1
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
2
|
Wang M, Yang N, Guo W, Yang Y, Bao B, Zhang X, Zhang D. RNAi-mediated glucose transporter 4 (Glut4) silencing inhibits ovarian development and enhances deltamethrin-treated energy depletion in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106014. [PMID: 39084805 DOI: 10.1016/j.pestbp.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.
Collapse
Affiliation(s)
- Mingjun Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ningxin Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenhui Guo
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yong Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bowen Bao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaohong Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Daochuan Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Kaur R, Meier CJ, McGraw EA, Hillyer JF, Bordenstein SR. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol 2024; 22:e3002573. [PMID: 38547237 PMCID: PMC11014437 DOI: 10.1371/journal.pbio.3002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Cole J. Meier
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Pennsylvania State University, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Julian F. Hillyer
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Gu SH, Lin PL, Chang CH. Expressions of sugar transporter genes during Bombyx mori embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:788-798. [PMID: 37407486 DOI: 10.1002/jez.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Sugar transporters (Sts) play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. Few studies have been conducted on expressions of Sts during insect embryonic development. In the present study, we investigated temporal expressions of St genes during the embryonic diapause process in Bombyx mori. We found that in HCl-treated developing eggs, high gene expressions of trehalose transporter 1 (Tret1) were detected during middle and later embryonic development. St4 and St3 gene expressions gradually increased during the early stages, reached a small peak on Day 3, and large peaks were again detected on Day 7. However, in diapause eggs, expression levels of the Tret1, St4, and St3 genes all remained at low levels. Differential temporal changes in expressions of the Tret1, St4, and St3 genes found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited similar changing patterns as those of HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development. In addition, high gene expressions of Tret1 were also detected when dechorionated eggs were incubated in the medium. The addition of LY294002 (a specific phosphatidylinositol 3-kinase [PI3K] inhibitor) and U0126 (a mitogen-activated protein kinase/extracellular signal-regulated kinase [ERK] kinase [MEK] inhibitor) partially inhibited Tret1 gene expression in dechorionated eggs, but did not affect either ecdysteroid-phosphate phosphatase gene expression or ecdysteroid biosynthesis, clearly indicating that both PI3K and ERK are involved in increased gene expression of Tret1 that was independent of ecdysteroid levels. To our knowledge, this is the first comprehensive report to demonstrate the transcriptional regulation of St genes during embryonic development, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| |
Collapse
|
6
|
Prasad A, Sreedharan S, Bakthavachalu B, Laxman S. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism. PLoS Biol 2023; 21:e3002342. [PMID: 37874799 PMCID: PMC10597479 DOI: 10.1371/journal.pbio.3002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Upon water loss, some organisms pause their life cycles and escape death. While widespread in microbes, this is less common in animals. Aedes mosquitoes are vectors for viral diseases. Aedes eggs can survive dry environments, but molecular and cellular principles enabling egg survival through desiccation remain unknown. In this report, we find that Aedes aegypti eggs, in contrast to Anopheles stephensi, survive desiccation by acquiring desiccation tolerance at a late developmental stage. We uncover unique proteome and metabolic state changes in Aedes embryos during desiccation that reflect reduced central carbon metabolism, rewiring towards polyamine production, and enhanced lipid utilisation for energy and polyamine synthesis. Using inhibitors targeting these processes in blood-fed mosquitoes that lay eggs, we infer a two-step process of desiccation tolerance in Aedes eggs. The metabolic rewiring towards lipid breakdown and dependent polyamine accumulation confers resistance to desiccation. Furthermore, rapid lipid breakdown is required to fuel energetic requirements upon water reentry to enable larval hatching and survival upon rehydration. This study is fundamental to understanding Aedes embryo survival and in controlling the spread of these mosquitoes.
Collapse
Affiliation(s)
- Anjana Prasad
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| |
Collapse
|
7
|
Martins da Silva R, de Oliveira Daumas Filho CR, Calixto C, Nascimento da Silva J, Lopes C, da Silva Vaz I, Logullo C. PEPCK and glucose metabolism homeostasis in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103986. [PMID: 37454751 DOI: 10.1016/j.ibmb.2023.103986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The fat body is responsible for a variety of functions related to energy metabolism in arthropods, by controlling the processes of de novo glucose production (gluconeogenesis) and glycogen metabolism. The rate-limiting factor of gluconeogenesis is the enzyme phosphoenolpyruvate carboxykinase (PEPCK), generally considered to be the first committed step in this pathway. Although the study of PEPCK and gluconeogenesis has been for decades restricted to mammalian models, especially focusing on muscle and liver tissue, current research has demonstrated particularities about the regulation of this enzyme in arthropods, and described new functions. This review will focus on arthropod PEPCK, discuss different aspects to PEPCK regulation and function, its general role in the regulation of gluconeogenesis and other pathways. The text also presents our views on potentially important new directions for research involving this enzyme in a variety of metabolic adaptations (e.g. diapause), discussing enzyme isoforms, roles during arthropod embryogenesis, as well as involvement in vector-pathogen interactions, contributing to a better understanding of insect vectors of diseases and their control.
Collapse
Affiliation(s)
- Renato Martins da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Carlos Renato de Oliveira Daumas Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Jhenifer Nascimento da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
David OG, Sanchez KM, Arce AV, Costa-da-Silva AL, Bellantuono AJ, DeGennaro M. Fertility decline in female mosquitoes is regulated by the orco olfactory co-receptor. iScience 2023; 26:106883. [PMID: 37275523 PMCID: PMC10239028 DOI: 10.1016/j.isci.2023.106883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Female Aedes aegypti mosquitoes undergo multiple rounds of reproduction, known as gonotrophic cycles. These cycles span the period from blood meal intake to oviposition. Understanding how reproductive success is maintained across gonotrophic cycles allows for the identification of molecular targets to reduce mosquito population growth. Odorant receptor co-receptor (orco) encodes a conserved insect-specific transmembrane ion channel that complexes with tuning odorant receptors (ORs) to form a functional olfactory receptor. orco expression has been identified in the male and female mosquito germline, but its role is unclear. We report an orco-dependent, maternal effect reduction in fertility after the first gonotrophic cycle. This phenotype was removed by CRISPR-Cas9 reversion of the orco mutant locus. Eggs deposited by orco mutant females are fertilized but the embryos reveal developmental defects, reduced hatching, and changes in ion channel signaling gene transcription. We present an unexpected role for an olfactory receptor pathway in mosquito reproduction.
Collapse
Affiliation(s)
- Olayinka G. David
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Kevin M. Sanchez
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea V. Arce
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Shen X, Li X, Jia C, Li J, Chen S, Gao B, Liang W, Zhang L. HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101071. [PMID: 36931130 DOI: 10.1016/j.cbd.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Olfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.
