic variation and that volatile mixtures better represent males while females have surprisingly more sex-biased proteins. Using machine learning and combined-omics techniques, we identified mixtures of metabolites and proteins that are associated with biological features.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Pavel Talacko
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Petr Zacek
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic.
| |
Collapse
|
9
|
Otčenášková T, Macíčková E, Vondráková J, Frolíková M, Komrskova K, Stopková R, Stopka P. Proteomic analysis of the mouse sperm acrosome - towards an understanding of an organelle with diverse functionality. Eur J Cell Biol 2023; 102:151296. [PMID: 36805822 DOI: 10.1016/j.ejcb.2023.151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The acrosome located within the mammalian sperm head is essential for successful fertilization, as it enables the sperm to penetrate the extracellular layers of the oocyte and fuse with oolemma. However, the mammalian acrosomal vesicle is no longer considered to contain only hydrolytic enzymes. Using label-free nano-scale liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics, we identified a total of 885 proteins in the acrosome isolated from spermatozoa obtained from cauda epididymis of free-living house mice Mus musculus musculus contains a total of 885 proteins. Among these, 334 proteins were significantly enriched in the acrosome thus representing 27.3% of the whole proteome of the intact sperm. Importantly, we have detected a total of nine calycins while eight of them belong to the lipocalin protein family. In mice, lipocalins are involved in multi-level chemical communication between individuals including pheromone transport and odor perception. Using an indirect immunofluorescence assay, we demonstrated that lipocalin 5 (LCN5) is expressed in the mouse germ cells, and after completing spermatogenesis, it remains localized in the sperm acrosome until the last step of the extratesticular maturation, the acrosome reaction. The presence of lipocalins in the acrosome and acrosome-reacted sperm suggests their original role as chelators of organic and potentially toxic compounds resulting from ongoing spermiogenesis. Along with this evidence, detected mitochondrial (e.g., a subunit of the cytochrome c oxidase MTCO1) and proteasomal proteins (subunits of both 20 S core proteasome [PSMA2, PSMBs] and 19 S regulatory particle [PSMDs]) in acrosomes provide further evidence that acrosomes could also function as `waste baskets` after testicular sperm maturation.
Collapse
Affiliation(s)
- Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Eliška Macíčková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Jana Vondráková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Michaela Frolíková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Katerina Komrskova
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
10
|
Perioral secretions enable complex social signaling in African mole-rats (genus Fukomys). Sci Rep 2022; 12:22366. [PMID: 36572727 PMCID: PMC9792591 DOI: 10.1038/s41598-022-26351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Subterranean common mole-rats of the genus Fukomys (family Bathyergidae) live in large, cooperatively-breeding families. Odor cues have been hypothesized to play an important role in mediating social behaviors in the underground ecotope, but only little is known about the role of olfactory signaling in burrowing mammals. Here we characterize the so far neglected perioral glands of Fukomys and other African mole-rats as an important source of olfactory social information. Histology demonstrates these structures to be derived sebaceous glands that are developed regardless of sex and reproductive status. However, gland activity is higher in Fukomys males, leading to sexually dimorphic patterns of stain and clotting of the facial pelage. Behavioral assays revealed that conspecifics prefer male but not female perioral swabs over scent samples from the back fur and that male sebum causes similar attraction as anogenital scent, a known source of social information in Fukomys. Finally, we assessed volatile compounds in the perioral sebum of the giant mole-rat (Fukomys mechowii) via GCxGC-MS-based metabolomic profiling. Volatiles display pronounced sex-specific signatures but also allow to differentiate between intrasexual reproductive status groups. These different lines of evidence suggest that mole-rat perioral glands provide complex odor signals which play a crucial role in social communication.
Collapse
|
11
|
Forouzandeh A, Rutar A, Kalmady SV, Greiner R. Analyzing biomarker discovery: Estimating the reproducibility of biomarker sets. PLoS One 2022; 17:e0252697. [PMID: 35901020 PMCID: PMC9333302 DOI: 10.1371/journal.pone.0252697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Many researchers try to understand a biological condition by identifying biomarkers. This is typically done using univariate hypothesis testing over a labeled dataset, declaring a feature to be a biomarker if there is a significant statistical difference between its values for the subjects with different outcomes. However, such sets of proposed biomarkers are often not reproducible – subsequent studies often fail to identify the same sets. Indeed, there is often only a very small overlap between the biomarkers proposed in pairs of related studies that explore the same phenotypes over the same distribution of subjects. This paper first defines the Reproducibility Score for a labeled dataset as a measure (taking values between 0 and 1) of the reproducibility of the results produced by a specified fixed biomarker discovery process for a given distribution of subjects. We then provide ways to reliably estimate this score by defining algorithms that produce an over-bound and an under-bound for this score for a given dataset and biomarker discovery process, for the case of univariate hypothesis testing on dichotomous groups. We confirm that these approximations are meaningful by providing empirical results on a large number of datasets and show that these predictions match known reproducibility results. To encourage others to apply this technique to analyze their biomarker sets, we have also created a publicly available website, https://biomarker.shinyapps.io/BiomarkerReprod/, that produces these Reproducibility Score approximations for any given dataset (with continuous or discrete features and binary class labels).
Collapse
Affiliation(s)
- Amir Forouzandeh
- Department of Computing Science, University of Alberta, Edmonton, Canada
- * E-mail:
| | - Alex Rutar
- Department of Pure Math, University of Waterloo, Waterloo, ON, Canada
| | - Sunil V. Kalmady
- Department of Computing Science, University of Alberta, Edmonton, Canada
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, Canada
- Alberta Machine Intelligence Institute, Edmonton, Canada
| |
Collapse
|
12
|
Jiang QY, Lin ZL, Su ZW, Li S, Li J, Guan S, Ling Y, Zhang L. Peptide identification of hepatocyte growth-promoting factor and its function in cytoprotection and promotion of liver cell proliferation through the JAK2/STAT3/c-MYC pathway. Eur J Pharmacol 2022; 920:174832. [DOI: 10.1016/j.ejphar.2022.174832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
13
|
Mass Spectrometry-Based Proteome Profiling of Extracellular Vesicles Derived from the Cerebrospinal Fluid of Adult Rhesus Monkeys Exposed to Cocaine throughout Gestation. Biomolecules 2022; 12:biom12040510. [PMID: 35454099 PMCID: PMC9026784 DOI: 10.3390/biom12040510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cocaine use disorder has been reported to cause transgenerational effects. However, due to the lack of standardized biomarkers, the effects of cocaine use during pregnancy on postnatal development and long-term neurobiological and behavioral outcomes have not been investigated thoroughly. Therefore, in this study, we examined extracellular vesicles (EVs) in adult (~12 years old) female and male rhesus monkeys prenatally exposed to cocaine (n = 11) and controls (n = 9). EVs were isolated from the cerebrospinal fluid (CSF) and characterized for the surface expression of specific tetraspanins, concentration (particles/mL), size distribution, and cargo proteins by mass spectrometry (MS). Transmission electron microscopy following immunogold labeling for tetraspanins (CD63, CD9, and CD81) confirmed the successful isolation of EVs. Nanoparticle tracking analyses showed that the majority of the particles were <200 nm in size, suggesting an enrichment for small EVs (sEV). Interestingly, the prenatally cocaine-exposed group showed ~54% less EV concentration in CSF compared to the control group. For each group, MS analyses identified a number of proteins loaded in CSF-EVs, many of which are commonly listed in the ExoCarta database. Ingenuity pathway analysis (IPA) demonstrated the association of cargo EV proteins with canonical pathways, diseases and disorders, upstream regulators, and top enriched network. Lastly, significantly altered proteins between groups were similarly characterized by IPA, suggesting that prenatal cocaine exposure could be potentially associated with long-term neuroinflammation and risk for neurodegenerative diseases. Overall, these results indicate that CSF-EVs could potentially serve as biomarkers to assess the transgenerational adverse effects due to prenatal cocaine exposure.
