1
|
Madina MH, Rahman MS, Zheng H, Germain H. Vacuolar membrane structures and their roles in plant-pathogen interactions. PLANT MOLECULAR BIOLOGY 2019; 101:343-354. [PMID: 31621005 DOI: 10.1007/s11103-019-00921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.
Collapse
Affiliation(s)
- Mst Hur Madina
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Md Saifur Rahman
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
2
|
Li Z, Pan X, Guo X, Fan K, Lin W. Physiological and Transcriptome Analyses of Early Leaf Senescence for ospls1 Mutant Rice ( Oryza sativa L.) during the Grain-Filling Stage. Int J Mol Sci 2019; 20:ijms20051098. [PMID: 30836615 PMCID: PMC6429080 DOI: 10.3390/ijms20051098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/21/2023] Open
Abstract
Early leaf senescence is an important agronomic trait that affects crop yield and quality. To understand the molecular mechanism of early leaf senescence, Oryza sativa premature leaf senescence 1 (ospls1) mutant rice with a deletion of OsVHA-A and its wild type were employed in this study. The genotype-dependent differences in photosynthetic indexes, senescence-related physiological parameters, and yield characters were investigated during the grain-filling stage. Moreover, RNA sequencing (RNA-seq) was performed to determine the genotype differences in transcriptome during the grain-filling stage. Results showed that the ospls1 mutant underwent significant decreases in the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), net photosynthesis rate (Pn), and soluble sugar and protein, followed by the decreases in OsVHA-A transcript and vacuolar H+-ATPase activity. Finally, yield traits were severely suppressed in the ospls1 mutant. RNA-seq results showed that 4827 differentially expressed genes (DEGs) were identified in ospls1 mutant between 0 day and 14 days, and the pathways of biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms, and photosynthesis were downregulated in the senescing leaves of ospls1 mutant during the grain-filling stage. In addition, 81 differentially expressed TFs were identified to be involved in leaf senescence. Eleven DEGs related to hormone signaling pathways were significantly enriched in auxin, cytokinins, brassinosteroids, and abscisic acid pathways, indicating that hormone signaling pathways participated in leaf senescence. Some antioxidative and carbohydrate metabolism-related genes were detected to be differentially expressed in the senescing leaves of ospls1 mutant, suggesting that these genes probably play response and regulatory roles in leaf senescence.
Collapse
Affiliation(s)
- Zhaowei Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinfeng Pan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaodong Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kai Fan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Baranowski Ł, Różańska E, Sańko-Sawczenko I, Matuszkiewicz M, Znojek E, Filipecki M, Grundler FMW, Sobczak M. Arabidopsis tonoplast intrinsic protein and vacuolar H +-adenosinetriphosphatase reflect vacuole dynamics during development of syncytia induced by the beet cyst nematode Heterodera schachtii. PROTOPLASMA 2019; 256:419-429. [PMID: 30187342 PMCID: PMC6510842 DOI: 10.1007/s00709-018-1303-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/24/2018] [Indexed: 05/20/2023]
Abstract
Plant parasitic cyst nematodes induce specific hypermetabolic syncytial nurse cell structures in host roots. A characteristic feature of syncytia is the lack of the central vacuole and the formation of numerous small and larger vesicles. We show that these structures are formed de novo via widening of ER cisternae during the entire development of syncytium, whereas in advanced stages of syncytium development, larger vacuoles are also formed via fusion of vesicles/tubules surrounding organelle-free pre-vacuole regions. Immunogold transmission electron microscopy of syncytia localised the vacuolar markers E subunit of vacuolar H+-adenosinetriphosphatase (V-ATPase) complex and tonoplast intrinsic protein (γ-TIP1;1) mostly in membranes surrounding syncytial vesicles, thus indicating that these structures are vacuoles and that some of them have a lytic character. To study the function of syncytial vacuoles, changes in expression of AtVHA-B1, AtVHA-B2 and AtVHA-B3 (coding for isoforms of subunit B of V-ATPase), and TIP1;1 and TIP1;2 (coding for γ-TIP proteins) genes were analysed. RT-qPCR revealed significant downregulation of AtVHA-B2, TIP1;1 and TIP1;2 at the examined stages of syncytium development compared to uninfected roots. Expression of VHA-B1 and VHA-B3 decreased at 3 dpi but reached the level of control at 7 dpi. These results were confirmed for TIP1;1 by monitoring At-γ-TIP-YFP reporter construct expression. Infection test conducted on tip1;1 mutant plants showed formation of larger syncytia and higher numbers of females in comparison to wild-type plants indicating that reduced levels or lack of TIP1;1 protein promote nematode development.
Collapse
Affiliation(s)
- Łukasz Baranowski
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland
| | - Izabela Sańko-Sawczenko
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland
| | - Ewa Znojek
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland
| | - Florian M W Grundler
- INRES - Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Mirosław Sobczak
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766, Warsaw, Poland.
| |
Collapse
|
4
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
5
|
Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, Haas A, Saftig P. Vacuolar ATPase in phagosome-lysosome fusion. J Biol Chem 2015; 290:14166-80. [PMID: 25903133 DOI: 10.1074/jbc.m114.628891] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 01/11/2023] Open
Abstract
The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes.
