1
|
Jiang L, Zhang Z, Luo Z, Li L, Yuan S, Cui M, He K, Xiao J. Rupatadine inhibits colorectal cancer cell proliferation through the PIP5K1A/Akt/CDK2 pathway. Biomed Pharmacother 2024; 176:116826. [PMID: 38838507 DOI: 10.1016/j.biopha.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3β pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhibo Zhang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhaofeng Luo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luan Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shengtao Yuan
- China Pharmaceutical University, Nanjing 210000, China
| | - Min Cui
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
2
|
Krishnan N. Endocrine Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782869 DOI: 10.1007/5584_2024_807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development. It is thus important to pay particular attention to the regulation of lipid metabolism through the endocrine system, especially when considering the involvement of peptide hormones in the processes of lipogenesis and lipolysis. In insects, there are several lipogenic and lipolytic hormones that are involved in lipid metabolism such as insulin-like peptides (ILPs), adipokinetic hormone (AKH), 20-hydroxyecdysone (20-HE), juvenile hormone (JH), and serotonin. Other neuropeptides such as diapause hormone-pheromone biosynthesis activating neuropeptide (DH-PBAN), CCHamide-2, short neuropeptide F, and the cytokines Unpaired 1 and 2 may play a role in inducing lipogenesis. On the other hand, neuropeptides such as neuropeptide F, allatostatin-A, corazonin, leukokinin, tachykinins, limostatins, and insulin-like growth factor (ILP6) stimulate lipolysis. This chapter briefly discusses the current knowledge of the endocrine regulation of lipid metabolism in insects that could be utilized to reveal differences between insects and mammalian lipid metabolism which may help understand human diseases associated with dysregulation of lipid metabolism. Physiological similarities of insects to mammals make them valuable model systems for studying human diseases characterized by disrupted lipid metabolism, including conditions like diabetes, obesity, arteriosclerosis, and various metabolic syndromes.
Collapse
Affiliation(s)
- Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
3
|
Haidar S, Amesty Á, Oramas-Royo S, Götz C, El-Awaad E, Kaiser J, Bödecker S, Arnold A, Aichele D, Amaro-Luis JM, Estévez-Braun A, Jose J. 1,2,3-Triazole-totarol conjugates as potent PIP5K1α lipid kinase inhibitors. Bioorg Med Chem 2024; 105:117727. [PMID: 38669736 DOI: 10.1016/j.bmc.2024.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) plays a key role in the development of prostate cancer. In this work, seventeen derivatives of the natural diterpene totarol were prepared by copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of the correspondingO-propargylated totarol with aryl or alkyl azides and screened for their inhibitory activities toward hPIP5K1α. Five compounds, 3a, 3e, 3f, 3i, and 3r, strongly inhibited the enzyme activity with IC50 values of 1.44, 0.46, 1.02, 0.79, and 3.65 µM, respectively, with the most potent inhibitor 3e 13-[(1-(3-nitrophenyl)triazol-4yl)methoxy]-totara-8,11,13-triene). These compounds were evaluated on their antiproliferative effects in a panel of prostate cancer cell lines. Compound 3r inhibited the proliferation of LNCaP, PC3 and DU145 cells at 20 µM, strongly, but also has strong cytotoxic effects on all tested cells.
Collapse
Affiliation(s)
- Samer Haidar
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany; Faculty of Pharmacy, 17 April Street, Damascus University, Damascus 9411, Syria
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain
| | - Sandra Oramas-Royo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain
| | - Claudia Götz
- Universität des Saarlandes - Campus Homburg, Medizinische Biochemie und Molekularbiologie, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany
| | - Ehab El-Awaad
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany; Department of Pharmacology, Faculty of Medicine, Assiut University, 71515 Egypt
| | - Jana Kaiser
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Sarah Bödecker
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Amelie Arnold
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Dagmar Aichele
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Juan M Amaro-Luis
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain; Departamento de Química, Universidad de los Andes (Mérida), 5101, Venezuela
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain.
| | - Joachim Jose
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany.
| |
Collapse
|
4
|
Zhang X, Duan X, Liu X. The role of kinases in peripheral nerve regeneration: mechanisms and implications. Front Neurol 2024; 15:1340845. [PMID: 38689881 PMCID: PMC11058862 DOI: 10.3389/fneur.2024.1340845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Peripheral nerve injury disease is a prevalent traumatic condition in current medical practice. Despite the present treatment approaches, encompassing surgical sutures, autologous nerve or allograft nerve transplantation, tissue engineering techniques, and others, an effective clinical treatment method still needs to be discovered. Exploring novel treatment methods to improve peripheral nerve regeneration requires more effort in investigating the cellular and molecular mechanisms involved. Many factors are associated with the regeneration of injured peripheral nerves, including the cross-sectional area of the injured nerve, the length of the nerve gap defect, and various cellular and molecular factors such as Schwann cells, inflammation factors, kinases, and growth factors. As crucial mediators of cellular communication, kinases exert regulatory control over numerous signaling cascades, thereby participating in various vital biological processes, including peripheral nerve regeneration after nerve injury. In this review, we examined diverse kinase classifications, distinct nerve injury types, and the intricate mechanisms involved in peripheral nerve regeneration. Then we stressed the significance of kinases in regulating autophagy, inflammatory response, apoptosis, cell cycle, oxidative processes, and other aspects in establishing conductive microenvironments for nerve tissue regeneration. Finally, we briefly discussed the functional roles of kinases in different types of cells involved in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
- Clinical Medical Research Center, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
5
|
Tziouvara O, Petsana M, Kourounis D, Papadaki A, Basdra E, Braliou GG, Boleti H. Characterization of the First Secreted Sorting Nexin Identified in the Leishmania Protists. Int J Mol Sci 2024; 25:4095. [PMID: 38612903 PMCID: PMC11012638 DOI: 10.3390/ijms25074095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Proteins of the sorting nexin (SNX) family present a modular structural architecture with a phox homology (PX) phosphoinositide (PI)-binding domain and additional PX structural domains, conferring to them a wide variety of vital eukaryotic cell's functions, from signal transduction to membrane deformation and cargo binding. Although SNXs are well studied in human and yeasts, they are poorly investigated in protists. Herein, is presented the characterization of the first SNX identified in Leishmania protozoan parasites encoded by the LdBPK_352470 gene. In silico secondary and tertiary structure prediction revealed a PX domain on the N-terminal half and a Bin/amphiphysin/Rvs (BAR) domain on the C-terminal half of this protein, with these features classifying it in the SNX-BAR subfamily of SNXs. We named the LdBPK_352470.1 gene product LdSNXi, as it is the first SNX identified in Leishmania (L.) donovani. Its expression was confirmed in L. donovani promastigotes under different cell cycle phases, and it was shown to be secreted in the extracellular medium. Using an in vitro lipid binding assay, it was demonstrated that recombinant (r) LdSNXi (rGST-LdSNXi) tagged with glutathione-S-transferase (GST) binds to the PtdIns3P and PtdIns4P PIs. Using a specific a-LdSNXi antibody and immunofluorescence confocal microscopy, the intracellular localization of endogenous LdSNXi was analyzed in L. donovani promastigotes and axenic amastigotes. Additionally, rLdSNXi tagged with enhanced green fluorescent protein (rLdSNXi-EGFP) was heterologously expressed in transfected HeLa cells and its localization was examined. All observed localizations suggest functions compatible with the postulated SNX identity of LdSNXi. Sequence, structure, and evolutionary analysis revealed high homology between LdSNXi and the human SNX2, while the investigation of protein-protein interactions based on STRING (v.11.5) predicted putative molecular partners of LdSNXi in Leishmania.