Collapse
|
14
|
Yang Y, Cheng J, Wang S, Yang H. StatsPro: Systematic integration and evaluation of statistical approaches for detecting differential expression in label-free quantitative proteomics. J Proteomics 2022; 250:104386. [PMID: 34600153 DOI: 10.1016/j.jprot.2021.104386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023]
Abstract
Quantitative label-free mass spectrometry (MS) is an increasingly powerful technology for profiling thousands of proteins from complex biological samples. One of the primary goals of analyses performed on such proteomics data is to detect differentially expressed proteins (DEPs) under different experimental conditions. Many statistical methods have been developed and assessed for DEP detection in various proteomics studies. However, it remains a challenge for many proteomics scientists to choose an appropriate statistical procedure. Therefore, in this study, we organized 12 common testing algorithms and 6 P-value combination methods and further provided Cohen's d effect size for every protein and three evaluation criteria to help proteomics scientists investigate their influence on DEP detection in a systematic manner. To promote the widespread use of these methods, we developed a user-friendly web tool, StatsPro, and presented two case studies involving label-free quantitative proteomics data obtained using data-dependent acquisition and data-independent acquisition to illustrate its practicability. This tool is freely available in our GitHub repository (https://github.com/YanglabWCH/StatsPro/). SIGNIFICANCE: One of the primary goals of analyses performed on liquid chromatography-mass spectrometry (LC-MS) based proteomics data is to detect differentially expressed proteins (DEPs) under different experimental conditions. Despite of many research efforts have been proposed to detect DEPs, to date, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for proteomics scientists to choose an appropriate statistical procedure. Herein, we present a new tool, StatsPro, to enable implementation and evaluation of different statistical methods for proteomics scientists. This tool has two significant advances compared to existing software: a) It integrates up to 18 common statistical approaches (12 statistical tests and 6 P-value combination strategies) and performs Cohen's d effect size systematically for users, moreover, it provides a web-based interface and can be quite conveniently operated by users, even those with less profound computational background. b) It supports three performance evaluation criteria (e.g. number of DEPs, correlation coefficient between P-values and effect sizes, Area under the ROC curve) for users to review the final statistical results, which may guide the method selection for DEPs detection.
Collapse
Affiliation(s)
- Yin Yang
- Department of Clinical Research Management, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Yang XY, Wang GB, Le YJ, Liu WT, He QY. Quantitative Proteomics Reveals the Antitumor Effects of Sodium New Houttuyfonate on Non-small Cell Lung Cancer. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Yan Z, Zhang W, Xu P, Zheng W, Lin X, Zhou J, Chen J, He QY, Zhong J, Guo J, Cheng B, Wang T. Phosphoproteome and Biological Evidence Revealed Abnormal Calcium Homeostasis in Keloid Fibroblasts and Induction of Aberrant Platelet Aggregation. J Proteome Res 2021; 20:2521-2532. [PMID: 33710899 DOI: 10.1021/acs.jproteome.0c00984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Keloid is a benign tumor characterized by persistent inflammation, increased fibroblast proliferation, and abnormal deposition of collagen in the wound. The etiology of keloid is unclear. Here, we explored the phospho-signaling changes in human keloid fibroblasts via phosphoproteome mass spectrometry analysis. We found that comparative phosphoproteomics could statistically distinguish keloid from control fibroblasts. Differentially expressed phosphoproteins could predict the activation of known keloid-relevant upstream regulators including transforming growth factor-β1, interleukin (IL)-4, and IL-5. With multiple bioinformatics analyses, phosphorylated FLNA, TLN1, and VCL were significantly enriched in terms of calcium homeostasis and platelet aggregation. We biologically verified that keloid fibroblasts had a higher level of Ca2+ influx than the control fibroblasts upon ionomycin stimulation. Via co-cultivation analysis, we found that human keloid fibroblasts could directly promote platelet aggregation. As suggested by PhosphoPath and gene set enrichment analysis, pFLNA was centered as the top phosphoproteins associated with keloid phenotypes. We validated that pFLNA was upregulated both in keloid fibroblasts and keloid tissue section, implicating its biomarker potential. In conclusion, we reported the first phosphoproteome on keloid fibroblasts, based on which we revealed that keloid fibroblasts had aberrant calcium homeostasis and could directly induce platelet aggregation.
Collapse
Affiliation(s)
- Ziqi Yan
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wanling Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pengcheng Xu
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong 510010, P. R. China
| | - Wenting Zheng
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xinyi Lin
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian Zhou
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jianwu Chen
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong 510010, P. R. China
| | - Qing-Yu He
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jingxiang Zhong
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiahui Guo
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Biao Cheng
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong 510010, P. R. China
| | - Tong Wang
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
17
|
Kumar A, Kim S, Su Y, Sharma M, Kumar P, Singh S, Lee J, Furdui CM, Singh R, Hsu FC, Kim J, Whitlow CT, Nader MA, Deep G. Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 2021; 63:103192. [PMID: 33418508 PMCID: PMC7804975 DOI: 10.1016/j.ebiom.2020.103192] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background The United States is currently facing an opioid crisis. Novel tools to better comprehend dynamic molecular changes in the brain associated with the opioid abuse are limited. Recent studies have suggested the usefulness of plasma exosomes in better understanding CNS disorders. However, no study has ever characterized exosomes (small extracellular vesicles of endocytic origin) secreted by brain cells to understand the potential neurodegenerative effects of long-term oxycodone self-administration (SA). Methods MRI of Cynomolgus monkeys (Macaca fascicularis) was performed to assess alterations in gray matter volumes with oxycodone SA. We isolated total exosomes (TE) from the plasma of these monkeys; from TE, we pulled-out neuron-derived exosomes (NDE), astrocytes-derived exosomes (ADE), and microglia-derived exosomes (MDE) using surface biomarkers L1CAM (L1 cell adhesion molecule), GLAST (Glutamate aspartate transporter) and TMEM119 (transmembrane protein119), respectively. Findings We observed a significantly lower gray matter volume of specific lobes of the brain (frontal and parietal lobes, and right putamen) in monkeys with ∼3 years of oxycodone SA compared to controls. Higher expression of neurodegenerative biomarkers (NFL and α-synuclein) correlates well with the change in brain lobe volumes in control and oxycodone SA monkeys. We also identified a strong effect of oxycodone SA on the loading of specific miRNAs and proteins associated with neuro-cognitive disorders. Finally, exosomes subpopulation from oxycodone SA group activated NF-κB activity in THP1- cells. Interpretation These results provide evidence for the utility of brain cells-derived exosomes from plasma in better understanding and predicting the pro-inflammatory and neurodegenerative consequence of oxycodone SA. Funding NIH
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Susy Kim
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Yixin Su
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Pawan Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, United States; Proteomics and Metabolomics Shared Resource, Wake Forest Baptist Health, United States
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, United States; Proteomics and Metabolomics Shared Resource, Wake Forest Baptist Health, United States; Comprehensive Cancer Center, Wake Forest Baptist Health, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States; Comprehensive Cancer Center, Wake Forest Baptist Health, United States
| | - Fang-Chi Hsu
- Comprehensive Cancer Center, Wake Forest Baptist Health, United States; Biostatistics and Data Science, Wake Forest Baptist Health, United States
| | - Jeongchul Kim
- Radiology Informatics and Image Processing Laboratory, Wake Forest School of Medicine, United States; Department of Radiology, Section of Neuroradiology, Wake Forest School of Medicine, United States
| | - Christopher T Whitlow
- Comprehensive Cancer Center, Wake Forest Baptist Health, United States; Biostatistics and Data Science, Wake Forest Baptist Health, United States; Radiology Informatics and Image Processing Laboratory, Wake Forest School of Medicine, United States; Department of Radiology, Section of Neuroradiology, Wake Forest School of Medicine, United States; Department of Biomedical Engineering, Wake Forest School of Medicine, United States; Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, United States
| | - Michael A Nader
- Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, United States; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, NRC 546, Winston-Salem, NC 27157, United States.
