1
|
Abboud E, Chrayteh D, Boussetta N, Dalle H, Malerba M, Wu TD, Le Gall M, Reelfs O, Pourzand C, Mellett M, Assan F, Bachelez H, Poupon J, Aractingi S, Vaulont S, Sohier P, Oules B, Karim Z, Peyssonnaux C. Skin hepcidin initiates psoriasiform skin inflammation via Fe-driven hyperproliferation and neutrophil recruitment. Nat Commun 2024; 15:6718. [PMID: 39112467 PMCID: PMC11306357 DOI: 10.1038/s41467-024-50993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Psoriasis is a multifactorial, chronic inflammatory skin disease with unresolved questions on its primary events. Iron overload has been described in the epidermis of psoriasis patients, but its relevance remains unknown. We found that the key iron regulatory hormone hepcidin was highly expressed in the epidermis of psoriasis patients, especially the pustular variants resistant to treatments. In a murine model of acute skin inflammation, keratinocyte-derived hepcidin was required for iron retention in keratinocytes, leading to hyperproliferation of the epidermal layer and neutrophil recruitment, two main features of psoriatic skin lesions. Keratinocytes overexpressing hepcidin were sufficient to elicit these psoriasiform features in a transgenic mouse model. Furthermore, transcriptome analysis of these keratinocytes revealed canonical pathways found in human psoriasis, pointing to a causal role for hepcidin in the pathogenesis of the disease. Altogether, our data suggest that hepcidin could be an actionable target for skin psoriasis treatment, in addition to current therapeutics, or targeted as maintenance therapy during remission to prevent recurrence.
Collapse
Affiliation(s)
- Elise Abboud
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Doha Chrayteh
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Nadia Boussetta
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Héloise Dalle
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mariangela Malerba
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ting-Di Wu
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, Orsay, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Olivier Reelfs
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland
| | - Florence Assan
- Laboratory of Genetic Skin Diseases, INSERM U1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Hervé Bachelez
- Laboratory of Genetic Skin Diseases, INSERM U1163, Imagine Institute, Université Paris Cité, Paris, France
- Department of Dermatology, Hôpital Saint-Louis APHP, Université Paris Cité, Paris, France
| | - Joël Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Paris, France. Assistance Publique - Hôpitaux de Paris, AP-HP, Paris, France
| | - Selim Aractingi
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Dermatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Vaulont
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Sohier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Department of Pathology, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, AP-HP. Centre-Université Paris Cité, Paris, France
| | - Bénédicte Oules
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Dermatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zoubida Karim
- Université de Toulouse, INSERM, CNRS, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Paul Sabatier (UPS), Toulouse, France
| | - Carole Peyssonnaux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
2
|
Nguyen HA, Hammel BF, Sharp D, Kline J, Schwartz G, Harvey S, Nishiwaki E, Sandeno SF, Ginger DS, Majumdar A, Yazdi S, Dukovic G, Cossairt BM. Colossal Core/Shell CdSe/CdS Quantum Dot Emitters. ACS NANO 2024. [PMID: 39058675 DOI: 10.1021/acsnano.4c06961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Single-photon sources are essential for advancing quantum technologies with scalable integration being a crucial requirement. To date, deterministic positioning of single-photon sources in large-scale photonic structures remains a challenge. In this context, colloidal quantum dots (QDs), particularly core/shell configurations, are attractive due to their solution processability. However, traditional QDs are typically small, about 3 to 6 nm, which restricts their deterministic placement and utility in large-scale photonic devices, particularly within optical cavities. The largest existing core/shell QDs are a family of giant CdSe/CdS QDs, with total diameters ranging from about 20 to 50 nm. Pushing beyond this size limit, we introduce a synthesis strategy for colossal CdSe/CdS QDs, with sizes ranging from 30 to 100 nm, using a stepwise high-temperature continuous injection method. Electron microscopy reveals a consistent hexagonal diamond morphology composed of 12 semipolar {101̅1} facets and one polar (0001) facet. We also identify conditions where shell growth is disrupted, leading to defects, islands, and mechanical instability, which suggest synthetic requirements for growing crystalline particles beyond 100 nm. The stepwise growth of thick CdS shells on CdSe cores enables the synthesis of emissive QDs with long photoluminescence lifetimes of a few microseconds and suppressed blinking at room temperature. Notably, QDs with 80 and 100 CdS monolayers exhibit high single-photon emission purity with second-order photon correlation g(2)(0) values below 0.2.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - David Sharp
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kline
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Griffin Schwartz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samantha Harvey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emily Nishiwaki
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Soren F Sandeno
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arka Majumdar
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309-0215, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Avalos E, Teramoto T, Hirai Y, Yabu H, Nishiura Y. Controlling the Formation of Polyhedral Block Copolymer Nanoparticles: Insights from Process Variables and Dynamic Modeling. ACS OMEGA 2024; 9:17276-17288. [PMID: 38645350 PMCID: PMC11025090 DOI: 10.1021/acsomega.3c10302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
This study delves into the formation of nanoscale polyhedral block copolymer particles (PBCPs) exhibiting cubic, octahedral, and variant geometries. These structures represent a pioneering class that has never been fabricated previously. PBCP features distinct variations in curvature on the outer surface, aligning with the edges and corners of polyhedral shapes. This characteristic sharply contrasts with previous block copolymers (BCPs), which displayed a smooth spherical surface. The emergence of these cornered morphologies presents an intriguing and counterintuitive phenomenon and is linked to process parameters, such as evaporation rates and initial concentration, while keeping other variables constant. Using a system of coupled Cahn-Hillard (CCH) equations, we uncover the mechanisms driving polyhedral particle formation, emphasizing the importance of controlling relaxation parameters for shape variable u and microphase separation v. This unconventional approach, differing from traditional steepest descent method, allows for precise control and diverse polyhedral particle generation. Accelerating the shape variable u proves crucial for expediting precipitation and aligns with experimental observations. Employing the above theoretical model, we achieve shape predictions for particles and the microphase separation within them, which overcomes the limitations of ab initio computations. Additionally, a numerical stability analysis discerns the transient nature versus local minimizer characteristics. Overall, our findings contribute to understanding the complex interplay between process variables and the morphology of polyhedral BCP nanoparticles.
Collapse
Affiliation(s)
- Edgar Avalos
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Teramoto
- Faculty
of Data Science, Kyoto Women’s University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto 605-8501, Japan
| | - Yutaro Hirai
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Yabu
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yasumasa Nishiura
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Research
Center of Mathematics for Social Creativity, Research Institute for
Electronic Science, Hokkaido University, N12W7, Kita-Ward, Mid-Campus Open
Laboratory Building No. 2, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Zhao J, Yu X, Shentu X, Li D. The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res 2024; 396:1-18. [PMID: 38416172 DOI: 10.1007/s00441-024-03878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.
Collapse
Affiliation(s)
- Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Fullerton J, McCray ARC, Petford-Long AK, Phatak C. Understanding the Effect of Curvature on the Magnetization Reversal of Three-Dimensional Nanohelices. NANO LETTERS 2024; 24:2481-2487. [PMID: 38373326 DOI: 10.1021/acs.nanolett.3c04172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Comprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is important to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused-electron-beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices. The surface curvature, helical curvature, and torsion of the nanohelices are then quantified from the tomographic reconstructions. Furthermore, by using the experimental 3D reconstructions as inputs for micromagnetic simulations, we can reveal the influence of surface and helical curvature on the magnetic reversal mechanism. Hence, we can directly correlate the magnetic behavior of a 3D nanohelix to its experimental structure. These results demonstrate how the control of geometry in nanohelices can be utilized in the stabilization of DWs and control of the response of the nanostructure to applied magnetic fields.
Collapse
Affiliation(s)
- John Fullerton
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Arthur R C McCray
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Amanda K Petford-Long
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Plana-Ruiz S, Gómez-Pérez A, Budayova-Spano M, Foley DL, Portillo-Serra J, Rauch E, Grivas E, Housset D, Das PP, Taheri ML, Nicolopoulos S, Ling WL. High-Resolution Electron Diffraction of Hydrated Protein Crystals at Room Temperature. ACS NANO 2023; 17:24802-24813. [PMID: 37890869 PMCID: PMC10753879 DOI: 10.1021/acsnano.3c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Structural characterization is crucial to understanding protein function. Compared with X-ray diffraction methods, electron crystallography can be performed on nanometer-sized crystals and can provide additional information from the resulting Coulomb potential map. Whereas electron crystallography has successfully resolved three-dimensional structures of vitrified protein crystals, its widespread use as a structural biology tool has been limited. One main reason is the fragility of such crystals. Protein crystals can be easily damaged by mechanical stress, change in temperature, or buffer conditions as well as by electron irradiation. This work demonstrates a methodology to preserve these nanocrystals in their natural environment at room temperature for electron diffraction experiments as an alternative to existing cryogenic techniques. Lysozyme crystals in their crystallization solution are hermetically sealed via graphene-coated grids, and their radiation damage is minimized by employing a low-dose data collection strategy in combination with a hybrid-pixel direct electron detector. Diffraction patterns with reflections of up to 3 Å are obtained and successfully indexed using a template-matching algorithm. These results demonstrate the feasibility of in situ protein electron diffraction. The method described will also be applicable to structural studies of hydrated nanocrystals important in many research and technological developments.