Collapse
Affiliation(s)
- Xing Shen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Chaofeng Jia
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuyin Chen
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Bo Gao
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Wenke Liang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
10
|
Conway MJ, Haslitt DP, Swarts BM. Targeting Aedes aegypti Metabolism with Next-Generation Insecticides. Viruses 2023; 15:469. [PMID: 36851683 PMCID: PMC9964334 DOI: 10.3390/v15020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), zika virus (ZIKV), and other emerging infectious diseases of concern. A key disease mitigation strategy is vector control, which relies heavily on the use of insecticides. The development of insecticide resistance poses a major threat to public health worldwide. Unfortunately, there is a limited number of chemical compounds available for vector control, and these chemicals can have off-target effects that harm invertebrate and vertebrate species. Fundamental basic science research is needed to identify novel molecular targets that can be exploited for vector control. Next-generation insecticides will have unique mechanisms of action that can be used in combination to limit selection of insecticide resistance. Further, molecular targets will be species-specific and limit off-target effects. Studies have shown that mosquitoes rely on key nutrients during multiple life cycle stages. Targeting metabolic pathways is a promising direction that can deprive mosquitoes of nutrition and interfere with development. Metabolic pathways are also important for the virus life cycle. Here, we review studies that reveal the importance of dietary and stored nutrients during mosquito development and infection and suggest strategies to identify next-generation insecticides with a focus on trehalase inhibitors.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
11
|
Li Y, Wang S, Wang S, Wang S, Tang B, Liu F. Involvement of glucose transporter 4 in ovarian development and reproductive maturation of Harmonia axyridis (Coleoptera: Coccinellidae). INSECT SCIENCE 2022; 29:691-703. [PMID: 34516727 PMCID: PMC9298200 DOI: 10.1111/1744-7917.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Glucose is vital to embryogenesis, as are glucose transporters. Glucose transporter 4 (Glut4) is one of the glucose transporters, which is involved in rapid uptake of glucose by various cells and promotes glucose homeostasis. Although energy metabolism in insect reproduction is well known, the molecular mechanism of Glut4 in insect reproduction is poorly understood. We suspect that Glut4 is involved in maintaining glucose concentrations in the ovaries and affecting vitellogenesis, which is critical for subsequent oocyte maturation and insect fertility. Harmonia axyridis (Pallas) is a model organism for genetic research and a natural enemy of insect pests. We studied the influence of the Glut4 gene on the reproduction and development of H. axyridis using RNA interference technology. Reverse transcription quantitative polymerase chain reaction analysis revealed that HaGlut4 was most highly expressed in adults. Knockdown of the HaGlut4 gene reduced the transcript levels of HaGlut4, and the weight and number of eggs produced significantly decreased. In addition, the transcript levels of vitellogenin receptor and vitellogenin in the fat bodies and the ovaries of H. axyridis decreased after the interference of Glut4, and decreased the triglyceride, fatty acid, total amino acid and adenosine triphosphate content of H. axyridis. This resulted in severe blockage of ovary development and reduction of yolk formation; there was no development of ovarioles in the developing oocytes. These changes indicate that a lack of HaGlut4 can impair ovarian development and oocyte maturation and result in decreased fecundity.
Collapse
Affiliation(s)
- Yan Li
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu225009China
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Sha‐Sha Wang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Su Wang
- Institute of Plant and Environment ProtectionBeijing Academy of Agricultural and Forestry SciencesBeijing100097China
| | - Shi‐Gui Wang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Bin Tang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Fang Liu
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
12
|
Dynamics of maternal gene expression in Rhodnius prolixus. Sci Rep 2022; 12:6538. [PMID: 35449214 PMCID: PMC9023505 DOI: 10.1038/s41598-022-09874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
The study of developmental processes in Rhodnius prolixus has recently advanced with the sequencing of the genome. In this work, we analyze the maternal gene expression driving oogenesis and early embryogenesis in R. prolixus. We examined the transcriptional profile of mRNAs to establish the genes expressed across the ovary, unfertilized eggs and different embryonic stages of R. prolixus until the formation of the germ band anlage (0, 12, 24, and 48 h post egg laying). We identified 81 putative maternal and ovary-related genes and validated their expression by qRT-PCR. We validate the function of the ortholog gene Bicaudal-D (Rp-BicD) by in situ hybridization and parental RNAi. Consistent with a role in oogenesis and early development of R. prolixus, we show that lack of Rp-BicD does not significantly affect oogenesis but impairs the formation of the blastoderm. Based on our findings, we propose three times of action for maternal genes during oogenesis and embryogenesis in R. prolixus.
Collapse
|
13
|
Developmental energetics: Energy expenditure, budgets and metabolism during animal embryogenesis. Semin Cell Dev Biol 2022; 138:83-93. [PMID: 35317962 DOI: 10.1016/j.semcdb.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
Abstract
Developing embryos are metabolically active, open systems that constantly exchange matter and energy with their environment. They function out of thermodynamic equilibrium and continuously use metabolic pathways to obtain energy from maternal nutrients, in order to fulfill the energetic requirements of growth and development. While an increasing number of studies highlight the role of metabolism in different developmental contexts, the physicochemical basis of embryogenesis, or how cellular processes use energy and matter to act together and transform a zygote into an adult organism, remains unknown. As we obtain a better understanding of metabolism, and benefit from current technology development, it is a promising time to revisit the energetic cost of development and how energetic principles may govern embryogenesis. Here, we review recent advances in methodology to measure and infer energetic parameters in developing embryos. We highlight a potential common pattern in embryonic energy expenditure and metabolic strategy across animal embryogenesis, and discuss challenges and open questions in developmental energetics.
Collapse
|
14
|
A global phosphoproteomics analysis of adult Fasciola gigantica by LC-MS/MS. Parasitol Res 2022; 121:623-631. [PMID: 34985596 PMCID: PMC8727970 DOI: 10.1007/s00436-021-07422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/29/2021] [Indexed: 12/05/2022]
Abstract
Protein phosphorylation plays key roles in a variety of essential cellular processes. Fasciola gigantica is a tropical liver fluke causing hepatobiliary disease fascioliasis, leading to human health threats and heavy economic losses. Although the genome and protein kinases of F. gigantica provided new insights to understand the molecular biology and etiology of this parasite, there is scant knowledge of protein phosphorylation events in F. gigantica. In this study, we characterized the global phosphoproteomics of adult F. gigantica by phosphopeptide enrichment-based LC–MS/MS, a high-throughput analysis to maximize the detection of a large repertoire of phosphoproteins and phosphosites. A total of 1030 phosphopeptides with 1244 phosphosites representing 635 F. gigantica phosphoproteins were identified. The phosphoproteins were involved in a wide variety of biological processes including cellular, metabolic, and single-organism processes. Meanwhile, these proteins were found predominantly in cellular components like membranes and organelles with molecular functions of binding (51.3%) and catalytic activity (40.6%). The KEGG annotation inferred that the most enriched pathways of the phosphoproteins included tight junction, spliceosome, and RNA transport (each one contains 15 identified proteins). Combining the reports in other protozoa and helminths, the phosphoproteins identified in this work play roles in metabolic regulation and signal transduction. To our knowledge, this work performed the first global phosphoproteomics analysis of adult F. gigantica, which provides valuable information for development of intervention strategies for fascioliasis.