Collapse
Affiliation(s)
- Sandra Kissing
- From the Institute of Biochemistry, Christian-Albrechts-University of Kiel, D-24098 Kiel, Germany
| | - Christina Hermsen
- Institute for Cell Biology, Friedrich-Wilhelms University, D-53121 Bonn, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | - Kristine von Bargen
- Institute for Cell Biology, Friedrich-Wilhelms University, D-53121 Bonn, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Atsuhiro Ichihara
- Department of Medicine II, Tokyo Women's Medical University, Tokyo 162-866, Japan
| | - Beth S Lee
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 42210
| | - Michael Schwake
- Department of Chemistry, Biochemistry III, University of Bielefeld, D-33615 Bielefeld, Germany, and
| | - Jef De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Albert Haas
- Institute for Cell Biology, Friedrich-Wilhelms University, D-53121 Bonn, Germany,
| | - Paul Saftig
- From the Institute of Biochemistry, Christian-Albrechts-University of Kiel, D-24098 Kiel, Germany,
| |
Collapse
|
6
|
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:413. [PMID: 24194740 PMCID: PMC3810607 DOI: 10.3389/fpls.2013.00413] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/29/2013] [Indexed: 05/20/2023]
Abstract
Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca(2+)-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy.
Collapse
Affiliation(s)
- Sara M. Müller
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
| | - Helena Galliardt
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
| | - Jessica Schneider
- Bioinformatic Resource Facility, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - B. George Barisas
- Chemistry Department, Colorado State UniversityFort Collins, CO, USA
| | - Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld UniversityBielefeld, Germany
- *Correspondence: Thorsten Seidel, Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, Universitätsstraße 25, 33501 Bielefeld, Germany e-mail:
| |
Collapse
|
7
|
Takahashi D, Kawamura Y, Uemura M. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. J Proteome Res 2013; 12:4998-5011. [PMID: 24111712 DOI: 10.1021/pr400750g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold acclimation (CA) results in an increase in freezing tolerance of plants, which is closely associated to functional changes of the plasma membrane (PM). Although proteomic studies have revealed compositional changes of the PM during CA, there has been no large-scale study of how the microdomains in the PM, which contains specific lipids and proteins, change during CA. Therefore, we conducted semiquantitative shotgun proteomics using microdomain-enriched detergent-resistant membrane (DRM) fractions extracted from low freezing-tolerant oat and highly freezing-tolerant rye. We identified 740 and 809 DRM proteins in oat and rye, respectively. Among the proteins identified, the abundances of a variety of proteins, such as P-type ATPase and aquaporins, were affected by CA in both oat and rye. Some CA-responsive proteins in the DRM fractions, such as heat shock protein 70, changed differently in oat and rye. In addition, changes in lipocalins and sugar transporters in the DRM fractions were different from those found in total PM fraction during CA. This is the first report to describe compositional changes in the DRM during CA. The proteomic profiles obtained in the present study hint at many possible microdomain functions associated with CA and freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences and ‡Cryobiofrontier Research Center, Iwate University , 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | |
Collapse
|
8
|
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. PLANT & CELL PHYSIOLOGY 2013; 54:1571-84. [PMID: 23903016 DOI: 10.1093/pcp/pct107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The local distribution of both the vacuolar-type proton ATPase (V-ATPase) and the vacuolar-type proton pyrophosphatase (V-PPase), the main vacuolar proton pumps, was investigated in intact vacuoles isolated from Arabidopsis suspension-cultured cells. Fluorescent immunostaining showed that V-PPase was distributed evenly on the vacuolar membrane (VM), but V-ATPase localized to specific regions of the VM. We hypothesize that there may be membrane microdomains on the VM. To confirm this hypothesis, we prepared detergent-resistant membranes (DRMs) from the VM in accordance with well established conventional methods. Analyses of fatty acid composition suggested that DRMs had more saturated fatty acids compared with the whole VM in phosphatidylcholine and phosphatidylethanolamine. In the proteomic analyses of both DRMs and detergent-soluble mebranes (DSMs), we confirmed the different local distributions of V-ATPase and V-PPase. The observations of DRMs with an electron microscope supported the existence of different areas on the VM. Moreover, it was observed using total internal reflection fluorescent microscopy (TIRFM) that proton pumps were frequently immobilized at specific sites on the VM. In the proteomic analyses, we also found that many other vacuolar membrane proteins are distributed differently in DRMs and DSMs. Based on the results of this study, we discuss the possibility that VM microdomains might contribute to vacuolar dynamics.