Collapse
Affiliation(s)
- Sergi Plana-Ruiz
- NanoMegas
SRPL, Rue Emile Claus
49, Brussels 1050, Belgium
- Servei
de Recursos Científics i Tècnics, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | | | | | - Daniel L. Foley
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Edgar Rauch
- SIMAP,
Grenoble INP, Université Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | | | | | | | - Mitra L. Taheri
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Wai Li Ling
- Université
Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
7
|
Frouté L, Boigné E, Jolivet IC, Chaput E, Creux P, Ihme M, Kovscek AR. Evaluation of Electron Tomography Capabilities for Shale Imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1856-1869. [PMID: 37942573 DOI: 10.1093/micmic/ozad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Despite the advantageous resolution of electron tomography (ET), reconstruction of three-dimensional (3D) images from multiple two-dimensional (2D) projections presents several challenges, including small signal-to-noise ratios, and a limited projection range. This study evaluates the capabilities of ET for thin sections of shale, a complex nanoporous medium. A numerical phantom with 1.24 nm pixel size is constructed based on the tomographic reconstruction of a Barnett shale. A dataset of 2D projection images is numerically generated from the 3D phantom and studied over a range of conditions. First, common reconstruction techniques are used to reconstruct the shale structure. The reconstruction uncertainty is quantified by comparing overall values of storage and transport metrics, as well as the misclassification of pore voxels compared to the phantom. We then select the most robust reconstruction technique and we vary the acquisition conditions to quantify the effect of artifacts. We find a strong agreement for large pores over the different acquisition workflows, while a wider variability exists for nanometer-scale features. The limited projection range and reconstruction are identified as the main experimental bottlenecks, thereby suggesting that sample thinning, advanced holders, and advanced reconstruction algorithms offer opportunities for improvement.
Collapse
Affiliation(s)
- Laura Frouté
- Department of Energy Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emeric Boigné
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Eric Chaput
- One Tech - Geosciences & Reservoir, TotalEnergies SE, 64000 Pau, France
| | - Patrice Creux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, 64012 Pau, France
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Anthony R Kovscek
- Department of Energy Science & Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Weisbord I, Segal-Peretz T. Revealing the 3D Structure of Block Copolymers with Electron Microscopy: Current Status and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58003-58022. [PMID: 37338172 DOI: 10.1021/acsami.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Block copolymers (BCPs) are considered model systems for understanding and utilizing self-assembly in soft matter. Their tunable nanometric structure and composition enable comprehensive studies of self-assembly processes as well as make them relevant materials in diverse applications. A key step in developing and controlling BCP nanostructures is a full understanding of their three-dimensional (3D) structure and how this structure is affected by the BCP chemistry, confinement, boundary conditions, and the self-assembly evolution and dynamics. Electron microscopy (EM) is a leading method in BCP 3D characterization owing to its high resolution in imaging nanosized structures. Here we discuss the two main 3D EM methods: namely, transmission EM tomography and slice and view scanning EM tomography. We present each method's principles, examine their strengths and weaknesses, and discuss ways researchers have devised to overcome some of the challenges in BCP 3D characterization with EM- from specimen preparation to imaging radiation-sensitive materials. Importantly, we review current and new cutting-edge EM methods such as direct electron detectors, energy dispersive X-ray spectroscopy of soft matter, high temporal rate imaging, and single-particle analysis that have great potential for expanding the BCP understanding through EM in the future.
Collapse
Affiliation(s)
- Inbal Weisbord
- Chemical Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Segal-Peretz
- Chemical Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Lewis GR, Wolf D, Lubk A, Ringe E, Midgley PA. WRAP: A wavelet-regularised reconstruction algorithm for magnetic vector electron tomography. Ultramicroscopy 2023; 253:113804. [PMID: 37481909 DOI: 10.1016/j.ultramic.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Magnetic vector electron tomography (VET) is a promising technique that enables better understanding of micro- and nano-magnetic phenomena through the reconstruction of 3D magnetic fields at high spatial resolution. Here we introduce WRAP (Wavelet Regularised A Program), a reconstruction algorithm for magnetic VET that directly reconstructs the magnetic vector potential A using a compressed sensing framework which regularises for sparsity in the wavelet domain. We demonstrate that using WRAP leads to a significant increase in the fidelity of the 3D reconstruction and is especially robust when dealing with very limited data; using datasets simulated with realistic noise, we compare WRAP to a conventional reconstruction algorithm and find an improvement of ca. 60% when averaged over several performance metrics. Moreover, we further validate WRAP's performance on experimental electron holography data, revealing the detailed magnetism of vortex states in a CuCo nanowire. We believe WRAP represents a major step forward in the development of magnetic VET as a tool for probing magnetism at the nanoscale.
Collapse
Affiliation(s)
- George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Daniel Wolf
- Institute for Solid State Research, IFW Dresden, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Axel Lubk
- Institute for Solid State Research, IFW Dresden, Helmholtzstrasse 20, 01069, Dresden, Germany; Institute of Solid State and Materials Physics, TU Dresden, 01062 Dresden, Germany
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| |
Collapse
|
10
|
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, Iotti S, Maier JA. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Sci Rep 2023; 13:15133. [PMID: 37704683 PMCID: PMC10499809 DOI: 10.1038/s41598-023-42333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
High glucose-induced endothelial dysfunction is the early event that initiates diabetes-induced vascular disease. Here we employed Cryo Soft X-ray Tomography to obtain three-dimensional maps of high D-glucose-treated endothelial cells and their controls at nanometric spatial resolution. We then correlated ultrastructural differences with metabolic rewiring. While the total mitochondrial mass does not change, high D-glucose promotes mitochondrial fragmentation, as confirmed by the modulation of fission-fusion markers, and dysfunction, as demonstrated by the drop of membrane potential, the decreased oxygen consumption and the increased production of reactive oxygen species. The 3D ultrastructural analysis also indicates the accumulation of lipid droplets in cells cultured in high D-glucose. Indeed, because of the decrease of fatty acid β-oxidation induced by high D-glucose concentration, triglycerides are esterified into fatty acids and then stored into lipid droplets. We propose that the increase of lipid droplets represents an adaptive mechanism to cope with the overload of glucose and associated oxidative stress and metabolic dysregulation.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| |
Collapse
|
11
|
Lewis GR, Ringe E, Midgley PA. Cones and spirals: Multi-axis acquisition for scalar and vector electron tomography. Ultramicroscopy 2023; 252:113775. [PMID: 37295062 DOI: 10.1016/j.ultramic.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Electron tomography (ET) has become an important tool for understanding the 3D nature of nanomaterials, with recent developments enabling not only scalar reconstructions of electron density, but also vector reconstructions of magnetic fields. However, whilst new signals have been incorporated into the ET toolkit, the acquisition schemes have largely kept to conventional single-axis tilt series for scalar ET, and dual-axis schemes for magnetic vector ET. In this work, we explore the potential of using multi-axis tilt schemes including conical and spiral tilt schemes to improve reconstruction fidelity in scalar and magnetic vector ET. Through a combination of systematic simulations and a proof-of-concept experiment, we show that spiral and conical tilt schemes have the potential to produce substantially improved reconstructions, laying the foundations of a new approach to electron tomography acquisition and reconstruction.
Collapse
Affiliation(s)
- George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
12
|
Rossi F, Picone G, Cappadone C, Sorrentino A, Columbaro M, Farruggia G, Catelli E, Sciutto G, Prati S, Oliete R, Pasini A, Pereiro E, Iotti S, Malucelli E. Shedding Light on Osteosarcoma Cell Differentiation: Impact on Biomineralization and Mitochondria Morphology. Int J Mol Sci 2023; 24:ijms24108559. [PMID: 37239904 DOI: 10.3390/ijms24108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Marta Columbaro
- Piattaforma di Microscopia Elettronica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| | - Emilio Catelli
- Department of Chemistry "G. Ciamician", Università di Bologna, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Giorgia Sciutto
- Department of Chemistry "G. Ciamician", Università di Bologna, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Silvia Prati
- Department of Chemistry "G. Ciamician", Università di Bologna, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Robert Oliete
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Alice Pasini
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Università 50, 47522 Cesena, Italy
| | - Eva Pereiro
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, Baron L, Emam L, Gestraud P, Pantoș GD, Gandon V, Gaillet C, Wu TD, Dingli F, Loew D, Baulande S, Durand S, Sencio V, Robil C, Trottein F, Péricat D, Näser E, Cougoule C, Meunier E, Bègue AL, Salmon H, Manel N, Puisieux A, Watson S, Dawson MA, Servant N, Kroemer G, Annane D, Rodriguez R. A druggable copper-signalling pathway that drives inflammation. Nature 2023; 617:386-394. [PMID: 37100912 PMCID: PMC10131557 DOI: 10.1038/s41586-023-06017-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.