Collapse
|
15
|
Mundim-Pombo APM, Carvalho HJCD, Rodrigues Ribeiro R, León M, Maria DA, Miglino MA. Aedes aegypti: egg morphology and embryonic development. Parasit Vectors 2021; 14:531. [PMID: 34645492 PMCID: PMC8515647 DOI: 10.1186/s13071-021-05024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background The diseases for which Aedes aegypti is a vector are worrisome. The high vector competence of this mosquito, as well as its anthropophilia and ability to adapt to the urban environment, allows it to exploit many habitats, making its prevention an arduous task. Despite current disease control measures focused on the mosquito, the effectiveness in containing its dispersion still requires improvement; thus greater knowledge about this insect is fundamental. Methods Aedes aegypti egg morphology and embryonic development were analyzed from eggs of the insectary of the Institute of Biomedical Sciences of the University of São Paulo. Optical (light and confocal) and electronic (transmission and scanning) microscopy were used to analyze the morphological and ultrastructural features of the eggs. Embryos were observed in the initial (0–20.5 h after egg-laying), intermediate (20.6–40.1 h after egg-laying), and final (40.2–61.6 h) stages of development, and kept at a temperature of 28 °C ± 1 °C until collection for processing. Results Eggs of Ae. aegypti were whitish at the time of oviposition, and then quickly became black. The egg length was 581.45 ± 39.73 μm and the width was 175.36 ± 11.59. Access to the embryo was difficult due to the egg morphology, point of embryonic development, and difficult permeability of the exochorion (mainly in fixation). Only about 5% of the collected eggs were successfully processed. In the initial stage of embryonic development, characteristics suggestive of intense cellular activity were found. In the intermediate stage, the beginning of the segmentation process was evident. In the final phase, it was possible to differentiate the cephalic region and the thoracic and abdominal segments. Conclusion The chorion was found to be an important protective barrier and a limiting factor for the evaluation of the embryos and mosquito embryonic cells, indicating that further studies need to be carried out to identify the reason that this occurs. Graphical abstract ![]()
Collapse
Affiliation(s)
| | - Hianka Jasmyne Costa de Carvalho
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil
| | - Rafaela Rodrigues Ribeiro
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil
| | - Marisol León
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil
| | | | - Maria Angélica Miglino
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil.
| |
Collapse
|
16
|
da Silva JN, Simas DLR, Soares AR, Duarte HM, Moraes J, Conceição CC, da Silva RM, da Silva Vaz I, Logullo C. Glucose metabolomic profile during embryogenesis in the tick Rhipicephalus microplus. Metabolomics 2021; 17:79. [PMID: 34463832 DOI: 10.1007/s11306-021-01830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Metabolomic approaches can assess the actual state of an organism's energy metabolism during a specific morphological event, providing a more accurate insight into the correlations between physiology and metabolic regulation. METHODS The study of the metabolomic profile aim to identify the largest possible number of biomolecules in a certain organism or specific structures. For this purpose, mass spectrometry (MS) and chromatography have been used in the present study. OBJECTIVES In this context, the aim of the present work is to evaluate the glucose metabolomic profile during embryogenesis in Rhipicephalus microplus tick, investigating the dynamics of nutrient utilization during tick embryo formation, as well as the control of glucose metabolism. RESULTS We show that glycogen reserves are preferentially mobilized to sustain the energy-intensive process of embryogenesis. Subsequently, the increase in concentration of specific amino acids indicates that protein degradation would provide carbons to fuel gluconeogenesis, supplying the embryo with sufficient glucose and glycogen during development. CONCLUSION Altogether, these results demonstrated the presence of a very refined catabolic and anabolic control during embryogenesis in R. microplus tick, suggesting the pronounced gluconeogenesis as a strategy to secure embryo development. Moreover, this research contributes to the understanding of the mechanisms that control glucose metabolism during tick embryogenesis and may aid the identification of putative targets for novel chemical or immunological control methods, which are essential to improve the prevention of tick infestations.
Collapse
Affiliation(s)
- Jhenifer Nascimento da Silva
- Grupo de Produtos Naturais de Organismos Aquáticos, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Luiz Reis Simas
- Fábrica de Árvores Soluções Ambientais, Sitio Anjo Gabriel, Bragança Paulista, São Paulo, SP, Brazil
| | - Angelica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Heitor Monteiro Duarte
- Grupo de Produtos Naturais de Organismos Aquáticos, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Christiano Calixto Conceição
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Renato Martins da Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
17
|
da Silva RM, Vital WO, Martins RS, Moraes J, Gomes H, Calixto C, Konnai S, Ohashi K, da Silva Vaz I, Logullo C. Differential expression of PEPCK isoforms is correlated to Aedes aegypti oogenesis and embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110618. [PMID: 34015437 DOI: 10.1016/j.cbpb.2021.110618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
The mosquito Aedes aegypti undertakes a shift in carbohydrate metabolism during embryogenesis, including an increase in the activity of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, at critical steps of embryo development. All eukaryotes studied to date present two PEPCK isoforms, namely PEPCK-M (mitochondrial) and PEPCK-C (cytosolic). In A. aegypti, however, these proteins are so far uncharacterized. In the present work we describe two A. aegypti PEPCK isoforms by sequence alignment, protein modeling, and transcription analysis in different tissues, as well as PEPCK enzymatic activity assays in mitochondrial and cytoplasmic compartments during oogenesis and embryogenesis. First, we characterized the protein sequences compared to other organisms, and identified conserved sites and key amino acids. We also performed structure modeling for AePEPCK(M) and AePEPCK(C), identifying highly conserved structural sites, as well as a signal peptide in AePEPCK(M) localized in a very hydrophobic region. Moreover, after blood meal and during mosquito oogenesis and embryogenesis, both PEPCKs isoforms showed different transcriptional profiles, suggesting that mRNA for the cytosolic form is transmitted maternally, whereas the mitochondrial form is synthesized by the zygote. Collectively, these results improve our understanding of mosquito physiology and may yield putative targets for developing new methods for A. aegypti control.