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States; Comprehensive Cancer Center, Wake Forest Baptist Health, United States; Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, United States; Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
18
|
Ji ZS, Li JP, Fu CH, Luo JX, Yang H, Zhang GW, Wu W, Lin HS. Spastin interacts with collapsin response mediator protein 3 to regulate neurite growth and branching. Neural Regen Res 2021; 16:2549-2556. [PMID: 33907047 PMCID: PMC8374569 DOI: 10.4103/1673-5374.313052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cytoskeletal microtubule rearrangement and movement are crucial in the repair of spinal cord injury. Spastin plays an important role in the regulation of microtubule severing. Both spastin and collapsin response mediator proteins can regulate neurite growth and branching; however, whether spastin interacts with collapsin response mediator protein 3 (CRMP3) during this process remains unclear, as is the mechanism by which CRMP3 participates in the repair of spinal cord injury. In this study, we used a proteomics approach to identify key proteins associated with spinal cord injury repair. We then employed liquid chromatography-mass spectrometry to identify proteins that were able to interact with glutathione S-transferase-spastin. Then, co-immunoprecipitation and staining approaches were used to evaluate potential interactions between spastin and CRMP3. Finally, we co-transfected primary hippocampal neurons with CRMP3 and spastin to evaluate their role in neurite outgrowth. Mass spectrometry identified the role of CRMP3 in the spinal cord injury repair process. Liquid chromatography-mass spectrometry pulldown assays identified three CRMP3 peptides that were able to interact with spastin. CRMP3 and spastin were co-expressed in the spinal cord and were able to interact with one another in vitro and in vivo. Lastly, CRMP3 overexpression was able to enhance the ability of spastin to promote neurite growth and branching. Therefore, our results confirm that spastin and CRMP3 play roles in spinal cord injury repair by regulating neurite growth and branching. These proteins may therefore be novel targets for spinal cord injury repair. The Institutional Animal Care and Use Committee of Jinan University, China approved this study (approval No. IACUS-20181008-03) on October 8, 2018.
Collapse
Affiliation(s)
- Zhi-Sheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jian-Ping Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Chao-Hua Fu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou; Department of Orthopedics, Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong Province, China
| | - Jian-Xian Luo
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Guo-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Re-Stem Biotechnology Co., Ltd., Suzhou, Jiangsu Province; Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hong-Sheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Rajamäki ML, Sikorskaite-Gudziuniene S, Sarmah N, Varjosalo M, Valkonen JPT. Nuclear proteome of virus-infected and healthy potato leaves. BMC PLANT BIOLOGY 2020; 20:355. [PMID: 32727361 PMCID: PMC7392702 DOI: 10.1186/s12870-020-02561-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/20/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | - Sidona Sikorskaite-Gudziuniene
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Street 30, Babtai, LT-54333, Kaunas District, Lithuania
| | - Nandita Sarmah
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
20
|
Kaspi A, Ziemann M. mitch: multi-contrast pathway enrichment for multi-omics and single-cell profiling data. BMC Genomics 2020; 21:447. [PMID: 32600408 PMCID: PMC7325150 DOI: 10.1186/s12864-020-06856-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inference of biological pathway activity via gene set enrichment analysis is frequently used in the interpretation of clinical and other omics data. With the proliferation of new omics profiling approaches and ever-growing size of data sets generated, there is a lack of tools available to perform and visualise gene set enrichments in analyses involving multiple contrasts. RESULTS To address this, we developed mitch, an R package for multi-contrast gene set enrichment analysis. It uses a rank-MANOVA statistical approach to identify sets of genes that exhibit joint enrichment across multiple contrasts. Its unique visualisation features enable the exploration of enrichments in up to 20 contrasts. We demonstrate the utility of mitch with case studies spanning multi-contrast RNA expression profiling, integrative multi-omics, tool benchmarking and single-cell RNA sequencing. Using simulated data we show that mitch has similar accuracy to state of the art tools for single-contrast enrichment analysis, and superior accuracy in identifying multi-contrast enrichments. CONCLUSION mitch is a versatile tool for rapidly and accurately identifying and visualising gene set enrichments in multi-contrast omics data. Mitch is available from Bioconductor ( https://bioconductor.org/packages/mitch ).
Collapse
Affiliation(s)
- Antony Kaspi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
21
|
Huang XH, Yan X, Zhang QH, Hong P, Zhang WX, Liu YP, Xu WW, Li B, He QY. Direct targeting of HSP90 with daurisoline destabilizes β-catenin to suppress lung cancer tumorigenesis. Cancer Lett 2020; 489:66-78. [PMID: 32544514 DOI: 10.1016/j.canlet.2020.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most frequent cancer worldwide with a poor prognosis. Identification of novel cancer targets and useful therapeutic strategies without toxicity are urgently needed. In this study, we screened natural products for anticancer bioactivity in a library consisting of 429 small molecules. We demonstrated for the first time that daurisoline, a constituent of Rhizoma Menispermi, repressed lung cancer cell proliferation by inducing cell cycle arrest at the G1 phase. Furthermore, daurisoline was found not only to suppress the growth of lung tumor xenografts in animals without obvious side effects, but also to inhibit cell migration and invasion. Mechanistically, quantitative proteomics and bioinformatics analyses, Western blotting and qRT-PCR confirmed that daurisoline exerted its anticancer effects by inhibiting the expression levels of β-catenin and its downstream targets c-myc and cyclin D1. Furthermore, our data from Drug Affinity Responsive Target Stability (DARTS), isothermal titration calorimetry (ITC) and a series of functional assays demonstrated that daurisoline could target HSP90 directly and disrupt its interaction with β-catenin, therefore increasing the ubiquitin-mediated proteasomal degradation of β-catenin. This study reveals that daurisoline could be a promising therapeutic strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiao-Hui Huang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xin Yan
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qi-Hua Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Pan Hong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ya-Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Kim SM, Cho BK, Kim BJ, Lee HY, Norwitz ER, Kang MJ, Lee SM, Park CW, Jun JK, Yi EC, Park JS. The Amniotic Fluid Proteome Differs Significantly between Donor and Recipient Fetuses in Pregnancies Complicated by Twin-to-Twin Transfusion Syndrome. J Korean Med Sci 2020; 35:e73. [PMID: 32174066 PMCID: PMC7073317 DOI: 10.3346/jkms.2020.35.e73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Twin-to-twin transfusion syndrome (TTTS) is a serious complication of monochorionic twin pregnancies. It results from disproportionate blood supply to each fetus caused by abnormal vascular anastomosis within the placenta. Amniotic fluid (AF) is an indicator reflecting the various conditions of the fetus, and an imbalance in AF volume is essential for the antenatal diagnosis of TTTS by ultrasound. In this study, two different mass spectrometry quantitative approaches were performed to identify differentially expressed proteins (DEPs) within matched pairs of AF samples. METHODS We characterized the AF proteome in pooled AF samples collected from donor and recipient twin pairs (n = 5 each) with TTTS by a global proteomics profiling approach and then preformed the statistical analysis to determine the DEPs between the two groups. Next, we carried out a targeted proteomic approach (multiple reaction monitoring) with DEPs to achieve high-confident TTTS-associated AF proteins. RESULTS A total of 103 AF proteins that were significantly altered in their abundances between donor and recipient fetuses. The majority of upregulated proteins identified in the recipient twins (including carbonic anhydrase 1, fibrinogen alpha chain, aminopeptidase N, alpha-fetoprotein, fibrinogen gamma chain, and basement membrane-specific heparan sulfate proteoglycan core protein) have been associated with cardiac or dermatologic disease, which is often seen in recipient twins as a result of volume overload. In contrast, proteins significantly upregulated in AF collected from donor twins (including IgGFc-binding protein, apolipoprotein C-I, complement C1q subcomponent subunit B, apolipoprotein C-III, apolipoprotein A-II, decorin, alpha-2-macroglobulin, apolipoprotein A-I, and fibronectin) were those previously shown to be associated with inflammation, ischemic cardiovascular complications or renal disease. CONCLUSION In this study, we identified proteomic biomarkers in AF collected from donor and recipient twins in pregnancies complicated by TTTS that appear to reflect underlying functional and pathophysiological challenges faced by each of the fetuses.