Collapse
Affiliation(s)
- Stéphanie Solier
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Müller
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Tatiana Cañeque
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Antoine Versini
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Arnaud Mansart
- Paris Saclay University, UVSQ, INSERM, 2I, Montigny-le-Bretonneux, France
| | - Fabien Sindikubwabo
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Leeroy Baron
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Laila Emam
- Paris Saclay University, UVSQ, INSERM, 2I, Montigny-le-Bretonneux, France
| | - Pierre Gestraud
- CBIO-Centre for Computational Biology, Institut Curie, INSERM, Mines ParisTech, Paris, France
| | - G Dan Pantoș
- Department of Chemistry, University of Bath, Bath, UK
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Paris Saclay University, Orsay, France
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christine Gaillet
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Ting-Di Wu
- Institut Curie, PSL Research University, Paris, France
- Multimodal Imaging Center, Paris Saclay University, CNRS, INSERM, Orsay, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomic, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomic, Institut Curie, PSL Research University, Paris, France
| | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, Paris, France
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Valentin Sencio
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL, Lille, France
| | - Cyril Robil
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL, Lille, France
| | - François Trottein
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL, Lille, France
| | - David Péricat
- Institut of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Emmanuelle Näser
- Institut of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
- Cytometry and Imaging Core facility, Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Céline Cougoule
- Institut of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Etienne Meunier
- Institut of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | | | - Hélène Salmon
- Institut Curie, INSERM, PSL Research University, Paris, France
| | - Nicolas Manel
- Institut Curie, INSERM, PSL Research University, Paris, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Sarah Watson
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Mark A Dawson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Servant
- CBIO-Centre for Computational Biology, Institut Curie, INSERM, Mines ParisTech, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, University of Paris, Sorbonne University, INSERM, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Djillali Annane
- Paris Saclay University, UVSQ, INSERM, 2I, Montigny-le-Bretonneux, France
- Department of Intensive Care, Hôpital Raymond Poincaré, AP-HP, Garches, France
| | - Raphaël Rodriguez
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
14
|
Maury P, Mondini M, Chargari C, Darricau A, Shahin M, Ammari S, Bockel S, Genestie C, Wu TD, Lux F, Tillement O, Lacombe S, Deutsch E, Robert C, Porcel E. Clinical transfer of AGuIX®-based radiation treatments for locally advanced cervical cancer: MR quantification and in vitro insights in the NANOCOL clinical trial framework. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102676. [PMID: 37084803 DOI: 10.1016/j.nano.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Clinical trials incorporating metallic nanoparticles (NPs) have recently begun. Radiotherapy planning does not take into account NPs concentrations observed in the patients' target volumes. In the framework of the NANOCOL clinical trial including patients treated for locally advanced cervical cancers, this study proposes a complete method to evaluate the radiation-induced biological effects of NPs. For this, calibration phantom was developed and MRI sequences with variable flip angles were acquired. This process allowed the quantification of NPs in the tumor of 4 patients, which was compared to the results of mass spectrometry obtained from 3 patient biopsies. The concentration of the NPs was reproduced in 3D cell models. Based on clonogenic assays, the radio-enhancement effects were quantified for radiotherapy and brachytherapy, and the impact in terms of local control was evaluated. T1 signal change in GTVs revealed NPs accumulation ~12.4 μmol/L, in agreement with mass spectrometry. Radio-enhancement effects of about 15 % at 2 Gy were found for both modalities, with a positive impact on local tumor control. Even if further follow-up of patients in this and subsequent clinical trials will be necessary to assess the reliability of this proof of concept, this study opens the way to the integration of a dose modulation factor to better take into account the impact of NPs in radiotherapy treatment.
Collapse
Affiliation(s)
- Pauline Maury
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France.
| | - Michele Mondini
- Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Cyrus Chargari
- Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Arthur Darricau
- Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Mona Shahin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Samy Ammari
- Université Paris-Saclay, Gustave Roussy, Department of Imaging, 94805 Villejuif, France; ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Sophie Bockel
- Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Catherine Genestie
- Université Paris-Saclay, Gustave Roussy, Department of Pathology, 94805 Villejuif, France
| | - Ting-Di Wu
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, 91400 Orsay, France
| | - François Lux
- Institut Lumière Matière (ILM UMR 5306), Université Claude Bernard Lyon 1, CNRS-UCBL, 69622 Villeurbanne, France; Institut Universitaire de France (IUF), France
| | - Olivier Tillement
- Institut Lumière Matière (ILM UMR 5306), Université Claude Bernard Lyon 1, CNRS-UCBL, 69622 Villeurbanne, France
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Eric Deutsch
- Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Charlotte Robert
- Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
15
|
Guzzi F, Gianoncelli A, Billè F, Carrato S, Kourousias G. Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy. Life (Basel) 2023; 13:life13030629. [PMID: 36983785 PMCID: PMC10051220 DOI: 10.3390/life13030629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems.
Collapse
Affiliation(s)
- Francesco Guzzi
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
- Correspondence:
| | - Alessandra Gianoncelli
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Fulvio Billè
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Sergio Carrato
- Department of Engineering and Architecture (DIA), University of Trieste, 34127 Trieste, Italy
| | - George Kourousias
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
16
|
Muhammad Sajeer P, Simran, Nukala P, Manoj M. Varma. TEM based applications in solid state nanopores: From fabrication to liquid in-situ bio-imaging. Micron 2022; 162:103347. [DOI: 10.1016/j.micron.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
|
17
|
Wang D, Hermes M, Najmr S, Tasios N, Grau-Carbonell A, Liu Y, Bals S, Dijkstra M, Murray CB, van Blaaderen A. Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement. Nat Commun 2022; 13:6001. [PMID: 36224188 PMCID: PMC9556815 DOI: 10.1038/s41467-022-33616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties.
Collapse
Affiliation(s)
- Da Wang
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Michiel Hermes
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Stan Najmr
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nikos Tasios
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Albert Grau-Carbonell
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Yang Liu
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Kazan R, Bourgeois G, Carisetti D, Florea I, Larquet E, Maurice JL, Mechulam Y, Ozanam F, Schmitt E, Coureux PD. Grid batch-dependent tuning of glow discharge parameters. Front Mol Biosci 2022; 9:910218. [PMID: 36060254 PMCID: PMC9436422 DOI: 10.3389/fmolb.2022.910218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Sample preparation on cryo-EM grids can give various results, from very thin ice and homogeneous particle distribution (ideal case) to unwanted behavior such as particles around the “holes” or complexes that do not entirely correspond to the one in solution (real life). We recently run into such a case and finally found out that variations in the 3D reconstructions were systematically correlated with the grid batches that were used. We report the use of several techniques to investigate the grids' characteristics, namely TEM, SEM, Auger spectroscopy and Infrared Interferometry. This allowed us to diagnose the origin of grid preparation problems and to adjust glow discharge parameters. The methods used for each approach are described and the results obtained on a common specific case are reported.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, IP Paris, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, IP Paris, Palaiseau, France
| | | | - Ileana Florea
- Laboratoire de Physique des Interfaces et Couches Minces (LPICM), CNRS-UMR 7647, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, France
| | - Jean-Luc Maurice
- Laboratoire de Physique des Interfaces et Couches Minces (LPICM), CNRS-UMR 7647, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, IP Paris, Palaiseau, France
| | - François Ozanam
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, IP Paris, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS-UMR7654, IP Paris, Palaiseau, France
- *Correspondence: Pierre-Damien Coureux,
| |
Collapse
|
19
|
Seifer S, Elbaum M. ClusterAlign: A fiducial tracking and tilt series alignment tool for thick sample tomography. BIOLOGICAL IMAGING 2022; 2:e7. [PMID: 38486831 PMCID: PMC10936405 DOI: 10.1017/s2633903x22000071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 03/17/2024]
Abstract
Thick specimens, as encountered in cryo-scanning transmission electron tomography, offer special challenges to conventional reconstruction workflows. The visibility of features, including gold nanoparticles introduced as fiducial markers, varies strongly through the tilt series. As a result, tedious manual refinement may be required in order to produce a successful alignment. Information from highly tilted views must often be excluded to the detriment of axial resolution in the reconstruction. We introduce here an approach to tilt series alignment based on identification of fiducial particle clusters that transform coherently in rotation, essentially those that lie at similar depth. Clusters are identified by comparison of tilted views with a single untilted reference, rather than with adjacent tilts. The software, called ClusterAlign, proves robust to poor signal to noise ratio and varying visibility of the individual fiducials and is successful in carrying the alignment to the ends of the tilt series where other methods tend to fail. ClusterAlign may be used to generate a list of tracked fiducials, to align a tilt series, or to perform a complete 3D reconstruction. Tools to evaluate alignment error by projection matching are included. Execution involves no manual intervention, and adherence to standard file formats facilitates an interface with other software, particularly IMOD/etomo, tomo3d, and tomoalign.
Collapse
Affiliation(s)
- Shahar Seifer
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models. Top Catal 2022. [DOI: 10.1007/s11244-022-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractElectron Tomography (ET) reconstructions can be analysed, via segmentation techniques, to obtain quantitative, 3D-information about individual nanoparticles in supported catalysts. This includes values of parameters out of reach for any other technique, like their volume and surface, which are required to determine the dispersion of the supported particle system or the specific surface area of the support; two figures that play a major role in the performance of this type of catalysts.However, both the experimental conditions during the acquisition of the tilt series and the limited fidelity of the reconstruction and segmentation algorithms, restrict the quality of the ET results and introduce an undefined amount of error both in the qualitative features of the reconstructions and in all the quantitative parameters measured from them.Here, a method based on the use of well-defined 3D geometrical models (phantoms), with morphological features closely resembling those observed in experimental images of an Au/CeO2 catalyst, has been devised to provide a precise estimation of the accuracy of the reconstructions. Using this approach, the influence of noise and the number of projections on the errors of reconstructions obtained using a Total Variation Minimization in 3D (TVM-3D) algorithm have been determined. Likewise, the benefits of using smart denoising techniques based on Undecimated Wavelet Transforms (UWT) have been also evaluated.The results clearly reveal a large impact of usual noise levels on both the quality of the reconstructions and nanometrological measurement errors. Quantitative clues about the key role of UWT to largely compensate them are also provided.
Collapse
|
21
|
Darouich O, Baaziz W, Ihiawakrim D, Hirlimann C, Spehner D, Schultz P, Poncet H, Rouchon V, Labidi S, Petit C, Levitz P, Ersen O. 3D multiscale analysis of the hierarchical porosity in Coscinodiscus sp. diatoms using a combination of tomographic techniques. NANOSCALE ADVANCES 2022; 4:1587-1598. [PMID: 36134372 PMCID: PMC9418519 DOI: 10.1039/d1na00691f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/02/2022] [Indexed: 05/29/2023]
Abstract
A full 3D analysis of the hierarchical porosity in Coscinodiscus sp. diatom structures was carried out by using a multiscale approach that combines three advanced volumetric imaging techniques with resolutions and fields of view covering all the porous characteristics of such complex architectures: electron tomography, "slice and view" approach that uses a dual-beam microscope (FIB-SEM), and array tomography consisting of serial imaging of ultrathin specimen sections. This multiscale approach allowed the whole porosity network to be quantified and provided an unprecedented structural insight into these natural nanostructured materials with internal organization ranging from micrometer to nanometer. The analysed species is made of several nested layers with different pore sizes, shapes and connectivities and characterized by the presence of interconnected pores structured in various ways. The first evidence of the presence of a nanometric porosity made of ellipsoidal pores in the siliceous diatom frustules is also provided.
