1
|
Huang QM, Zhuo YQ, Duan ZX, Long YL, Wang JN, Zhang ZH, Fan SY, Huang YM, Deng KY, Xin HB. Long-term hypoxic atmosphere enhances the stemness, immunoregulatory functions, and therapeutic application of human umbilical cord mesenchymal stem cells. Bone Joint Res 2024; 13:763-777. [PMID: 39662502 PMCID: PMC11634399 DOI: 10.1302/2046-3758.1312.bjr-2024-0136.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Aims Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. Methods In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II. Results We observed that long-term hypoxic culture surpassed normoxic atmosphere during hUC-MSCs culture in respect of promoting proliferation, anti-tumorigenicity, maintaining normal karyotype and stemness, inhibiting senescence, and improving immunoregulatory function and the role of anti-apoptosis in chondrocytes. Furthermore, we demonstrated that the transplantation of long-term hypoxic hUC-MSCs (Hy-MSCs) had a better therapeutic effect on OA rats compared with the hUC-MSCs cultured in the normoxic atmosphere (No-MSCs) in terms of the improved function and swelling recovery in the joints, and substantially inhibited the secretion of pro-inflammatory factors, which effectively alleviated cartilage damage by reducing the expression of matrix metallopeptidase 13 (MMP-13). Conclusion Our results demonstrate that Hy-MSCs possess immense potential for clinical applications via promoting stemness maintenance and enhancing immunoregulatory function.
Collapse
Affiliation(s)
- Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - You-Qiong Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhong-Xin Duan
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, China
| | - Yin-lin Long
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jia-Nan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Zhou-hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Shao-Yong Fan
- Sports Medicine Department, Hongdu Traditional Chinese Medicine Hospital, Nanchang, China
| | - Yong-Ming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Guo R, Wu Z, Liu A, Li Q, Han T, Shen C. Hypoxic preconditioning-engineered bone marrow mesenchymal stem cell-derived exosomes promote muscle satellite cell activation and skeletal muscle regeneration via the miR-210-3p/KLF7 mechanism. Int Immunopharmacol 2024; 142:113143. [PMID: 39306891 DOI: 10.1016/j.intimp.2024.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
Sarcopenia is a gradual and widespread decline in muscle mass and function in skeletal muscle, leading to significant implications for individuals and society. Currently, there is a lack of effective treatment methods for sarcopenia. Muscle satellite cells(SCs) play a crucial role in the occurrence and development of sarcopenia, and their proliferation and differentiation abilities are closely related to the progression of disease. This study evaluated the effects of exosomes derived from hypoxic preconditioning bone marrow mesenchymal stem cells (BMSCs) on the proliferation of SCs and skeletal muscle regeneration. We found that the capacity for the proliferation and differentiation of SCs in elderly rats was notably diminished, leading us to create a sarcopenia model in elderly rats. By separating and extracting exosomes from BMSCs treated with normoxic (N-Exos) and hypoxic (H-Exos) conditions, in vivo and in vitro studies showed that both N-Exos and H-Exos can regulate the proliferation and differentiation of SCs in elderly rats, and promote skeletal muscle regeneration and functional recovery. The beneficial effects of H-Exos were also more significant than those of the N-Exos group. In vitro studies demonstrated that H-Exos could influence the expression of the KLF7 gene and protein in SCs by delivering miR-210-3P. This, in turn, impacted the phosphorylation of the PI3K/AKT signaling pathway and contributed to the function of SCs. H-Exos stimulated SCs and promoted skeletal muscle regeneration during sarcopenia by delivering miR-210-3P to target the KLF7/PI3K/AKT signaling pathway. This may serve as a possible treatment option for sarcopenia.
Collapse
Affiliation(s)
- Ruocheng Guo
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Ao Liu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Qiuwei Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
3
|
Burzi IS, Parchi PD, Barachini S, Pardini E, Sardo Infirri G, Montali M, Petrini I. Hypoxia Promotes the Stemness of Mesangiogenic Progenitor Cells and Prevents Osteogenic but not Angiogenic Differentiation. Stem Cell Rev Rep 2024; 20:1830-1842. [PMID: 38914791 PMCID: PMC11457687 DOI: 10.1007/s12015-024-10749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
The stem cell niche in the bone marrow is a hypoxic environment, where the low oxygen tension preserves the pluripotency of stem cells. We have identified mesangiogenic progenitor cells (MPC) exhibiting angiogenic and mesenchymal differentiation capabilities in vitro. The effect of hypoxia on MPC has not been previously explored. In this study, MPCs were isolated from volunteers' bone marrow and cultured under both normoxic and hypoxic conditions (3% O2). MPCs maintained their characteristic morphology and surface marker expression (CD18 + CD31 + CD90-CD73-) under hypoxia. However, hypoxic conditions led to reduced MPC proliferation in primary cultures and hindered their differentiation into mesenchymal stem cells (MSCs) upon exposure to differentiative medium. First passage MSCs derived from MPC appeared unaffected by hypoxia, exhibiting no discernible differences in proliferative potential or cell cycle. However, hypoxia impeded the subsequent osteogenic differentiation of MSCs, as evidenced by decreased hydroxyapatite deposition. Conversely, hypoxia did not impact the angiogenic differentiation potential of MPCs, as demonstrated by spheroid-based assays revealing comparable angiogenic sprouting and tube-like formation capabilities under both hypoxic and normoxic conditions. These findings indicate that hypoxia preserves the stemness phenotype of MPCs, inhibits their differentiation into MSCs, and hampers their osteogenic maturation while leaving their angiogenic potential unaffected. Our study sheds light on the intricate effects of hypoxia on bone marrow-derived MPCs and their differentiation pathways.
Collapse
Affiliation(s)
- Irene Sofia Burzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Paolo Domenico Parchi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy
| | - Eleonora Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56125, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 2, 56125, Pisa, Italy.
| |
Collapse
|
4
|
Refeyton A, Labat V, Mombled M, Vlaski-Lafarge M, Ivanovic Z. Functional single-cell analyses of mesenchymal stromal cell proliferation and differentiation using ALDH-activity and mitochondrial ROS content. Cytotherapy 2024; 26:813-824. [PMID: 38661612 DOI: 10.1016/j.jcyt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
BASKGROUND Previous research has unveiled a stem cell-like transcriptome enrichment in the aldehyde dehydrogenase-expressing (ALDHhigh) mesenchymal stromal cell (MStroC) fraction. However, considering the heterogeneity of MStroCs, with only a fraction of them presenting bona fide stem cells (MSCs), the actual potency of ALDH as an MSC-specific selection marker remains an issue. METHODS To address this, the proliferative and differentiation potential of individual ALDHhigh and ALDHlow MStroCs incubated at low oxygen concentrations, estimated to mimic stem cell niches (0.1% O2), were assayed using single-cell clonal analysis, compared to standard conditions (20% O2). RESULTS We confirm that a high proliferative capacity and multi-potent MSCs are enriched in the ALDHhigh MStroC population, especially when cells are cultured at 0.1% O2. Measurements of reduced/oxidized glutathione and mitochondrial superoxide anions with MitoSoX (MSX) indicate that this advantage induced by low oxygen is related to a decrease in the oxidative and reactive oxygen species (ROS) levels in the stem cell metabolic setup. However, ALDH expression is neither specific nor exclusive to MSCs, as high proliferative capacity and multi-potent cells were also found in the ALDHlow fraction. Furthermore, single-cell assays performed after combined cell sorting based on ALDH and MSX showed that the MSXlow MStroC population is enriched in stem/progenitor cells in all conditions, irrespective of ALDH expression or culture oxygen concentration. Importantly, the ALDHhighMSXlow MStroC fraction exposed to 0.1% O2 was almost exclusively composed of genuine MSCs. In contrast, neither progenitors nor stem cells (with a complete absence of colony-forming ability) were detected in the MSXhigh fraction, which exclusively resides in the ALDHlow MStroC population. CONCLUSION Our study reveals that ALDH expression is not exclusively associated with MSCs. However, cell sorting using combined ALDH expression and ROS content can be utilized to exclude MStroCs lacking stem/progenitor cell properties.
Collapse
Affiliation(s)
- Alice Refeyton
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France
| | - Véronique Labat
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France
| | - Margaux Mombled
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Genethon, Évry-Courcouronne, France; Inserm, Évry-Courcouronne, France
| | - Marija Vlaski-Lafarge
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France.