Collapse
Affiliation(s)
- Sun Min Kim
- Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics & Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Byoung Kyu Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byoung Jae Kim
- Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics & Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ha Yun Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Seung Mi Lee
- Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Wook Park
- Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Kwan Jun
- Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea.
| | - Joong Shin Park
- Department of Obstetrics & Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Tran TM, Crompton PD. Decoding the complexities of human malaria through systems immunology. Immunol Rev 2019; 293:144-162. [PMID: 31680289 DOI: 10.1111/imr.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
The complexity of the Plasmodium parasite and its life cycle poses a challenge to our understanding of the host immune response against malaria. Studying human immune responses during natural and experimental Plasmodium infections can enhance our understanding of malaria-protective immunity and inform the design of disease-modifying adjunctive therapies and next-generation malaria vaccines. Systems immunology can complement conventional approaches to facilitate our understanding of the complex immune response to the highly dynamic malaria parasite. In this review, recent studies that used systems-based approaches to evaluate human immune responses during natural and experimental Plasmodium falciparum and Plasmodium vivax infections as well as during immunization with candidate malaria vaccines are summarized and related to each other. The potential for next-generation technologies to address the current limitations of systems-based studies of human malaria are discussed.
Collapse
Affiliation(s)
- Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
24
|
Refinements of LC-MS/MS Spectral Counting Statistics Improve Quantification of Low Abundance Proteins. Sci Rep 2019; 9:13653. [PMID: 31541118 PMCID: PMC6754416 DOI: 10.1038/s41598-019-49665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry-based spectral count has been a common choice of label-free proteome quantification due to the simplicity for the sample preparation and data generation. The discriminatory nature of spectral count in the MS data-dependent acquisition, however, inherently introduces the spectral count variation for low-abundance proteins in multiplicative LC-MS/MS analysis, which hampers sensitive proteome quantification. As many low-abundance proteins play important roles in cellular processes, deducing low-abundance proteins in a quantitatively reliable manner greatly expands the depth of biological insights. Here, we implemented the Moment Adjusted Imputation error model in the spectral count refinement as a post PLGEM-STN for improving sensitivity for quantitation of low-abundance proteins by reducing spectral count variability. The statistical framework, automated spectral count refinement by integrating the two statistical tools, was tested with LC-MS/MS datasets of MDA-MB468 breast cancer cells grown under normal and glucose deprivation conditions. We identified about 30% more quantifiable proteins that were found to be low-abundance proteins, which were initially filtered out by the PLGEM-STN analysis. This newly developed statistical framework provides a reliable abundance measurement of low-abundance proteins in the spectral count-based label-free proteome quantification and enabled us to detect low-abundance proteins that could be functionally important in cellular processes.
Collapse
|
25
|
Type E Botulinum Neurotoxin-Producing Clostridium butyricum Strains Are Aerotolerant during Vegetative Growth. mSystems 2019; 4:mSystems00299-18. [PMID: 31058231 PMCID: PMC6495232 DOI: 10.1128/msystems.00299-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments. Clostridium butyricum, the type species of the genus Clostridium, is considered an obligate anaerobe, yet it has been shown to grow in the presence of oxygen. C. butyricum strains atypically producing the botulinum neurotoxin type E are the leading cause of type E human botulism in Italy. Here, we show that type E botulinum neurotoxin-producing C. butyricum strains growing exponentially were able to keep growing and producing toxin in vitro upon exposure to air, although less efficiently than under ideal oxygen-depleted conditions. Bacterial growth in air was maintained when the initial cell density was higher than 103 cells/ml. No spores were detected in the cultures aerated for 5 h. To understand the biological mechanisms allowing the adaptation of vegetative cells of C. butyricum type E to oxygen, we compared the proteome and metabolome profiles of the clostridial cultures grown for 5 h under either aerated or anaerobic conditions. The results indicated that bacterial cells responded to oxygen stress by slowing growth and modulating the expression of proteins involved in carbohydrate uptake and metabolism, redox homeostasis, DNA damage response, and bacterial motility. Moreover, the ratio of acetate to butyrate was significantly higher under aeration. This study demonstrates for the first time that a botulinum neurotoxin-producing Clostridium can withstand oxygen during vegetative growth. IMPORTANCE Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments.
Collapse
|
26
|
Wang Y, Li YJ, Huang XH, Zheng CC, Yin XF, Li B, He QY. Liensinine perchlorate inhibits colorectal cancer tumorigenesis by inducing mitochondrial dysfunction and apoptosis. Food Funct 2019; 9:5536-5546. [PMID: 30207364 DOI: 10.1039/c8fo01137k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SCOPE Colorectal cancer (CRC) is one of the most common cancers worldwide with poor survival and limited therapeutic options, and there is an urgent need to develop novel therapeutic agents with good treatment efficiency and low toxicity. This study aims to examine the anticancer bioactivity of liensinine, a constituent of Nelumbo nucifera Gaertn, in CRC and investigate the action mechanisms involved. METHODS AND RESULTS Liensinine was found to induce apoptosis and exert a significant inhibitory effect on the proliferation and colony-forming ability of CRC cells in a dose-dependent manner without any observed cytotoxicity on normal colorectal epithelial cells. Mechanistically, our data from quantitative proteomics, western blot analysis and flow cytometry analyses demonstrated that exposure of CRC cells to liensinine caused cell cycle arrest, mitochondrial dysfunction and apoptosis, accompanied by the activation of the JNK signaling pathway. Furthermore, animal experiments showed that liensinine markedly suppressed the growth of CRC tumor xenografts in nude mice by reducing the Ki-67 proliferation index, but did not damage the vital organs of the animals. CONCLUSION This study demonstrated for the first time that liensinine, a food-source natural product, could be a novel therapeutic strategy for treating CRC without obvious side effects.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Pfaff F, Hägglund S, Zoli M, Blaise-Boisseau S, Laloy E, Koethe S, Zühlke D, Riedel K, Zientara S, Bakkali-Kassimi L, Valarcher JF, Höper D, Beer M, Eschbaumer M. Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus. Viruses 2019; 11:E53. [PMID: 30642035 PMCID: PMC6356718 DOI: 10.3390/v11010053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
Foot-and-mouth disease (FMD) is the most devastating disease of cloven-hoofed livestock, with a crippling economic burden in endemic areas and immense costs associated with outbreaks in free countries. Foot-and-mouth disease virus (FMDV), a picornavirus, will spread rapidly in naïve populations, reaching morbidity rates of up to 100% in cattle. Even after recovery, over 50% of cattle remain subclinically infected and infectious virus can be recovered from the nasopharynx. The pathogen and host factors that contribute to FMDV persistence are currently not understood. Using for the first time primary bovine soft palate multilayers in combination with proteogenomics, we analyzed the transcriptional responses during acute and persistent FMDV infection. During the acute phase viral RNA and protein was detectable in large quantities and in response hundreds of interferon-stimulated genes (ISG) were overexpressed, mediating antiviral activity and apoptosis. Although the number of pro-apoptotic ISGs and the extent of their regulation decreased during persistence, some ISGs with antiviral activity were still highly expressed at that stage. This indicates a long-lasting but ultimately ineffective stimulation of ISGs during FMDV persistence. Furthermore, downregulation of relevant genes suggests an interference with the extracellular matrix that may contribute to the skewed virus-host equilibrium in soft palate epithelial cells.