Collapse
Affiliation(s)
- Renato Martins da Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Wagner Oliveira Vital
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Helga Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Kita-ku Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Kita-ku Sapporo 060-0818, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
Li Y, Zeng YF, Wang ZY, Fan Y, Yang X, Wang Z, Yu S, Pang Q, Cao AC. Deoxymikanolide adversely altered physiology and ultrastructure of Ralstonia solanacearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104803. [PMID: 33838704 DOI: 10.1016/j.pestbp.2021.104803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Deoxymikanolide (DEO) was isolated from Mikania micrantha Bunge and identified as a novel antibacterial compound previously. However, the mode of antimicrobial mechanism of DEO was not clear but hypothesized to affect the morphology and physiology of Ralstonia solanacearum cells. In this study, we confirmed our hypothesis via transmission electron microscopy (TEM) observation and comprehensive physiological analyses, including electric conductivity, glycan and phosphorus metabolism, activities of antioxidant enzymes (catalase, peroxidase, and superoxide dismutase), intrabacterial reactive oxygen species (ROS), and malondialdehyde (MDA) levels. We found that glycan and phosphorus metabolism, electric conductivity, intracellular ROS and MDA levels of R. solanacearum cells were significantly increased, while the activities of three antioxidant enzymes were significantly inhibited by DEO treatment. Moreover, TEM analysis showed that DEO treatment led to an early-stage of cell shrinkage, intermediate-stages of cytoplasmic damage, and a final-stage of cell disruption. Altogether, our data presented here indicate that DEO could adversely affect the physiology and morphology of R. solanacearum cells and be treated as an alternative antibacterial treatment in the future.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Department of Pesticides, Key Laboratory of Pesticide Chemistry and Application, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Yun-Fei Zeng
- Yan'an Institute of Traditional Chinese Medicine, Yanan, Shanxi 716000, China
| | - Zi-Yi Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province 550025, China
| | - Yan Fan
- Dongguan Agricultural Research Centre, Dongguan 523000, China
| | - Xue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Zhaoguo Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Shuai Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Qiuxia Pang
- Biochemistry Department of Medical School, Yan'an University, Yanan 716000, China
| | - Ao-Cheng Cao
- Department of Pesticides, Key Laboratory of Pesticide Chemistry and Application, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
19
|
Wolbachia's Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. INSECTS 2020; 11:insects11110735. [PMID: 33120915 PMCID: PMC7692218 DOI: 10.3390/insects11110735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary Mosquito-borne viral diseases such as dengue, Zika and chikungunya cause a significant global health burden and are currently increasing in outbreak frequency and geographical reach. Wolbachia pipientis, an endosymbiotic bacterium, offers a solution to this. When Wolbachia is introduced into the main mosquito vector of these viruses, Aedes aegypti, it alters the mosquito’s reproductive biology, as well as reducing the ability of the mosquitoes to transmit viruses. These traits can be leveraged to reduce virus transmission within a community by mass releasing Wolbachia-infected mosquitoes. However, Wolbachia has some negative effects on Aedes aegypti fitness, particularly egg longevity, and the reason behind this remains ambiguous. Insect fitness is very important for the success for Wolbachia-biocontrol strategies as they rely on the released insects being competitive with the wild mosquito population. This review summarises the fitness effects of Wolbachia on Aedes aegypti and investigates the possible contribution of Wolbachia as a nutritional parasite in lowering host fitness. It proposes the next stages of research that can be conducted to address nutritional parasitism to aid in the expansion of Wolbachia-based disease management programs worldwide. Abstract The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia’s negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
Collapse
|
20
|
Xu KK, Pan BY, Wang YY, Ren QQ, Li C. Roles of the PTP61F Gene in Regulating Energy Metabolism of Tribolium castaneum (Coleoptera: Tenebrionidae). Front Physiol 2020; 11:1071. [PMID: 32973565 PMCID: PMC7468486 DOI: 10.3389/fphys.2020.01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator in the insulin signaling pathway. It belongs to a class of non-receptor phosphatases of protein tyrosine phosphatase and can catalyze the dephosphorylation of tyrosine to regulate cell differentiation, growth, and metabolism. However, few studies have focused on the role of PTP1B in regulating energy metabolism of insects. In this study, we investigated the expression profiles and the functions of a PTP1B gene (designated TcPTP61F) in the red flour beetle Tribolium castaneum. Quantitative real-time PCR analyzed showed that TcPTP61F was highly expressed in the pupal and adult stages. In adult tissues, TcPTP61F was prominently expressed in the tarsus and head. RNA interference-mediated silencing of TcPTP61F reduced the expression of eight genes in trehalose metabolic and glycolytic pathways. TcPTP61F depletion also caused a significant change in the distribution of trehalose, glucose, and glycogen. Additionally, knockdown of TcPTP61F inhibited the pyruvate kinase (PK) activity and significantly decreased the adenosine triphosphate (ATP) level. The results suggest that TcPTP61F is indispensible for trehalose and energy metabolism of T. castaneum.
Collapse
Affiliation(s)
- Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuan-Yuan Wang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Qian-Qian Ren
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
21
|
Waltero C, Martins R, Calixto C, da Fonseca RN, Abreu LAD, da Silva Vaz I, Logullo C. The hallmarks of GSK-3 in morphogenesis and embryonic development metabolism in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103307. [PMID: 31857215 DOI: 10.1016/j.ibmb.2019.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Several research groups around the world have studied diverse aspects of energy metabolism in arthropod disease vectors, with the aim of discovering potential control targets. As in all oviparous organisms, arthropod embryonic development is characterized by the mobilization of maternally-derived metabolites for the formation of new tissues and organs. Glycogen synthase kinase-3 (GSK-3) is a serine-threonine kinase described as an important regulator of metabolism and development in a wide range of organisms. GSK-3 was first identified based on its action upon glycogen synthase, a central enzyme in glycogen biosynthesis. Currently, it is recognized as a key component of multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, cell migration, and immune response. The present review will describe the current knowledge on GSK-3 activation and its role in morphogenesis and embryonic metabolism in arthropods. Altogether, the information discussed here can spark new approaches and strategies for further studies, enhancing our understanding of these important arthropod vectors and strengthening the resources in the search for novel control methods.
Collapse
Affiliation(s)
- Camila Waltero
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Christiano Calixto
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Leonardo Araujo de Abreu
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Instituto de Biodiversidade e Sustentabilidade NUPEM, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil.
| |
Collapse
|
22
|
Farnesi LC, Belinato TA, Gesto JSM, Martins AJ, Bruno RV, Moreira LA. Embryonic development and egg viability of wMel-infected Aedes aegypti. Parasit Vectors 2019; 12:211. [PMID: 31060581 PMCID: PMC6503365 DOI: 10.1186/s13071-019-3474-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aedes aegypti is a major disease vector in urban habitats, involved in the transmission of dengue, chikungunya and Zika. Despite innumerous attempts to contain disease outbreaks, there are neither efficient vaccines nor definite vector control methods nowadays. In recent years, an innovative strategy to control arboviruses, which exploits the endosymbiotic bacterium Wolbachia pipientis, emerged with great expectations. The success of the method depends on many aspects, including Wolbachia’s cytoplasmic incompatibility and pathogen interference phenotypes, as well as its effect on host fitness. In this work, we investigated the influence the Wolbachia strain wMel exerts on embryo development and egg viability and speculate on its field release use. Methods Wild-type (Br or Rockefeller) and Wolbachia-harboring specimens (wMelBr) were blood-fed and submitted to synchronous egg laying for embryo development assays. Samples were analyzed for morphological markers, developmental endpoint and egg resistance to desiccation (ERD). Quiescent egg viability over time was also assessed. Results wMelBr samples completed embryogenesis 2–3 hours later than wild-type. This delay was also observed through the onset of both morphological and physiological markers, respectively by the moments of germband extension and ERD acquisition. Following the end of embryonic development, wMelBr eggs were slightly less resistant to desiccation and showed reduced viability levels, which rapidly decayed after 40 days into quiescence, from approximately 75% to virtually 0% in less than a month. Conclusions Our data revealed that the wMel strain of Wolbachia slightly delays embryogenesis and also affects egg quality, both through reduced viability and desiccation resistance. These findings suggest that, although embryonic fitness is somehow compromised by wMel infection, an efficient host reproductive manipulation through cytoplasmic incompatibility seems sufficient to overcome these effects in nature and promote bacterial invasion, as shown by successful ongoing field implementation.