| |
Collapse
|
5
|
Zhang Y, Liu L, Wang X, Shen X, Pei Y, Liu Y. Bone marrow mesenchymal stem cells suppress activated CD4 + T cells proliferation through TGF-beta and IL10 dependent of autophagy in pathological hypoxic microenvironment. Biochem Biophys Res Commun 2024; 702:149591. [PMID: 38340652 DOI: 10.1016/j.bbrc.2024.149591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) mediated immunomodulation by secreting certain bioactive cytokines has been recognized as a promising approach for disease treatment. However, microenvironmental oxygen tension affect immunomodulatory functions and activate autophagy in BMSCs. The mechanism governing BMSCs immunomodulation in hypoxia hasn't been expounded clearly. The aim of this study is to investigate the function of pathological hypoxia on immunomodulatory properties of bone marrow mesenchymal stem cells and its possible mechanism. METHODS BMSCs were cultured in either normoxia (21 % oxygen) or hypoxia (0.1 % oxygen) for 24 h, then electron microscopy (EM) and immunofluorescence staining were used to detect the activation of autophagy. Besides autophagy-related markers were monitored by Western blotting. Atg5 siRNA induced autophagic inhibition. Additional, gene expression levels of Real-time fluorescence quantitative PCR and Western blot were used to detect BMSCs related cytokines. Both the proliferation and apoptosis of CD4+ T cell in co-culture were detected by flow cytometry. Exogenous anti-IL-10 antibody and anti-TGF-β1 antibody were used in co-cultured BMSCs-CM and CD4+ T cells, which enabled us to assess how autophagy affected BMSCs-mediated CD4+ T cell proliferation in low oxygen tension. RESULT Compared with normal BMSCs, Hypo-BMSCs enhanced the immunosuppressive effect of BMSCs on CD4+ T cell proliferation, while si-atg5 weakened the inhibition of Hypo-BMSCs. Furthermore, exogenous anti-TGF-β1 antibody and the addition of anti-TGF-β1 antibody reversed the immunosuppressive ability of Hypo-BMSCs. CONCLUSIONS Our findings reveal that BMSCs possess significant immunosuppression on CD4+T cell through IL-10 and TGF-β1 dependent of autophagy in hypoxic microenvironment.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China; Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Liang Liu
- Orthopedic Center, Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Xiaobo Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuezhen Shen
- Orthopedic Center, Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Yilun Pei
- Orthopedic Center, Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Dawoud MM, Elkady N, Abdelmoneum RA, Ghonaimy AS, Allam DM. The Role of P4HB and SOX4 in Prostatic Carcinoma and Their Clinical Significance. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:225-235. [PMID: 39118797 PMCID: PMC11304455 DOI: 10.30699/ijp.2024.2017851.3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 08/10/2024]
Abstract
Background & Objective Prostatic adenocarcinoma (PAC) is the second most prevalent cancer and the fifth leading cause of cancer death in men worldwide. Additionally, pathologists may face problems diagnosing it reliably and may need more than one marker. Thus, the search for new immunohistochemical biomarkers becomes mandatory. This study aims to investigate P4HB and SOX4 expression in prostatic carcinoma, their possible roles, and clinical significance. Methods This retrospective study included fifty-six cases of PAC and an equal number of nodular prostatic hyperplasia (NPH) that were immunohistochemically stained by P4HB and SOX4. The results of expression were compared between PAC and NPH cases, followed by correlations with available clinicopathological parameters. Results There was a highly significant difference between PAC and NPH regarding P4HB and SOX4 expressions in favor of PAC (both P<0.001). ROC curve analysis of the diagnostic power of P4HB showed 79% sensitivity, 76% specificity, and an area under the ROC curve of 0.845, while SOX4 showed (89%, 100%, and 0.946, respectively). P4HB and SOX4 expression showed a direct correlation (P<0.001). Moreover, the H-score of SOX4 expression showed a significant inverse relation with ERG expression (P=0.047). There was a significant correlation between P4HB and SOX4 and Gleason score (P<0.001). Moreover, P4HB expression was significantly associated with lymphovascular invasion (P=0.013), while SOX4 expression showed a significant association with perineural invasion (P=0.05). Conclusion SOX4 and P4HB seem to have diagnostic and prognostic value in PAC. While there was a direct correlation between SOX4 and P4HB, an inverse relationship between SOX4 and ERG was detected.
Collapse
Affiliation(s)
- Marwa Mohammed Dawoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Noha Elkady
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Rasha Adel Abdelmoneum
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Ahmed S Ghonaimy
- Department of Urology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Dina Mohamed Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
7
|
Minoretti P, Sáez ASS, Martín ÁFG, Riera ML, Serrano MG, Emanuele E. Skin biophysical parameters and serum dermokine levels in airline pilots: a comparative study with office workers. Postepy Dermatol Alergol 2023; 40:757-761. [PMID: 38282882 PMCID: PMC10809828 DOI: 10.5114/ada.2023.132262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Concerns are growing in the aviation industry about occupational skin diseases like malignant melanoma (MM) among airline pilots (APs), due to the unique working environment that exposes them to various skin stressors. Aim To compare five skin biophysical parameters in a group of 40 male APs, each matched in terms of age and service tenure (minimum of 5 years) with a control group of 40 male office workers (OWs). Considering the potential role of dermokine (DMKN) in skin barrier dysfunction and the pathogenesis of MM, we further analyzed the serum levels of this molecule and correlated them with the measured skin parameters. Material and methods Stratum corneum skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and melanin index (MI) were quantified by non-invasive instruments in the cheek region. Serum DMKN levels were measured using a commercially available enzyme-linked immunosorbent assay kit. Results Compared with OWs, the skin of APs exhibited a decrease in hydration levels in the stratum corneum, coinciding with a higher TEWL. However, there was no significant variance in sebum content between the groups. MI was notably higher in APs than in OWs, as was EI. In APs, serum DMKN levels were independently associated with MI (β = 0.56, p < 0.05). Conclusions We found a significant link between the profession of an airline pilot and changes in skin biophysical parameters. Further research into the interplay between serum DMKN levels and the risk of MM in APs is warranted.
Collapse
Affiliation(s)
- Piercarlo Minoretti
- Studio Minoretti, Oggiono, Italy
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Andrés S. Santiago Sáez
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ángel F. García Martín
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Miryam Liańo Riera
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Manuel Gómez Serrano
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
8
|
Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H, Heidari F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol 2023; 11:1245872. [PMID: 37900276 PMCID: PMC10603205 DOI: 10.3389/fcell.2023.1245872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/31/2023] Open
Abstract
The innate and adaptive immune systems rely on the skin for various purposes, serving as the primary defense against harmful environmental elements. However, skin lesions may lead to undesirable consequences such as scarring, accelerated skin aging, functional impairment, and psychological effects over time. The rising popularity of mesenchymal stromal cells (MSCs) for skin wound treatment is due to their potential as a promising therapeutic option. MSCs offer advantages in terms of differentiation capacity, accessibility, low immunogenicity, and their central role in natural wound-healing processes. To accelerate the healing process, MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue development. Oxygen plays a critical role in the formation and expansion of mammalian cells. The term "normoxia" refers to the usual oxygen levels, defined at 20.21 percent oxygen (160 mm of mercury), while "hypoxia" denotes oxygen levels of 2.91 percent or less. Notably, the ambient O2 content (20%) in the lab significantly differs from the 2%-9% O2 concentration in their natural habitat. Oxygen regulation of hypoxia-inducible factor-1 (HIF-1) mediated expression of multiple genes plays a crucial role in sustaining stem cell destiny concerning proliferation and differentiation. This study aims to elucidate the impact of normoxia and hypoxia on MSC biology and draw comparisons between the two. The findings suggest that expanding MSC-based regenerative treatments in a hypoxic environment can enhance their growth kinetics, genetic stability, and expression of chemokine receptors, ultimately increasing their effectiveness.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
9
|
Ma W, Wu Z, Maghsoudloo M, Ijaz I, Dehghan Shasaltaneh M, Zhang Y, Weng Q, Fu J, Imani S, Wen QL. Dermokine mutations contribute to epithelial-mesenchymal transition and advanced melanoma through ERK/MAPK pathways. PLoS One 2023; 18:e0285806. [PMID: 37432950 PMCID: PMC10335698 DOI: 10.1371/journal.pone.0285806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/29/2023] [Indexed: 07/13/2023] Open
Abstract
To discover vulnerabilities associated with dermokine (DMKN) as a new trigger of the epithelial-mesenchymal transition (EMT) -driven melanoma, we undertook a genome-wide genetic screening using transgenic. Here, we showed that DMKN expression could be constitutively increased in human malignant melanoma (MM) and that this correlates with poor overall survival in melanoma patients, especially in BRAF-mutated MM samples. Furthermore, in vitro, knockdown of DMKN inhibited the cell proliferation, migration, invasion, and apoptosis of MM cancer cells by the activation of ERK/MAPK signaling pathways and regulator of STAT3 in downstream molecular. By interrogating the in vitro melanoma dataset and characterization of advanced melanoma samples, we found that DMKN downregulated the EMT-like transcriptional program by disrupting EMT cortical actin, increasing the expression of epithelial markers, and decreasing the expression of mesenchymal markers. In addition, whole exome sequencing was presented with p.E69D and p.V91A DMKN mutations as a novel somatic loss of function mutations in those patients. Moreover, our purposeful proof-of-principle modeled the interaction of ERK with p.E69D and p.V91A DMKN mutations in the ERK-MAPK kinas signaling that may be naturally associated with triggering the EMT during melanomagenesis. Altogether, these findings provide preclinical evidence for the role of DMKN in shaping the EMT-like melanoma phenotype and introduced DMKN as a new exceptional responder for personalized MM therapy.
Collapse
Affiliation(s)
- Wenqiong Ma
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zexiu Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mazaher Maghsoudloo
- Faculty of Advanced Science and Technology, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- The Center of Research and Training for Occupational Technical Safety and Health, Tehran, Iran
| | - Iqra Ijaz
- Sichuan Provincial Center for Gynecological and Breast Diseases, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Yuqin Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiao Weng
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qing Lian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Niculescu VF. The evolutionary cancer genome theory and its reasoning. GENETICS IN MEDICINE OPEN 2023; 1:100809. [PMID: 39669240 PMCID: PMC11613669 DOI: 10.1016/j.gimo.2023.100809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 12/14/2024]
Abstract
Oncogenesis and the origin of cancer are still not fully understood despite the efforts of histologists, pathologists, and molecular geneticists to determine how cancer develops. Previous embryogenic and gene- and genome-based hypotheses have attempted to solve this enigma. Each of them has its kernel of truth, but a unifying, universally accepted theory is still missing. Fortunately, a unicellular cell system has been found in amoebozoans, which exhibits all the basic characteristics of the cancer life cycle and demonstrates that cancer is not a biological aberration but a consequence of molecular and cellular evolution. The impressive systemic similarities between the life cycle of Entamoeba and the life cycle of cancer demonstrate the deep homology of cancer to the amoebozoans, metazoans, and fungi ancestor that branched into the clades of Amoebozoa, Metazoa, and Fungi (AMF) and shows that the roots of oncogenesis and tumorigenesis lie in an ancient gene network, which is conserved in the genome of all metazoans and humans. This evolutionary gene network theory of cancer (evolutionary cancer genome theory) integrates previous findings and hypotheses and is one step further along the road to a universal cancer cell theory. It supports genetic cancer medicine and recommends soma-to-germ transitions-referred to as epithelial-to-mesenchymal transition in cancer-and cancer germline as potential targets. According to the evolutionary cancer genome theory, cancer exploits an ancient gene network module of premetazoan origin.