Collapse
Affiliation(s)
- Olympia Tziouvara
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Marina Petsana
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2–4 Papasiopoulou Str., 35131 Lamia, Greece;
| | - Drosos Kourounis
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
| | - Amalia Papadaki
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
| | - Efthimia Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2–4 Papasiopoulou Str., 35131 Lamia, Greece;
| | - Haralabia Boleti
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
- Bioimaging Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
6
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
7
|
Teng M, Jiang J, Wang ES, Geng Q, Toenjes ST, Donovan KA, Mageed N, Yue H, Nowak RP, Wang J, Manz TD, Fischer ES, Cantley LC, Gray NS. Targeting the Dark Lipid Kinase PIP4K2C with a Potent and Selective Binder and Degrader. Angew Chem Int Ed Engl 2023; 62:e202302364. [PMID: 36898968 PMCID: PMC10150580 DOI: 10.1002/anie.202302364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Phosphatidylinositol 5-phosphate 4-kinase, type II, gamma (PIP4K2C) remains a poorly understood lipid kinase with minimal enzymatic activity but potential scaffolding roles in immune modulation and autophagy-dependent catabolism. Achieving potent and selective agents for PIP4K2C while sparing other lipid and non-lipid kinases has been challenging. Here, we report the discovery of the highly potent PIP4K2C binder TMX-4102, which shows exclusive binding selectivity for PIP4K2C. Furthermore, we elaborated the PIP4K2C binder into TMX-4153, a bivalent degrader capable of rapidly and selectively degrading endogenous PIP4K2C. Collectively, our work demonstrates that PIP4K2C is a tractable and degradable target, and that TMX-4102 and TMX-4153 are useful leads to further interrogate the biological roles and therapeutic potential of PIP4K2C.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Eric S. Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 (USA)
| | - Qixiang Geng
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305 (USA)
| | - Sean T. Toenjes
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305 (USA)
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Nada Mageed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Radosław P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Theresa D. Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Lewis C. Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 (USA)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (USA)
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305 (USA)
| |
Collapse
|
8
|
Lai MJ, Huang YW, Chen HC, Tsao LI, Chang Chien CF, Singh B, Liu BR. Effect of Size and Concentration of Copper Nanoparticles on the Antimicrobial Activity in Escherichia coli through Multiple Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213715. [PMID: 36364491 PMCID: PMC9656174 DOI: 10.3390/nano12213715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
Metal and metal oxide nanoparticles, including copper nanoparticles (CuNPs), display antimicrobial activities and are regarded as promising microorganism inhibitors. Here, we explored the antimicrobial activity of CuNPs in Escherichia coli (E. coli) using two particle sizes (20 and 60 nm) and five concentrations (1, 5, 10, 50 and 100 μg/mL). The result showed a concentration-dependent trend of bactericidal activities for both size groups, with 20 nm particles more effective than 60 nm particles at low concentrations. The membrane disruption caused by CuNPs was confirmed by electron microscopy, PI staining and protein leaking analysis. However, the results of reactive oxygen species generation and genomic DNA damage revealed that the size and concentration of CuNPs were factors affecting the induction of multiple bactericidal mechanisms simultaneously on different scales. Further results of annexin V-PI staining supported this hypothesis by showing the shifting composition of the early-, late- and non-apoptotic dead cells across the CuNP groups. Many CuNP treatment groups were rescued when four mammalian modulators-wortmannin, necrosulfonamide, Z-VAD-FMK, and SBI-0206965-were applied separately. The results suggest the possible existence of bacterial programmed cell death pathways in E. coli which could be triggered by CuNP treatments.
Collapse
Affiliation(s)
- Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Hsuan-Chun Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Li-I Tsao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Chih-Fang Chang Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Bhaskar Singh
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
9
|
A lymphatic-absorbed multi-targeted kinase inhibitor for myelofibrosis therapy. Nat Commun 2022; 13:4730. [PMID: 35977945 PMCID: PMC9386018 DOI: 10.1038/s41467-022-32486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Activation of compensatory signaling nodes in cancer often requires combination therapies that are frequently plagued by dose-limiting toxicities. Intestinal lymphatic drug absorption is seldom explored, although reduced toxicity and sustained drug levels would be anticipated to improve systemic bioavailability. A potent orally bioavailable multi-functional kinase inhibitor (LP-182) is described with intrinsic lymphatic partitioning for the combined targeting of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways without observable toxicity. We demonstrate selectivity and therapeutic efficacy through reduction of downstream kinase activation, amelioration of disease phenotypes, and improved survival in animal models of myelofibrosis. Our further characterization of synthetic and physiochemical properties for small molecule lymphatic uptake will support continued advancements in lymphatropic therapy for altering disease trajectories of a myriad of human disease indications. Combination therapies simultaneously inhibiting different therapeutic targets in cancer is challenged by individual pharmacokinetic profiles. Here, the authors generate an orally provided multi-targeted kinase inhibitor that is lymphatic absorbed and increases survival in a murine model of myelofibrosis.