Collapse
Affiliation(s)
- Katsuhisa Yoshida
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
10
|
Kumari N, Sharma V. Stress-mediated alteration in V-ATPase and V-PPase of Butea monosperma. PROTOPLASMA 2010; 245:125-132. [PMID: 20577771 DOI: 10.1007/s00709-010-0153-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/20/2010] [Indexed: 05/29/2023]
Abstract
The activity and subunit amounts of V-ATPase and V-PPase in various plants of Butea monosperma Taub. (Fabaceae) (ver. Dhak; Palas) growing as a natural inhabitant in varying stress conditions in southeast Rajasthan were studied. Western blot analysis followed by immunological quantification of V-ATPase subunits using specific polyclonal antibodies showed that the subunits A, B, D, E, and c are clearly detectable in all plants, with A, B, and c appearing as intense bands. The other subunits of V-ATPase, viz., C, a, and d, were also detected in majority of the plants. Various subunits exhibited variations in their protein amount in different plants. Besides, a few other clear bands were also detected. Of these, the 30- and 29-kD bands may possibly be Di and Ei. Furthermore, a clear band of V-PPase corresponding to 67-70 kD was also detected. A comparison of the V-ATPase and V-PPase activity revealed that Butea plants in the upper region of the study site showed 70% and 39% higher activity, respectively. Furthermore, the immunological quantification showed that the V-ATPase and V-PPase protein amounts are also higher in the upper Butea plants which have drought stress and, moreover, are also exposed to stronger light intensities for relatively longer duration.
Collapse
Affiliation(s)
- Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304 022, Rajasthan, India
| | | |
Collapse
|
11
|
Hanitzsch M, Schnitzer D, Seidel T, Golldack D, Dietz KJ. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-a, VHA-E and VHA-G inArabidopsis thaliana. Mol Membr Biol 2009; 24:507-18. [PMID: 17710654 DOI: 10.1080/09687680701447393] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of isogenes encoding V-ATPase subunits seems to be a characteristic for plants. Twenty-eight genes encode for the 13 different subunits in Arabidopsis thaliana, 23 genes each are known in tomato (Solanum lycopersicum) and can be identified in rice (Oryza sativa), respectively. In Arabidopsis the four subunits VHA-B, -E, -G and -a are encoded by three isogenes each. The transcript levels of these subunits were analysed by in silico evaluation of transcript pattern derived from the NASC-array database and exemplarily confirmed by semiquantitative RT-PCR. A tissue specifity was observed for the isoforms of VHA-E and VHA-G, whereas expression of VHA-a isoforms appeared independent of the tissue. Inflicting environmental stresses upon plants resulted in differentiated expression patterns of VHA-isoforms. Whereas salinity had minor effect on the expression of V-ATPase genes in A. thaliana, heat and drought stress led to alterations in transcript amount and preference of isoforms. Correlation analysis identified two clusters of isoforms, which were co-regulated on the transcript level.
Collapse
Affiliation(s)
- Miriam Hanitzsch
- Plant Biochemistry and Physiology, Faculty of Biology-W5, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
12
|
Komatsu S, Wada T, Abaléa Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 2009; 8:4487-99. [PMID: 19658398 DOI: 10.1021/pr9002883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane acts as the primary interface between the cellular cytoplasm and the extracellular environment. To investigate the function of the plasma membrane in response to flooding stress, plasma membrane was purified from root and hypocotyl of soybean seedlings using an aqueous two-phase partitioning method. Purified plasma membrane proteins with 81% purity were analyzed using either two-dimensional polyacrylamide gel electrophoresis followed by mass spectrometry and protein sequencing (2-DE MS/sequencer)-based proteomics or nanoliquid chromatography followed by mass spectrometry (nanoLC-MS/MS)-based proteomics. The number of hydrophobic proteins identified by nanoLC-MS/MS-based proteomics was compared with those identified by 2-DE MS/sequencer-based proteomics. These techniques were applied to identify the proteins in soybean that are responsive to flooding stress. Results indicate insights of plasma membrane into the response of soybean to flooding stress: (i) the proteins located in the cell wall are up-regulated in plasma membrane; (ii) the proteins related to antioxidative system play a crucial role in protecting cells from oxidative damage; (iii) the heat shock cognate protein plays a role in protecting proteins from denaturation and degradation during flooding stress; and (iv) the signaling related proteins might regulate ion homeostasis.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 2009; 436:45-55. [PMID: 19248824 DOI: 10.1016/j.gene.2009.02.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/06/2009] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
Abstract
Soil salinity severely affects plant growth and agricultural productivity. AtbZIP24 encodes a bZIP transcription factor that is induced by salt stress in Arabidopsis thaliana but suppressed in the salt-tolerant relative Lobularia maritima. Transcriptional repression of AtbZIP24 using RNA interference improved salt tolerance in A. thaliana. Under non-stress growth conditions, transgenic A. thaliana lines with decreased AtbZIP24 expression activated the expression of stress-inducible genes involved in cytoplasmic ion homeostasis and osmotic adjustment: the Na(+) transporter AtHKT1, the Na(+)/H(+) antiporter AtSOS1, the aquaporin AtPIP2.1, and a glutamine synthetase. In addition, candidate target genes of AtbZIP24 with functions in plant growth and development were identified such as an argonaute (AGO1)-related protein and cyclophilin AtCYP19. The salt tolerance in transgenic plants correlated with reduced Na(+) accumulation in leaves. In vivo interaction of AtbZIP24 as a homodimer was shown using fluorescence energy transfer (FRET) with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as fused FRET pairs. Translational fusion of AtbZIP24 with GFP showed subcellular localization of the protein in nucleus and cytoplasm in plants grown under control conditions whereas in response to salt stress AtbZIP24 was preferentially targeted to the nucleus. It is concluded that AtbZIP24 is an important regulator of salt stress response in plants. The modification of transcriptional control by regulatory transcription factors provides a useful strategy for improving salt tolerance in plants.