Collapse
|
11
|
Che L, Zhu C, Huang L, Xu H, Ma X, Luo X, He H, Zhang T, Wang N. Ginsenoside Rg2 Promotes the Proliferation and Stemness Maintenance of Porcine Mesenchymal Stem Cells through Autophagy Induction. Foods 2023; 12:foods12051075. [PMID: 36900592 PMCID: PMC10000966 DOI: 10.3390/foods12051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be used as a cell source for cultivated meat production due to their adipose differentiation potential, but MSCs lose their stemness and undergo replicative senescence during expansion in vitro. Autophagy is an important mechanism for senescent cells to remove toxic substances. However, the role of autophagy in the replicative senescence of MSCs is controversial. Here, we evaluated the changes in autophagy in porcine MSCs (pMSCs) during long-term culture in vitro and identified a natural phytochemical, ginsenoside Rg2, that could stimulate pMSC proliferation. First, some typical senescence characteristics were observed in aged pMSCs, including decreased EdU-positive cells, increased senescence-associated beta-galactosidase activity, declined stemness-associated marker OCT4 expression, and enhanced P53 expression. Importantly, autophagic flux was impaired in aged pMSCs, suggesting deficient substrate clearance in aged pMSCs. Rg2 was found to promote the proliferation of pMSCs using MTT assay and EdU staining. In addition, Rg2 inhibited D-galactose-induced senescence and oxidative stress in pMSCs. Rg2 increased autophagic activity via the AMPK signaling pathway. Furthermore, long-term culture with Rg2 promoted the proliferation, inhibited the replicative senescence, and maintained the stemness of pMSCs. These results provide a potential strategy for porcine MSC expansion in vitro.
Collapse
Affiliation(s)
- Lina Che
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Caixia Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Lei Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hui Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xinmiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
- Correspondence: ; Tel.: +86-2260-6020-99; Fax: +86-2260-6022-98
| |
Collapse
|
12
|
Pouikli A, Maleszewska M, Parekh S, Yang M, Nikopoulou C, Bonfiglio JJ, Mylonas C, Sandoval T, Schumacher A, Hinze Y, Matic I, Frezza C, Tessarz P. Hypoxia promotes osteogenesis by facilitating acetyl-CoA-mediated mitochondrial-nuclear communication. EMBO J 2022; 41:e111239. [PMID: 36278281 PMCID: PMC9713713 DOI: 10.15252/embj.2022111239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.
Collapse
Affiliation(s)
- Andromachi Pouikli
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| | - Monika Maleszewska
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
CareDx, Inc.San FranciscoCAUSA
| | - Swati Parekh
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Ming Yang
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| | - Chrysa Nikopoulou
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Juan Jose Bonfiglio
- Research Group “Proteomics and ADP‐Ribosylation Signaling”Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
Roche Pharma Research and Early DevelopmentMunichGermany
| | - Constantine Mylonas
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
Novartis Institutes for BioMedical ResearchCambridgeMAUSA
| | - Tonantzi Sandoval
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
| | - Anna‐Lena Schumacher
- FACS & Imaging Core FacilityMax Planck Institute for Biology of AgeingCologneGermany
| | - Yvonne Hinze
- Metabolomics Core Facility, Max Planck Institute for Biology of AgeingCologneGermany
| | - Ivan Matic
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
- Research Group “Proteomics and ADP‐Ribosylation Signaling”Max Planck Institute for Biology of AgeingCologneGermany
| | - Christian Frezza
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| | - Peter Tessarz
- Max Planck Research Group “Chromatin and Ageing”Max Planck Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Stress Responses in Ageing‐Associated Diseases (CECAD)CologneGermany
| |
Collapse
|
13
|
Hazra S, Li R, Vamesu BM, Jilling T, Ballinger SW, Ambalavanan N, Kandasamy J. Mesenchymal stem cell bioenergetics and apoptosis are associated with risk for bronchopulmonary dysplasia in extremely low birth weight infants. Sci Rep 2022; 12:17484. [PMID: 36261501 PMCID: PMC9582007 DOI: 10.1038/s41598-022-22478-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023] Open
Abstract
Oxidant stress contributes significantly to the pathogenesis of bronchopulmonary dysplasia (BPD) in extremely low birth weight (ELBW) infants. Mitochondrial function regulates oxidant stress responses as well as pluripotency and regenerative ability of mesenchymal stem cells (MSCs) which are critical mediators of lung development. This study was conducted to test whether differences in endogenous MSC mitochondrial bioenergetics, proliferation and survival are associated with BPD risk in ELBW infants. Umbilical cord-derived MSCs of ELBW infants who later died or developed moderate/severe BPD had lower oxygen consumption and aconitase activity but higher extracellular acidification-indicative of mitochondrial dysfunction and increased oxidant stress-when compared to MSCs from infants who survived with no/mild BPD. Hyperoxia-exposed MSCs from infants who died or developed moderate/severe BPD also had lower PINK1 expression but higher TOM20 expression and numbers of mitochondria/cell, indicating that these cells had decreased mitophagy. Finally, these MSCs were also noted to proliferate at lower rates but undergo more apoptosis in cell cultures when compared to MSCs from infants who survived with no/mild BPD. These results indicate that mitochondrial bioenergetic dysfunction and mitophagy deficit induced by oxidant stress may lead to depletion of the endogenous MSC pool and subsequent disruption of lung development in ELBW infants at increased risk for BPD.
Collapse
Affiliation(s)
- Snehashis Hazra
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1700 6th Avenue South, Birmingham, AL, 35233, USA
| | - Rui Li
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1700 6th Avenue South, Birmingham, AL, 35233, USA
| | - Bianca M Vamesu
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1700 6th Avenue South, Birmingham, AL, 35233, USA
| | - Tamas Jilling
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1700 6th Avenue South, Birmingham, AL, 35233, USA
| | - Scott W Ballinger
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1700 6th Avenue South, Birmingham, AL, 35233, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Jegen Kandasamy
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1700 6th Avenue South, Birmingham, AL, 35233, USA.
| |
Collapse
|
14
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J 2022; 36:e22520. [PMID: 36065633 DOI: 10.1096/fj.202200329rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) are core regulators of the hypoxia response. HIF signaling is activated in the local physiological and pathological hypoxic environment, acting on downstream target genes to synthesize the corresponding proteins and regulate the hypoxic stress response. HIFs belong to the hypoxia-activated transcription family and contain two heterodimeric transcription factors, HIF-α and HIF-β. Under hypoxia, the dimer formed by HIF-α binding to HIF-β translocates into the nucleus and binds to the hypoxia response element (HRE) to induce transcription of a series of genes. HIF-1α plays an important role in innate bone development and acquired bone regeneration. HIF-1α promotes bone regeneration mainly through the following two pathways: (1) By regulating angiogenesis-osteoblast coupling to promote bone regeneration; and (2) by inducing metabolic reprogramming in osteoblasts, promoting cellular anaerobic glycolysis, ensuring the energy supply of osteoblasts under hypoxic conditions, and further promoting bone regeneration and repair. This article reviews recent basic research on HIF-1α and its role in promoting osteogenesis, discusses the possible molecular mechanisms, introduces the hypoxia-independent role of HIF-1α and reviews the application prospects of HIF-1α in tissue engineering.
Collapse
Affiliation(s)
- Junming Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoning Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baohua Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
16
|
Study on βTCP/P(3HB) Scaffolds-Physicochemical Properties and Biological Performance in Low Oxygen Concentration. Int J Mol Sci 2022; 23:ijms231911587. [PMID: 36232889 PMCID: PMC9569667 DOI: 10.3390/ijms231911587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The search for new materials for bone regenerative purposes is still ongoing. Therefore, we present a series of newly constructed composites based on β tricalcium phosphate (βTCP) and poly(3-hydroxybutyrate) bacteria-derived biopolymer (P(3HB)) in the form of 3D scaffolds with different pore sizes. To improve the polymer attachment to the βTCP surface, the etching of ceramic sinters, using citric acid, was applied. As expected, pre-treatment led to the increase in surface roughness and the creation of micropores facilitating polymer adhesion. In this way, the durability and compressive strength of the ceramic-polymer scaffolds were enhanced. It was confirmed that P(3HB) degrades to 3-hydroxybutyric acid, which broadens applications of developed materials in bone tissue engineering as this compound can potentially nourish surrounding tissues and reduce osteoporosis. Moreover, to the best of our knowledge, it is one of the first studies where the impact of βTCP/P(3HB) scaffolds on mesenchymal stem cells (MSCs), cultured in lowered (5%) oxygen concentration, was assessed. It was decided to use a 5% oxygen concentration in the culture to mimic the conditions that would be found in damaged bone in a living organism during regeneration. Scaffolds enabled cell migration and sufficient flow of the culture medium, ensuring high cell viability. Furthermore, in composites with etched βTCP, the MSCs adhesion was facilitated by hydrophilic ceramic protrusions which reduced hydrophobicity. The developed materials are potential candidates for bone tissue regeneration. Nevertheless, to confirm this hypothesis, in vivo studies should be performed.