Collapse
|
10
|
Laurella LC, Mirakian NT, Garcia MN, Grasso DH, Sülsen VP, Papademetrio DL. Sesquiterpene Lactones as Promising Candidates for Cancer Therapy: Focus on Pancreatic Cancer. Molecules 2022; 27:3492. [PMID: 35684434 PMCID: PMC9182036 DOI: 10.3390/molecules27113492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients' survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.
Collapse
Affiliation(s)
- Laura Cecilia Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Nadia Talin Mirakian
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Maria Noé Garcia
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| | - Daniel Héctor Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Valeria Patricia Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Daniela Laura Papademetrio
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| |
Collapse
|
11
|
A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. mBio 2022; 13:e0323921. [PMID: 35038916 PMCID: PMC8764524 DOI: 10.1128/mbio.03239-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphoinositide lipids play key roles in a variety of processes in eukaryotic cells, but our understanding of their functions in the malaria parasite Plasmodium falciparum is still very much limited. To gain a deeper comprehension of the roles of phosphoinositides in this important pathogen, we attempted gene inactivation for 24 putative effectors of phosphoinositide metabolism. Our results reveal that 79% of the candidates are refractory to genetic deletion and are therefore potentially essential for parasite growth. Inactivation of the gene coding for a Plasmodium-specific putative phosphoinositide-binding protein, which we named PfPX1, results in a severe growth defect. We show that PfPX1 likely binds phosphatidylinositol-3-phosphate and that it localizes to the membrane of the digestive vacuole of the parasite and to vesicles filled with host cell cytosol and labeled with endocytic markers. Critically, we provide evidence that it is important in the trafficking pathway of hemoglobin from the host erythrocyte to the digestive vacuole. Finally, inactivation of PfPX1 renders parasites resistant to artemisinin, the frontline antimalarial drug. Globally, the minimal redundancy in the putative phosphoinositide proteins uncovered in our work supports that targeting this pathway has potential for antimalarial drug development. Moreover, our identification of a phosphoinositide-binding protein critical for the trafficking of hemoglobin provides key insight into this essential process. IMPORTANCE Malaria represents an enormous burden for a significant proportion of humanity, and the lack of vaccines and problems with drug resistance to all antimalarials demonstrate the need to develop new therapeutics. Inhibitors of phosphoinositide metabolism are currently being developed as antimalarials but our understanding of this biological pathway is incomplete. The malaria parasite lives inside human red blood cells where it imports hemoglobin to cover some of its nutritional needs. In this work, we have identified a phosphoinositide-binding protein that is important for the transport of hemoglobin in the parasite. Inactivation of this protein decreases the ability of the parasite to proliferate. Our results have therefore identified a potential new target for antimalarial development.
Collapse
|
12
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
13
|
Shackelford RE, Li Y, Ghali GE, Kevil CG. Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation. Antioxidants (Basel) 2021; 10:1820. [PMID: 34829691 PMCID: PMC8614844 DOI: 10.3390/antiox10111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and pathophysiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent, implicating a DDR-H2S signaling axis in these pathophysiologic processes. Taken together, H2S and DNA repair likely play a central and presently poorly understood role in both normal cellular function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in DNA repair.
Collapse
Affiliation(s)
- Rodney E. Shackelford
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Yan Li
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Ghali E. Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| |
Collapse
|
14
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
15
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
16
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tayla Williamson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
17
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
18
|
Koch PA, Dornan GL, Hessenberger M, Haucke V. The molecular mechanisms mediating class II PI 3-kinase function in cell physiology. FEBS J 2021; 288:7025-7042. [PMID: 33387369 DOI: 10.1111/febs.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid-modifying enzymes plays vital roles in cell signaling and membrane trafficking through the production of 3-phosphorylated phosphoinositides. Numerous studies have analyzed the structure and function of class I and class III PI3Ks. In contrast, we know comparably little about the structure and physiological functions of the class II enzymes. Only recent studies have begun to unravel their roles in development, endocytic and endolysosomal membrane dynamics, signal transduction, and cell migration, while the mechanisms that control their localization and enzymatic activity remain largely unknown. Here, we summarize our current knowledge of the class II PI3Ks and outline open questions related to their structure, enzymatic activity, and their physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Philipp Alexander Koch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| | | | - Manuel Hessenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
19
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
20
|
de Araújo RV, Santos SS, Sanches LM, Giarolla J, El Seoud O, Ferreira EI. Malaria and tuberculosis as diseases of neglected populations: state of the art in chemotherapy and advances in the search for new drugs. Mem Inst Oswaldo Cruz 2020; 115:e200229. [PMID: 33053077 PMCID: PMC7534959 DOI: 10.1590/0074-02760200229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Malaria and tuberculosis are no longer considered to be neglected diseases by the World Health Organization. However, both are huge challenges and public health problems in the world, which affect poor people, today referred to as neglected populations. In addition, malaria and tuberculosis present the same difficulties regarding the treatment, such as toxicity and the microbial resistance. The increase of Plasmodium resistance to the available drugs along with the insurgence of multidrug- and particularly tuberculosis drug-resistant strains are enough to justify efforts towards the development of novel medicines for both diseases. This literature review provides an overview of the state of the art of antimalarial and antituberculosis chemotherapies, emphasising novel drugs introduced in the pharmaceutical market and the advances in research of new candidates for these diseases, and including some aspects of their mechanism/sites of action.
Collapse
Affiliation(s)
- Renan Vinicius de Araújo
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Soraya Silva Santos
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Luccas Missfeldt Sanches
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Jeanine Giarolla
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Omar El Seoud
- Universidade de São Paulo, Instituto de Química, Departamento de
Química Fundamental, São Paulo, SP, Brasil
| | - Elizabeth Igne Ferreira
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| |
Collapse
|
21
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Phosphoinositides in Retinal Function and Disease. Cells 2020; 9:cells9040866. [PMID: 32252387 PMCID: PMC7226789 DOI: 10.3390/cells9040866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.
Collapse
|
23
|
How is the acyl chain composition of phosphoinositides created and does it matter? Biochem Soc Trans 2020; 47:1291-1305. [PMID: 31657437 PMCID: PMC6824679 DOI: 10.1042/bst20190205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.