Collapse
Affiliation(s)
- Oksoon Yang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M. Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. PLANT & CELL PHYSIOLOGY 2009; 50:341-59. [PMID: 19106119 DOI: 10.1093/pcp/pcn202] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microdomains in the plasma membrane (PM) have been proposed to be involved in many important cellular events in plant cells. To understand the role of PM microdomains in plant cold acclimation, we isolated the microdomains as detergent-resistant plasma membrane fractions (DRMs) from Arabidopsis seedlings and compared lipid and protein compositions before and after cold acclimation. The DRM was enriched in sterols and glucocerebrosides, and the proportion of free sterols in the DRM increased after cold acclimation. The protein-to-lipid ratio in the DRM was greater than that in the total PM fraction. The protein amount recovered in DRMs decreased gradually during cold acclimation. Cold acclimation further resulted in quantitative changes in DRM protein profiles. Subsequent mass spectrometry and Western blot analyses revealed that P-type H(+)-ATPases, aquaporins and endocytosis-related proteins increased and, conversely, tubulins, actins and V-type H(+)-ATPase subunits decreased in DRMs during cold acclimation. Functional categorization of cold-responsive proteins in DRMs suggests that plant PM microdomains function as platforms of membrane transport, membrane trafficking and cytoskeleton interaction. These comprehensive changes in microdomains may be associated with cold acclimation of Arabidopsis.
Collapse
|
15
|
Sieben C, Mikosch M, Brandizzi F, Homann U. Interaction of the K(+)-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:997-1006. [PMID: 18702673 DOI: 10.1111/j.1365-313x.2008.03658.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The correct functioning of ion channels depends not only on the control of their activity but also on the regulation of the number of channels in the membrane. For example, it has been proposed that the density of the plant K(+)-channel KAT1 may be adjusted by controlling its export from its site of synthesis, the endoplasmic reticulum (ER). Efficient transport of the channel to the plasma membrane was found to depend on a di-acidic ER export signal in the C-terminus of the protein. Studies in yeast and mammals indicate that di-acidic ER export motifs are essential for enrichment of proteins into ER-derived coat protein complex II (COPII) vesicles and are recognized by Sec24 a component of the COPII coat. To investigate whether similar mechanisms also exist in plants we have analysed the interaction of KAT1 with Sec24 in vivo using fluorescence resonance energy transfer (FRET) measurements in Vicia faba guard cells. These measurements revealed a FRET signal between KAT1 and Sec24 fused to the cyan fluorescent protein and the yellow fluorescent protein, respectively, indicating an interaction between KAT1 and Sec24. The FRET signal only occurred in the perinuclear region of the ER and was dependent on the di-acidic ER export motif of KAT1. Together, the results point to a highly conserved mechanism for ER export of KAT1 whereby the channel is recruited into COPII vesicles via binding of the di-acidic motif to Sec24.
Collapse
Affiliation(s)
- Christian Sieben
- Institute of Botany, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
16
|
Popova OV, Yang O, Dietz KJ, Golldack D. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene 2008; 423:142-8. [PMID: 18703123 DOI: 10.1016/j.gene.2008.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/16/2022]
Abstract
Salt stress is an environmental factor that severely impairs plant growth and productivity. Salinity-induced transcript accumulation was monitored in the salt-sensitive Arabidopsis thaliana and the related salt-tolerant Lobularia maritima using cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library of salt-stressed L. maritima. The expression profiles revealed differences of the steady state transcript regulation in A. thaliana and L. maritima in response to salt stress. The differentially expressed transcripts include those involved in the control of gene expression as a transcription factor II homologue as well as signal transduction elements such as a serine/threonine protein kinase, a SNF1-related protein kinase AKIN10 homologue, and protein phosphatase 2C. Other ESTs with differential regulation patterns included transcripts encoding proteins with function in general stress responses and defense and included a peroxidase, dehydrins, enzymes of lipid and nitrogen metabolism, and functionally unclassified proteins. In a more detailed analysis the basic leucine zipper transcription factor AtbZIP24 showed differential transcript abundance in A. thaliana and L. maritima in response to salt stress. Transgenic AtbZIP24-RNAi lines showed improved growth and development under salt stress that was correlated with changed Cl(-) accumulation. The data indicate that AtbZIP24 functions as a transcriptional repressor in salt-stressed A. thaliana that negatively regulates growth and development under salinity in context of controlling Cl(-) homeostasis. Monitoring the differential and tissue specific global regulation of gene expression during adaptation to salinity in salt-sensitive and halotolerant plants is a promising and powerful approach to identify novel elements of plant salt stress adaptation.