Collapse
Affiliation(s)
- Luana Cristina Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Thiago Affonso Belinato
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - João Silveira Moledo Gesto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Luciano Andrade Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Ge LQ, Gu HT, Li X, Zheng S, Zhou Z, Miao H, Wu JC. Silencing of triazophos-induced Hexokinase-1-like reduces fecundity in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:176-184. [PMID: 30744893 DOI: 10.1016/j.pestbp.2018.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Hexokinase is a rate-limiting enzyme that plays pivotal roles in glucose homeostasis and energy metabolism via glucose (Glc) phosphorylation and Glc signaling mediation. Previous investigations have revealed the modulatory role of Hexokinase (Hex) genes involved in proper glucose regulation during insect diapause and embryo development, whereas whether it functions in insect fecundity remains largely unknown. We aimed to explore the relationship between Triazophos (TZP)-induced Hex-1 and fecundity of female Nilaparvata lugens. In this study, Hex-1 expression were characterized at different developmental stages and in various tissues of N. lugens, with the highest expression registered in brain tissues and 5th instar nymph. The present findings indicated that TZP + dsHex-1 silencing significantly reduced protein synthesis, including the fat body and ovarian protein content of female adults. Meanwhile, the glycometabolism with respect to the soluble sugar, trehalose and glucose content in female adults were strikingly influenced as a result of Hex-1 knockdown. The relative transcript level of Hex-1, vitellogenin (NlVg) and vitellogenin receptor (NlVgR) considerably decreased in TZP + dsHex-1 treated females compared to TZP and TZP + dsGFP-treated groups. More importantly, TZP + dsHex-1 silencing led to reduced number of eggs laid and vitellogenin (Vg) accumulation as well as retarded ovary development compared with TZP-treated and TZP + dsGFP-treated groups. Taken together, it is proposed that Hex-1 implicates in N. lugens fecundity by exerting profound effects on glycometabolism, protein sythesis and NlVg expression.
Collapse
Affiliation(s)
- Lin-Quan Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou University, Yangzhou 225009, PR China.
| | - Hao-Tian Gu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Li
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Sui Zheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Ze Zhou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Hong Miao
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jin-Cai Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China; Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural-Products, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
24
|
Petchampai N, Murillo-Solano C, Isoe J, Pizarro JC, Scaraffia PY. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:82-90. [PMID: 30578824 PMCID: PMC6814295 DOI: 10.1016/j.ibmb.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diseases of public health significance. The discovery of new metabolic targets is crucial for improving mosquito control strategies. We recently demonstrated that glucose oxidation supports ammonia detoxification in A. aegypti. Pyruvate kinase (PK, EC 2.7.1.40) catalyzes the last step of the glycolytic pathway. In most organisms, one or more allosteric effectors control PK activity. However, the kinetic properties and structure of PK in mosquitoes have not been previously reported. In this study, two alternatively spliced mRNA variants (AaPK1 and AaPK2) that code for PKs were identified in the A. aegypti genome. The AaPK1 mRNA variant, which encodes a 529 amino acid protein with an estimated molecular weight of ∼57 kDa, was cloned. The protein was expressed in Escherichia coli and purified. The AaPK1 kinetic properties were identified. The recombinant protein was also crystallized and its 3D structure determined. We found that alanine, glutamine, proline, serine and fructose-1-phosphate displayed a classic allosteric activation on AaPK1. Ribulose-5-phosphate acted as an allosteric inhibitor of AaPK1 but its inhibitory effect was reversed by alanine, glutamine, proline and serine. Additionally, the allosteric activation of AaPK1 by amino acids was weakened by fructose-1,6-bisphosphate, whereas the allosteric activation of AaPK1 by alanine and serine was diminished by glucose-6-phosphate. The AaPK1 structure shows the presence of fructose-1,6-bisphosphate in the allosteric site. Together, our results reveal that specific amino acids and phosphorylated sugars tightly regulate conformational dynamics and catalytic changes of AaPK1. The distinctive AaPK1 allosteric properties support a complex role for this enzyme within mosquito metabolism.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Claribel Murillo-Solano
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
25
|
Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:56-63. [DOI: 10.1016/j.cbpb.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 11/21/2022]
|
26
|
de Abreu da Silva IC, Vicentino ARR, Dos Santos RC, da Fonseca RN, de Mendonça Amarante A, Carneiro VC, de Amorim Pinto M, Aguilera EA, Mohana-Borges R, Bisch PM, da Silva-Neto MAC, Fantappié MR. Molecular and functional characterization of single-box high-mobility group B (HMGB) chromosomal protein from Aedes aegypti. Gene 2018; 671:152-160. [PMID: 29859286 DOI: 10.1016/j.gene.2018.05.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Abstract
High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis.
Collapse
Affiliation(s)
- Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | | | | | - Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Marcia de Amorim Pinto
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil.
| |
Collapse
|
27
|
Martins R, Ruiz N, Fonseca RND, Vaz Junior IDS, Logullo C. The dynamics of energy metabolism in the tick embryo. ACTA ACUST UNITED AC 2018; 27:259-266. [PMID: 30133594 DOI: 10.1590/s1984-296120180051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023]
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is an ectoparasite capable of transmitting a large number of pathogens, causing considerable losses in the cattle industry, with substantial damage to livestock. Over the years, important stages of its life cycle, such as the embryo, have been largely ignored by researchers. Tick embryogenesis has been typically described as an energy-consuming process, sustaining cell proliferation, differentiation, and growth. During the embryonic stage of arthropods, there is mobilization of metabolites of maternal origin for the development of organs and tissues of the embryo. Glycogen resynthesis in late embryogenesis is considered as an effective indicator of embryonic integrity. In the cattle tick R.(B. (B.) microplus, glycogen resynthesis is sustained by protein degradation through the gluconeogenesis pathway at the end of the embryonic period. Despite recent advancements in research on tick energy metabolism at the molecular level, the dynamics of nutrient utilization during R. (B.) microplus embryogenesis is still poorly understood. The present review aims to describe the regulatory mechanisms of carbohydrate metabolism during maternal-zygotic transition and identify possible new targets for the development of novel drugs and other control measures against R. (B.) microplus infestations.