Collapse
|
24
|
Discovery of 6′-chloro-N-methyl-5’-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. Eur J Med Chem 2020; 188:112012. [DOI: 10.1016/j.ejmech.2019.112012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 11/20/2022]
|
25
|
Strätker K, Haidar S, Amesty Á, El-Awaad E, Götz C, Estévez-Braun A, Jose J. Development of an in vitro screening assay for PIP5K1α lipid kinase and identification of potent inhibitors. FEBS J 2020; 287:3042-3064. [PMID: 31876381 DOI: 10.1111/febs.15194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) participates in the phosphoinositide-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Despite the evidence that hPIP5K1α plays a role in the development of prostate cancer (PCa), only one inhibitor is known to date. With the aim of identifying new inhibitors, a nonradiometric assay for measurement of the hPIP5K1α enzyme activity was developed. The assay is based on the separation of the fluorescently labeled substrate phosphatidylinositol-4-phosphate (PI(4)P) and the resulting product phosphatidylinositol-4,5-bisphosphate (PIP2 ) by capillary electrophoresis (CE). Furthermore, an inactive mutant K261A of hPIP5K1α was generated by site-directed mutagenesis and used as a control. Michaelis-Menten analysis revealed a Km value of 21.6 µm and Vmax of 0.65 pmol·min-1 for the cosubstrate ATP. The average Z' value was determined to be 0.86, indicating a high reliability of the assay. An in silico screening of an in-house compound library was performed employing the crystal structure of zebrafish PIP5K1α. By applying this strategy, three compounds with a 2-amino-3-cyano-4H-pyranobenzoquinone scaffold were identified and tested using the CE-based assay. These compounds inhibited hPIP5K1α to > 90% at a concentration of 50 µm. Subsequently, the inhibitory activity of all compounds with a pyranobenzoquinone scaffold (29) was tested on hPIP5K1α. Compound 4-(2-amino-3-cyano-6-hydroxy-5,8-dioxo-7-undecyl-5,8-dihydro-4H-chromen-4-yl)benzoic acid appeared to be the most potent inhibitor of hPIP5K1α identified so far with an IC50 value of 1.55 µm, exhibiting a substrate-competitive mode of action. The effects of this compound on cell viability and the induction of apoptosis were investigated in LNCaP, DU145, and PC3 PCa cells.
Collapse
Affiliation(s)
- Katja Strätker
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| | - Samer Haidar
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Faculty of Pharmacy, Damascus University, Syria
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Ehab El-Awaad
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Claudia Götz
- Universität des Saarlandes Medizinische Biochemie und Molekularbiologie Geb, Homburg, Germany
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Universidad de La Laguna, Spain
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|
26
|
Aguiar AC, de Sousa LR, Garcia CR, Oliva G, Guido RV. New Molecular Targets and Strategies for Antimalarial Discovery. Curr Med Chem 2019; 26:4380-4402. [DOI: 10.2174/0929867324666170830103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Malaria remains a major health problem, especially because of the emergence
of resistant P. falciparum strains to artemisinin derivatives. In this context, safe and affordable
antimalarial drugs are desperately needed. New proteins have been investigated
as molecular targets for research and development of innovative compounds with welldefined
mechanism of action. In this review, we highlight genetically and clinically validated
plasmodial proteins as drug targets for the next generation of therapeutics. The enzymes
described herein are involved in hemoglobin hydrolysis, the invasion process,
elongation factors for protein synthesis, pyrimidine biosynthesis, post-translational modifications
such as prenylation, phosphorylation and histone acetylation, generation of ATP
in mitochondrial metabolism and aminoacylation of RNAs. Significant advances on proteomics,
genetics, structural biology, computational and biophysical methods provided
invaluable molecular and structural information about these drug targets. Based on this,
several strategies and models have been applied to identify and improve lead compounds.
This review presents the recent progresses in the discovery of antimalarial drug candidates,
highlighting the approaches, challenges, and perspectives to deliver affordable, safe
and low single-dose medicines to treat malaria.
Collapse
Affiliation(s)
- Anna Caroline Aguiar
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Lorena R.F. de Sousa
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Celia R.S. Garcia
- Physiology Department, Bioscience Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Rafael V.C. Guido
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
27
|
Gu X, Wan G, Chen N, Li J, Chen B, Tang Y, Gu W, Jin C, Meng J, Zhang P, Liu L, Yang Z, Lu C. DGKζ Plays Crucial Roles in the Proliferation and Tumorigenicity of Human glioblastoma. Int J Biol Sci 2019; 15:1872-1881. [PMID: 31523189 PMCID: PMC6743304 DOI: 10.7150/ijbs.35193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is one of the most malignant brain cancers in adults, and it is a fatal disease because of its untimely pathogenetic location detection, infiltrative growth, and unfavorable prognosis. Unfortunately, multimodal treatment with maximal safe resection, chemotherapy and radiation has not increased the survival rate of patients with glioblastoma. Gene- and molecular-targeted therapy is considered to be a promising anticancer strategy for glioblastoma. The identification of novel potential targets in glioblastoma is of high importance. In this study, we found that both the mRNA and protein levels of diacylglycerol kinase ζ (DGKζ) were significantly higher in glioblastoma tissues than in precancerous lesions. The silencing of DGKζ by lentivirus-delivered shRNA reduced glioblastoma cell proliferation and induced G0/G1 phase arrest. Moreover, knockdown of DGKζ expression in U251 cells markedly reduced in vitro colony formation and in vivo tumorigenic capability. Further study showed that DGKζ inhibition resulted in decreases in cyclin D1, p-AKT and p-mTOR. Moreover, the rescue or overexpression of DGKζ in glioblastoma cells demonstrated the oncogenic function of DGKζ. In conclusion, these studies suggest that the suppression of DGKζ may inhibit the tumor growth of glioblastoma cells with high DGKζ expression. Thus, DGKζ might be a potential therapeutic target in malignant glioblastoma.