Collapse
Affiliation(s)
- Olga V Popova
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
17
|
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biol 2008; 9:28. [PMID: 18507826 PMCID: PMC2424043 DOI: 10.1186/1471-2121-9-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background The V-ATPase (VHA) is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. Results The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET). VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP) and yellow fluorescent protein (YFP), respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM) demonstrated that (i.) the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii.) one copy of VHA-c" is present within the VHA-complex, and (iii.) VHA-c" is localised at the ER and associated Golgi bodies. (iv.) A similar localisation was observed for VHA-e2, whereas (v.) the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN)-specifity of this subunit. Conclusion The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport.
Collapse
Affiliation(s)
- Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, W5, University of Bielefeld, 33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
18
|
Diédhiou CJ, Popova OV, Dietz KJ, Golldack D. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC PLANT BIOLOGY 2008; 8:49. [PMID: 18442365 PMCID: PMC2386468 DOI: 10.1186/1471-2229-8-49] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 04/28/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants respond to extracellularly perceived abiotic stresses such as low temperature, drought, and salinity by activation of complex intracellular signaling cascades that regulate acclimatory biochemical and physiological changes. Protein kinases are major signal transduction factors that have a central role in mediating acclimation to environmental changes in eukaryotic organisms. In this study, we characterized the function of the sucrose nonfermenting 1-related protein kinase2 (SnRK2) SAPK4 in the salt stress response of rice. RESULTS Translational fusion of SAPK4 with the green fluorescent protein (GFP) showed subcellular localization in cytoplasm and nucleus. To examine the role of SAPK4 in salt tolerance we generated transgenic rice plants with over-expression of rice SAPK4 under control of the CaMV-35S promoter. Induced expression of SAPK4 resulted in improved germination, growth and development under salt stress both in seedlings and mature plants. In response to salt stress, the SAPK4-overexpressing rice accumulated less Na+ and Cl- and showed improved photosynthesis. SAPK4-regulated genes with functions in ion homeostasis and oxidative stress response were identified: the vacuolar H+-ATPase, the Na+/H+ antiporter NHX1, the Cl- channel OsCLC1 and a catalase. CONCLUSION Our results show that SAPK4 regulates ion homeostasis and growth and development under salinity and suggest function of SAPK4 as a regulatory factor in plant salt stress acclimation. Identification of signaling elements involved in stress adaptation in plants presents a powerful approach to identify transcriptional activators of adaptive mechanisms to environmental changes that have the potential to improve tolerance in crop plants.
Collapse
Affiliation(s)
- Calliste J Diédhiou
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Olga V Popova
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Gregor Mendel Institute of Molecular Plant Biology, A-1030 Vienna, Austria
| | - Karl-Josef Dietz
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Dortje Golldack
- Department of Physiology and Biochemistry of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Abstract
Protein-protein interactions are important in many cellular processes, but there are still relatively few methods to screen for novel protein complexes. Here we present a quantitative proteomics technique called ProCoDeS (Proteomic Complex Detection using Sedimentation) for profiling the sedimentation of a large number of proteins through a rate zonal centrifugation gradient. Proteins in a putative complex can be identified since they sediment faster than predicted from their monomer molecular weight. Using solubilized mitochondrial membrane proteins from Arabidopsis thaliana, the relative protein abundance in fractions of a rate zonal gradient was measured with the isotopic labeling reagent ICAT and electrospray mass spectrometry. Subunits of the same protein complex had very similar gradient distribution profiles, demonstrating the reproducibility of the quantitation method. The approximate size of the unknown complex can be inferred from its sedimentation rate relative to known protein complexes. ProCoDeS will be of use in screening extracts of tissues, cells, or organelle fractions to identify specific proteins in stable complexes that can be characterized by subsequent targeted techniques such as affinity tagging.
Collapse
Affiliation(s)
- Nicholas T Hartman
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, United Kingdom
| | | | | | | |
Collapse
|
20
|
Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2007; 224:213-32. [PMID: 17210054 DOI: 10.1111/j.1365-2818.2006.01706.x] [Citation(s) in RCA: 3711] [Impact Index Per Article: 206.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is generally accepted that the functional compartmentalization of eukaryotic cells is reflected by the differential occurrence of proteins in their compartments. The location and physiological function of a protein are closely related; local information of a protein is thus crucial to understanding its role in biological processes. The visualization of proteins residing on intracellular structures by fluorescence microscopy has become a routine approach in cell biology and is increasingly used to assess their colocalization with well-characterized markers. However, image-analysis methods for colocalization studies are a field of contention and enigma. We have therefore undertaken to review the most currently used colocalization analysis methods, introducing the basic optical concepts important for image acquisition and subsequent analysis. We provide a summary of practical tips for image acquisition and treatment that should precede proper colocalization analysis. Furthermore, we discuss the application and feasibility of colocalization tools for various biological colocalization situations and discuss their respective strengths and weaknesses. We have created a novel toolbox for subcellular colocalization analysis under ImageJ, named JACoP, that integrates current global statistic methods and a novel object-based approach.