Collapse
|
17
|
Hoang VT, Nguyen HP, Nguyen VN, Hoang DM, Nguyen TST, Nguyen Thanh L. “Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial”. Front Cell Dev Biol 2022; 10:956274. [PMID: 36247008 PMCID: PMC9554747 DOI: 10.3389/fcell.2022.956274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Hormone imbalance and female sexual dysfunction immensely affect perimenopausal female health and quality of life. Hormone therapy can improve female hormone deficiency, but long-term use increases the risk of cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel effective treatment to achieve long-term improvement in female general and sexual health. This study reviewed factors affecting syndromes of female sexual dysfunction and its current therapy options. Next, the authors introduced research data on mesenchymal stromal cell/mesenchymal stem cell (MSC) therapy to treat female reproductive diseases, including Asherman’s syndrome, premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy. Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs) have emerged as the most potent therapeutic cell therapy due to their abundant presence in the stromal vascular fraction of fat, high proliferation capacity, superior immunomodulation, and strong secretion profile of regenerative factors. Potential mechanisms and side effects of ASCs for the treatment of female sexual dysfunction will be discussed. Our phase I clinical trial has demonstrated the safety of autologous ASC therapy for women and men with sexual hormone deficiency. We designed the first randomized controlled crossover phase II trial to investigate the safety and efficacy of autologous ASCs to treat female sexual dysfunction in perimenopausal women. Here, we introduce the rationale, trial design, and methodology of this clinical study. Because aging and metabolic diseases negatively impact the bioactivity of adult-derived MSCs, this study will use ASCs cultured in physiological oxygen tension (5%) to cope with these challenges. A total of 130 perimenopausal women with sexual dysfunction will receive two intravenous infusions of autologous ASCs in a crossover design. The aims of the proposed study are to evaluate 1) the safety of cell infusion based on the frequency and severity of adverse events/serious adverse events during infusion and follow-up and 2) improvements in female sexual function assessed by the Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and the levels of follicle-stimulating hormone (FSH) and estradiol. In addition, cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression in T cells and the inflammatory cytokine profile, will also be characterized. Overall, this study will provide essential insights into the effects and potential mechanisms of ASC therapy for perimenopausal women with sexual dysfunction. It also suggests direction and design strategies for future research.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Viet Nhan Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
| | - Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Tan-Sinh Thi Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
- *Correspondence: Liem Nguyen Thanh,
| |
Collapse
|
18
|
Eiro N, Fraile M, González-Jubete A, González LO, Vizoso FJ. Mesenchymal (Stem) Stromal Cells Based as New Therapeutic Alternative in Inflammatory Bowel Disease: Basic Mechanisms, Experimental and Clinical Evidence, and Challenges. Int J Mol Sci 2022; 23:ijms23168905. [PMID: 36012170 PMCID: PMC9408403 DOI: 10.3390/ijms23168905] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are an example of chronic diseases affecting 40% of the population, which involved tissue damage and an inflammatory process not satisfactorily controlled with current therapies. Data suggest that mesenchymal stem cells (MSC) may be a therapeutic option for these processes, and especially for IBD, due to their multifactorial approaches such as anti-inflammatory, anti-oxidative stress, anti-apoptotic, anti-fibrotic, regenerative, angiogenic, anti-tumor, or anti-microbial. However, MSC therapy is associated with important limitations as safety issues, handling difficulties for therapeutic purposes, and high economic cost. MSC-derived secretome products (conditioned medium or extracellular vesicles) are therefore a therapeutic option in IBD as they exhibit similar effects to their parent cells and avoid the issues of cell therapy. In this review, we proposed further studies to choose the ideal tissue source of MSC to treat IBD, the implementation of new standardized production strategies, quality controls and the integration of other technologies, such as hydrogels, which may improve the therapeutic effects of derived-MSC secretome products in IBD.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-98-5320050 (ext. 84216) (N.E.); Fax: +34-98-531570 (N.E.)
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
| | | | - Luis O. González
- Department of Anatomical Pathology, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
- Department of Surgery, Fundación Hospital de Jove, Av. de Eduardo Castro, 161, 33290 Gijón, Spain
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-98-5320050 (ext. 84216) (N.E.); Fax: +34-98-531570 (N.E.)
| |
Collapse
|
19
|
Jia W, He W, Wang G, Goldman J, Zhao F. Enhancement of Lymphangiogenesis by Human Mesenchymal Stem Cell Sheet. Adv Healthc Mater 2022; 11:e2200464. [PMID: 35678079 DOI: 10.1002/adhm.202200464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Preparation of human mesenchymal stem cell (hMSC) suspension for lymphedema treatment relies on conventional enzymatic digestion methods, which severely disrupts cell-cell and cell-extracellular matrix (ECM) connections, and drastically impairs cell retention and engraftment after transplantation. The objective of the present study is to evaluate the ability of hMSC-secreted ECM to augment lymphangiogenesis by using an in vitro coculturing model of hMSC sheets with lymphatic endothelial cells (LECs) and an in vivo mouse tail lymphedema model. Results demonstrate that the hMSC-secreted ECM augments the formation of lymphatic capillary-like structure by a factor of 1.2-3.6 relative to the hMSC control group, by serving as a prolymphangiogenic growth factor reservoir and facilitating cell regenerative activities. hMSC-derived ECM enhances MMP-2 mediated matrix remodeling, increases the synthesis of collagen IV and laminin, and promotes lymphatic microvessel-like structure formation. The injection of rat MSC sheet fragments into a mouse tail lymphedema model confirms the benefits of the hMSC-derived ECM by stimulating lymphangiogenesis and wound closure.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| |
Collapse
|
20
|
Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World J Stem Cells 2022; 14:453-472. [PMID: 36157530 PMCID: PMC9350626 DOI: 10.4252/wjsc.v14.i7.453] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The use of mesenchymal stem-cells (MSC) in cell therapy has received considerable attention because of their properties. These properties include high expansion and differentiation in vitro, low immunogenicity, and modulation of biological processes, such as inflammation, angiogenesis and hematopoiesis. Curiously, the regenerative effect of MSC is partly due to their paracrine activity. This has prompted numerous studies, to investigate the therapeutic potential of their secretome in general, and specifically their extracellular vesicles (EV). The latter contain proteins, lipids, nucleic acids, and other metabolites, which can cause physiological changes when released into recipient cells. Interestingly, contents of EV can be modulated by preconditioning MSC under different culture conditions. Among them, exposure to hypoxia stands out; these cells respond by activating hypoxia-inducible factor (HIF) at low O2 concentrations. HIF has direct and indirect pleiotropic effects, modulating expression of hundreds of genes involved in processes such as inflammation, migration, proliferation, differentiation, angiogenesis, metabolism, and cell apoptosis. Expression of these genes is reflected in the contents of secreted EV. Interestingly, numerous studies show that MSC-derived EV conditioned under hypoxia have a higher regenerative capacity than those obtained under normoxia. In this review, we show the implications of hypoxia responses in relation to tissue regeneration. In addition, hypoxia preconditioning of MSC is being evaluated as a very attractive strategy for isolation of EV, with a high potential for clinical use in regenerative medicine that can be applied to different pathologies.
Collapse
Affiliation(s)
- Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
21
|
Xie M, Zhang Y, Xiong Z, Hines S, Shangjiang Y, Clark KL, Tan S, Alexander PG, Lin H. Generation of hyaline-like cartilage tissue from human mesenchymal stromal cells within the self-generated extracellular matrix. Acta Biomater 2022; 149:150-166. [PMID: 35779770 DOI: 10.1016/j.actbio.2022.06.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Chondrocytic hypertrophy, a phenotype not observed in healthy hyaline cartilage, is often concomitant with the chondrogenesis of human mesenchymal stromal cells (hMSCs). This undesired feature represents one of the major obstacles in applying hMSCs for hyaline cartilage repair. Previously, we developed a method to induce hMSC chondrogenesis within self-generated extracellular matrix (mECM), which formed a cartilage tissue with a lower hypertrophy level than conventional hMSC pellets. In this study, we aimed to test the utility of hypoxia and insulin-like growth factor-1 (IGF1) on further reducing hypertrophy. MSC-mECM constructs were first subjected to chondrogenic culture in normoxic or hypoxic (5%) conditions. The results indicated that hMSC-derived cartilage formed in hypoxic culture displayed a significantly reduced hypertrophy level than normoxic culture. However, hMSC chondrogenesis was also suppressed under hypoxic culture, partially due to the reduced activity of the IGF1 pathway. IGF1 was then supplemented in the chondrogenic medium, which promoted remarkable hMSC chondrogenesis under hypoxic culture. Interestingly, the IGF1-enhanced hMSC chondrogenesis, under hypoxic culture, was not at the expense of promoting significantly increased hypertrophy. Lastly, the cartilage tissues created by hMSCs with different conditions were implanted into osteochondral defect in rats. The results indicated that the tissue formed under hypoxic condition and induced with IGF1-supplemented chondrogenic medium displayed the best reparative results with minimal hypertrophy level. Our results demonstrate a new method to generate hyaline cartilage-like tissue from hMSCs without using exogenous scaffolds, which further pave the road for the clinical application of hMSC-based cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: In this study, hyaline cartilage-like tissues were generated from human mesenchymal stromal cells (hMSCs), which displayed robust capacity in repairing the osteochondral defect in rats. In particular, the extracellular matrix created by hMSCs was used, so no exogenous scaffold was needed. Through a series of optimization, we defined that hypoxic culture and supplementation of insulin-like growth factor-1 (IGF-1) in chondrogenic medium resulted in robust cartilage formation with minimal hypertrophy. We also demonstrated that hypoxic culture suppressed chondrogenesis and hypertrophy through modulating the Wnt/β-catenin and IGF1 pathways, respectively. Our results demonstrate a new method to generate hyaline cartilage-like tissue from hMSCs without using exogenous scaffolds, which will further pave the road for the clinical application of hMSCs-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingsheng Xie
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiqian Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA
| | - Yingzi Shangjiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA
| | - Karen L Clark
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA
| | - Susheng Tan
- Department of Electrical and Computer Engineering, Swanson School of Engineering, and Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Peter G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 217, Pittsburgh, PA 15217, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15219, USA.