Collapse
Affiliation(s)
- Renato Martins
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense - UENF, Campos dos Goytacazes, RJ, Brasil
| | - Newton Ruiz
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense - UENF, Campos dos Goytacazes, RJ, Brasil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro - UFRJ, Campus Macaé, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, RJ, Brasil
| | - Itabajara da Silva Vaz Junior
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, RJ, Brasil.,Centro de Biotecnologia e Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brasil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro - UFRJ, Campus Macaé, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
28
|
Prud'homme SM, Renault D, David JP, Reynaud S. Multiscale Approach to Deciphering the Molecular Mechanisms Involved in the Direct and Intergenerational Effect of Ibuprofen on Mosquito Aedes aegypti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7937-7950. [PMID: 29874051 DOI: 10.1021/acs.est.8b00988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The anti-inflammatory ibuprofen is a ubiquitous surface water contaminant. However, the chronic impact of this pharmaceutical on aquatic invertebrate populations remains poorly understood. In model insect Aedes aegypti, we investigated the intergenerational consequences of parental chronic exposure to an environmentally relevant concentration of ibuprofen. While exposed individuals did not show any phenotypic changes, their progeny showed accelerated development and an increased tolerance to starvation. In order to understand the mechanistic processes underpinning the direct and intergenerational impacts of ibuprofen, we combined transcriptomic, metabolomics, and hormone kinetics studies at several life stages in exposed individuals and their progeny. This integrative approach revealed moderate transcriptional changes in exposed larvae consistent with the pharmacological mode of action of ibuprofen. Parental exposure led to lower levels of several polar metabolites in progeny eggs and to major transcriptional changes in the following larval stage. These transcriptional changes, most likely driven by changes in the expression of numerous transcription factors and epigenetic regulators, led to ecdysone signaling and stress response potentiation. Overall, the present study illustrates the complexity of the molecular basis of the intergenerational pollutant response in insects and the importance of considering the entire life cycle of exposed organisms and of their progeny in order to fully understand the mode of action of pollutants and their impact on ecosystems.
Collapse
Affiliation(s)
- Sophie M Prud'homme
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA , 38000 Grenoble , France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du Gal Leclerc, CS 74205 , 35042 Rennes Cedex, France
- Institut Universitaire de France , 1 rue Descartes , 75231 Paris Cedex 05, France
| | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA , 38000 Grenoble , France
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA , 38000 Grenoble , France
| |
Collapse
|
29
|
Xavier MA, Tirloni L, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Logullo C, da Silva Vaz I, Seixas A, Termignoni C. A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 2018; 8:4698. [PMID: 29549327 PMCID: PMC5856802 DOI: 10.1038/s41598-018-23090-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
Ticks are arthropod ectoparasites of importance for public and veterinary health. The understanding of tick oogenesis and embryogenesis could contribute to the development of novel control methods. However, to date, studies on the temporal dynamics of proteins during ovary development were not reported. In the present study we followed protein profile during ovary maturation. Proteomic analysis of ovary extracts was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using shotgun strategy, in addition to dimethyl labelling-based protein quantification. A total of 3,756 proteins were identified, which were functionally annotated into 30 categories. Circa 80% of the annotated proteins belong to categories related to basal metabolism, such as protein synthesis and modification machineries, nuclear regulation, cytoskeleton, proteasome machinery, transcriptional machinery, energetic metabolism, extracellular matrix/cell adhesion, immunity, oxidation/detoxification metabolism, signal transduction, and storage. The abundance of selected proteins involved in yolk uptake and degradation, as well as vitellin accumulation during ovary maturation, was assessed using dimethyl-labelling quantification. In conclusion, proteins identified in this study provide a framework for future studies to elucidate tick development and validate candidate targets for novel control methods.
Collapse
Affiliation(s)
- Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Carlos Logullo
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Falckenhayn C, Carneiro VC, de Mendonça Amarante A, Schmid K, Hanna K, Kang S, Helm M, Dimopoulos G, Fantappié MR, Lyko F. Comprehensive DNA methylation analysis of the Aedes aegypti genome. Sci Rep 2016; 6:36444. [PMID: 27805064 PMCID: PMC5090363 DOI: 10.1038/srep36444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 01/03/2023] Open
Abstract
Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation.
Collapse
Affiliation(s)
- Cassandra Falckenhayn
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Katharina Schmid
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Katharina Hanna
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 21205 Baltimore, MD, USA
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 21205 Baltimore, MD, USA
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus. Parasitology 2016; 143:1569-79. [DOI: 10.1017/s0031182016001487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYRhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4’−6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.
Collapse
|
32
|
Ruiz N, de Abreu LA, Parizi LF, Kim TK, Mulenga A, Braz GRC, Vaz IDS, Logullo C. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation. PLoS One 2015; 10:e0130008. [PMID: 26091260 PMCID: PMC4474930 DOI: 10.1371/journal.pone.0130008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/15/2015] [Indexed: 11/18/2022] Open
Abstract
RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT)/Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.
Collapse
Affiliation(s)
- Newton Ruiz
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda—Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM/UFRJ), Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica–Instituto de Química, Universidade Federal do Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
| | - Carlos Logullo
- Unidade de Experimentação Animal and Laboratório de Química e Função de Proteínas—Universidade Estadual Norte Fluminense–Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Ilha do Fundão, RJ, Brazil
- * E-mail:
| |
Collapse
|
33
|
Hu W, Criscione F, Liang S, Tu Z. MicroRNAs of two medically important mosquito species: Aedes aegypti and Anopheles stephensi. INSECT MOLECULAR BIOLOGY 2015; 24:240-52. [PMID: 25420875 PMCID: PMC4361387 DOI: 10.1111/imb.12152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, single-stranded small RNAs that have important regulatory functions at the post-transcriptional level. In the present study, we characterize miRNAs in two divergent mosquito species, Aedes aegypti and Anopheles stephensi, through deep sequencing of small RNAs spanning all developmental stages. We discovered eight novel miRNAs in Ae. aegypti and 20 novel miRNAs in An. stephensi, which enabled the first systematic analysis of miRNA evolution in mosquitos. We traced the phylogenetic history of all miRNAs in both species and report a rate of 0.055-0.13 miRNA net gain per million years. Most novel miRNAs originate de novo. Duplications that produced miRNA clusters and families are more common in Ae. aegypti than in An. stephensi. We also identified arm-switch as a source of new miRNAs. Expression profile analysis identified mosquito-specific miRNAs that showed strong stage-specific expression in one or both lineages. For example, the aae-miR-2941/2946 family represents the most abundant maternally deposited and zygotically transcribed miRNAs in Ae. aegypti. miR-2943 is a highly expressed zygotic miRNA in both Ae. aegypti and An. stephensi. Such information provides the basis from which to study the function of these miRNAs in biology common to all mosquitos or unique to one particular lineage.
Collapse
Affiliation(s)
- W Hu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
34
|
Non-classical gluconeogenesis-dependent glucose metabolism in Rhipicephalus microplus embryonic cell line BME26. Int J Mol Sci 2015; 16:1821-39. [PMID: 25594873 PMCID: PMC4307336 DOI: 10.3390/ijms16011821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022] Open
Abstract
In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells.