Collapse
Affiliation(s)
- S Bolte
- Plateforme d'Imagerie et de Biologie Cellulaire, IFR 87 la Plante et son Environnement, Institut des Sciences du Végétal, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | | |
Collapse
|
21
|
Schumacher K. Endomembrane proton pumps: connecting membrane and vesicle transport. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:595-600. [PMID: 17008121 DOI: 10.1016/j.pbi.2006.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
pH-homeostasis in the endomembrane system requires the activity of proton-pumps. In animals, the progressive acidification of compartments along the endocytic and secretory pathways is critical for protein sorting and vesicle trafficking, and is achieved by the activity of the vacuolar H(+)-ATPase (V-ATPase). Plants have an additional endomembrane pump, the vacuolar H(+)-pyrophosphatase (V-PPase), and previous research was largely focused on the respective functions of the two pumps in secondary active transport across the tonoplast. Recent approaches, including reverse genetics, have not only provided evidence that both enzymes play unique and essential roles but have also highlighted the important functions of the two proton pumps in endocytic and secretory trafficking.
Collapse
Affiliation(s)
- Karin Schumacher
- ZMBP-Plant Physiology, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Alemzadeh A, Fujie M, Usami S, Yoshizaki T, Oyama K, Kawabata T, Yamada T. ZMVHA-B1, the gene for subunit B of vacuolar H+-ATPase from the eelgrass Zostera marina L. Is able to replace vma2 in a yeast null mutant. J Biosci Bioeng 2006; 102:390-5. [PMID: 17189165 DOI: 10.1263/jbb.102.390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
A vacuolar H(+)-ATPase (VHA) gene (ZMVHA-B1) was isolated from an eelgrass (Zostera marina) leaf cDNA library and was characterized to be approximately 1.4 kbp in length and to encode the B subunit protein of VHA comprising 488 amino acids. ZMVHA-B1 was highly expressed in all organs of eelgrass; the expression level was highest in the leaves. On transformation of a yeast vma2 null mutant with ZMVHA-B1, yeast cells became able to grow at pH 7.5, accompanied by the vesicular accumulation of LysoSensor green DND-189. Thus, ZMVHA-B1 expressed in yeast cells produced a functional B subunit that was efficiently incorporated into the VHA complex and eventually restored vacuolar morphology and activity. This success expedites the application of heterologous expression in yeast mutant cells to the screening of eelgrass genes involved in salt-resistance mechanisms, which are to be utilized in improving important crops.
Collapse
Affiliation(s)
- Abbas Alemzadeh
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:296-306. [PMID: 16984403 DOI: 10.1111/j.1365-313x.2006.02868.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana K+ channel family of AtTPK/KCO proteins consists of six members including a 'single-pore' (Kir-type) and five 'tandem-pore' channels. AtTPK4 is currently the only ion channel of this family for which a function has been demonstrated in planta. The protein is located at the plasma membrane forming a voltage-independent K+ channel that is blocked by extracellular calcium ions. In contrast, AtTPK1 is a tonoplast-localized protein, that establishes a K+-selective, voltage-independent ion channel activated by cytosolic calcium when expressed in a heterologous system, i.e. yeast. Here, we provide evidence that other AtTPK/KCO channel subunits, i.e. AtTPK2, AtTPK3, AtTPK5 and AtKCO3, are also targeted to the vacuolar membrane, opening the possibility that they interact at the target membrane to form heteromeric ion channels. However, when testing the cellular expression patterns of AtTPK/KCO genes we observed distinct expression domains that overlap in only a few tissues of the Arabidopsis plant, making it unlikely that different channel subunits interact to form heteromeric channels. This conclusion was substantiated by in planta expression of combinations of selected tonoplast AtTPK/KCO proteins. Fluorescence resonance energy transfer assays indicate that protein interaction occurs between identical channel subunits (most efficiently between AtTPK1 or AtKCO3) but not between different channel subunits. The finding could be confirmed by bimolecular fluorescence complementation assays. We conclude that tonoplast-located AtTPK/KCO subunits form homomeric ion channels in vivo.