Collapse
Affiliation(s)
- Othmane Darouich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, University of Strasbourg 23 rue du Lœss BP 43 67037 Strasbourg Cedex 2 France
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, University of Strasbourg 23 rue du Lœss BP 43 67037 Strasbourg Cedex 2 France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, University of Strasbourg 23 rue du Lœss BP 43 67037 Strasbourg Cedex 2 France
| | - Charles Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, University of Strasbourg 23 rue du Lœss BP 43 67037 Strasbourg Cedex 2 France
| | - Danièle Spehner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg/CNRS UMR 7104, Inserm U1258 BP163 67404 Illkirch France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg/CNRS UMR 7104, Inserm U1258 BP163 67404 Illkirch France
| | - Hedwige Poncet
- IFP Énergies Nouvelles, Rond-point de L'échangeur de Solaize BP 369360 Solaize France
| | - Virgile Rouchon
- IFP Énergies Nouvelles, Rond-point de L'échangeur de Solaize BP 369360 Solaize France
| | - Sana Labidi
- Institut de Chimie et Procédés pour L'Énergie, L'Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS, University of Strasbourg 25 rue Becquerel Cedex 02 67087 Strasbourg France
| | - Corinne Petit
- Institut de Chimie et Procédés pour L'Énergie, L'Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS, University of Strasbourg 25 rue Becquerel Cedex 02 67087 Strasbourg France
| | - Pierre Levitz
- Laboratoire PHysico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne University, CNRS UMR 8234 75252 Paris France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, University of Strasbourg 23 rue du Lœss BP 43 67037 Strasbourg Cedex 2 France
| |
Collapse
|
22
|
Rusu MM, Vulpoi A, Maurin I, Cotet LC, Pop LC, Fort CI, Baia M, Baia L, Florea I. Thermal Evolution of C-Fe-Bi Nanocomposite System: From Nanoparticle Formation to Heterogeneous Graphitization Stage. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-13. [PMID: 35229707 DOI: 10.1017/s1431927622000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon xerogel nanocomposites with integrated Bi and Fe particles (C–Bi–Fe) represent an interesting model of carbon nanostructures decorated with multifunctional nanoparticles (NPs) with applicability for electrochemical sensors and catalysts. The present study addresses the fundamental aspects of the catalyzed growth of nano-graphites in C–Bi–Fe systems, relevant in charge transport and thermo-chemical processes. The thermal evolution of a C–Bi–Fe xerogel is investigated using different pyrolysis treatments. At lower temperatures (~750°C), hybrid bismuth iron oxide (BFO) NPs are frequently observed, while graphitization manifests under more specific conditions such as higher temperatures (~1,050°C) and reduction yields. An in situ heating TEM experiment reveals graphitization activity between 800 and 900°C. NP motion is directly correlated with textural changes of the carbon support due to the catalyzed growth of graphitic nanoshells and nanofibers as confirmed by HR-TEM and electron tomography (ET) for the graphitized sample. An exponential growth model for the catalyst dynamics enables the approximation of activation energies as 0.68 and 0.29–0.34 eV during reduction and graphitization stages. The results suggest some similarities with the tip growth mechanism, while oxygen interference and the limited catalyst–feed gas interactions are considered as the main constraints to enhanced growth.
Collapse
Affiliation(s)
- Mihai M Rusu
- Faculty of Physics, "Babes-Bolyai" University, M. Kogalniceanu 1, RO-400084, Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, "Babes-Bolyai" University, Treboniu Laurean 42, RO-400271, Cluj-Napoca, Romania
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, "Babes-Bolyai" University, Treboniu Laurean 42, RO-400271, Cluj-Napoca, Romania
| | - Isabelle Maurin
- NEEL Institute, CNRS, Grenoble Alpes University, Grenoble INP, BP 166, 38042Grenoble, France
| | - Liviu C Cotet
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Arany Janos 11, RO-400028, Cluj-Napoca, Romania
- Laboratory of Advanced Materials and Applied Technologies, Institute for Research-Development-Innovation in Applied Natural Sciences, "Babes-Bolyai" University, Fântânele 30, RO-400294Cluj-Napoca, Romania
| | - Lucian C Pop
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Arany Janos 11, RO-400028, Cluj-Napoca, Romania
| | - Carmen I Fort
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Arany Janos 11, RO-400028, Cluj-Napoca, Romania
- Laboratory of Advanced Materials and Applied Technologies, Institute for Research-Development-Innovation in Applied Natural Sciences, "Babes-Bolyai" University, Fântânele 30, RO-400294Cluj-Napoca, Romania
| | - Monica Baia
- Faculty of Physics, "Babes-Bolyai" University, M. Kogalniceanu 1, RO-400084, Cluj-Napoca, Romania
- Laboratory of Advanced Materials and Applied Technologies, Institute for Research-Development-Innovation in Applied Natural Sciences, "Babes-Bolyai" University, Fântânele 30, RO-400294Cluj-Napoca, Romania
| | - Lucian Baia
- Faculty of Physics, "Babes-Bolyai" University, M. Kogalniceanu 1, RO-400084, Cluj-Napoca, Romania
- Laboratory of Advanced Materials and Applied Technologies, Institute for Research-Development-Innovation in Applied Natural Sciences, "Babes-Bolyai" University, Fântânele 30, RO-400294Cluj-Napoca, Romania
| | - Ileana Florea
- Laboratory of Physics of Interfaces and Thin Films (LPICM), CNRS-UMR 7647, Ecole Polytechnique, IP Paris, 91128Palaiseau, France
| |
Collapse
|
23
|
Weber S, Zimmermann RT, Bremer J, Abel KL, Poppitz D, Prinz N, Ilsemann J, Wendholt S, Yang Q, Pashminehazar R, Monaco F, Cloetens P, Huang X, Kübel C, Kondratenko E, Bauer M, Bäumer M, Zobel M, Gläser R, Sundmacher K, Sheppard TL. Digitization in Catalysis Research: Towards a Holistic Description of a Ni/Al2O3 Reference Catalyst for CO2 Methanation. ChemCatChem 2022. [DOI: 10.1002/cctc.202101878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Weber
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Catalysis Research and Technology GERMANY
| | - Ronny T. Zimmermann
- Otto-von-Guericke-University Magdeburg: Otto von Guericke Universitat Magdeburg Institute of Process Engineering GERMANY
| | - Jens Bremer
- Max Planck Institute for Dynamics of Complex Technical Systems: Max-Planck-Institut fur Dynamik komplexer technischer Systeme Department of Process Systems Engineering GERMANY
| | - Ken L. Abel
- Leipzig University: Universitat Leipzig Institute of Chemical Technology GERMANY
| | - David Poppitz
- Leipzig University: Universitat Leipzig Institute of Chemical Technology GERMANY
| | - Nils Prinz
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Crystallography GERMANY
| | - Jan Ilsemann
- University of Bremen: Universitat Bremen Institute of Applied and Physical Chemistry GERMANY
| | - Sven Wendholt
- Paderborn University: Universitat Paderborn Faculty of Science and Center for Sustainable Systems Design GERMANY
| | - Qingxin Yang
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV LIKAT GERMANY
| | - Reihaneh Pashminehazar
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute for Chemical Technology and Polymer Chemistry GERMANY
| | | | - Peter Cloetens
- European Synchrotron Radiation Facility: ESRF ESRF FRANCE
| | - Xiaohui Huang
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Nanotechnology GERMANY
| | - Christian Kübel
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Nanotechnology GERMANY
| | - Evgenii Kondratenko
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV LIKAT GERMANY
| | - Matthias Bauer
- Paderborn University: Universitat Paderborn Faculty of Science and Center for Sustainable Systems Design GERMANY
| | - Marcus Bäumer
- University of Bremen: Universitat Bremen Institute of Applied and Physical Chemistry GERMANY
| | - Mirijam Zobel
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Crystallography GERMANY
| | - Roger Gläser
- Leipzig University: Universitat Leipzig Institute of Chemical Technology GERMANY
| | - Kai Sundmacher
- Otto-von-Guericke-University Magdeburg: Otto von Guericke Universitat Magdeburg Institute of Process Engineering GERMANY
| | - Thomas Lennon Sheppard
- Karlsruher Institut fur Technologie Institute for Chemical Technology and Polymer Chemistry Engesserstrasse 20 76131 Karlsruhe GERMANY
| |
Collapse
|
24
|
Groen J, Palanca A, Aires A, Conesa JJ, Maestro D, Rehbein S, Harkiolaki M, Villar AV, Cortajarena AL, Pereiro E. Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids. Chem Sci 2021; 12:15090-15103. [PMID: 34909150 PMCID: PMC8612387 DOI: 10.1039/d1sc04183e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Revealing the intracellular location of novel therapeutic agents is paramount for the understanding of their effect at the cell ultrastructure level. Here, we apply a novel correlative cryo 3D imaging approach to determine the intracellular fate of a designed protein–nanomaterial hybrid with antifibrotic properties that shows great promise in mitigating myocardial fibrosis. Cryo 3D structured illumination microscopy (cryo-3D-SIM) pinpoints the location and cryo soft X-ray tomography (cryo-SXT) reveals the ultrastructural environment and subcellular localization of this nanomaterial with spatial correlation accuracy down to 70 nm in whole cells. This novel high resolution 3D cryo correlative approach unambiguously locates the nanomaterial after overnight treatment within multivesicular bodies which have been associated with endosomal trafficking events by confocal microscopy. Moreover, this approach allows assessing the cellular response towards the treatment by evaluating the morphological changes induced. This is especially relevant for the future usage of nanoformulations in clinical practices. This correlative super-resolution and X-ray imaging strategy joins high specificity, by the use of fluorescence, with high spatial resolution at 30 nm (half pitch) provided by cryo-SXT in whole cells, without the need of staining or fixation, and can be of particular benefit to locate specific molecules in the native cellular environment in bio-nanomedicine. A novel 3D cryo correlative approach locates designed therapeutic protein–nanomaterial hybrids in whole cells with high specificity and resolution. Detection of treatment-induced morphological changes, crucial for pre-clinical studies, are revealed.![]()
Collapse
Affiliation(s)
- J Groen
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| | - A Palanca
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Anatomy and Cell Biology, University of Cantabria 39011 Santander Spain
| | - A Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain
| | - J J Conesa
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain .,National Center for Biotechnology CSIC (CNB-CSIC), Department of Macromolecular Structures Cantoblanco 28049 Madrid Spain
| | - D Maestro
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain
| | - S Rehbein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Bessy II D-12489 Berlin Germany
| | - M Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - A V Villar
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Physiology and Pharmacology, University of Cantabria Avd. Herrera Oria s/n Santander Spain
| | - A L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain .,Ikerbasque, Basque Foundation for Science 48009 Bilbao Spain
| | - E Pereiro
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| |
Collapse
|
25
|
Transmission Electron Microscopy Tilt-Series Data from In-Situ Chondrocyte Primary Cilia. DATA 2021. [DOI: 10.3390/data6110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The primary cilium has recently become the focus of intensive investigations into understanding the physical structure and processes of eukaryotic cells. This paper describes two tilt-series image datasets, acquired by transmission electron microscopy, of in situ chick-embryo sternal-cartilage primary cilia. These data have been released under an open-access licence, and are well suited to tomographic reconstruction and modelling of the cilium.