Collapse
|
35
|
Lacour G, Vernichon F, Cadilhac N, Boyer S, Lagneau C, Hance T. When mothers anticipate: effects of the prediapause stage on embryo development time and of maternal photoperiod on eggs of a temperate and a tropical strains of Aedes albopictus (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2014; 71:87-96. [PMID: 25450563 DOI: 10.1016/j.jinsphys.2014.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The diapause of Aedes albopictus is maternally induced by photoperiod and initiates at the pharate larvae stage in eggs. This pre-diapause results in enhanced survival eggs during the winter. This study aims to disentangle the effects of photoperiod and diapause on embryonic developmental time and egg size in A. albopictus. A temperate strain capable to perform diapause and a tropical strain unable of diapause were reared at 21°C with long-(LD) and short-day (SD) lengths. Four distinct traits were studied on embryos and eggs were measured at the end of embryogenesis. RESULTS The chronologies of embryo development for both strains were influenced by maternal photoperiod, especially in the temperate strain in which the development of SD eggs took longer than LD eggs. The delay increased gradually in the temperate strain, and reached up to 38 h at the end of embryogenesis. The kinetics of embryogenesis differed among the temperate and the tropical strains, each one of the 4 studied traits showing differences. For example the serosal cuticle was secreted precociously in the tropical strain. Egg width and volume are influenced by the maternal photoperiod and the strain×photoperiod interaction. For both strains, larger eggs were laid by female reared under SD when compared to LD. CONCLUSIONS The influence of several maternal effects was demonstrated in this study. The diapause process modifies greatly the length of embryogenesis in the temperate strain, whereas the maternal photoperiod has a direct influence on egg size and embryogenesis regardless of the strain considered. These findings provide useful data on chronology of embryonic development for integrative biology studies of egg pre-diapause stages.
Collapse
Affiliation(s)
- Guillaume Lacour
- EID Méditerranée, 165 Avenue Paul-Rimbaud, 34184 Montpellier, France; Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Florian Vernichon
- EID Méditerranée, 165 Avenue Paul-Rimbaud, 34184 Montpellier, France.
| | - Nicolas Cadilhac
- EID Méditerranée, 165 Avenue Paul-Rimbaud, 34184 Montpellier, France.
| | - Sébastien Boyer
- UMR-MIVEGEC, Institut de Recherche pour le Développement, 34394 Montpellier, France.
| | | | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
36
|
da Rocha Fernandes M, Martins R, Pessoa Costa E, Casagrande Pacidônio E, Araujo de Abreu L, da Silva Vaz I, Moreira LA, da Fonseca RN, Logullo C. The modulation of the symbiont/host interaction between Wolbachia pipientis and Aedes fluviatilis embryos by glycogen metabolism. PLoS One 2014; 9:e98966. [PMID: 24926801 PMCID: PMC4057193 DOI: 10.1371/journal.pone.0098966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/08/2014] [Indexed: 12/22/2022] Open
Abstract
Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+) and Wolbachia-negative (W-) mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3) levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism.
Collapse
Affiliation(s)
- Mariana da Rocha Fernandes
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal - RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Renato Martins
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal - RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Evenilton Pessoa Costa
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal - RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Leonardo Araujo de Abreu
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal - RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Socioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ/Macaé), Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Luciano A. Moreira
- Laboratório de Malária, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Socioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ/Macaé), Rio de Janeiro, Brazil
| | - Carlos Logullo
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal - RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3-GENES GENOMES GENETICS 2014; 4:839-50. [PMID: 24622332 PMCID: PMC4025483 DOI: 10.1534/g3.114.010652] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells.
Collapse
|
38
|
Vargas HCM, Farnesi LC, Martins AJ, Valle D, Rezende GL. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. JOURNAL OF INSECT PHYSIOLOGY 2014; 62:54-60. [PMID: 24534672 DOI: 10.1016/j.jinsphys.2014.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Given their medical importance, mosquitoes have been studied as vectors of parasites since the late 1800's. However, there are still many gaps concerning some aspects of their biology, such as embryogenesis. The embryonic desiccation resistance (EDR), already described in Aedes and Anopheles gambiae mosquitoes, is a peculiar trait. Freshly laid eggs are susceptible to water loss, a condition that can impair their viability. EDR is acquired during embryogenesis through the formation of the serosal cuticle (SC), protecting eggs from desiccation. Nevertheless, conservation of both traits (SC presence and EDR acquisition) throughout mosquito evolution is unknown. Comparative physiological studies with mosquito embryos from different genera, exhibiting distinct evolutionary histories and habits is a feasible approach. In this sense, the process of EDR acquisition of Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus at 25°C was evaluated. Completion of embryogenesis occurs in Ae. aegypti, An. aquasalis and Cx. quinquefasciatus at, respectively 77.4, 51.3 and 34.3hours after egg laying, Cx. quinquefasciatus embryonic development taking less than half the time of Ae. aegypti. In all cases, EDR is acquired in correlation with SC formation. For both Ae. aegypti and An. aquasalis, EDR and SC appear at 21% of total embryonic development, corresponding to the morphological stage of complete germ band elongation/beginning of germ band retraction. Although phylogenetically closer to Ae. aegypti than to An. aquasalis, Cx. quinquefasciatus acquires both EDR and serosal cuticle later, with 35% of total development, when the embryo already progresses to the middle of germ band retraction. EDR confers distinct egg viability in these species. While Ae. aegypti eggs demonstrated high viability when left up to 72hours in a dry environment, those of An. aquasalis and Cx. quinquefasciatus supported these conditions for only 24 and 5hours, respectively. Our data suggest that serosa development is at least partially uncoupled from embryo development and that, depending upon the mosquito species, EDR bestows distinct levels of egg viability.
Collapse
Affiliation(s)
- Helena Carolina Martins Vargas
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ 20911-270, Brazil.
| | - Luana Cristina Farnesi
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ 20911-270, Brazil.
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, IOC, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil; Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, RJ 20911-270, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Denise Valle
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil; Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21045-900, Brazil..
| | - Gustavo Lazzaro Rezende
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
39
|
Gokhale K, Patil DP, Dhotre DP, Dixit R, Mendki MJ, Patole MS, Shouche YS. Transcriptome analysis of Anopheles stephensi embryo using expressed sequence tags. J Biosci 2013; 38:301-9. [PMID: 23660664 DOI: 10.1007/s12038-013-9320-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage in insects. Here, we report generation, annotation and analysis of ESTs from the embryonic stage (16-22 h post fertilization) of laboratoryreared Anopheles stephensi mosquitoes. A total of 1002 contigs were obtained upon clustering of 1140 high-quality ESTs, which demonstrates an astonishingly low transcript redundancy (12.1 percent). Putative functions were assigned only to 213 contigs (21 percent), comprising mainly of transcripts encoding protein synthesis machinery. Approximately 78 percent of the transcripts remain uncharacterized, illustrating a lack of sequence information about the genes expressed in the embryonic stages of mosquitoes. This study highlights several novel transcripts, which apart from insect development, may significantly contribute to the essential biological complexity underlying insect viability in adverse environments. Nonetheless, the generated sequence information from this work provides a comprehensive resource for genome annotation, microarray development, phylogenetic analysis and other molecular biology applications in entomology.