| |
Collapse
|
22
|
Insight in Hypoxia-Mimetic Agents as Potential Tools for Mesenchymal Stem Cell Priming in Regenerative Medicine. Stem Cells Int 2022; 2022:8775591. [PMID: 35378955 PMCID: PMC8976669 DOI: 10.1155/2022/8775591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-mimetic agents are new potential tools in MSC priming instead of hypoxia incubators or chambers. Several pharmaceutical/chemical hypoxia-mimetic agents can be used to induce hypoxia in the tissues: deferoxamine (DFO), dimethyloxaloylglycine (DMOG), 2,4-dinitrophenol (DNP), cobalt chloride (CoCl2), and isoflurane (ISO). Hypoxia-mimetic agents can increase cell proliferation, preserve or enhance differentiation potential, increase migration potential, and induce neovascularization in a concentration- and stem cell source-dependent manner. Moreover, hypoxia-mimetic agents may increase HIF-1α, changing the metabolism and enhancing glycolysis like hypoxia. So, there is clear evidence that treatment with hypoxia-mimetic agents is beneficial in regenerative medicine, preserving stem cell capacities. These agents are not studied so wildly as hypoxia but, considering the low cost and ease of use, are believed to find application as pretreatment of many diseases such as ischemic heart disease and myocardial fibrosis and promote cardiac and cartilage regeneration. The knowledge of MSC priming is critical in evaluating safety procedures and use in clinics. In this review, similarities and differences between hypoxia and hypoxia-mimetic agents in terms of their therapeutic efficiency are considered in detail. The advantages, challenges, and future perspectives in MSC priming with hypoxia mimetic agents are also discussed.
Collapse
|
23
|
Herger N, Bermudez-Lekerika P, Farshad M, Albers CE, Distler O, Gantenbein B, Dudli S. Should Degenerated Intervertebral Discs of Patients with Modic Type 1 Changes Be Treated with Mesenchymal Stem Cells? Int J Mol Sci 2022; 23:ijms23052721. [PMID: 35269863 PMCID: PMC8910866 DOI: 10.3390/ijms23052721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) has been among the leading causes of disability for the past 30 years. This highlights the need for improvement in LBP management. Many clinical trials focus on developing treatments against degenerative disc disease (DDD). The multifactorial etiology of DDD and associated risk factors lead to a heterogeneous patient population. It comes as no surprise that the outcomes of clinical trials on intradiscal mesenchymal stem cell (MSC) injections for patients with DDD are inconsistent. Intradiscal MSC injections have demonstrated substantial pain relief and significant disability-related improvements, yet they have failed to regenerate the intervertebral disc (IVD). Increasing evidence suggests that the positive outcomes in clinical trials might be attributed to the immunomodulatory potential of MSCs rather than to their regenerative properties. Therefore, patient stratification for inflammatory DDD phenotypes may (i) better serve the mechanisms of action of MSCs and (ii) increase the treatment effect. Modic type 1 changes—pathologic inflammatory, fibrotic changes in the vertebral bone marrow—are frequently observed adjacent to degenerated IVDs in chronic LBP patients and represent a clinically distinct subpopulation of patients with DDD. This review discusses whether degenerated IVDs of patients with Modic type 1 changes should be treated with an intradiscal MSC injection.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, CH-8008 Zurich, Switzerland;
| | - Christoph E. Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Oliver Distler
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Stefan Dudli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
- Correspondence: ; Tel.: +41-4451-07511
| |
Collapse
|
24
|
Chang X, Zhou F, Bu L, Wang N, Deng J, Wang S. Semaphorin 3A attenuates the hypoxia suppression of osteogenesis in periodontal ligament stem cells. J Periodontal Res 2022; 57:425-433. [PMID: 35037251 DOI: 10.1111/jre.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE AND BACKGROUND The occurrence and development of periodontitis are closely related to hypoxia of the periodontal microenvironment. Periodontal ligament stem cells (PDLSCs) are considered to have potential to regenerate periodontal tissues. Semaphorin 3A (Sema3A) plays an essential role in promoting osteogenesis. However, the effect of Sema3A on osteogenesis of PDLSCs under hypoxia remains unclear. The aim of this study was to investigate the effect of Sema3A on osteogenesis of PDLSCs under hypoxia. METHODS Isolated PDLSCs were identified using flow cytometry. Adipogenic differentiation potential was identified by oil red O staining. Osteogenesis was measured using Alizarin Red S staining and ALP staining. Intracellular hypoxia was induced using cobalt chloride (CoCl2 ). The expression level of hypoxia-inducible factor-1α (HIF-1α) was detected via ELISA. Expression of osteogenic markers and Sema3A was analyzed using western blot and real-time PCR. RESULTS The proliferation and osteogenesis of PDLSCs were markedly inhibited with increased concentrations of CoCl2 . Under the treatment with a low concentration of CoCl2 , expression of related osteogenic markers and Sema3A decreased in a time-dependent manner. ARS and ALP staining results also showed that osteogenic calcification decreased under hypoxia. Apigenin, an inhibitor of HIF-1α, effectively up-regulated expression of Sema3A and osteogenic markers with CoCl2 treatment. Moreover, exogenous Sema3A significantly increased the expression of osteogenesis-related markers and mineralization of PDLSCs according to ALP and ARS staining with CoCl2 treatment. CONCLUSIONS Hypoxia markedly inhibited osteogenesis of PDLSCs. Sema3A explicitly attenuated the hypoxia suppression of osteogenesis in PDLSCs.
Collapse
Affiliation(s)
- Xiaochi Chang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Fengyi Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Lingxue Bu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Wang
- School of Stomatology of Qingdao University, Qingdao, China.,Department of Stomatology, Hospital of the PLA Navy, Qingdao, China
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| |
Collapse
|
25
|
Preciado S, Sirerol-Piquer MS, Muntión S, Osugui L, Martí-Chillón GJ, Navarro-Bailón A, Sepúlveda P, Sánchez-Guijo F. Co-administration of human MSC overexpressing HIF-1α increases human CD34 + cell engraftment in vivo. Stem Cell Res Ther 2021; 12:601. [PMID: 34876206 PMCID: PMC8650423 DOI: 10.1186/s13287-021-02669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo.
Methods Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. Results We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). Conclusions Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02669-z.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mª Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, University of Valencia, Burjassot, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), University of Valencia, Burjassot, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Gerardo J Martí-Chillón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,RETIC TerCel, ISCIII, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.
| |
Collapse
|
26
|
Hu X, Wang Z, Wang Q, Chen K, Han Q, Bai S, Du J, Chen W. Molecular classification reveals the diverse genetic and prognostic features of gastric cancer: A multi-omics consensus ensemble clustering. Biomed Pharmacother 2021; 144:112222. [PMID: 34607103 DOI: 10.1016/j.biopha.2021.112222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Globally, gastric cancer (GC) is the fifth most common tumor. It is necessary to identify novel molecular subtypes to guide patient selection for specific target therapeutic benefits. METHODS Multi-omics data, including transcriptomics RNA-sequencing (mRNA, LncRNA, miRNA), DNA methylation, and gene mutations in the TCGA-STAD cohort were used for the clustering. Ten classical clustering algorithms were executed to recognize patients with different molecular features using the "MOVICS" package in R. The activated signaling pathways were evaluated using the single-sample gene set enrichment analysis. The differential distribution of gene mutations, copy number alterations, and tumor mutation burden was compared, and potential responses to immunotherapy and chemotherapy were also assessed. RESULTS Two molecular subtypes (CS1 and CS2) were recognized by ten clustering algorithms with consensus ensembles. Patients in the CS1 group had a shorter average overall survival time (28.5 vs. 68.9 months, P = 0.016), and progression-free survival (19.0 vs. 63.9 months, P = 0.008) as compared to those in the CS2 group. Extracellular associated biological process activation was higher in the CS1 group, while the CS2 group displayed the enhanced activation of cell cycle-associated pathways. Significantly higher total mutation numbers and neoantigens were observed in the CS2 group, along with specific mutations in TTN, MUC16, and ARID1A. Higher infiltration of immunocytes was also observed in the CS2 group, reflective of the potential immunotherapeutic benefits. Moreover, the CS2 group could also respond to 5-fluorouracil, cisplatin, and paclitaxel. The similar diversity in clinical outcomes between CS1 and CS2 groups was successfully validated in the external cohorts, GSE62254, GSE26253, GSE15459, and GSE84437. CONCLUSION The findings provided novel insights into the GC subtypes through integrative analysis of five -omics data by ten clustering algorithms. These could provide potential clinical therapeutic targets based on the specific molecular features.
Collapse
Affiliation(s)
- Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, PR China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, PR China
| | - Qing Wang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province 515000, PR China
| | - Ke Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, PR China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, PR China
| | - Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong Province 518172, PR China
| | - Juan Du
- Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong Province 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong Province 518172, PR China.