Collapse
|
26
|
Goodarzi S, Prunet A, Rossetti F, Bort G, Tillement O, Porcel E, Lacombe S, Wu TD, Guerquin-Kern JL, Delanoë-Ayari H, Lux F, Rivière C. Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform. LAB ON A CHIP 2021; 21:2495-2510. [PMID: 34110341 DOI: 10.1039/d1lc00192b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The huge gap between 2D in vitro assays used for drug screening and the in vivo 3D physiological environment hampered reliable predictions for the route and accumulation of nanotherapeutics in vivo. For such nanotherapeutics, multi-cellular tumour spheroids (MCTS) are emerging as a good alternative in vitro model. However, the classical approaches to produce MCTS suffer from low yield, slow process, difficulties in MCTS manipulation and compatibility with high-magnification fluorescence optical microscopy. On the other hand, spheroid-on-chip set-ups developed so far require a practical knowledge of microfluidics difficult to transfer to a cell biology laboratory. We present here a simple yet highly flexible 3D model microsystem consisting of agarose-based microwells. Fully compatible with the multi-well plate format conventionally used in cell biology, our simple process enables the formation of hundreds of reproducible spheroids in a single pipetting. Immunostaining and fluorescence imaging including live high-resolution optical microscopy can be performed in situ, with no manipulation of spheroids. As a proof of principle of the relevance of such an in vitro platform for nanotherapeutic evaluation, this study investigates the kinetics and localisation of nanoparticles within colorectal cancer MCTS cells (HCT-116). The nanoparticles chosen are sub-5 nm ultrasmall nanoparticles made of polysiloxane and gadolinium chelates that can be visualized in MRI (AGuIX®, currently implicated in clinical trials as effective radiosensitizers for radiotherapy) and confocal microscopy after addition of Cy5.5. We show that the amount of AGuIX® nanoparticles within cells is largely different in 2D and 3D. Using our flexible agarose-based microsystems, we are able to resolve spatially and temporally the penetration and distribution of AGuIX® nanoparticles within MCTS. The nanoparticles are first found in both extracellular and intracellular space of MCTS. While the extracellular part is washed away after a few days, we evidenced intracellular localisation of AGuIX®, mainly within the lysosomal compartment, but also occasionally within mitochondria. Hence, our agarose-based microsystem appears as a promising 3D in vitro user-friendly platform for investigation of nanotherapeutic transport, ahead of in vivo studies.
Collapse
Affiliation(s)
- Saba Goodarzi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Audrey Prunet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Fabien Rossetti
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Guillaume Bort
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Olivier Tillement
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - Ting-Di Wu
- Institut Curie, Université PSL, Paris, France and Université Paris-Saclay, CNRS, Inserm, Centre d'Imagerie Multimodale, 91401, Orsay, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université PSL, Paris, France and Université Paris-Saclay, CNRS, Inserm, Centre d'Imagerie Multimodale, 91401, Orsay, France
| | - Hélène Delanoë-Ayari
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - François Lux
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France. and Institut Universitaire de France (IUF), France
| | - Charlotte Rivière
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France. and Institut Universitaire de France (IUF), France
| |
Collapse
|
27
|
Hochstrasser J, Juère E, Kleitz F, Wang W, Kübel C, Tallarek U. Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. J Colloid Interface Sci 2021; 592:296-309. [PMID: 33676192 DOI: 10.1016/j.jcis.2021.02.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Although many synthetic pathways allow to fine-tune the morphology of dendritic mesoporous silica nanoparticles (DMSNs), the control of their particle size and mesopore diameter remains a challenge. Our study focuses on either increasing the mean particle size or adjusting the pore size distribution, changing only one parameter (particle or pore size) at a time. The dependence of key morphological features (porosity; pore shape and pore dimensions) on radial distance from the particle center has been investigated in detail. EXPERIMENTS Three-dimensional reconstructions of the particles obtained by scanning transmission electron microscopy (STEM) tomography were adapted as geometrical models for the quantification of intraparticle morphologies by radial porosity and chord length distribution analyses. Structural properties of the different synthesized DMSNs have been complementary characterized using TEM, SEM, nitrogen physisorption, and dynamic light scattering. FINDINGS The successful independent tuning of particle and pore sizes of the DMSNs could be confirmed by conventional analysis methods. Unique morphological features, which influence the uptake and release of guest molecules in biomedical applications, were uncovered from analyzing the STEM tomography-based reconstructions. It includes the quantification of structural hierarchy, identification of intrawall openings and pores, as well as the distinction of pore shapes (conical vs. cylindrical).
Collapse
Affiliation(s)
- Janika Hochstrasser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Estelle Juère
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Wu Wang
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Materials and Earth Sciences, Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
28
|
Ezzedine M, Zamfir MR, Jardali F, Leveau L, Caristan E, Ersen O, Cojocaru CS, Florea I. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24734-24746. [PMID: 34019366 DOI: 10.1021/acsami.1c03302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicon-based anode fabrication with nanoscale structuration improves the energy density and life cycle of Li-ion batteries. As-synthesized silicon (Si) nanowires (NWs) or nanoparticles (NPs) directly on the current collector represent a credible alternative to conventional graphite anodes. However, the operating potentials of these electrodes are below the electrochemical stability window of all electrolytes used in commercial Li-ion systems. During the first charging phase of the cell, partial decomposition of the electrolyte takes place, which leads to the formation of a layer at the surface of the electrode, called solid electrolyte interphase (SEI). A stable and continuous SEI layer formation is a critical factor to achieve reliable lifetime stability of the battery. Once formed, the SEI acts as a passivation layer that minimizes further degradation of the electrolyte during cycling, while allowing lithium-ion diffusion with their subsequent insertion into the active material and ensuring reversible operation of the electrode. However, one of the major issues requiring deeper investigation is the assessment of the morphological extension of the SEI layer into the active material, which is one of the main parameters affecting the anode performances. In the present study, we use electron tomography with a low electron dose to retrieve three-dimensional information on the SEI layer formation and its stability around SiNWs and SiNPs. The possible mechanisms of SEI evolution could be inferred from the interpretation and analysis of the reconstructed volumes. Significant volume variations in the SiNW and an inhomogeneous distribution of the SEI layer around the NWs are observed during cycling and provide insights into the potential mechanism leading to the generally reported SiNW anode capacity fading. By contrast, analysis of the reconstructed SiNPs' volume for a sample undergoing one lithiation-delithiation cycle shows that the SEI remains homogeneously distributed around the NPs that retain their spherical morphology and points to the potential benefit of such nanoscale Si anode materials to improve their cycling lifetime.
Collapse
Affiliation(s)
- Mariam Ezzedine
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau 91228 Cedex, France
| | - Mihai-Robert Zamfir
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau 91228 Cedex, France
- National Institute for Laser, Plasma & Radiation Physics (INFLPR), Atomistilor Street, No. 409, Magurele, Ilfov RO-077125, Romania
| | - Fatme Jardali
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau 91228 Cedex, France
| | - Lucie Leveau
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau 91228 Cedex, France
- Renault SAS, DREAM/DETA/SEE, 1, Avenue du Golf, Guyancourt 78288, France
| | - Eleonor Caristan
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau 91228 Cedex, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg, 23 rue du Loess, Strasbourg 67034 Cedex 2, France
| | | | - Ileana Florea
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau 91228 Cedex, France
| |
Collapse
|
29
|
Brambila C, Sayle DC, Molinari M, Nutter J, Flitcroft JM, Sayle TXT, Sakthivel T, Seal S, Möbus G. Tomographic Study of Mesopore Formation in Ceria Nanorods. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:10077-10089. [PMID: 34276857 PMCID: PMC8279707 DOI: 10.1021/acs.jpcc.1c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Porosity in functional oxide nanorods is a recently discovered new type of microstructure, which is not yet fully understood and still under evaluation for its impact on applications in catalysis and gas/ion storage. Here we explore the shape and distribution of pores in ceria in three dimensions using a modified algorithm of geometric tomography as a reliable tool for reconstructing defective and strained nanoobjects. The pores are confirmed as "negative-particle" or "inverse-particle" cuboctahedral shapes located exclusively beneath the flat surface of the rods separated via a sub-5 nm thin ceria wall from the outside. New findings also comprise elongated "negative-rod" defects, seen as embryonic nanotubes, and pores in cube-shaped ceria. Furthermore, we report near-sintering secondary heat treatment of nanorods and cubes, confirming persistence of pores beyond external surface rounding. We support our experiments with molecular modeling and predict that the growth history of voids is via diffusion and aggregation of atomic point defects. In addition, we use density functional theory to show that the relative stability of pore (shape) increases in the order "cuboidal" < "hexagonal-prismatic" < "octahedral". The results indicate that by engineering voids into nanorods, via a high-temperature postsynthetic heat treatment, a potential future alternative route of tuning catalytic activities might become possible.