Collapse
Affiliation(s)
- Camilla Voelker
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Str. 24-25, Haus 20, D-14476 Golm, Germany
| | | | | | | |
Collapse
|
24
|
Chavez C, Bowman EJ, Reidling JC, Haw KH, Bowman BJ. Analysis of Strains with Mutations in Six Genes Encoding Subunits of the V-ATPase. J Biol Chem 2006; 281:27052-62. [PMID: 16857684 DOI: 10.1074/jbc.m603883200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address questions about the structure of the vacuolar ATPase, we have generated mutant strains of Neurospora crassa defective in six subunits, C, H, a, c, c', and c''. Except for strains lacking subunit c', the mutant strains were indistinguishable from each other in most phenotypic characteristics. They did not accumulate arginine in the vacuoles, grew poorly at pH 5.8 with altered morphology, and failed to grow at alkaline pH. Consistent with findings from Saccharomyces cerevisiae, the data indicate that subunits C and H are essential for generation of a functional enzyme. Unlike S. cerevisiae, N. crassa has a single isoform of the a subunit. Analysis of other fungal genomes indicates that only the budding yeasts have a two-gene family for subunit a. It has been unclear whether subunit c', a small proteolipid, is a component of all V-ATPases. Our data suggest that this subunit is present in all fungi, but not in other organisms. Mutation or deletion of the N. crassa gene encoding subunit c' did not completely eliminate V-ATPase function. Unlike other V-ATPase null strains, they grew, although slowly, at alkaline pH, were able to form conidia (asexual spores), and were inhibited by concanamycin, a specific inhibitor of the V-ATPase. The phenotypic character in which strains differed was the ability to go through the sexual cycle to generate mature spores and viable mutant progeny. Strains lacking the integral membrane subunits a, c, c', and c'' had more severe defects than strains lacking subunits C or H.
Collapse
Affiliation(s)
- Christopher Chavez
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
25
|
Koh S, Somerville S. Show and tell: cell biology of pathogen invasion. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:406-13. [PMID: 16714141 DOI: 10.1016/j.pbi.2006.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/03/2006] [Indexed: 05/09/2023]
Abstract
Because the initial stages of pathogen invasion are often confined to a limited number of host cells, measures of host responses that are averaged over attacked and non-attacked cells provide an unsatisfactory view of these events. To identify the earliest and often transient responses to pathogen attack, there is considerable interest in monitoring the subcellular events that occur specifically in living host cells. Recent improvements in live-cell imaging using fluorescent-tagged markers have expanded the scope of the experiments that can be performed. Changes in the subcellular distribution of organelles and of fluorescently tagged proteins can be monitored in real time in living tissues during pathogen attack, and the dynamic nature of such changes across space and over time can be determined. The application of these sensitive imaging methods has extended earlier observations, made with Nomarski microscopy or inferred from static transmission electron micrographs, about the focal accumulation of subcellular organelles at sites of pathogen attack. In addition, recent experiments have demonstrated the focused accumulation and interaction of specific plant proteins at penetration sites, opening a new window on early host responses and raising questions about the underlying plant processes that sense and direct this marshalling of host resources to block pathogen entry.
Collapse
Affiliation(s)
- Serry Koh
- Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, California 94305, USA
| | | |
Collapse
|
26
|
Boutté Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B. The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 2006; 119:1255-65. [PMID: 16522683 DOI: 10.1242/jcs.02847] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The PIN-FORMED (PIN) proteins are plasma-membrane-associated facilitators of auxin transport. They are often targeted to one side of the cell only through subcellular mechanisms that remain largely unknown. Here, we have studied the potential roles of the cytoskeleton and endomembrane system in the localisation of PIN proteins. Immunocytochemistry and image analysis on root cells from Arabidopsis thaliana and maize showed that 10-30% of the intracellular PIN proteins mapped to the Golgi network, but never to prevacuolar compartments. The remaining 70-90% were associated with yet to be identified structures. The maintenance of PIN proteins at the plasma membrane depends on a BFA-sensitive machinery, but not on microtubules and actin filaments.
The polar localisation of PIN proteins at the plasmamembrane was not reflected by any asymmetric distribution of cytoplasmic organelles. In addition, PIN proteins were inserted in a symmetrical manner at both sides of the cell plate during cytokinesis. Together, the data indicate that the localisation of PIN proteins is a postmitotic event, which depends on local characteristics of the plasma membrane and its direct environment. In this context, we present evidence that microtubule arrays might define essential positional information for PIN localisation. This information seems to require the presence of an intact cell wall.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Dynamique de la Compartimentation Cellulaire, Institut des Sciences du Végétal, CNRS UPR2355, 9 Gif-sur-Yvette CEDEX, France
| | | | | | | | | |
Collapse
|
27
|
Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. THE PLANT CELL 2006; 18:715-30. [PMID: 16461582 PMCID: PMC1383645 DOI: 10.1105/tpc.105.037978] [Citation(s) in RCA: 687] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H(+)-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.
Collapse
Affiliation(s)
- Jan Dettmer
- Center for Plant Molecular Biology-Plant Physiology, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
28
|
Fricker M, Runions J, Moore I. Quantitative fluorescence microscopy: from art to science. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:79-107. [PMID: 16669756 DOI: 10.1146/annurev.arplant.57.032905.105239] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A substantial number of elegant experimental approaches have been developed to image the distribution and dynamics of DNA, mRNA, proteins, organelles, metabolites, and ions in living plant cells. Although the human brain can rapidly assimilate visual information, particularly when presented as animations and movies, it is much more challenging to condense the phenomenal amount of data present in three-, four-, or even five-dimensional images into statistically useful measurements. This review explores a range of in vivo fluorescence imaging applications in plants, with particular emphasis on where quantitative techniques are beginning to emerge.