Collapse
Affiliation(s)
- Xuefeng Gu
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China.,College of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, PR China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Guoqing Wan
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Nianhong Chen
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Jinhong Li
- Department of Neurosurgery, Jiangmen Central Hospital, Jiangmen, Guangdong, PR China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yeling Tang
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Wangxian Gu
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Cuiting Jin
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Jihong Meng
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Peng Zhang
- College of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Li Liu
- College of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Zhifang Yang
- College of Fundamental Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| | - Changlian Lu
- Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, PR China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, PR China
| |
Collapse
|
28
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Khadka B, Gupta RS. Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family. Genes (Basel) 2019; 10:genes10040312. [PMID: 31010098 PMCID: PMC6523245 DOI: 10.3390/genes10040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kβ, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
30
|
Bioinformatics analysis of four proteins of Leishmania donovani to guide epitopes vaccine design and drug targets selection. Acta Trop 2019; 191:50-59. [PMID: 30582920 DOI: 10.1016/j.actatropica.2018.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023]
Abstract
Visceral leishmaniasis (VL) is a serious and widespread parasitic disease caused by Leishmania donovani complex. The threat of this fatal disease continues due to the lack of ideal drugs or vaccines. In this study, we selected Amastin, CaNA2, Kmp-11 and PDI proteins of Leishmania donovani for study, which are VL vaccine candidates or possible drug targets. Eleven bioinformatics tools were used to analyze different aspects of these proteins, including amino acid composition, topology, signal peptide, secondary structure, surface properties, phosphorylation sites and kinases, protein binding sites, 3D homology modeling, B cell epitopes, MHC class Ⅰ and Ⅱ epitopes and protein-protein interactions. Finally, the functionally related amino acid sites and dominant epitopes of these proteins were founded. Some possible relationships between protein structure, phosphorylation sites, protein binding sites and epitopes were also discovered. High flexibility and random coils regions of protein have a tendency to be phosphorylated, bind proteins and present epitopes. Since some phosphorylation sites and their kinases are involved in Leishmania invasion and survival in host cells, they may be potential drug targets. Bioinformatics analysis helps us better understand protein function and find dominant epitopes to guide drug design and vaccine development.
Collapse
|
31
|
Ma Q, Gabelli SB, Raben DM. Diacylglycerol kinases: Relationship to other lipid kinases. Adv Biol Regul 2019; 71:104-110. [PMID: 30348515 PMCID: PMC6347529 DOI: 10.1016/j.jbior.2018.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 04/17/2023]
Abstract
Lipid kinases regulate a wide variety of cellular functions and have emerged as one the most promising targets for drug design. Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PtdOH). Despite the critical role in lipid biosynthesis, both DAG and PtdOH have been shown as bioactive lipids mediating a number of signaling pathways. Although there is increasing recognition of their role in signaling systems, our understanding of the key enzyme which regulate the balance of these two lipid messages remain limited. Solved structures provide a wealth of information for understanding the function and regulation of these enzymes. Solving the structures of mammalian DGKs by traditional NMR and X-ray crystallography approaches have been challenging and so far, there are still no three-dimensional structures of these DGKs. Despite this, some insights may be gained by examining the similarities and differences between prokaryotic DGKs and other mammalian lipid kinases. This review focuses on summarizing and comparing the structure of prokaryotic and mammalian DGKs as well as two other lipid kinases: sphingosine kinase and phosphatidylinositol-3-kinase. How these known lipid kinases structures relate to mammalian DGKs will also be discussed.
Collapse
Affiliation(s)
- Qianqian Ma
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sandra B Gabelli
- The Department of Biophysics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
32
|
Deng P, Xu QY, Fu KY, Guo WC, Li GQ. RNA interference against the putative insulin receptor substrate gene chico affects metamorphosis in Leptinotarsa decemlineata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:1-11. [PMID: 30296480 DOI: 10.1016/j.ibmb.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
It is noted that insect insulin/insulin-like growth factor/target of rapamycin signaling is critical for the regulation of metamorphosis in holometabolous insects. However, the molecular mechanism remains undetermined. Our previous findings reveal that RNA interference (RNAi)-mediated knockdown of an insulin gene (LdILP2) in Leptinotarsa decemlineata disturbs both 20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling, and impairs pupation. In the present paper, we further observed that the expression of the insulin receptor substrate gene chico (Ldchico) and the phosphoinositide-3-kinase gene pi3k (Ldpi3k92E) was repressed in LdILP2 depleted larvae. Moreover, RNAi of Ldchico or Ldpi3k92E decreased food consumption, affected absorption and metabolism of amino acids and sugars, and reduced expression of several 20E (LdEcR, LdHR3 and LdE75) and JH (LdJHAMT, LdKr-h1 and LdHairy) signaling genes. As a result, larval development was postponed and larval growth was inhibited. Intriguingly, knockdown of Ldchico, rather than Ldpi3k92E, impaired larval-pupal and pupal-adult ecdysis, and specifically repressed transcription of another 20E signaling gene LdUSP. Ingestion of 20E rescued the expression of LdEcR, LdHR3 and LdE75, whereas 20E feeding restored neither the decreased LdUSP mRNA level, nor the reduced pupation and adult emergence rates in Ldchico RNAi larvae. Therefore, Chico is critical for the regulation of larval-pupal-adult transition by a PI3K-independent pathway, perhaps through activation of USP in L. decemlineata.
Collapse
Affiliation(s)
- Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kai-Yun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China; Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
34
|
Cabrera DG, Horatscheck A, Wilson CR, Basarab G, Eyermann CJ, Chibale K. Plasmodial Kinase Inhibitors: License to Cure? J Med Chem 2018; 61:8061-8077. [PMID: 29771541 PMCID: PMC6166223 DOI: 10.1021/acs.jmedchem.8b00329] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Advances
in the genetics, function, and stage-specificity of Plasmodium kinases has driven robust efforts to identify
targets for the design of antimalarial therapies. Reverse genomics
following phenotypic screening against Plasmodia or
related parasites has uncovered vulnerable kinase targets including
PI4K, PKG, and GSK-3, an approach bolstered by access to human disease-directed
kinase libraries. Alternatively, screening compound libraries against Plasmodium kinases has successfully led to inhibitors with
antiplasmodial activity. As with other therapeutic areas, optimizing
compound ADMET and PK properties in parallel with target inhibitory
potency and whole cell activity becomes paramount toward advancing
compounds as clinical candidates. These and other considerations will
be discussed in the context of progress achieved toward deriving important,
novel mode-of-action kinase-inhibiting antimalarial medicines.