Collapse
Affiliation(s)
- Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Sara Hägglund
- Swedish University of Agricultural Sciences, Host-pathogen interaction group, Division of Ruminant Medicine, 75007 Uppsala, Sweden.
| | - Martina Zoli
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Sandra Blaise-Boisseau
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Eve Laloy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
- Biopôle EnvA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Daniela Zühlke
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany.
| | - Katharina Riedel
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany.
| | - Stephan Zientara
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Labib Bakkali-Kassimi
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Jean-François Valarcher
- Swedish University of Agricultural Sciences, Host-pathogen interaction group, Division of Ruminant Medicine, 75007 Uppsala, Sweden.
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| |
Collapse
|
28
|
Paternoster V, Svanborg M, Edhager AV, Rajkumar AP, Eickhardt EA, Pallesen J, Grove J, Qvist P, Fryland T, Wegener G, Nyengaard JR, Mors O, Palmfeldt J, Børglum AD, Christensen JH. Brain proteome changes in female Brd1 +/- mice unmask dendritic spine pathology and show enrichment for schizophrenia risk. Neurobiol Dis 2018; 124:479-488. [PMID: 30590179 DOI: 10.1016/j.nbd.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic and molecular studies have implicated the Bromodomain containing 1 (BRD1) gene in the pathogenesis of schizophrenia and bipolar disorder. Accordingly, mice heterozygous for a targeted deletion of Brd1 (Brd1+/- mice) show behavioral phenotypes with broad translational relevance to psychiatric disorders. BRD1 encodes a scaffold protein that affects the expression of many genes through modulation of histone acetylation. BRD1 target genes have been identified in cell lines; however the impact of reduced Brd1 levels on the brain proteome is largely unknown. In this study, we applied label-based quantitative mass spectrometry to profile the frontal cortex, hippocampus and striatum proteome and synaptosomal proteome of female Brd1+/- mice. We successfully quantified between 1537 and 2196 proteins and show widespread changes in protein abundancies and compartmentalization. By integrative analysis of human genetic data, we find that the differentially abundant proteins in frontal cortex and hippocampus are enriched for schizophrenia risk further linking the actions of BRD1 to psychiatric disorders. Affected proteins were further enriched for proteins involved in processes known to influence neuronal and dendritic spine morphology e.g. regulation of cytoskeleton dynamics and mitochondrial function. Directly prompted in these findings, we investigated dendritic spine morphology of pyramidal neurons in anterior cingulate cortex and found them significantly altered, including reduced size of small dendritic spines and decreased number of the mature mushroom type. Collectively, our study describes known as well as new mechanisms related to BRD1 dysfunction and its role in psychiatric disorders, and provides evidence for the molecular and cellular dysfunctions underlying altered neurosignalling and cognition in Brd1+/- mice.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.
| | - Maria Svanborg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Anto P Rajkumar
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Mental Health of Older Adults and Dementia Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK; Department of Old Age Psychiatry, Psychology, & Neuroscience, King's College London, Institute of Psychiatry, London, UK
| | - Esben Ahlburg Eickhardt
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Bioinformatics Research Centre, BiRC, Aarhus University, Aarhus, Denmark
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tue Fryland
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Bílková B, Świderská Z, Zita L, Laloë D, Charles M, Beneš V, Stopka P, Vinkler M. Domestic Fowl Breed Variation in Egg White Protein Expression: Application of Proteomics and Transcriptomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11854-11863. [PMID: 30296079 DOI: 10.1021/acs.jafc.8b03099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Avian egg white is essential for protecting and nourishing bird embryos during their development. Being produced in the female magnum, variability in hen oviduct gene expression may affect egg white composition in domestic chickens. Since traditional poultry breeds may represent a source of variation, in the present study we describe the egg white proteome (mass spectrometry) and corresponding magnum transcriptome (high-throughput sequencing) for 20 hens from five domestic fowl breeds (large breeds: Araucana, Czech golden pencilled, Minorca; and small breeds: Booted bantam, Rosecomb bantam). In total, we identified 189 egg white proteins and 16391 magnum-expressed genes. The majority of egg white protein content comprised proteins with an antimicrobial function. Despite general similarity, Between-class Principal Component Analysis revealed significant breed-specific variability in protein abundances, differentiating especially small and large breeds. Though we found strong association between magnum mRNA expression and egg white protein abundance across genes, coinertia analysis revealed no transcriptome/proteome costructure at the individual level. Our study is the first to show variation in protein abundances in egg white across chicken breeds with potential effects on egg quality, biosafety, and chick development. The observed interindividual variation probably results from post-transcriptional regulation creating a discrepancy between proteomic and transcriptomic data.
Collapse
Affiliation(s)
- Barbora Bílková
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
| | - Zuzana Świderská
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
- Charles University , Faculty of Science, Department of Cell Biology , Prague , Czech Republic
| | - Lukáš Zita
- Czech University of Life Sciences , Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science , Prague , Czech Republic
| | - Denis Laloë
- GABI, INRA, AgroParisTech , Université Paris-Saclay , Jouy-en-Josas , France
| | - Mathieu Charles
- GABI, INRA, AgroParisTech , Université Paris-Saclay , Jouy-en-Josas , France
| | - Vladimír Beneš
- European Molecular Biology Laboratory , Heidelberg 69117 , Germany
| | - Pavel Stopka
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
| | - Michal Vinkler
- Charles University , Faculty of Science, Department of Zoology , Prague , Czech Republic
| |
Collapse
|
30
|
Cohen NR, Gong W, Moran DM, McIlvin MR, Saito MA, Marchetti A. Transcriptomic and proteomic responses of the oceanic diatom
Pseudo‐nitzschia granii
to iron limitation. Environ Microbiol 2018; 20:3109-3126. [DOI: 10.1111/1462-2920.14386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Natalie R Cohen
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Weida Gong
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Matthew R. McIlvin
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Adrian Marchetti
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill NC 27514 USA
| |
Collapse
|
31
|
Riga D, Kramvis I, Koskinen MK, van Bokhoven P, van der Harst JE, Heistek TS, Jaap Timmerman A, van Nierop P, van der Schors RC, Pieneman AW, de Weger A, van Mourik Y, Schoffelmeer ANM, Mansvelder HD, Meredith RM, Hoogendijk WJG, Smit AB, Spijker S. Hippocampal extracellular matrix alterations contribute to cognitive impairment associated with a chronic depressive-like state in rats. Sci Transl Med 2018; 9:9/421/eaai8753. [PMID: 29263233 DOI: 10.1126/scitranslmed.aai8753] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/24/2016] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Abstract
Patients with depression often suffer from cognitive impairments that contribute to disease burden. We used social defeat-induced persistent stress (SDPS) to induce a depressive-like state in rats and then studied long-lasting memory deficits in the absence of acute stressors in these animals. The SDPS rat model showed reduced short-term object location memory and maintenance of long-term potentiation (LTP) in CA1 pyramidal neurons of the dorsal hippocampus. SDPS animals displayed increased expression of synaptic chondroitin sulfate proteoglycans in the dorsal hippocampus. These effects were abrogated by a 3-week treatment with the antidepressant imipramine starting 8 weeks after the last defeat encounter. Next, we observed an increase in the number of perineuronal nets (PNNs) surrounding parvalbumin-expressing interneurons and a decrease in the frequency of inhibitory postsynaptic currents (IPSCs) in the hippocampal CA1 region in SDPS animals. In vivo breakdown of the hippocampus CA1 extracellular matrix by the enzyme chondroitinase ABC administered intracranially restored the number of PNNs, LTP maintenance, hippocampal inhibitory tone, and memory performance on the object place recognition test. Our data reveal a causal link between increased hippocampal extracellular matrix and the cognitive deficits associated with a chronic depressive-like state in rats exposed to SDPS.