Collapse
Affiliation(s)
- C. Brambila
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, U.K.
| | - D. C. Sayle
- School
of Physical Sciences, University of Kent, Canterbury CT2 7NZ, U.K.
| | - M. Molinari
- Department
of Chemistry, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - J. Nutter
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, U.K.
- The
Henry Royce Institute, Sir Robert Hadfield Building, Sheffield S1 3JD, U.K.
| | - J. M. Flitcroft
- Department
of Chemistry, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - T. X. T. Sayle
- School
of Physical Sciences, University of Kent, Canterbury CT2 7NZ, U.K.
| | - T. Sakthivel
- Advanced
Materials Processing and Analysis Center, Nanoscience and Technology
Center (NSTC), Mechanical, Materials and Aerospace Engineering (MMAE),
College of Medicine, Biionix Cluster, University
of Central Florida, Orlando, Florida 32816, United States
| | - S. Seal
- Advanced
Materials Processing and Analysis Center, Nanoscience and Technology
Center (NSTC), Mechanical, Materials and Aerospace Engineering (MMAE),
College of Medicine, Biionix Cluster, University
of Central Florida, Orlando, Florida 32816, United States
| | - G. Möbus
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
30
|
Sorrentino A, Malucelli E, Rossi F, Cappadone C, Farruggia G, Moscheni C, Perez-Berna AJ, Conesa JJ, Colletti C, Roveri N, Pereiro E, Iotti S. Calcite as a Precursor of Hydroxyapatite in the Early Biomineralization of Differentiating Human Bone-Marrow Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094939. [PMID: 34066542 PMCID: PMC8125725 DOI: 10.3390/ijms22094939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- Correspondence:
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milan, Italy;
| | - Ana J. Perez-Berna
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Jose Javier Conesa
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Chiara Colletti
- Chemical Center S.r.l, Granarolo dell’ Emilia, 40057 Bologna, Italy; (C.C.); (N.R.)
| | - Norberto Roveri
- Chemical Center S.r.l, Granarolo dell’ Emilia, 40057 Bologna, Italy; (C.C.); (N.R.)
| | - Eva Pereiro
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
31
|
Özkan E, Hofmann A, Votsmeier M, Wang W, Huang X, Kübel C, Badaczewski F, Turke K, Werner S, Smarsly BM. Comprehensive Characterization of a Mesoporous Cerium Oxide Nanomaterial with High Surface Area and High Thermal Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2563-2574. [PMID: 33590755 DOI: 10.1021/acs.langmuir.0c02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, the pore space of a mesoporous cerium oxide material is investigated, which forms by the self-assembly of primary particles into a spherical secondary structure possessing a disordered mesopore space. The material under study exhibits quite stable mesoporosity upon aging at high temperatures (800 °C) and is, thus, of potential interest in high-temperature catalysis. Here, different characterization techniques were applied to elucidate the structural evolution taking place between heat treatment at 400 °C and aging at 800 °C, i.e., in a water-containing atmosphere, which is usually detrimental to nanoscaled porosity. The changes in the mesoporosity were monitored by advanced physisorption experiments, including hysteresis scanning, and electron tomography analysis coupled with a 3D reconstruction of the mesopore space. These methods indicate that the 3D spatial arrangement of the primary particles during the synthesis under hydrothermal conditions via thermal hydrolysis is related to the thermal stability of the hierarchical mesopore structure. The assembly of the primary CeO2 particles (∼4 nm in size) results in an interparticulate space constituting an open 3D mesopore network, as revealed by skeleton analysis of tomography data, being in conformity with hysteresis scanning. At elevated temperatures (800 °C), sinter processes occur resulting in the growth of the primary particles, but the 3D mesopore network and the spherical secondary structure are preserved.
Collapse
Affiliation(s)
- Elifkübra Özkan
- Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | | - Martin Votsmeier
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457 Hanau, Germany
- Department of Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 8, 64287 ̈Darmstadt, Germany
| | - Wu Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Xiaohui Huang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Materials and Earth Science, Technical University Darmstadt, Alarich-Weiss-Str.2, 64287 Darmstadt, Germany
| | - Christian Kübel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Materials and Earth Science, Technical University Darmstadt, Alarich-Weiss-Str.2, 64287 Darmstadt, Germany
| | - Felix Badaczewski
- Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Kevin Turke
- Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Sebastian Werner
- Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Bernd M Smarsly
- Institute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research (LaMa), Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
32
|
Frank A, Gänsler T, Hieke S, Fleischmann S, Husmann S, Presser V, Scheu C. Structural and chemical characterization of MoO 2/MoS 2 triple-hybrid materials using electron microscopy in up to three dimensions. NANOSCALE ADVANCES 2021; 3:1067-1076. [PMID: 36133289 PMCID: PMC9418330 DOI: 10.1039/d0na00806k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/24/2020] [Indexed: 06/16/2023]
Abstract
This work presents the synthesis of MoO2/MoS2 core/shell nanoparticles within a carbon nanotube network and their detailed electron microscopy investigation in up to three dimensions. The triple-hybrid core/shell material was prepared by atomic layer deposition of molybdenum oxide onto carbon nanotube networks, followed by annealing in a sulfur-containing gas atmosphere. High-resolution transmission electron microscopy together with electron diffraction, supported by chemical analysis via energy dispersive X-ray and electron energy loss spectroscopy, gave proof of a MoO2 core covered by few layers of a MoS2 shell within an entangled network of carbon nanotubes. To gain further insights into this complex material, the analysis was completed with 3D electron tomography. By using Z-contrast imaging, distinct reconstruction of core and shell material was possible, enabling the analysis of the 3D structure of the material. These investigations showed imperfections in the nanoparticles which can impact material performance, i.e. for faradaic charge storage or electrocatalysis.
Collapse
Affiliation(s)
- Anna Frank
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
| | - Thomas Gänsler
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
| | - Stefan Hieke
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
| | | | | | - Volker Presser
- INM - Leibniz Institute for New Materials Saarbrücken Germany
- Department of Materials Science and Engineering, Saarland University Saarbrücken Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Independent Research Group Nanoanalytics and Interfaces Düsseldorf Germany
- Materials Analytics, RWTH Aachen University Aachen Germany
| |
Collapse
|
33
|
Juhl AD, Lund FW, Jensen MLV, Szomek M, Heegaard CW, Guttmann P, Werner S, McNally J, Schneider G, Kapishnikov S, Wüstner D. Niemann Pick C2 protein enables cholesterol transfer from endo-lysosomes to the plasma membrane for efflux by shedding of extracellular vesicles. Chem Phys Lipids 2021; 235:105047. [PMID: 33422548 DOI: 10.1016/j.chemphyslip.2020.105047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The Niemann-Pick C2 protein (NPC2) is a sterol transfer protein in the lumen of late endosomes and lysosomes (LE/LYSs). Absence of functional NPC2 leads to endo-lysosomal buildup of cholesterol and other lipids. How NPC2's known capacity to transport cholesterol between model membranes is linked to its function in living cells is not known. Using quantitative live-cell imaging combined with modeling of the efflux kinetics, we show that NPC2-deficient human fibroblasts can export the cholesterol analog dehydroergosterol (DHE) from LE/LYSs. Internalized NPC2 accelerated sterol efflux extensively, accompanied by reallocation of LE/LYSs containing fluorescent NPC2 and DHE to the cell periphery. Using quantitative fluorescence loss in photobleaching of TopFluor-cholesterol (TF-Chol), we estimate a residence time for a rapidly exchanging sterol pool in LE/LYSs localized in close proximity to the plasma membrane (PM), of less than one min and observed non-vesicular sterol exchange between LE/LYSs and the PM. Excess sterol was released from the PM by shedding of cholesterol-rich vesicles. The ultrastructure of such vesicles was analyzed by combined fluorescence and cryo soft X-ray tomography (SXT), revealing that they can contain lysosomal cargo and intraluminal vesicles. Treating cells with apoprotein A1 and with nuclear receptor liver X-receptor (LXR) agonists to upregulate expression of ABC transporters enhanced cholesterol efflux from the PM, at least partly by accelerating vesicle release. We conclude that NPC2 inside LE/LYSs facilitates non-vesicular sterol exchange with the PM for subsequent sterol efflux to acceptor proteins and for shedding of sterol-rich vesicles from the cell surface.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Frederik W Lund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Louise V Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000, Aarhus C, Denmark
| | - Peter Guttmann
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Stephan Werner
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - James McNally
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Gerd Schneider
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Sergey Kapishnikov
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark.
| |
Collapse
|
34
|
Abstract
CO2 methanation is often performed on Ni/Al2O3 catalysts, which can suffer from mass transport limitations and, therefore, decreased efficiency. Here we show the application of a hierarchically porous Ni/Al2O3 catalyst for methanation of CO2. The material has a well-defined and connected meso- and macropore structure with a total porosity of 78%. The pore structure was thoroughly studied with conventional methods, i.e., N2 sorption, Hg porosimetry, and He pycnometry, and advanced imaging techniques, i.e., electron tomography and ptychographic X-ray computed tomography. Tomography can quantify the pore system in a manner that is not possible using conventional porosimetry. Macrokinetic simulations were performed based on the measures obtained by porosity analysis. These show the potential benefit of enhanced mass-transfer properties of the hierarchical pore system compared to a pure mesoporous catalyst at industrially relevant conditions. Besides the investigation of the pore system, the catalyst was studied by Rietveld refinement, diffuse reflectance ultraviolet-visible (DRUV/vis) spectroscopy, and H2-temperature programmed reduction (TPR), showing a high reduction temperature required for activation due to structural incorporation of Ni into the transition alumina. The reduced hierarchically porous Ni/Al2O3 catalyst is highly active in CO2 methanation, showing comparable conversion and selectivity for CH4 to an industrial reference catalyst.