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, PR China.
| |
Collapse
|
27
|
Li Y, Wei Y, Gu L. Effect of hypoxia on proliferation and glucocorticoid resistance of T-cell acute lymphoblastic leukaemia. ACTA ACUST UNITED AC 2021; 26:775-784. [PMID: 34565306 DOI: 10.1080/16078454.2021.1980689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Hypoxia is emerging as a key factor in the biology of leukaemia. Here, we want to clarify the impact of hypoxia on the proliferation of T-cell acute lymphoblastic leukaemia (T-ALL) cells and the response to chemotherapy. METHODS T-ALL cells were cultured under normoxic and hypoxic conditions. MTT assay and trypan blue staining technique was used to detect cell viability and proliferation. In vitro sensitivity to glucocorticoid was assessed by IC50. CDI was used to analyze the combined effects of glucocorticoid and hypoxia. Flow cytometry was performed to detect apoptosis and cell cycle. Western blotting was performed to detect the protein expression associated with hypoxia. RESULTS Hypoxia of 1% O2 resulted different impact on cell viability and proliferation to different T-ALL cell lines, reduced, unaffected or induced, according to their different metabolic phenotype. All the cell lines showed an induction of key enzymes in glycolysis pathway following hypoxia exposure, although different effector proteins were induced in different cell lines. In GC-sensitive cells, acute hypoxia made no effect on the IC50 of dexamethasone, but chronic hypoxia may improve cell survival and induce GC resistance. However, acute hypoxia induced a higher GC resistance in GC-resistant T-ALL cells and showed an antagonistic effect while combined with high-dose dexamethasone. CONCLUSION T-ALL cells adapt well to hypoxic environment. Hypoxia may influence leukaemic cell proliferation. More importantly, hypoxia contributes to GC resistance in T-ALL blasts, especially in refractory/relapsed T-ALL.
Collapse
Affiliation(s)
- Yuanyuan Li
- Laboratory of Hematology/Oncology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.,Joint laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, People's Republic of China.,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
| | - Yi Wei
- West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ling Gu
- Laboratory of Hematology/Oncology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.,Joint laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, People's Republic of China.,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Park SM, An JH, Lee JH, Kim KB, Chae HK, Oh YI, Song WJ, Youn HY. Extracellular vesicles derived from DFO-preconditioned canine AT-MSCs reprogram macrophages into M2 phase. PLoS One 2021; 16:e0254657. [PMID: 34310627 PMCID: PMC8312919 DOI: 10.1371/journal.pone.0254657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. To improve the secretion of anti-inflammatory factors from MSCs, preconditioning with hypoxia or hypoxia-mimetic agents has been attempted and the molecular changes in preconditioned MSC-derived EVs explored. In this study, we aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. Furthermore, we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs. Results In MSCDFO, accumulation of HIF-1α were increased and production of COX-2 were activated. Also, Inside of EVDFO were enriched with COX-2 protein. To evaluate the transferring effect of EVs to macrophage, the canine macrophage cell line, DH82, was treated with EVs after lipopolysaccharide (LPS) stimulation. Polarization changes of DH82 were evaluated with quantitative real-time PCR and immunofluorescence analyses. When LPS-induced DH82 was treated with EVDFO, phosphorylation of signal transducer and transcription3 (p-STAT3), which is one of key factor of inducing M2 phase, expression was increased in DH82. Furthermore, treated with EVDFO in LPS-induced DH82, the expression of M1 markers were reduced, otherwise, M2 surface markers were enhanced. Comparing with EVDFO and EVnon. Conclusion DFO preconditioning in MSCs activated the HIF-1α/COX-2 signaling pathway; Transferring COX-2 through EVDFO could effectively reprogram macrophage into M2 phase by promoting the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Su-Min Park
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Bo Kim
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (WJS); (HYY)
| | - Hwa-Young Youn
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (WJS); (HYY)
| |
Collapse
|
29
|
Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:ijms22157850. [PMID: 34360616 PMCID: PMC8346146 DOI: 10.3390/ijms22157850] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Collapse
|
30
|
Neurogenic and Neuroprotective Potential of Stem/Stromal Cells Derived from Adipose Tissue. Cells 2021; 10:cells10061475. [PMID: 34208414 PMCID: PMC8231154 DOI: 10.3390/cells10061475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells’ neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen–glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.
Collapse
|
31
|
Zayed M, Iohara K, Watanabe H, Ishikawa M, Tominaga M, Nakashima M. Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy. Stem Cell Res Ther 2021; 12:302. [PMID: 34051821 PMCID: PMC8164249 DOI: 10.1186/s13287-021-02240-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) have been developed as a potential source of mesenchymal stem cells (MSCs) for regeneration of dental pulp and other tissues. However, further strategies to isolate highly functional DPSCs beyond the colony-forming methods are required. We have demonstrated the safety and efficacy of DPSCs isolated by G-CSF-induced mobilization and cultured under normoxia (mobilized DPSCs, MDPSCs) for pulp regeneration. The device for isolation of MDPSCs, however, is not cost-effective and requires a prolonged cell culture period. It is well known that MSCs cultured under hypoxic-preconditions improved MSC proliferation activity and stemness. Therefore, in this investigation, we attempted to improve the clinical utility of DPSCs by hypoxia-preconditioned DPSCs (hpDPSCs) compared with MDPSCs to improve the potential clinical utility for pulp regeneration in endodontic dentistry. Methods Colony-forming DPSCs were isolated and preconditioned with hypoxia in a stable closed cultured system and compared with MDPSCs isolated from the individual dog teeth. We examined the proliferation rate, migration potential, anti-apoptotic activity, and gene expression of the stem cell markers and angiogenic/neurotrophic factors. Trophic effects of the conditioned medium (CM) were also evaluated. In addition, the expression of immunomodulatory molecules upon stimulation with IFN-γ was investigated. The pulp regenerative potential and transplantation safety of hpDPSCs were further assessed in pulpectomized teeth in dogs by histological and immunohistochemical analyses and by chemistry of the blood and urine tests. Results hpDPSCs demonstrated higher proliferation rate and expression of a major regulator of oxygen homeostasis, HIF-1α, and a stem cell marker, CXCR-4. The direct migratory activity of hpDPSCs in response to G-CSF was significantly higher than MDPSCs. The CM of hpDPSCs stimulated neurite extension. However, there were no changes in angiogenic, migration, and anti-apoptotic activities compared with the CM of MDPSCs. The expression of immunomodulatory gene, PTGE was significantly upregulated by IFN gamma in hpDPSCs compared with MDPSCs. However, no difference in nitric oxide was observed. The regenerated pulp tissue was quantitatively and qualitatively similar in hpDPSC transplants compared with MDPSC transplants in dog teeth. There was no evidence of toxicity or adverse events of the hpDPSC transplantation. Conclusions These results demonstrated that the efficacy of hpDPSCs for pulp regeneration was identical, although hpDPSCs improved stem cell properties compared to MDPSCs, suggesting their potential clinical utility for pulp regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02240-w.
Collapse
Affiliation(s)
- Mohammed Zayed
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.,Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Koichiro Iohara
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Mami Ishikawa
- Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan
| | - Michiyo Tominaga
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Misako Nakashima
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan. .,Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan.
| |
Collapse
|
32
|
Pissarra MF, Torello CO, Saad STO, Lazarini M. Evaluation of different protocols for culturing mesenchymal stem cells derived from murine bone marrow. Hematol Transfus Cell Ther 2021; 44:560-566. [PMID: 34034994 PMCID: PMC9605884 DOI: 10.1016/j.htct.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Introduction Culturing bone marrow mesenchymal stem cells (BM-MSCs) is a key point in different fields of research, including tissue engineering and regenerative medicine and studies of the bone marrow microenvironment. However, isolating and expanding murine BM-MSCs in vitro has challenged researchers due to the low purity and yield of obtained cells. In this study, we aimed to evaluate five different protocols to culture murine BM-MSCs in vitro. Methods All protocols were based on the adhesion capacity of BM-MSCs to the tissue culture plastic surface and varied in the types of plate, culture media, serum, additional supplementation and initial cell density. Flow cytometry analysis was used to investigate lineage purity after expansion. Results The expression of CD45 and CD11b was detected in the cultures generated according to all protocols, indicating low purity with the presence of hematopoietic cells and macrophages. The cellular growth rate and morphology varied between the cultures performed according to each protocol. Cells cultured according to protocol 5 (8 × 107cells/plate, Roswell Park Memorial Institute (RPMI) culture medium during first passage and then Iscove's Modified Delbecco's Medium (IMDM) culture medium, both supplemented with 9% fetal bovine serum, 9% horse serum, 12µM L-glutamine) presented the best performance, with a satisfactory growth rate and spindle-shape morphology. Conclusion Our results point out that the purity and satisfactory growth rate of murine BM-MSC cultures are not easily achieved and additional approaches must be tested for a proper cell expansion.
Collapse
Affiliation(s)
- Mariana Ferreira Pissarra
- Hematology and Transfusion Medicine Center (Hemocentro UNICAMP), University of Campinas. Campinas, Sao Paulo, Brazil
| | - Cristiane Okuda Torello
- Hematology and Transfusion Medicine Center (Hemocentro UNICAMP), University of Campinas. Campinas, Sao Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center (Hemocentro UNICAMP), University of Campinas. Campinas, Sao Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Transfusion Medicine Center (Hemocentro UNICAMP), University of Campinas. Campinas, Sao Paulo, Brazil; Department of Pharmaceutical Sciences, Federal University of Sao Paulo (UNIFESP). Diadema, Sao Paulo, Brazil.
| |
Collapse
|
33
|
Towards Physiologic Culture Approaches to Improve Standard Cultivation of Mesenchymal Stem Cells. Cells 2021; 10:cells10040886. [PMID: 33924517 PMCID: PMC8069108 DOI: 10.3390/cells10040886] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest for their use in cell-based therapies due to their multipotent differentiation and immunomodulatory capacities. In consequence of limited numbers following their isolation from the donor tissue, MSCs require extensive expansion performed in traditional 2D cell culture setups to reach adequate amounts for therapeutic use. However, prolonged culture of MSCs in vitro has been shown to decrease their differentiation potential and alter their immunomodulatory properties. For that reason, preservation of these physiological characteristics of MSCs throughout their in vitro culture is essential for improving the efficiency of therapeutic and in vitro modeling applications. With this objective in mind, many studies already investigated certain parameters for enhancing current standard MSC culture protocols with regard to the effects of specific culture media components or culture conditions. Although there is a lot of diversity in the final therapeutic uses of the cells, the primary stage of standard isolation and expansion is imperative. Therefore, we want to review on approaches for optimizing standard MSC culture protocols during this essential primary step of in vitro expansion. The reviewed studies investigate and suggest improvements focused on culture media components (amino acids, ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum, and xenogeneic components) as well as culture conditions and processes (hypoxia, cell seeding, and dissociation during passaging), in order to preserve the MSC phenotype and functionality during the primary phase of in vitro culture.