Collapse
|
35
|
Wengelnik K, Daher W, Lebrun M. Phosphoinositides and their functions in apicomplexan parasites. Int J Parasitol 2018; 48:493-504. [PMID: 29596862 DOI: 10.1016/j.ijpara.2018.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are the phosphorylated derivatives of the structural membrane phospholipid phosphatidylinositol. Single or combined phosphorylation at the 3, 4 and 5 positions of the inositol ring gives rise to the seven different species of phosphoinositides. All are quantitatively minor components of cellular membranes but have been shown to have important functions in multiple cellular processes. Here we describe our current knowledge of phosphoinositide metabolism and functions in apicomplexan parasites, mainly focusing on Toxoplasma gondii and Plasmodium spp. Even though our understanding is still rudimentary, phosphoinositides have already shown their importance in parasite biology and revealed some very particular and parasite-specific functions. Not surprisingly, there is a strong potential for phosphoinositide synthesis to be exploited for future anti-parasitic drug development.
Collapse
Affiliation(s)
- Kai Wengelnik
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université Montpellier, Montpellier, France.
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université Montpellier, Montpellier, France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université Montpellier, Montpellier, France.
| |
Collapse
|
36
|
Paquet T, Le Manach C, Cabrera DG, Younis Y, Henrich PP, Abraham TS, Lee MCS, Basak R, Ghidelli-Disse S, Lafuente-Monasterio MJ, Bantscheff M, Ruecker A, Blagborough AM, Zakutansky SE, Zeeman AM, White KL, Shackleford DM, Mannila J, Morizzi J, Scheurer C, Angulo-Barturen I, Martínez MS, Ferrer S, Sanz LM, Gamo FJ, Reader J, Botha M, Dechering KJ, Sauerwein RW, Tungtaeng A, Vanachayangkul P, Lim CS, Burrows J, Witty MJ, Marsh KC, Bodenreider C, Rochford R, Solapure SM, Jiménez-Díaz MB, Wittlin S, Charman SA, Donini C, Campo B, Birkholtz LM, Hanson KK, Drewes G, Kocken CHM, Delves MJ, Leroy D, Fidock DA, Waterson D, Street LJ, Chibale K. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med 2018; 9:9/387/eaad9735. [PMID: 28446690 DOI: 10.1126/scitranslmed.aad9735] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.
Collapse
Affiliation(s)
- Tanya Paquet
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Yassir Younis
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Tara S Abraham
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Suite 368, Philadelphia, PA 19107, USA
| | - Marcus C S Lee
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Rajshekhar Basak
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - María José Lafuente-Monasterio
- Malaria Disease Performance Unit, Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Marcus Bantscheff
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | | | | | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, 2280 GH Rijswijk, Netherlands
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Janne Mannila
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Admescope Ltd., Typpitie 1, 90620 Oulu, Finland
| | - Julia Morizzi
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Iñigo Angulo-Barturen
- Malaria Disease Performance Unit, Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - María Santos Martínez
- Malaria Disease Performance Unit, Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Santiago Ferrer
- Malaria Disease Performance Unit, Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Laura María Sanz
- Malaria Disease Performance Unit, Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Francisco Javier Gamo
- Malaria Disease Performance Unit, Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Janette Reader
- Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariette Botha
- Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Koen J Dechering
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, Netherlands
| | - Robert W Sauerwein
- TropIQ Health Sciences, Transistorweg 5, 6534 AT Nijmegen, Netherlands.,Radboud University Medical Center, Department of Medical Microbiology, 6500 HB Nijmegen, Netherlands
| | - Anchalee Tungtaeng
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Chek Shik Lim
- Novartis Institute for Tropical Diseases Pte. Ltd., 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | - Jeremy Burrows
- Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Michael J Witty
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Kennan C Marsh
- AbbVie, 1 North Waukegan Road, North Chicago, IL 60064-6104, USA
| | - Christophe Bodenreider
- Novartis Institute for Tropical Diseases Pte. Ltd., 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | - Rosemary Rochford
- Departments of Immunology and Microbiology and Environmental and Occupational Health, University of Colorado Denver, Aurora, CO 80045, USA
| | - Suresh M Solapure
- Nagarjuna Gardens, 60 Feet Road, Sahakaranagar, Bangalore 560092, India
| | - María Belén Jiménez-Díaz
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Suite 368, Philadelphia, PA 19107, USA
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Cristina Donini
- Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Brice Campo
- Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Kirsten K Hanson
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, 2280 GH Rijswijk, Netherlands
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Didier Leroy
- Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - David Waterson
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Leslie J Street
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. .,South African Medical Research Council Drug Discovery and Development Research Unit, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
37
|
Ebrahimzadeh Z, Mukherjee A, Richard D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol 2017; 48:13-25. [PMID: 29154995 DOI: 10.1016/j.ijpara.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Despite representing a small percentage of the cellular lipids of eukaryotic cells, phosphoinositides (PIPs) are critical in various processes such as intracellular trafficking and signal transduction. Central to their various functions is the differential distribution of PIP species to specific membrane compartments through the actions of kinases, phosphatases and lipases. Despite their importance in the malaria parasite lifecycle, the subcellular distribution of most PIP species in this organism is still unknown. We here localise several species of PIPs throughout the erythrocytic cycle of Plasmodium falciparum. We show that PI3P is mostly found at the apicoplast and the membrane of the food vacuole, that PI4P associates with the Golgi apparatus and the plasma membrane and that PI(4,5)P2, in addition to being detected at the plasma membrane, labels some cavity-like spherical structures. Finally, we show that the elusive PI5P localises to the plasma membrane, the nucleus and potentially to the transitional endoplasmic reticulum (ER). Our map of the subcellular distribution of PIP species in P. falciparum will be a useful tool to shed light on the dynamics of these lipids in this deadly parasite.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Angana Mukherjee
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Dave Richard
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
38
|