Collapse
|
35
|
Kahil K, Varsano N, Sorrentino A, Pereiro E, Rez P, Weiner S, Addadi L. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae. Proc Natl Acad Sci U S A 2020; 117:30957-30965. [PMID: 33229583 PMCID: PMC7733801 DOI: 10.1073/pnas.1918195117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.
Collapse
Affiliation(s)
- Keren Kahil
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andrea Sorrentino
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Peter Rez
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
36
|
Biological Applications of Short Wavelength Microscopy Based on Compact, Laser-Produced Gas-Puff Plasma Source. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decades, remarkable efforts have been made to improve the resolution in photon-based microscopes. The employment of compact sources based on table-top laser-produced soft X-ray (SXR) in the “water window” spectral range (λ = 2.3–4.4 nm) and extreme ultraviolet (EUV) plasma allowed to overcome the limitations imposed by large facilities, such as synchrotrons and X-ray free electron lasers (XFEL), because of their high complexity, costs, and limited user access. A laser-plasma double stream gas-puff target source represents a powerful tool for microscopy operating in transmission mode, significantly improving the spatial resolution into the nanometric scale, comparing to the traditional visible light (optical) microscopes. Such an approach allows generating the plasma efficiently, without debris, providing a high flux of EUV and SXR photons. In this review, we present the development and optimization of desktop imaging systems: a EUV and an SXR full field microscope, allowing to achieve a sub-50 nm spatial resolution with short exposure time and an SXR contact microscope, capable to resolve internal structures in a thin layer of sensitive photoresist. Details about the source, as well as imaging results for biological applications, will be presented and discussed.
Collapse
|
37
|
Ku S, Messaoudi C, Guyomar C, Kervrann C, Chrétien D. Determination of Microtubule Lattice Parameters from Cryo-electron Microscope Images Using TubuleJ. Bio Protoc 2020; 10:e3814. [PMID: 33659467 DOI: 10.21769/bioprotoc.3814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/20/2020] [Accepted: 10/14/2020] [Indexed: 11/02/2022] Open
Abstract
The α-β tubulin heterodimer undergoes subtle conformational changes during microtubule assembly. These can be modulated by external factors, whose effects on microtubule structure can be characterized on 2D views obtained by cryo-electron microscopy. Analysis of microtubule images is facilitated if they are straight enough to interpret and filter their image Fourier transform, which provide useful information concerning the arrangement of tubulin molecules inside the microtubule lattice. Here, we describe the use of the TubuleJ software to straighten microtubules and determine their lattice parameters. Basic 3D reconstructions can be performed to evaluate the relevance of these parameters. This approach can be used to analyze the effects of nucleotide analogues, drugs or MAPs on microtubule structure, or to select microtubule images prior to high-resolution 3D reconstructions.
Collapse
Affiliation(s)
- Siou Ku
- Univ Rennes, CNRS, IGDR (Institut de genetique et developpement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Cédric Messaoudi
- Institut Curie, PSL Research University, CNRS UMS 2016, F-91401 Orsay, France.,Université Paris-Saclay, INSERM US43, F-91401 Orsay, France
| | - Charlotte Guyomar
- Univ Rennes, CNRS, IGDR (Institut de genetique et developpement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Charles Kervrann
- Inria-Centre de Rennes Bretagne Atlantique, Campus Universitaire de Beaulieu, 35042 Rennes, France
| | - Denis Chrétien
- Univ Rennes, CNRS, IGDR (Institut de genetique et developpement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
38
|
Tallarek U, Hochstrasser J, Ziegler F, Huang X, Kübel C, Buchmeiser MR. Olefin Ring‐closing Metathesis under Spatial Confinement: Morphology−Transport Relationships. ChemCatChem 2020. [DOI: 10.1002/cctc.202001495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ulrich Tallarek
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35032 Marburg Germany
| | - Janika Hochstrasser
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35032 Marburg Germany
| | - Felix Ziegler
- Institute of Polymer Chemistry Universität Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Xiaohui Huang
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christian Kübel
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Department of Materials and Earth Sciences Technische Universität Darmstadt Alarich-Weiss-Strasse 2 D-64287 Darmstadt Germany
| | - Michael R. Buchmeiser
- Institute of Polymer Chemistry Universität Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
39
|
Bykowski M, Mazur R, Buszewicz D, Szach J, Mostowska A, Kowalewska Ł. Spatial Nano-Morphology of the Prolamellar Body in Etiolated Arabidopsis thaliana Plants With Disturbed Pigment and Polyprenol Composition. Front Cell Dev Biol 2020; 8:586628. [PMID: 33117813 PMCID: PMC7578251 DOI: 10.3389/fcell.2020.586628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
The prolamellar body (PLB) is a periodic bicontinuous membrane structure based on tubular tetrahedral units. PLBs are present in plant etioplasts and, upon illumination, directly transform into the lamellar thylakoid networks within chloroplasts. Efficient tubular-lamellar rearrangement and later formation of the photosynthetically active thylakoid membranes are crucial steps in the development of plant autotrophy. PLB membranes are mainly composed of galactolipids, carotenoids, and protochlorophyllide (Pchlide), the chlorophyll precursor, bound in a complex with NADPH and Pchlide oxidoreductase. Although the PLB structure has been studied for over 50 years, the direct role of particular membrane components in the formation of the PLB paracrystalline network remains elusive. Moreover, despite the numerous literature data regarding the PLB geometry, their reliable comparative analysis is complicated due to variable experimental conditions. Therefore, we performed comprehensive ultrastructural and low-temperature fluorescence analysis of wild type Arabidopsis thaliana (Arabidopsis) seedlings grown in different conditions typical for studies on etiolated seedlings. We established that the addition of sucrose to the growing media significantly affected the size and compactness of the PLB. The etiolation period was also an important factor influencing the PLB structural parameters and the ratio of free to complex-bound Pchlide. Thus, a reliable PLB structural and spectral analysis requires particular attention to the applied experimental conditions. We investigated the influence of the pigment and polyprenol components of the etioplast membranes on the formation of the PLB spatial structure. The PLB 3D structure in several Arabidopsis mutants (ccr1-1, lut5-1, szl1-1npq1-2, aba1-6, pif1, cpt7) with disturbed levels of particular pigments and polyprenols using electron tomography technique was studied. We found that the PLB nano-morphology was mainly affected in the pif1 and aba1-6 mutants. An increased level of Pchlide (pif1) resulted in the substantial shift of the structural balance between outer and inner PLB water channels and overall PLB compactness compared to wild type plants. The decrease in the relative content of β-branch xanthophylls in aba1-6 plants was manifested by local disturbances in the paracrystalline structure of the PLB network. Therefore, proper levels of particular etioplast pigments are essential for the formation of stable and regular PLB structure.
Collapse
Affiliation(s)
- Michał Bykowski
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Szach
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Baaziz W, Valette S, Gay A, Hirlimann C, Ersen O. A New Methodology for Quantifying the Surface Crystallography of Particles from their Tomographic Reconstruction: Application to Pd Nanoparticles Embedded in a Mesoporous Silica Shell. ChemCatChem 2020. [DOI: 10.1002/cctc.202000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43 67034 Strasbourg cedex 2 France
| | - Sébastien Valette
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS) UMR 5220 – INSERM U1206, Université Lyon 1 – INSA Lyon – Université Jean Monnet Saint-Etienne 7 Avenue Jean Capelle 69100 Villeurbanne France
| | - Anne‐Sophie Gay
- IFP Energies Nouvelles (IFPEN) Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
| | - Charles Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43 67034 Strasbourg cedex 2 France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43 67034 Strasbourg cedex 2 France
| |
Collapse
|
41
|
Gritti F, Hochstrasser J, Svidrytski A, Hlushkou D, Tallarek U. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography. J Chromatogr A 2020; 1620:460991. [DOI: 10.1016/j.chroma.2020.460991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
|
42
|
Hochstrasser J, Svidrytski A, Höltzel A, Priamushko T, Kleitz F, Wang W, Kübel C, Tallarek U. Morphology-transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. Phys Chem Chem Phys 2020; 22:11314-11326. [PMID: 32406894 DOI: 10.1039/d0cp01861a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative morphology-transport relationships are derived for ordered mesoporous silicas through direct numerical simulation of hindered diffusion in realistic geometrical models of the pore space obtained from physical reconstruction by electron tomography. We monitor accessible porosity and effective diffusion coefficients resulting from steric and hydrodynamic interactions between passive tracers and the pore space confinement as a function of λ = dtracer/dmeso (ratio of tracer diameter to mean mesopore diameter) in SBA-15 (dmeso = 9.1 nm) and KIT-6 (dmeso = 10.5 nm) silica samples. For λ = 0, the pointlike tracers reproduce the true diffusive tortuosities. For 0 ≤λ < 0.5, the derived hindrance factor quantifies the extent to which diffusion of finite-size tracers through the materials is hindered compared with free diffusion in the bulk liquid. The hindrance factor connects the transport properties of the ordered silicas to their mesopore space morphologies and enables quantitative comparison with random mesoporous silicas. Key feature of the ordered silicas is a narrow, symmetric mesopore size distribution (∼10% relative standard deviation), which engenders a sharper decline of the accessible-porosity window with increasing λ than observed for random silicas with their wide, asymmetric mesopore size distributions. As support structures, ordered mesoporous silicas should offer benefits for applications where spatial confinement effects and molecular size-selectivity are of prime importance. On the other hand, random mesoporous silicas enable higher diffusivities for λ > 0.3, because the larger pores carry most of the diffusive flux and keep pathways open when smaller pores have closed off.