Collapse
Affiliation(s)
- Danai Riga
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ioannis Kramvis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maija K Koskinen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter van Bokhoven
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Johanneke E van der Harst
- Department of Biology, Institute of Environmental Biology, Animal Ecology group Biology, Utrecht University, Utrecht, Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A Jaap Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Roel C van der Schors
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anton W Pieneman
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anouk de Weger
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU Medical Center, Amsterdam, Netherlands
| | - Anton N M Schoffelmeer
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU Medical Center, Amsterdam, Netherlands
| | - Huib D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
32
|
Sun X, Cui Y, Wang Q, Tang S, Cao X, Luo H, He Z, Hu X, Nie X, Yang Y, Wang T. Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer Brachionus plicatilis Fed with Selenium-rich Chlorella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6699-6707. [PMID: 29874910 DOI: 10.1021/acs.jafc.8b00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organoselenium have garnered attention because of their potential to be used as ingredients in new anti-aging and antioxidation medicines and food. Rotifers are frequently used as a model organism for aging research. In this study, we used Se-enriched Chlorella (Se- Chlorella), a novel organoselenium compound, to feed Brachionus plicatilis to establish a rotifer model with a prolonged lifespan. The results showed that the antioxidative effect in Se-enriched rotifer was associated with an increase in guaiacol peroxidase (GPX) and catalase (CAT). The authors then performed the first proteogenomic analysis of rotifers to understand their possible metabolic mechanisms. With the de novo assembly of RNA-Seq reads as the reference, we mapped the proteomic output generated by iTRAQ-based mass spectrometry. We found that the differentially expressed proteins were primarily involved in antireactive oxygen species (ROS) and antilipid peroxidation (LPO), selenocompound metabolism, glycolysis, and amino acid metabolisms. Furthermore, the ROS level of rotifers was diminished after Se- Chlorella feeding, indicating that Se- Chlorella could help rotifers to enhance their amino acid metabolism and shift the energy generating metabolism from tricarboxylic acid cycle to glycolysis, which leads to reduced ROS production. This is the first report to demonstrate the anti-aging effect of Se- Chlorella on rotifers and to provide a possible mechanism for this activity. Thus, Se- Chlorella is a promising novel organoselenium compound with the potential to prolong human lifespans.
Collapse
Affiliation(s)
- Xian Sun
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Qing Wang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Shengquan Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Xin Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Hongtian Luo
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Zhili He
- School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xiaonong Hu
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Xiangping Nie
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yufeng Yang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
33
|
Bader M, Dunkel A, Wenning M, Kohler B, Medard G, Del Castillo E, Gholami A, Kuster B, Scherer S, Hofmann T. Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5621-5634. [PMID: 29787679 DOI: 10.1021/acs.jafc.8b02092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saliva flow measurements and SDS-PAGE separation of human whole saliva freshly collected after oral stimulation with citric acid (sour), aspartame (sweet), iso-α-acids (bitter), mono sodium l-glutamate (umami), NaCl (salty), 6-gingerol (pungent), hydroxy-α-sanshool (tingling), and hydroxy-β-sanshool (numbing), followed by tryptic digestion, nano-HPLC-MS/MS, and label-free protein quantitation demonstrated a stimulus- and time-dependent influence of the dietary chemosensates on salivation and the salivary proteome composition. Gene ontology enrichment analysis showed evidence for stimulus-induced alterations of the saliva proteome to boot an efficient molecular defense network of the oral cavity, e.g., 6-gingerol increased salivary lactoperoxidase activity, catalyzing the oxidation of thiocyanate to produce the antimicrobial and antifungal hypothiocyanate, from 0.37 ± 0.02 to 0.91 ± 0.05 mU/mL 45 s after stimulation. In comparison, oral citric acid stimulation induced an increase of myeloperoxidase activity, catalyzing the chloride oxidation to generate antimicrobial hypochloride in saliva, from 0.24 ± 0.04 to 0.70 ± 0.1 mU/mL as well as an increase of salivary levels of lysozyme, exhibiting antimicrobial activity on Gram-positive bacteria, from 6.0-10 to 100-150 μg/mL. Finally, microbial growth experiments clearly demonstrated for the first time that the increase of the salivary lysozyme abundance upon oral citric acid stimulation translates into an enhanced biological function, that is an almost complete growth inhibition of the two lysozyme-sensitive Gram-positive bacteria tested.
Collapse
Affiliation(s)
- Matthias Bader
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany
| | - Andreas Dunkel
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany
| | - Mareike Wenning
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
| | - Bernd Kohler
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
| | - Guillaume Medard
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Estela Del Castillo
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Amin Gholami
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics , Technische Universität München , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Siegfried Scherer
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
- Chair of Microbial Ecology, Department of Biosciences, WZW , Technische Universität München , 85354 Freising , Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner Straße 34 , D-85354 Freising , Germany
- ZIEL Institute for Food and Health , Technische Universität München , D-85350 Freising , Germany
- Leibniz-Institute for Food Systems Biology , Technical University of Munich , Lise-Meitner Straße 34 , D-85354 Freising , Germany
| |
Collapse
|
34
|
Lee J, McKinney KQ, Pavlopoulos AJ, Niu M, Kang JW, Oh JW, Kim KP, Hwang S. Altered Proteome of Extracellular Vesicles Derived from Bladder Cancer Patients Urine. Mol Cells 2018; 41:179-187. [PMID: 29562735 PMCID: PMC5881091 DOI: 10.14348/molcells.2018.2110] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022] Open
Abstract
Proteomic analysis of extracellular vesicles (EVs) from biological fluid is a powerful approach to discover potential biomarkers for human diseases including cancers, as EV secreted to biological fluids are originated from the affected tissue. In order to investigate significant molecules related to the pathogenesis of bladder cancer, EVs were isolated from patient urine which was analyzed by mass spectrometry based proteomics. Comparison of the EV proteome to the whole urine proteome demonstrated an increased number of protein identification in EV. Comparative MS analyses of urinary EV from control subjects and bladder cancer patients identified a total of 1,222 proteins. Statistical analyses provided 56 proteins significantly increased in bladder cancer urine, including proteins for which expression levels varied by cancer stage (P-value < 0.05). While urine represents a valuable, noninvasive specimen for biomarker discovery in urologic cancers, there is a high degree of intra- and inter-individual variability in urine samples. The enrichment of urinary EV demonstrated its capability and applicability of providing a focused identification of biologically relevant proteins in urological diseases.
Collapse
Affiliation(s)
- Jingyun Lee
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203,
United States
| | - Kimberly Q. McKinney
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203,
United States
| | - Antonis J. Pavlopoulos
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203,
United States
| | - Meng Niu
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203,
United States
| | - Jung Won Kang
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Jae Won Oh
- Department of Applied Chemistry, The Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104,
Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, The Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104,
Korea
| | - Sunil Hwang
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203,
United States
| |
Collapse
|
35
|
Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, Zhang G, Wang T, He QY. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 2018; 7:67387-67402. [PMID: 27602764 PMCID: PMC5341883 DOI: 10.18632/oncotarget.11794] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.
Collapse
Affiliation(s)
- Zhipeng Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanlong Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Kuntová B, Stopková R, Stopka P. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse. Front Genet 2018; 9:26. [PMID: 29459883 PMCID: PMC5807349 DOI: 10.3389/fgene.2018.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE), and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO). Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs) are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14) and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.