Gupta RS, Epand RM. Phylogenetic analysis of the diacylglycerol kinase family of proteins and identification of multiple highly-specific conserved inserts and deletions within the catalytic domain that are distinctive characteristics of different classes of DGK homologs. PLoS One 2017; 12:e0182758. [PMID: 28829789 PMCID: PMC5567653 DOI: 10.1371/journal.pone.0182758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) family of proteins, which phosphorylates diacylglycerol into phosphatidic acid, play important role in controlling diverse cellular processes in eukaryotic organisms. Most vertebrate species contain 10 different DGK isozymes, which are grouped into 5 different classes based on the presence or absence of specific functional domains. However, the relationships among different DGK isozymes or how they have evolved from a common ancestor is unclear. The catalytic domain constitutes the single largest sequence element within the DGK proteins that is commonly and uniquely shared by all family members, but there is limited understanding of the overall function of this domain. In this work, we have used the catalytic domain sequences to construct a phylogenetic tree for the DGK family members from representatives of the main vertebrate classes and have also examined the distributions of various DGK isozymes in eukaryotic phyla. In a tree based on catalytic domain sequences, the DGK homologs belonging to different classes formed strongly supported clusters which were separated by long branches, and the different isozymes within each class also generally formed monophyletic groupings. Further, our analysis of the sequence alignments of catalytic domains has identified >10 novel sequence signatures consisting of conserved signature indels (inserts or deletions, CSIs) that are distinctive characteristics of either particular classes of DGK isozymes, or are commonly shared by members of two or more classes of DGK isozymes. The conserved indels in protein sequences are known to play important functional roles in the proteins/organisms where they are found. Thus, our identification of multiple highly specific CSIs that are distinguishing characteristics of different classes of DGK homologs points to the existence of important differences in the catalytic domain function among the DGK isozymes. The identified CSIs in conjunction with the results of blast searches on species distribution of DGK isozymes also provide useful insights into the evolutionary relationships among the DGK family of proteins.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Okombo J, Chibale K. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery. Acc Chem Res 2017. [PMID: 28636311 PMCID: PMC5518282 DOI: 10.1021/acs.accounts.6b00631] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine protease-mediated hydrolysis of hemoglobin. We further expound on the recombinant enzyme assays, heme fractionation experiments, and genomic and chemoproteomic methods that we employed to identify Plasmodium falciparum falcipain 2 (PfFP2), hemozoin formation, phosphatidylinositol 4-kinase (PfPI4K) and Mycobacterium tuberculosis cytochrome bc1 complex as the targets of the antimalarial chalcones, pyrido[1,2-a]benzimidazoles, aminopyridines, and antimycobacterial pyrrolo[3,4-c]pyridine-1,3(2H)-diones, respectively. In conclusion, we argue for the expansion of chemical space through exploitation of privileged natural product scaffolds and diversity-oriented synthesis, as well as the broadening of druggable spaces by exploiting available protein crystal structures, -omics data, and bioinformatics infrastructure to explore hitherto untargeted spaces like lipid metabolism and protein kinases in P. falciparum. Finally, we audit the merits of both target-based and whole-cell phenotypic screening in steering antimalarial and antituberculosis chemical matter toward populating drug discovery pipelines with new lead molecules.
Collapse
Affiliation(s)
- John Okombo
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Drug Discovery and Development Centre (H3D), Department of Chemistry
and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
40
|
Khadka B, Gupta RS. Identification of a conserved 8 aa insert in the PIP5K protein in the Saccharomycetaceae family of fungi and the molecular dynamics simulations and structural analysis to investigate its potential functional role. Proteins 2017; 85:1454-1467. [PMID: 28407364 DOI: 10.1002/prot.25306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022]
Abstract
Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454-1467. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
41
|
Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov 2017; 12:583-597. [DOI: 10.1080/17460441.2017.1319357] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Bagnato C, Have AT, Prados MB, Beligni MV. Computational Functional Analysis of Lipid Metabolic Enzymes. Methods Mol Biol 2017; 1609:195-216. [PMID: 28660584 DOI: 10.1007/978-1-4939-6996-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.
Collapse
Affiliation(s)
- Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable-Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, S. C. de Bariloche, 8400, Río Negro, Argentina
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, 7600, Argentina
| | - María B Prados
- Instituto de Energía y Desarrollo Sustentable-Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, S. C. de Bariloche, 8400, Río Negro, Argentina
| | - María V Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, 7600, Argentina.
| |
Collapse
|
43
|
Liu A, Sui D, Wu D, Hu J. The activation loop of PIP5K functions as a membrane sensor essential for lipid substrate processing. SCIENCE ADVANCES 2016; 2:e1600925. [PMID: 28138522 PMCID: PMC5262455 DOI: 10.1126/sciadv.1600925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/20/2016] [Indexed: 05/30/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), a representative member of the phosphatidylinositol phosphate kinase (PIPK) family, is a major enzyme that biosynthesizes the signaling molecule PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) in eukaryotic cells. The stringent specificity toward lipid substrates and the high sensitivity to the membrane environment strongly suggest a membrane-sensing mechanism, but the underlying structural basis is still largely unknown. We present a nuclear magnetic resonance (NMR) study on a peptide commensurate with a PIP5K's activation loop, which has been reported to be a determinant of lipid substrate specificity and subcellular localization of PIP5K. Although the activation loop is severely disordered in the crystal structure of PIP5K, the NMR experiments showed that the largely unstructured peptide folded into an amphipathic helix upon its association with the 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellar surface. Systematic mutagenesis and functional assays further demonstrated the crucial roles of the amphipathic helix and its hydrophobic surface in kinase activity and membrane-sensing function, supporting a working model in which the activation loop is a critical structural module conferring a membrane-sensing mechanism on PIP5K. The activation loop, surprisingly functioning as a membrane sensor, represents a new paradigm of kinase regulation by the activation loop through protein-membrane interaction, which also lays a foundation on the regulation of PIP5K (and other PIPKs) by membrane lipids for future studies.
Collapse
Affiliation(s)
- Aizhuo Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Baumlova A, Gregor J, Boura E. The structural basis for calcium inhibition of lipid kinase PI4K IIalpha and comparison with the apo state. Physiol Res 2016; 65:987-993. [PMID: 27539108 DOI: 10.33549/physiolres.933344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PI4K IIalpha is a critical enzyme for the maintenance of Golgi and is also known to function in the synaptic vesicles. The product of its catalytical function, phosphatidylinositol 4-phosphate (PI4P), is an important lipid molecule because it is a hallmark of the Golgi and TGN, is directly recognized by many proteins and also serves as a precursor molecule for synthesis of higher phosphoinositides. Here, we report crystal structures of PI4K IIalpha enzyme in the apo-state and inhibited by calcium. The apo-structure reveals a surprising rigidity of the active site residues important for catalytic activity. The structure of calcium inhibited kinase reveals how calcium locks ATP in the active site.