Collapse
Affiliation(s)
- Kaustubh Gokhale
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | | | | | | | |
Collapse
|
40
|
Zeng Z, Ni J, Ke C. Expression of glycogen synthase (GYS) and glycogen synthase kinase 3β (GSK3β) of the Fujian oyster, Crassostrea angulata, in relation to glycogen content in gonad development. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:203-14. [DOI: 10.1016/j.cbpb.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
41
|
de Abreu LA, Calixto C, Waltero CF, Della Noce BP, Githaka NW, Seixas A, Parizi LF, Konnai S, Vaz IDSJ, Ohashi K, Logullo C. The conserved role of the AKT/GSK3 axis in cell survival and glycogen metabolism in Rhipicephalus (Boophilus) microplus embryo tick cell line BME26. Biochim Biophys Acta Gen Subj 2013; 1830:2574-82. [PMID: 23274741 DOI: 10.1016/j.bbagen.2012.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tick embryogenesis is a metabolically intensive process developed under tightly controlled conditions and whose components are poorly understood. METHODS In order to characterize the role of AKT (protein kinase B) in glycogen metabolism and cell viability, glycogen determination, identification and cloning of an AKT from Rhipicephalus microplus were carried out, in parallel with experiments using RNA interference (RNAi) and chemical inhibition. RESULTS A decrease in glycogen content was observed when AKT was chemically inhibited by 10-DEBC treatment, while GSK3 inhibition by alsterpaullone had an opposing effect. RmAKT ORF is 1584-bp long and encodes a polypeptide chain of 60.1 kDa. Phylogenetic and sequence analyses showed significant differences between vertebrate and tick AKTs. Either AKT or GSK3 knocked down cells showed a 70% reduction in target transcript levels, but decrease in AKT also reduced glycogen content, cell viability and altered cell membrane permeability. However, the GSK3 reduction promoted an increase in glycogen content. Additionally, either GSK3 inhibition or gene silencing had a protective effect on BME26 viability after exposure to ultraviolet radiation. R. microplus AKT and GSK3 were widely expressed during embryo development. Taken together, our data support an antagonistic role for AKT and GSK3, and strongly suggest that such a signaling axis is conserved in tick embryos, with AKT located upstream of GSK3. GENERAL SIGNIFICANCE The AKT/GSK3 axis is conserved in tick in a way that integrates glycogen metabolism and cell survival, and exhibits phylogenic differences that could be important for the development of novel control methods.
Collapse
Affiliation(s)
- Leonardo Araujo de Abreu
- LQFPP, CBB and Unidade de Experimentação Animal, RJ, UENF, Avenida Alberto Lamego, 2000, Horto, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fraga A, Ribeiro L, Lobato M, Santos V, Silva JR, Gomes H, da Cunha Moraes JL, de Souza Menezes J, de Oliveira CJL, Campos E, da Fonseca RN. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum. PLoS One 2013; 8:e65125. [PMID: 23750237 PMCID: PMC3672164 DOI: 10.1371/journal.pone.0065125] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/22/2013] [Indexed: 01/07/2023] Open
Abstract
Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.
Collapse
Affiliation(s)
- Amanda Fraga
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
| | - Mariana Lobato
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
| | - Vitória Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
| | - José Roberto Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Helga Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
| | - Jorge Luiz da Cunha Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Jackson de Souza Menezes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carlos Jorge Logullo de Oliveira
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos and Unidade de Experimentação Animal, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Núcleo de Pesquisas Ecológicas e Sócioambientais de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Programa de Pósgraduação em Produtos Bioativos e Biociências (PPGPRODBIO), Universidade Federal do Rio de Janeiro (UFRJCampus Macaé), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
43
|
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc Biol Sci 2013; 280:20130143. [PMID: 23516243 DOI: 10.1098/rspb.2013.0143] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Seasonal environments present fundamental physiological challenges to a wide range of insects. Many temperate insects surmount the exigencies of winter by undergoing photoperiodic diapause, in which photoperiod provides a token cue that initiates an alternative developmental programme leading to dormancy. Pre-diapause is a crucial preparatory phase of this process, preceding developmental arrest. However, the regulatory and physiological mechanisms of diapause preparation are largely unknown. Using high-throughput gene expression profiling in the Asian tiger mosquito, Aedes albopictus, we reveal major shifts in endocrine signalling, cell proliferation, metabolism, energy production and cellular structure across pre-diapause development. While some hallmarks of diapause, such as insulin signalling and stress response, were not important at the transcriptional level, two genes, Pepck and PCNA, appear to show diapause-induced transcriptional changes across insect taxa. These processes demonstrate physiological commonalities between Ae. albopictus pre-diapause and diapause strategies across insects, and support the idea of a genetic 'toolkit' for diapause. Observations of gene expression trends from a comparative developmental perspective suggest that individual physiological processes are delayed against a background of a fixed morphological ontogeny. Our results demonstrate how deep sequencing can provide new insights into elusive molecular bases of complex ecological adaptations.
Collapse
Affiliation(s)
- Monica F Poelchau
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
44
|
Reynolds JA, Poelchau MF, Rahman Z, Armbruster PA, Denlinger DL. Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:966-73. [PMID: 22579567 PMCID: PMC3389261 DOI: 10.1016/j.jinsphys.2012.04.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 05/20/2023]
Abstract
The Asian tiger mosquito, Aedes albopictus, is a medically important invasive species whose geographic distribution has expanded dramatically during the past 20 years, and one of the key elements of its success is its capacity to survive long distance transport as a diapausing pharate first instar larva, encased within the chorion of the egg. We report that pharate larvae entering diapause are larger and contain 30% more lipid than their nondiapausing counterparts. To improve our understanding of the molecular regulation of lipid metabolism during diapause, we assessed the relative mRNA abundance of 21 genes using qRT-PCR. Elevated expression of lipid storage droplet protein 2 during embryonic development likely contributes to the higher amounts of lipid we noted in diapausing individuals. The conservation of lipids during diapause is reflected in downregulation of genes involved in lipid catabolism, including lipase 2, lipase 3, lipase 4, acyl-CoA dehydrogenase 4, and isovaleryl-CoA dehydrogenase. Two genes involved in fatty acid synthesis and modification, Δ(9)-desaturase, and fatty acyl-CoA elongase, were both upregulated in diapausing pharate larvae, suggesting roles for their gene products in generating unsaturated fatty acids to enhance membrane fluidity at low temperatures and generating precursors to the surface hydrocarbons needed to resist desiccation, respectively. Together, the results point to substantial distinctions in lipid metabolism within the embryo as a consequence of the diapause program, and these differences occur both before the actual onset of diapause as well as during the diapause state.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Entomology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.
Collapse
Affiliation(s)
- David W Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
46
|
Clemons A, Haugen M, Le C, Mori A, Tomchaney M, Severson DW, Duman-Scheel M. siRNA-mediated gene targeting in Aedes aegypti embryos reveals that frazzled regulates vector mosquito CNS development. PLoS One 2011; 6:e16730. [PMID: 21304954 PMCID: PMC3031613 DOI: 10.1371/journal.pone.0016730] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/25/2010] [Indexed: 01/03/2023] Open
Abstract
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects.
Collapse
Affiliation(s)
- Anthony Clemons
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Morgan Haugen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Christy Le
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Akio Mori
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael Tomchaney
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David W. Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Molly Duman-Scheel
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|