Collapse
Affiliation(s)
- Barbora Kuntová
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Stopková
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Pavel Stopka
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
37
|
Zheng WB, Li YJ, Wang Y, Yang J, Zheng CC, Huang XH, Li B, He QY. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction. Am J Cancer Res 2017; 7:2245-2256. [PMID: 29218248 PMCID: PMC5714753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor survival and limited therapeutic options. The aim of this study is to identify novel anticancer strategies from existing Food and Drug Administration (FDA)-approved drugs that have been used to clinically treat other diseases. Here, propafenone, an antiarrhythmic medication, was found to induce apoptosis and exert a significantly inhibitory effect on the proliferation and colony-forming ability of ESCC cells in a dose-dependent manner without observed cytotoxicity on normal esophageal epithelial cells. Furthermore, propafenone markedly suppressed growth of tumor xenografts in nude mice by reducing the Ki-67 proliferation index and angiogenesis but did not damage the vital organs of the animals. Mechanistically, our data from the proteomics, Western blot and flow cytometry analyses demonstrated that propafenone caused mitochondrial dysfunction as indicated by a decreased mitochondrial membrane potential and reduced expression of Bcl-xL and Bcl-2. In summary, this study provides the first evidence that propafenone, an FDA-approved drug to treat arrhythmias, could be a novel therapeutic strategy for treating ESCC without obvious side effects.
Collapse
Affiliation(s)
- Wei-Bin Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Yang-Jia Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Jie Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Xiao-Hui Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| |
Collapse
|
38
|
Zhang W, Chen X, Yan Z, Chen Y, Cui Y, Chen B, Huang C, Zhang W, Yin X, He QY, He F, Wang T. Detergent-Insoluble Proteome Analysis Revealed Aberrantly Aggregated Proteins in Human Preeclampsia Placentas. J Proteome Res 2017; 16:4468-4480. [PMID: 28965414 DOI: 10.1021/acs.jproteome.7b00352] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preeclampsia (PE) is a placenta disease, featured by hypertension, proteinuria, and other multiorgan dysfunctions, and its etiology is unclear. We and others have shown that intensive endoplasmic reticulum (ER) stress and unfolded protein response (UPR) occur in the PE placenta. In this study, we isolated detergent-insoluble proteins (DIPs) from human placenta tissues, which were enriched with protein aggregates, to characterize the placenta UPR in PE. With data-independent acquisition (DIA) mass spectrometry, we identified 2066 DIPs across all normal (n = 10) and PE (n = 10) placenta samples, among which 110 and 108 DIPs were significantly up- and down-regulated in PE, respectively. Per clustering analysis, differential DIPs could generally distinguish PE from normal placentas. We verified the MS quantitation of endoglin and vimentin by immunoblotting. In addition, we observed that PE placenta tissues have remarkably more endoglin in the cytoplasm. Furthermore, we found that DIPs were evenly distributed across different chromosomes and could be enriched in diversified gene ontology terms, while differential DIPs avoided to distribute on X-chromosome. Significantly up-regulated DIPs in PE were focused on the top functions of lipid metabolism, while 23 of these DIPs could form the top network regulating cellular movement, development, growth, and proliferation. Our results implicate that human PE placentas have disease-relevant differential DIPs, which reflect aberrantly aggregated proteins of placental tissues. The mass spectrometry proteomics data have been deposited to ProteomeXchange consortium with the data set identifier PXD006654, and iProX database (accession number: IPX0000948000).
Collapse
Affiliation(s)
- Wanling Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Xing Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Ziqi Yan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | | | | | | | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | | | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| |
Collapse
|
39
|
Qendro V, Bugos GA, Lundgren DH, Glynn J, Han MH, Han DK. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis. Proteomics 2017; 17. [PMID: 28191734 DOI: 10.1002/pmic.201600322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/28/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases.
Collapse
Affiliation(s)
- Veneta Qendro
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Grace A Bugos
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Debbie H Lundgren
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - John Glynn
- Molecular Core Facility, University of Connecticut School of Medicine, Farmington, CT, USA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Han
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
40
|
Eubanks CG, Dayebgadoh G, Liu X, Washburn MP. Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics 2017; 14:905-915. [PMID: 28895440 DOI: 10.1080/14789450.2017.1374860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chromatin remodeling complexes play important roles in the control of genome regulation in both normal and diseased states, and are therefore critical components for the regulation of epigenetic states in cells. Given the role epigenetics plays in cancer, for example, chromatin remodeling complexes are routinely targeted for therapeutic intervention. Areas covered: Protein mass spectrometry and proteomics are powerful technologies used to study and understand chromatin remodeling. While impressive progress has been made in this area, there remain significant challenges in the application of proteomic technologies to the study of chromatin remodeling. As parts of large multi-subunit complexes that can be heavily modified with dynamic post-translational modifications, challenges in the study of chromatin remodeling complexes include defining the content, determining the regulation, and studying the dynamics of the complexes under different cellular states. Expert commentary: Impwortant considerations in the study of chromatin remodeling complexes include the complexity of sample preparation, the choice of proteomic methods for the analysis of samples, and data analysis challenges. Continued research in these three areas promise to yield even greater insights into the biology of chromatin remodeling and epigenetics and the dynamics of these systems in human health and cancer.
Collapse
Affiliation(s)
| | | | - Xingyu Liu
- a Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Michael P Washburn
- a Stowers Institute for Medical Research , Kansas City , MO , USA.,b Departments of Pathology & Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
41
|
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep 2017; 7:11674. [PMID: 28916783 PMCID: PMC5601457 DOI: 10.1038/s41598-017-12021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states. Here we show that the mouse vaginal discharge contains lipocalins including those from the odorant binding (OBP) and major urinary (MUP) protein families. OBPs were highly expressed but only slightly varied throughout the cycle, whilst several MUPs were differentially abundant. MUP20 or 'darcin', was thought to be expressed only by males. However, in females it was significantly up-regulated during estrus similarly as the recently duplicated central/group-B MUPs (sMUP17 and highly expressed sMUP9), which in the mouse urine are male biased. MUPs rise between proestrus and estrus, remain steady throughout metestrus, and are co-expressed with antimicrobial proteins. Thus, we suggest that MUPs and potentially also OBPs are important components of female vaginal advertising of the house mouse.
Collapse
Affiliation(s)
- Martina Černá
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Barbora Kuntová
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Talacko
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Romana Stopková
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic.
| |
Collapse
|
42
|
Stopkova R, Klempt P, Kuntova B, Stopka P. On the tear proteome of the house mouse ( Mus musculus musculus) in relation to chemical signalling. PeerJ 2017; 5:e3541. [PMID: 28698824 PMCID: PMC5502090 DOI: 10.7717/peerj.3541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Mammalian tears are produced by lacrimal glands to protect eyes and may function in chemical communication and immunity. Recent studies on the house mouse chemical signalling revealed that major urinary proteins (MUPs) are not individually unique in Mus musculus musculus. This fact stimulated us to look for other sexually dimorphic proteins that may—in combination with MUPs—contribute to a pool of chemical signals in tears. MUPs and other lipocalins including odorant binding proteins (OBPs) have the capacity to selectively transport volatile organic compounds (VOCs) in their eight-stranded beta barrel, thus we have generated the tear proteome of the house mouse to detect a wider pool of proteins that may be involved in chemical signalling. We have detected significant male-biased (7.8%) and female-biased (7%) proteins in tears. Those proteins that showed the most elevated sexual dimorphisms were highly expressed and belong to MUP, OBP, ESP (i.e., exocrine gland-secreted peptides), and SCGB/ABP (i.e., secretoglobin) families. Thus, tears may have the potential to elicit sex-specific signals in combination by different proteins. Some tear lipocalins are not sexually dimorphic—with MUP20/darcin and OBP6 being good examples—and because all proteins may flow with tears through nasolacrimal ducts to nasal and oral cavities we suggest that their roles are wider than originally thought. Also, we have also detected several sexually dimorphic bactericidal proteins, thus further supporting an idea that males and females may have adopted alternative strategies in controlling microbiota thus yielding different VOC profiles.