Collapse
Affiliation(s)
- A Baumlova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
45
|
Mechanism of substrate specificity of phosphatidylinositol phosphate kinases. Proc Natl Acad Sci U S A 2016; 113:8711-6. [PMID: 27439870 PMCID: PMC4978281 DOI: 10.1073/pnas.1522112113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity.
Collapse
|
46
|
Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol 2016; 47:119-127. [PMID: 27368610 DOI: 10.1016/j.ijpara.2016.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/01/2022]
Abstract
When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia.
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
47
|
Roustan V, Jain A, Teige M, Ebersberger I, Weckwerth W. An evolutionary perspective of AMPK-TOR signaling in the three domains of life. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3897-907. [PMID: 27270999 DOI: 10.1093/jxb/erw211] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
AMPK and TOR protein kinases are the major control points of energy signaling in eukaryotic cells and organisms. They form the core of a complex regulatory network to co-ordinate metabolic activities in the cytosol with those in the mitochondria and plastids. Despite its relevance, it is still unclear when and how this regulatory pathway was formed during evolution, and to what extent its representations in the major eukaryotic lineages resemble each other. Here we have traced 153 essential proteins forming the human AMPK-TOR pathways across 412 species representing all three domains of life-prokaryotes (bacteria, archaea) and eukaryotes-and reconstructed their evolutionary history. The resulting phylogenetic profiles indicate the presence of primordial core pathways including seven proto-kinases in the last eukaryotic common ancestor. The evolutionary origins of the oldest components of the AMPK pathway, however, extend into the pre-eukaryotic era, and descendants of these ancient proteins can still be found in contemporary prokaryotes. The TOR complex in turn appears as a eukaryotic invention, possibly to aid in retrograde signaling between the mitochondria and the remainder of the cell. Within the eukaryotes, AMPK/TOR showed both a highly conserved core structure and a considerable plasticity. Most notably, KING1, a protein originally assigned as the γ subunit of AMPK in plants, is more closely related to the yeast SDS23 gene family than to the γ subunits in animals or fungi. This suggests its functional difference from a canonical AMPK γ subunit.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Arpit Jain
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Ingo Ebersberger
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer. Future Med Chem 2016; 7:873-91. [PMID: 26061106 DOI: 10.4155/fmc.15.33] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this article, we review the ATR inhibitor field from initial pharmacological tools to first-generation clinical candidates with the potential to bring benefit to cancer patients. ATR is a critical part of the cell DNA-damage response. Over the past decade or more, compounds with weak ATR potency and low specificity have been used as tools in early studies to elucidate ATR pharmacology. More recently highly potent, selective and in vivo active ATR inhibitors have been developed enabling detailed preclinical in vitro and in vivo target assessment to be made. The published studies reveal the potential of ATR inhibitors for use as monotherapy or in combination with DNA-damaging agents. To date, VX-970 and AZD6738, have entered clinical assessment.
Collapse
|
49
|
Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochem Soc Trans 2016; 44:260-6. [DOI: 10.1042/bst20150219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many important cellular functions are regulated by the selective recruitment of proteins to intracellular membranes mediated by specific interactions with lipid phosphoinositides. The enzymes that generate lipid phosphoinositides therefore must be properly positioned and regulated at their correct cellular locations. Phosphatidylinositol 4 kinases (PI4Ks) are key lipid signalling enzymes, and they generate the lipid species phosphatidylinositol 4-phosphate (PI4P), which plays important roles in regulating physiological processes including membrane trafficking, cytokinesis and organelle identity. PI4P also acts as the substrate for the generation of the signalling phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). PI4Ks also play critical roles in a number of pathological processes including mediating replication of a number of pathogenic RNA viruses, and in the development of the parasite responsible for malaria. Key to the regulation of PI4Ks is their regulation by a variety of both host and viral protein-binding partners. We review herein our current understanding of the structure, regulatory interactions and role in disease of the type III PI4Ks.
Collapse
|
50
|
Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns. BMC Evol Biol 2015; 15:226. [PMID: 26482564 PMCID: PMC4617754 DOI: 10.1186/s12862-015-0498-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Phosphatidylinositol-3-kinases (PI3Ks) are a family of eukaryotic enzymes modifying phosphoinositides in phosphatidylinositols-3-phosphate. Located upstream of the AKT/mTOR signalling pathway, PI3Ks activate secondary messengers of extracellular signals. They are involved in many critical cellular processes such as cell survival, angiogenesis and autophagy. PI3K family is divided into three classes, including 14 human homologs. While class II enzymes are composed of a single catalytic subunit, class I and III also contain regulatory subunits. Here we present an in-depth phylogenetic analysis of all PI3K proteins. RESULTS We confirmed that PI3K catalytic subunits form a monophyletic group, whereas regulatory subunits form three distinct groups. The phylogeny of the catalytic subunits indicates that they underwent two major duplications during their evolutionary history: the most ancient arose in the Last Eukaryotic Common Ancestor (LECA) and led to the emergence of class III and class I/II, while the second - that led to the separation between class I and II - occurred later, in the ancestor of Unikonta (i.e., the clade grouping Amoebozoa, Fungi, and Metazoa). These two major events were followed by many lineage specific duplications in particular in vertebrates, but also in various protist lineages. Major loss events were also detected in Vidiriplantae and Fungi. For the regulatory subunits, we identified homologs of class III in all eukaryotic groups indicating that, for this class, both the catalytic and the regulatory subunits were presents in LECA. In contrast, homologs of the regulatory class I have a more recent origin. CONCLUSIONS The phylogenetic analysis of the PI3K shed a new light on the evolutionary history of these enzymes. We found that LECA already contained a PI3K class III composed of a catalytic and a regulatory subunit. Absence of class II regulatory subunits and the recent origin of class I regulatory subunits is puzzling given that the class I/II catalytic subunit was present in LECA and has been conserved in most present-day eukaryotic lineages. We also found surprising major loss and duplication events in various eukaryotic lineages. Given the functional specificity of PI3K proteins, this suggests dynamic adaptation during the diversification of eukaryotes.
Collapse
|