Collapse
|
34
|
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci 2021; 22:ijms22073576. [PMID: 33808241 PMCID: PMC8036553 DOI: 10.3390/ijms22073576] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Collapse
Affiliation(s)
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| |
Collapse
|
35
|
Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med 2021; 6:18. [PMID: 33782415 PMCID: PMC8007731 DOI: 10.1038/s41536-021-00133-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems have been realised and (some) success stories have been witnessed over the years in clinical and commercial arenas, in vitro organogenesis is far from becoming a standard way of care. This limited technology transfer is largely attributed to scalability-associated costs, considering that the development of a borderline 3D implantable device requires very high number of functional cells and prolonged ex vivo culture periods. Herein, we critically discuss advancements and shortfalls of scaffold-free cell-based tissue engineering strategies, along with pioneering concepts that have the potential to transform regenerative and reparative medicine.
Collapse
|
36
|
Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, Domanska-Janik K, Buzanska L, Rozwadowska N. Assessment of the Neuroprotective and Stemness Properties of Human Wharton's Jelly-Derived Mesenchymal Stem Cells under Variable (5% vs. 21%) Aerobic Conditions. Cells 2021; 10:717. [PMID: 33804841 PMCID: PMC8063843 DOI: 10.3390/cells10040717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
To optimise the culture conditions for human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.
Collapse
Affiliation(s)
- Ewelina Tomecka
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Wioletta Lech
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Anna Sarnowska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, 00-867 Warsaw, Poland; (E.T.); (M.M.); (T.O.)
| | - Krystyna Domanska-Janik
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.L.); (M.Z.); (A.S.); (K.D.-J.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| |
Collapse
|
37
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
38
|
Kim SN, Choi B, Lee CJ, Moon JH, Kim MK, Chung E, Song SU. Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells 2021; 14:103-111. [PMID: 33377453 PMCID: PMC7904528 DOI: 10.15283/ijsc20078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have immense therapeutic potential for treating intractable and immune diseases. They also have applications in regenerative medicine in which distinct treatments do not exist. Thus, MSCs are gaining attention as important raw materials in the field of cell therapy. Importantly, the number of MSCs in the bone marrow is limited and they are present only in small quantities. Therefore, mass production of MSCs through long-term culture is necessary to use them in cell therapy. However, MSCs undergo cellular senescence through repeated passages during mass production. In this study, we explored methods to prolong the limited lifetime of MSCs by culturing them with different seeding densities. Methods and Results We observed that in long-term cultures, low-density (LD, 50 cells/cm2) MSCs showed higher population doubling level, leading to greater fold increase, than high-density (HD, 4,000 cells/cm2) MSCs. LD-MSCs suppressed the expression of aging-related genes. We also showed that reactive oxygen species (ROS) were decreased in LD-MSCs compared to that in HD-MSCs. Further, proliferation potential increased when ROS were inhibited in HD-MSCs. Conclusions The results in this study suggest that MSC senescence can be delayed and that life span can be extended by controlling cell density in vitro. These results can be used as important data for the mass production of stem cell therapeutic products.
Collapse
Affiliation(s)
- Si-Na Kim
- SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Byeol Choi
- SCM Lifesciences Co. Ltd., Incheon, Korea
| | | | | | | | | | - Sun Uk Song
- SCM Lifesciences Co. Ltd., Incheon, Korea.,Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
39
|
Pouikli A, Tessarz P. Metabolism and chromatin: A dynamic duo that regulates development and ageing: Elucidating the metabolism-chromatin axis in bone-marrow mesenchymal stem cell fate decisions. Bioessays 2021; 43:e2000273. [PMID: 33629755 DOI: 10.1002/bies.202000273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Bone-marrow mesenchymal stem cell (BM-MSC) proliferation and lineage commitment are under the coordinated control of metabolism and epigenetics; the MSC niche contains low oxygen, which is an important determinant of the cellular metabolic state. In turn, metabolism drives stem cell fate decisions via alterations of the chromatin landscape. Due to the fundamental role of BM-MSCs in the development of adipose tissue, bones and cartilage, age-associated changes in metabolism and the epigenome perturb the balance between stem cell proliferation and differentiation leading to stem cell depletion, fat accumulation and bone-quality related diseases. Therefore, understanding the dynamics of the metabolism-chromatin interplay is crucial for maintaining the stem cell pool and delaying the development and progression of ageing. This review summarizes the current knowledge on the role of metabolism in stem cell identity and highlights the impact of the metabolic inputs on the epigenome, with regards to stemness and pluripotency.
Collapse
Affiliation(s)
- Andromachi Pouikli
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Peter Tessarz
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Stress Responses in ageing-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
40
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
41
|
Das A, Datta P, Chowdhury AR, Barui A. Honey-incorporated nanofibre reduces replicative senescence of umbilical cord-derived mesenchymal stem cells. IET Nanobiotechnol 2021; 14:870-880. [PMID: 33399121 DOI: 10.1049/iet-nbt.2019.0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Umbilical cord-derived mesenchymal stem cells (UCDMSC) are attractive candidates for cell-based regenerative medicine. However, they are susceptible to replicative senescence during repetitive passaging for in-vitro expansion and induced senescence in an oxidative, inflammatory microenvironment in vivo. Aim of this study is to investigate if honey-incorporated matrices can be employed to reduce senescence of UCDMSC. Matrices were prepared by electrospinning solutions of honey with poly-vinyl alcohol (PVA). PVA:honey matrices exhibited free radical scavenging activity. Culture of UCDMSC on PVA:honey matrices showed improvement in cell proliferation compared to pure PVA nanofibres. Expression of vimentin indicated that mesenchymal phenotype is preserved after culturing on these matrices. Further, UCDMSC were serially subcultured and cells of two passages (P2 and P6) were evaluated for reactive oxygen species (ROS) load and senescence parameters. P6 cells showed a higher ROS load and β-galactosidase (β-gal) positive senescent cells compared to P2. However, culturing on PVA:honey substrates significantly reduced both ROS and β-gal markers compared to cells on PVA substrates. Honey contains several antioxidant and anti-inflammatory components, which can reduce the ROS-related senescence. Thus, it is concluded that honey containing nanofibres can be effective substrates for stem cell-based wound healing and regenerative medicine.
Collapse
Affiliation(s)
- Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
42
|
Huang X, Zhou W, Zhang Y. Transcription factor YY1 enhances the stemness of lung cancer cells by stabilizing hypoxia factor HIF-1α under a hypoxic microenvironment. ENVIRONMENTAL TOXICOLOGY 2021; 36:114-122. [PMID: 32881243 DOI: 10.1002/tox.23017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The hypoxic microenvironment can facilitate the tumor progression, and transcription factor YY1 holds promoting effects in various tumors. This work aims to investigate whether YY1 is involved in hypoxia-induced stemness of lung cancer cells. We showed that hypoxic microenvironment induced the expression of HIF-1α and YY1, and the stemness of lung cancer cells, which was attenuated by YY1 knockdown. Additionally, we found that YY1 regulates the hypoxia-induced stemness in a HIF-1α-dependent manner, but independent on p53 expression. Further analysis revealed that YY1 physically interacted with HIF-1α protein and stabilized HIF-1α protein. Our work indicates a novel YY1/HIF-1α axis regulating the stemness of lung cancer cells.
Collapse
Affiliation(s)
- Xianping Huang
- Department of Cardio-Thoracic Surgery, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Weihe Zhou
- Department of Cardio-Thoracic Surgery, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yuefeng Zhang
- Department of Cardio-Thoracic Surgery, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
43
|
Gugjoo MB, Hussain S, Amarpal, Shah RA, Dhama K. Mesenchymal Stem Cell-Mediated Immuno-Modulatory and Anti- Inflammatory Mechanisms in Immune and Allergic Disorders. ACTA ACUST UNITED AC 2020; 14:3-14. [PMID: 32000656 PMCID: PMC7509741 DOI: 10.2174/1872213x14666200130100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
Background: Mesenchymal Stem Cells (MSCs) are present in almost all the tissues of the body and act as the backbone of the internal tissue homeostasis. Among their various characteristic features, immuno-modulatory and/ anti-inflammatory properties play an important role in therapeutics. Objective: The current topic focuses on the characterization and immuno-modulatory and/ anti-inflammatory properties of MSCs. To present and discuss the current status of MSCs immuno-modulatory properties. Methods: Available literature on MSCs properties and patents have been detailed, critically interpreted, and discussed based upon available literature. The main focus has been on their characteristic immuno-modulatory and anti-inflammatory properties though some of the basic characterization markers have also been detailed. The databases searched for the literature include PubMed, Med Line, PubMed Central, Science Direct and a few other scientific databases. Results: MSCs are present in a very limited concentration in the tissues, and as such their culture expansion becomes imperative. MSCs immuno-modulatory and anti-inflammatory roles are achieved through direct cell-cell contact and / by the release of certain factors. Such properties are controlled by micro-environment upon which currently very limited control can be exerted. Besides, further insights in the xeno-protein free culture media as against the fetal bovine serum is required. Conclusion: MSCs have been well-isolated, cultured and characterized from numerous tissues of the body. The majority of the studies have shown MSCs as immuno-compromised with immunomodulatory and / or anti-inflammatory properties except some of the latest studies that have failed to achieve the desired results and thus, demand further research. Further research is required in the area to translate the results into clinical application.