Collapse
Affiliation(s)
- Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Klempt
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Kuntova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
43
|
Qendro V, Lundgren DH, Palczewski S, Hegde P, Stevenson C, Perpetua L, Latifi A, Merriman J, Bugos G, Han DK. Discovery of putative breast cancer antigens using an integrative platform of genomics-driven immunoproteomics. Proteomics 2017; 17. [PMID: 28665052 DOI: 10.1002/pmic.201600318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/20/2017] [Accepted: 06/12/2017] [Indexed: 01/08/2023]
Abstract
Recent advances in cancer immuno-therapeutics such as checkpoint inhibitors, chimeric antigen-receptor T cells, and tumor infiltrating T cells (TIL) are now significantly impacting cancer patients in a positive manner. Although very promising, reports indicate no more than 25% of cases result in complete remission. One of the limitations of these treatments is the identity of putative cancer antigens in each patient, as it is technically challenging to identify cancer antigens in a rapid fashion. Thus, identification of cancer antigens followed by targeted treatment will increase the efficacy of cancer immunotherapies. To achieve this goal, a combined technologies platform of deep genomic sequencing and personalized immune assessment was devised, termed Genomics Driven Immunoproteomics (GDI). Using this technological platform, we report the discovery of 149 tumor antigens from human breast cancer patients. Significant number of these putative cancer antigens arise from single nucleotide variants (SNVs), as well as insertions and deletions that results into frame-shift mutations. We propose a general model of anti-cancer immunity and suggest that the GDI platform may help identify patient-specific tumor antigens in a timely fashion for precision immunotherapies.
Collapse
Affiliation(s)
- Veneta Qendro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Deborah H Lundgren
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Samuel Palczewski
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Poornima Hegde
- Department of Anatomic Pathology and Laboratory Medicine, University Connecticut Health Center, Farmington, CT, USA
| | | | - Laurie Perpetua
- Department of Anatomic Pathology and Laboratory Medicine, University Connecticut Health Center, Farmington, CT, USA
| | - Ardian Latifi
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Jesse Merriman
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Grace Bugos
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - David K Han
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
44
|
Balcke GU, Bennewitz S, Bergau N, Athmer B, Henning A, Majovsky P, Jiménez-Gómez JM, Hoehenwarter W, Tissier A. Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites. THE PLANT CELL 2017; 29:960-983. [PMID: 28408661 PMCID: PMC5466034 DOI: 10.1105/tpc.17.00060] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2 Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity.
Collapse
Affiliation(s)
- Gerd U Balcke
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, D-06120 Halle (Saale), Germany
| | - Stefan Bennewitz
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, D-06120 Halle (Saale), Germany
| | - Nick Bergau
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, D-06120 Halle (Saale), Germany
| | - Benedikt Athmer
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, D-06120 Halle (Saale), Germany
| | - Anja Henning
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, D-06120 Halle (Saale), Germany
| | - Petra Majovsky
- Leibniz Institute of Plant Biochemistry, Proteome Analytics, D-06120 Halle (Saale), Germany
| | | | - Wolfgang Hoehenwarter
- Leibniz Institute of Plant Biochemistry, Proteome Analytics, D-06120 Halle (Saale), Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, D-06120 Halle (Saale), Germany
| |
Collapse
|
45
|
Luo Y, Mok TS, Lin X, Zhang W, Cui Y, Guo J, Chen X, Zhang T, Wang T. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma. Sci Rep 2017; 7:41191. [PMID: 28117408 PMCID: PMC5259699 DOI: 10.1038/srep41191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC.
Collapse
Affiliation(s)
- Yanzhang Luo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Tin Seak Mok
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Xiuxian Lin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Wanling Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Jiahui Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Xing Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Tao Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
46
|
Lam MPY, Lau E, Ng DCM, Wang D, Ping P. Cardiovascular proteomics in the era of big data: experimental and computational advances. Clin Proteomics 2016; 13:23. [PMID: 27980500 PMCID: PMC5137214 DOI: 10.1186/s12014-016-9124-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.
Collapse
Affiliation(s)
- Maggie P Y Lam
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Edward Lau
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Dominic C M Ng
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Ding Wang
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| | - Peipei Ping
- NIH BD2K Center of Excellence at UCLA; Department of Physiology, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA ; Department of Bioinformatics, University of California at Los Angeles, 675 Charles E. Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
47
|
On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci Rep 2016; 6:32481. [PMID: 27577013 PMCID: PMC5006050 DOI: 10.1038/srep32481] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Chemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic. They include proteins that protect and transport volatile organic compounds in their beta barrel including LCN lipocalins, major urinary proteins (MUPs), and odorant binding proteins (OBPs). To our surprise, the saliva proteome contains one MUP that is female biased (MUP8) and the two protein pheromones MUP20 (or 'Darcin') and ESP1 in individuals of both sex. Thus, contrary to previous assumptions, our findings reveal that these proteins cannot function as male-unique signals. Our study also demonstrates that many olfactory proteins (e.g. LCNs, and OBPs) are not expressed by submandibular glands but are produced elsewhere-in nasal and lacrimal tissues, and potentially also in other oro-facial glands. We have also detected abundant proteins that are involved in wound healing, immune and non-immune responses to pathogens, thus corroborating that saliva has important protective roles.
Collapse
|
48
|
Walworth NG, Fu FX, Webb EA, Saito MA, Moran D, Mcllvin MR, Lee MD, Hutchins DA. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nat Commun 2016; 7:12081. [PMID: 27346420 PMCID: PMC4931248 DOI: 10.1038/ncomms12081] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Nitrogen fixation by cyanobacteria supplies critical bioavailable nitrogen to marine ecosystems worldwide; however, field and lab data have demonstrated it to be limited by iron, phosphorus and/or CO2. To address unknown future interactions among these factors, we grew the nitrogen-fixing cyanobacterium Trichodesmium for 1 year under Fe/P co-limitation following 7 years of both low and high CO2 selection. Fe/P co-limited cell lines demonstrated a complex cellular response including increased growth rates, broad proteome restructuring and cell size reductions relative to steady-state growth limited by either Fe or P alone. Fe/P co-limitation increased abundance of a protein containing a conserved domain previously implicated in cell size regulation, suggesting a similar role in Trichodesmium. Increased CO2 further induced nutrient-limited proteome shifts in widespread core metabolisms. Our results thus suggest that N2-fixing microbes may be significantly impacted by interactions between elevated CO2 and nutrient limitation, with broad implications for global biogeochemical cycles in the future ocean. Cyanobacterial nitrogen fixation supplies bioavailable nitrogen to marine ecosystems, but the mechanisms governing iron and phosphorus co-limitation in elevated CO2 remain unknown. Here, the authors show a complex cellular response to co-limitation characterized by changes in growth, cell size, and the proteome.
Collapse
Affiliation(s)
- Nathan G Walworth
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA
| | - Fei-Xue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Dawn Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Matthew R Mcllvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Michael D Lee
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA
| |
Collapse
|
49
|
Blein-Nicolas M, Zivy M. Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:883-95. [PMID: 26947242 DOI: 10.1016/j.bbapap.2016.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 11/18/2022]
Abstract
How to process and analyze MS data to quantify and statistically compare protein abundances in bottom-up proteomics has been an open debate for nearly fifteen years. Two main approaches are generally used: the first is based on spectral data generated during the process of identification (e.g. peptide counting, spectral counting), while the second makes use of extracted ion currents to quantify chromatographic peaks and infer protein abundances based on peptide quantification. These two approaches actually refer to multiple methods which have been developed during the last decade, but were submitted to deep evaluations only recently. In this paper, we compiled these different methods as exhaustively as possible. We also summarized the way they address the different problems raised by bottom-up protein quantification such as normalization, the presence of shared peptides, unequal peptide measurability and missing data. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Mélisande Blein-Nicolas
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Michel Zivy
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| |
Collapse
|
50
|
Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun 2015; 6:8155. [PMID: 26327191 PMCID: PMC4569722 DOI: 10.1038/ncomms9155] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/23/2015] [Indexed: 11/09/2022] Open
Abstract
Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. The long-term response of marine cyanobacteria to increased anthropogenic CO2 are not known. Here, Hutchins et al. show that Trichodesmium exposed to long-term selection at elevated CO2 display irreversible increases in nitrogen fixation and growth rates, even after returning to present day conditions.
Collapse
|