Collapse
Affiliation(s)
- Janika Hochstrasser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Batista ATF, Baaziz W, Taleb AL, Chaniot J, Moreaud M, Legens C, Aguilar-Tapia A, Proux O, Hazemann JL, Diehl F, Chizallet C, Gay AS, Ersen O, Raybaud P. Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on γ-Alumina. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ana T. F. Batista
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 67034 Strasbourg, France
| | - Anne-Lise Taleb
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Johan Chaniot
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
- Université de Lyon, Université Jean Monnet de Saint-Etienne, CNRS UMR 5516, Laboratoire Hubert Curien, F-42000 Saint Etienne, France
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
- Centre for Mathematical Morphology, MINES ParisTech, 77305 Fontainebleau, France
| | - Christèle Legens
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | | | - Olivier Proux
- OSUG, UMS 832 CNRS-Université Grenoble Alpes, F-38041 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | - Fabrice Diehl
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Anne-Sophie Gay
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 67034 Strasbourg, France
| | - Pascal Raybaud
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|
44
|
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS NANO 2020; 14:2248-2264. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Virginia Wycisk
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Katharina Achazi
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Sergey Kapishnikov
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Ana Joaquina Pérez-Berná
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Antje Cossmer
- Division 1.1 - Inorganic Trace Analysis , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Helge Ewers
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Chemistry and Biochemisty, Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Thielallee 63 , 14195 Berlin , Germany
| | - Matthias Ballauff
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - James G McNally
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| |
Collapse
|
45
|
Vasan R, Rowan MP, Lee CT, Johnson GR, Rangamani P, Holst M. Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations. FRONTIERS IN PHYSICS 2020; 7:247. [PMID: 36188416 PMCID: PMC9521042 DOI: 10.3389/fphy.2019.00247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this perspective, we examine three key aspects of an end-to-end pipeline for realistic cellular simulations: reconstruction and segmentation of cellular structures; generation of cellular structures; and mesh generation, simulation, and data analysis. We highlight some of the relevant prior work in these distinct but overlapping areas, with a particular emphasis on current use of machine learning technologies, as well as on future opportunities.
Collapse
Affiliation(s)
- Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Meagan P. Rowan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | | | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Michael Holst
- Department of Mathematics, University of California San Diego, La Jolla, CA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
46
|
Sakina F, Muñoz-Ocaña JM, Bouziane A, Lopez-Haro M, Baker RT. Synthesis of mesoporous ceria using metal- and halogen-free ordered mesoporous carbon as a hard template. NANOSCALE ADVANCES 2019; 1:4772-4782. [PMID: 36133143 PMCID: PMC9418743 DOI: 10.1039/c9na00482c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 06/16/2023]
Abstract
Ordered mesoporous cerias were synthesised by employing metal- and halogen-free ordered mesoporous carbons (OMCs) as the hard templates in a 'nanocasting' procedure. TEM, small angle (SA) and wide angle (WA) XRD, and N2 physisorption analyses were used to characterise the templates, intermediates and ceria products and electron tomography (STEM-HAADF) was used to explore the 3D morphology of the ceria nanostructures grown within the carbon templates. This allowed the relationships between the structures of the OMC templates and the products to be considered in detail as two parameters were varied. These were: the method of impregnation of the ceria precursor; and the temperature of calcination of the OMC template. Of the four impregnation methods tested, the solid-liquid method was found to be the most successful. This gave a high quality product with the highest yield of uniform mesopores, and crystalline nanorods of ceria arrayed in clear long-range order, as viewed by TEM and determined in SA and WAXRD. The specific surface area and pore volume exhibited by this sample were 111 m2 g-1 and 0.39 cm3 g-1, respectively. 3D electron tomography reconstructions revealed the presence of a network of ordered, nanoscale, rod-like structures interlinked in a complex fashion. The effect of calcination temperature of the template on uptake of the ceria precursor during impregnation was studied by calcining OMCs at temperatures from 350 to 800 °C and using these as hard templates for the nanocasting of ceria. Of these, the carbon template calcined at 400 °C gave the highest quality product.
Collapse
Affiliation(s)
- Farzeen Sakina
- EaStChem School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK +44 (0)1334 463899
| | - Juan Manuel Muñoz-Ocaña
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz Campus Rio San Pedro, Puerto Real Cádiz 11510 Spain
| | - Ainuona Bouziane
- Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz Campus Rio San Pedro, Puerto Real Cádiz 11510 Spain
| | - Miguel Lopez-Haro
- Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz Campus Rio San Pedro, Puerto Real Cádiz 11510 Spain
| | - Richard T Baker
- EaStChem School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK +44 (0)1334 463899
| |
Collapse
|
47
|
Tsoulos TV, Atta S, Lagos MJ, Beetz M, Batson PE, Tsilomelekis G, Fabris L. Colloidal plasmonic nanostar antennas with wide range resonance tunability. NANOSCALE 2019; 11:18662-18671. [PMID: 31584591 DOI: 10.1039/c9nr06533d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags, phototherapeutic agents, and hot electron-based photocatalytic platforms. Despite having emerged as the cornerstone among plasmonic nanoparticles with respect to resonant strength and tunability, some well-known limitations have hampered their technological implementation. Herein we tackle these recognized intrinsic weaknesses, which stem from the complex, and thus computationally untreatable morphology and the limited sample monodispersity, by proposing a novel 6-spike nanostar, which we have computationally studied and synthetically realized, as the epitome of 3D plasmonic nanoantenna with wide range plasmonic tunability. Our concerted computational and experimental effort shows that these nanostars combine the unique advantages of nanostructures fabricated from the top-down and those synthesized from the bottom-up, showcasing a unique plasmonic response that remains largely unaltered on going from the single particle to the ensemble. Furthermore, they display multiple, well-separated, narrow resonances, the most intense of which extends in space much farther than that observed before for any plasmonic mode localized around a colloidal nanostructure. Importantly, the unique close correlation between morphology and plasmonic response leads the resonant modes of these particles to be tunable between 600 and 2000 nm, a unique feature that could find relevance in cutting edge technological applications.
Collapse
Affiliation(s)
- Ted V Tsoulos
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| | - Supriya Atta
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Maureen J Lagos
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Michael Beetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians Universität München, 81377 Munich, Germany
| | - Philip E Batson
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA. and Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - George Tsilomelekis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Couzon N, Roiban L, Chassagneux F, Bois L, Brioude A, Maillard M. Electroactive Area from Porous Oxide Films Loaded with Silver Nanoparticles: Electrochemical and Electron Tomography Observations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37270-37278. [PMID: 31523946 DOI: 10.1021/acsami.9b11581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical studies of nanomaterial-based electrodes have been widely developed for catalyst and energy-harvesting applications. The evolution of these electrodes over time and their efficiency have been extensively studied and analyzed in order to optimize their performance. However, the electrochemical responses of electrodes are rarely studied in terms of the position of the active species within these electrodes. In this paper, we highlight that the spatial location of silver nanoparticles (NPs) embedded inside semiconductive porous films, TiO2 or Fe2O3, is crucial for the electrochemical response. In fact, by using cycling voltammetry and electron tomography experiments, we show the existence of an "electroactive area", corresponding to a reduced thickness of the sample in close vicinity to a fluorine-doped tin oxide substrate where most of the electrochemical responses originate. Our results demonstrate that, for a film thickness of several hundred nanometers, only less than 30 nm close to the substrate responds electrochemically. However, cyclic voltammetry empties the electroactive area of silver NPs. Therefore, application of chronoamperometry coupled to irradiation allowed regeneration of this area thanks to an increased diffusion of silver species. In this paper, we also show the significant diffusion of silver species within the film during electrochemical experiments, a phenomenon even increased by irradiation. These results are therefore an important step that shows the importance of the localization of active species within a porous film and help in understanding and increasing the durability of nanomaterial-based electrodes.
Collapse
Affiliation(s)
- Nelly Couzon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Lucian Roiban
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon I, MATEIS, UMR5510 CNRS , 7 Avenue Jean Capelle , 69100 Villeurbanne , France
| | - Fernand Chassagneux
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Laurence Bois
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Arnaud Brioude
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Mathieu Maillard
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| |
Collapse
|
49
|
The effect of anodizing potential and annealing conditions on the morphology, composition and photoelectrochemical activity of porous anodic tin oxide films. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Mazur R, Mostowska A, Szach J, Gieczewska K, Wójtowicz J, Bednarska K, Garstka M, Kowalewska Ł. Galactolipid deficiency disturbs spatial arrangement of the thylakoid network in Arabidopsis thaliana plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4689-4704. [PMID: 31087066 DOI: 10.1093/jxb/erz219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast thylakoid network is a dynamic structure which, through possible rearrangements, plays a crucial role in regulation of photosynthesis. Although the importance of the main components of the thylakoid membrane matrix, galactolipids, in the formation of the network of internal plastid membrane was found before, the structural role of monogalactosyldiacylglycerol (MGDG) and digalactosylidacylglycerol (DGDG) is still largely unknown. We elucidated detailed structural modifications of the thylakoid membrane system in Arabidopsis thaliana MGDG- and DGDG-deficient mutants. An altered MGDG/DGDG ratio was structurally reflected by formation of smaller grana, local changes in grana stacking repeat distance, and significant changes in the spatial organization of the thylakoid network compared with wild-type plants. The decrease of the MGDG level impaired the formation of the typical helical grana structure and resulted in a 'helical-dichotomic' arrangement. DGDG deficiency did not affect spatial grana organization but changed the shape of the thylakoid membrane network in situ from lens like into a flattened shape. Such structural disturbances were accompanied by altered composition of carotenoid and chlorophyll-protein complexes, which eventually led to the decreased photosynthetic efficiency of MGDG- and DGDG-deficient plants.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Joanna Szach
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Katarzyna Bednarska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa, Warsaw, Poland
| |
Collapse
|