Collapse
Affiliation(s)
- Mark Fricker
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB England.
| | | | | |
Collapse
|
29
|
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ. The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 2005; 5:114-33. [PMID: 16207701 DOI: 10.1074/mcp.m500180-mcp200] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study presents an analysis of the stromal proteome in its oligomeric state extracted from highly purified chloroplasts of Arabidopsis thaliana. 241 proteins (88% with predicted cTP), mostly assembled in oligomeric complexes, were identified by mass spectrometry with emphasis on distinguishing between paralogues. This is critical because different paralogues in a gene family often have different subcellular localizations and/or different expression patterns and functions. The native protein masses were determined for all identified proteins. Comparison with the few well characterized stromal complexes from A. thaliana confirmed the accuracy of the native mass determination, and by extension, the usefulness of the native mass data for future in-depth protein interaction studies. Resolved protein interactions are discussed and compared with an extensive collection of native mass data of orthologues in other plants and bacteria. Relative protein expression levels were estimated from spot intensities and also provided estimates of relative concentrations of individual proteins. No such quantification has been reported so far. Surprisingly proteins dedicated to chloroplast protein synthesis, biogenesis, and fate represented nearly 10% of the total stroma protein mass. Oxidative pentose phosphate pathway, glycolysis, and Calvin cycle represented together about 75%, nitrogen assimilation represented 5-7%, and all other pathways such as biosynthesis of e.g. fatty acids, amino acids, nucleotides, tetrapyrroles, and vitamins B(1) and B(2) each represented less than 1% of total protein mass. Several proteins with diverse functions outside primary carbon metabolism, such as the isomerase ROC4, lipoxygenase 2 involved in jasmonic acid biosynthesis, and a carbonic anhydrase (CA1), were surprisingly abundant in the range of 0.75-1.5% of the total stromal mass. Native images with associated information are available via the Plastid Proteome Database.
Collapse
Affiliation(s)
- Jean-Benoit Peltier
- Department of Plant Biology, Cornell Theory Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Seidel T, Golldack D, Dietz KJ. Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS Lett 2005; 579:4374-82. [PMID: 16061227 DOI: 10.1016/j.febslet.2005.06.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/27/2005] [Accepted: 06/28/2005] [Indexed: 11/22/2022]
Abstract
The plant V-ATPase is a protein complex of 13 different VHA-subunits and functions as ATP driven motor that electrogenically translocates H+ into endomembrane compartments. The central rotor extends into the hexameric head that is fixed by peripheral stators to an eccentric membrane domain. The localization and orientation of VHA-subunits of the head and peripheral stalk region were investigated by in vivo fluorescence resonance energy transfer (FRET). To this end, VHA-E, VHA-G, VHA-H of the peripheral stalks as well as subunits VHA-A and VHA-B were C-terminally fused to cyan (CFP) and yellow fluorescent protein (YFP). Protoplasts transfected with FRET-pairs of CFP-donor and YFP-acceptor fluorophores fused to VHA-subunits were analysed for FRET by laser scanning microscopy. The result of the C-termini mapping allows to refine the arrangement and interaction of the subunits within the V-ATPase complex in vivo. Furthermore, expression of fused VHA-E and VHA-H stimulated acidification of protoplast vacuoles, while other constructs had no major effect on vacuolar pH tentatively indicating a regulatory role of these subunits in plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, W5, University of Bielefeld, Universitaetsstrasse 25, D-33501 Bielefeld, Germany
| | | | | |
Collapse
|
31
|
Bonamy GMC, Guiochon-Mantel A, Allison LA. Cancer promoted by the oncoprotein v-ErbA may be due to subcellular mislocalization of nuclear receptors. Mol Endocrinol 2005; 19:1213-30. [PMID: 15650025 DOI: 10.1210/me.2004-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The retroviral v-ErbA oncoprotein is a highly mutated variant of the thyroid hormone receptor alpha (TRalpha), which is unable to bind T(3) and interferes with the action of TRalpha in mammalian and avian cancer cells. v-ErbA dominant-negative activity is attributed to competition with TRalpha for T(3)-responsive DNA elements and/or auxiliary factors involved in the transcriptional regulation of T(3)-responsive genes. However, competition models do not address the altered subcellular localization of v-ErbA and its possible implications in oncogenesis. Here, we report that v-ErbA dimerizes with TRalpha and the retinoid X receptor and sequesters a significant fraction of the two nuclear receptors in the cytoplasm. Recruitment of TRalpha to the cytoplasm by v-ErbA can be partially reversed in the presence of ligand and when chromatin is disrupted by the histone deacetylase inhibitor trichostatin A. These results define a new mode of action of v-ErbA and illustrate the importance of cellular compartmentalization in transcriptional regulation and oncogenesis.
Collapse
Affiliation(s)
- Ghislain M C Bonamy
- Department of Biology, College of William and Mary, P.O. Box 8795, Millington Hall 116, Williamsburg, VA 23187-8795, USA
| | | | | |
Collapse
|