Collapse
Affiliation(s)
- Mudasir B Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST, Shuhama, Srinagar-190006, Jammu and Kashmir, India
| | - Shahid Hussain
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST, Shuhama, Srinagar-190006, Jammu and Kashmir, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Riaz A Shah
- Divison of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST, Shuhama, Srinagar-190006, Jammu and Kashmir, India
| | - Kuldeep Dhama
- Division of Pathology, ICARIndian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| |
Collapse
|
44
|
Wang JP, Liao YT, Wu SH, Chiang ER, Hsu SH, Tseng TC, Hung SC. Mesenchymal stem cells from a hypoxic culture improve nerve regeneration. J Tissue Eng Regen Med 2020; 14:1804-1814. [PMID: 32976700 DOI: 10.1002/term.3136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Repairing the peripheral nerves following a segmental defect injury remains surgically challenging. Because of some disadvantages of nerve grafts, nerve regeneration, such as conduits combined with bone marrow-derived mesenchymal stem cells (BMSCs), may serve as an alternative. BMSCs expand under hypoxic conditions, decrease in senescence, and increase in proliferation and differentiation potential into the bone, fat, and cartilage. The purpose of this study was to investigate whether BMSCs increased the neuronal differentiation potential following expansion under hypoxic conditions. Isolated human BMSCs (hBMSCs) expand under hypoxia or normoxia, and neuronal differentiation proceeds under normoxia. in vitro tests revealed hypoxia culture enhanced the RNA and protein expression of neuronal markers. The electrophysiology of hBMSC-differentiated neuron-like cells was also enhanced by the hypoxia culturing. Our animal model indicated that the potential treatment of hypoxic rat BMSCs (rBMSCs) was better than that of normoxic rBMSCs because the conduit with the hypoxic rBMSCs injection demonstrated the highest recovery rate of gastrocnemius muscle weights. There were more toluidine blue-stained myelinated nerve fibers in the hypoxic rBMSCs group than in the normoxic group. To sum up, BMSCs cultured under hypoxia increased the potential of neuronal differentiation both in vivo and in vitro.
Collapse
Affiliation(s)
- Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Hsien Wu
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Graduate Institute of New Drug Development, Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
45
|
Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells Int 2020; 2020:8898221. [PMID: 33014073 PMCID: PMC7519987 DOI: 10.1155/2020/8898221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
With an increasing focus on the large-scale expansion of mesenchymal stem cells (MSCs) required for clinical applications for the treatment of joint and bone diseases such as osteoarthritis, the optimisation of conditions for in vitro MSC expansion requires careful consideration to maintain native MSC characteristics. Physiological parameters such as oxygen concentration, media constituents, and passage numbers influence the properties of MSCs and may have major impact on their therapeutic potential. Cells grown under hypoxic conditions have been widely documented in clinical use. Culturing MSCs on large scale requires bioreactor culture; however, it is challenging to maintain low oxygen and other physiological parameters over several passages in large bioreactor vessels. The necessity to scale up the production of cells in vitro under normoxia may affect important attributes of MSCs. For these reasons, our study investigated the effects of normoxic and hypoxic culture condition on early- and late-passage adipose-derived MSCs. We examined effect of each condition on the expression of key stem cell marker genes POU5F1, NANOG, and KLF4, as well as differentiation genes RUNX2, COL1A1, SOX9, COL2A1, and PPARG. We found that expression levels of stem cell marker genes and osteogenic and chondrogenic genes were higher in normoxia compared to hypoxia. Furthermore, expression of these genes reduced with passage number, with the exception of PPARG, an adipose differentiation marker, possibly due to the adipose origin of the MSCs. We confirmed by flow cytometry the presence of cell surface markers CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, and CD19 across all conditions. Furthermore, in vitro differentiation confirmed that both early- and late-passage adipose-derived MSCs grown in hypoxia or normoxia could differentiate into chondrogenic and osteogenic cell types. Our results demonstrate that the minimal standard criteria to define MSCs as suitable for laboratory-based and preclinical studies can be maintained in early- or late-passage MSCs cultured in hypoxia or normoxia. Therefore, any of these culture conditions could be used when scaling up MSCs in bioreactors for allogeneic clinical applications or tissue engineering for the treatment of joint and bone diseases such as osteoarthritis.
Collapse
|
46
|
Wilhelm C, Scherzad A, Bregenzer M, Meyer T, Gehrke T, Kleinsasser N, Hagen R, Hackenberg S. Interaction of head and neck squamous cell carcinoma cells and mesenchymal stem cells under hypoxia and normoxia. Oncol Lett 2020; 20:229. [PMID: 32968451 DOI: 10.3892/ol.2020.12092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit strong tropism towards tumor tissue. While MSCs generally surround tumors, they can also infiltrate tumors and thereby influence their proliferation. Interactions between MSCs and tumor cells are usually tested under normoxia, but the majority of solid tumors, including head and neck squamous cell carcinoma (HNSCC), are also characterized by hypoxic areas. Hence, the present study aimed to assess the interaction between MSCs and tumor cells under hypoxic conditions. MSCs were cultivated under normoxia and hypoxia, and conditioned media were used to cultivate the HNSCC cell line FaDu. The cell cycle distribution and viability of MSCs and the proliferation of FaDu cells were analyzed under normoxia and hypoxia, and changes in cytokine levels in the conditioned media were evaluated. No cell cycle changes were observed for MSCs after 24 h of cultivation under hypoxia, but the cell viability had declined. Hypoxia also led to a decrease in the proliferation of FaDu cells; however, FaDu cells proliferated faster after 48 h under hypoxia compared with normoxic conditions. This effect was reversed after incubation under normoxia for 72 h and hypoxia for 72 h. While these changes constituted a trend, these differences were not statistically significant. A cytokine assay showed an increase in interleukin (IL)-6 in the hypoxic medium. Overall, the results indicated that there was an interaction between MSCs and tumor cells. The presence or absence of oxygen seemed to influence the functionality of MSCs and their protumorigenic properties, in which IL-6 was identified as a potential mediator. Since MSCs are a component of the tumor stroma, further in vitro and in vivo studies are needed to investigate this interaction in order to develop novel approaches for tumor therapy.
Collapse
Affiliation(s)
- Christian Wilhelm
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Maximilian Bregenzer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Till Meyer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Thomas Gehrke
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University, A-4020 Linz, Austria
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Julius Maximilian University of Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
47
|
Zidarič T, Milojević M, Vajda J, Vihar B, Maver U. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09253-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci 2020; 21:ijms21176172. [PMID: 32859105 PMCID: PMC7504399 DOI: 10.3390/ijms21176172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Natalia Bryniarska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrzej Kubiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Malgorzata Sekula-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (N.B.); (A.K.); (S.N.); (Z.M.)
- Correspondence: ; Tel.: +48-12-664-61-80
| |
Collapse
|
49
|
Oxidized ATM promotes breast cancer stem cell enrichment through energy metabolism reprogram-mediated acetyl-CoA accumulation. Cell Death Dis 2020; 11:508. [PMID: 32641713 PMCID: PMC7343870 DOI: 10.1038/s41419-020-2714-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cell (CSC) is a challenge in the therapy of triple-negative breast cancer (TNBC). Intratumoral hypoxia is a common feature of solid tumor. Hypoxia may contribute to the maintenance of CSC, resulting in a poor efficacy of traditional treatment and recurrence of TNBC cases. However, the underlying molecular mechanism involved in hypoxia-induced CSC stemness maintenance remains unclear. Here, we report that hypoxia stimulated DNA double-strand breaks independent of ATM kinase activation (called oxidized ATM in this paper) play a crucial role in TNBC mammosphere formation and stemness maintenance by governing a specific energy metabolism reprogramming (EMR). Oxidized ATM up-regulates GLUT1, PKM2, and PDHa expressions to enhance the uptake of glucose and production of pyruvate rather than lactate products, which facilitates glycolytic flux to mitochondrial pyruvate and citrate, thus resulting in accumulation of cytoplasmic acetyl-CoA instead of the tricarboxylic acid (TCA) cycle by regulating ATP-citrate lyase (ACLY) activity. Our findings unravel a novel model of TNBC-CSC glucose metabolism and its functional role in maintenance of hypoxic TNBC-CSC stemness. This work may help us to develop new therapeutic strategies for TNBC treatment.
Collapse
|
50
|
Sylakowski K, Bradshaw A, Wells A. Mesenchymal Stem Cell/Multipotent Stromal Cell Augmentation of Wound Healing: Lessons from the Physiology of Matrix and Hypoxia Support. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1370-1381. [PMID: 32294456 PMCID: PMC7369572 DOI: 10.1016/j.ajpath.2020.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous wounds requiring tissue replacement are often challenging to treat and result in substantial economic burden. Many of the challenges inherent to therapy-mediated healing are due to comorbidities of disease and aging that render many wounds as chronic or nonhealing. Repeated failure to resolve chronic wounds compromises the reserve or functioning of localized reparative cells. Transplantation of mesenchymal stem cells/multipotent stromal cells (MSCs) has been proposed to augment the reparative capacity of resident cells within the wound bed to overcome stalled wound healing. However, MSCs face a variety of challenges within the wound micro-environment that curtail their survival after transplantation. MSCs are naturally pro-angiogenic and proreparative, and thus numerous techniques have been attempted to improve their survival and efficacy after transplantation, many with little impact. These setbacks have prompted researchers to re-examine the normal wound bed physiology, resulting in new approaches to MSC transplantation using extracellular matrix proteins and hypoxia preconditioning. These studies have also led to new insights on associated intracellular mechanisms, particularly autophagy, which play key roles in further regulating MSC survival and paracrine signaling. This review provides a brief overview of cutaneous wound healing with discussion on how extracellular matrix proteins and hypoxia can be utilized to improve MSC retention and therapeutic outcome.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Andrew Bradshaw
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|