1
|
Ray S, Agarwal P, Nitzan A, Nédélec F, Zaidel-Bar R. Actin-capping protein regulates actomyosin contractility to maintain germline architecture in C. elegans. Development 2023; 150:dev201099. [PMID: 36897576 PMCID: PMC10112912 DOI: 10.1242/dev.201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Actin dynamics play an important role in tissue morphogenesis, yet the control of actin filament growth takes place at the molecular level. A challenge in the field is to link the molecular function of actin regulators with their physiological function. Here, we report an in vivo role of the actin-capping protein CAP-1 in the Caenorhabditis elegans germline. We show that CAP-1 is associated with actomyosin structures in the cortex and rachis, and its depletion or overexpression led to severe structural defects in the syncytial germline and oocytes. A 60% reduction in the level of CAP-1 caused a twofold increase in F-actin and non-muscle myosin II activity, and laser incision experiments revealed an increase in rachis contractility. Cytosim simulations pointed to increased myosin as the main driver of increased contractility following loss of actin-capping protein. Double depletion of CAP-1 and myosin or Rho kinase demonstrated that the rachis architecture defects associated with CAP-1 depletion require contractility of the rachis actomyosin corset. Thus, we uncovered a physiological role for actin-capping protein in regulating actomyosin contractility to maintain reproductive tissue architecture.
Collapse
Affiliation(s)
- Shinjini Ray
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Graduate Program, Mechanobiology Institute, National University of Singapore,117411, Singapore
| | - Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
2
|
Yu J, Yang X, Zheng J, Sgobio C, Sun L, Cai H. Deficiency of Perry syndrome-associated p150 Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities. NPJ Parkinsons Dis 2023; 9:35. [PMID: 36879021 PMCID: PMC9988887 DOI: 10.1038/s41531-023-00478-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.
Collapse
Affiliation(s)
- Jia Yu
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China.
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xuan Yang
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Jiayin Zheng
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Carmelo Sgobio
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Watanabe K, Matsumoto A, Tsuda H, Iwamoto S. N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes. J Diabetes Investig 2021; 12:1958-1966. [PMID: 34197691 PMCID: PMC8565410 DOI: 10.1111/jdi.13623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 01/26/2023] Open
Abstract
AIMS/INTRODUCTION It was reported previously that N4bp2l1 expression increases in 3T3-L1 cells in a differentiation-dependent manner and N4bp2l1 knockdown suppresses adipocyte differentiation. However, the physiological function of N4BP2L1 in adipocytes remains unknown. This study aimed to elucidate the physiological mechanism of N4bp2l1 expression and the role of N4BP2L1 in the physiological function of adipocytes. MATERIALS AND METHODS Analysis of gene expression levels of N4bp2l1 in adipose tissue during feeding in mice was conducted. Identification of transcription factors that regulate N4bp2l1 expression was conducted using a reporter assay. Investigation of N4BP2L1-interacting proteins was carried out using immunoprecipitation. A GLUT4 translocation assay and a glucose uptake assay in 3T3-L1 adipocytes were performed using N4bp2l1 overexpression and knockdown adenovirus. RESULTS The results indicated that N4bp2l1 is a novel FoxO1 target gene and its expression is controlled by the insulin-mediated regulation of FoxO1. N4BP2L1 interacts with dynactin, which binds to the microtubule motor dynein, indicating that N4BP2L1 is involved in GLUT4 trafficking and glucose uptake in 3T3-L1 adipocytes. CONCLUSIONS Our results suggest that N4BP2L1 is involved in adipocyte homeostasis by interacting with dynein-dynactin and affecting GLUT4-mediated glucose uptake and the insulin signaling pathway.
Collapse
Affiliation(s)
- Kazuhisa Watanabe
- Division of Human GeneticsCenter for Molecular MedicineJichi Medical UniversityShimotsuke, TochigiJapan
| | - Ayumi Matsumoto
- Division of Human GeneticsCenter for Molecular MedicineJichi Medical UniversityShimotsuke, TochigiJapan
| | - Hidetoshi Tsuda
- Division of Human GeneticsCenter for Molecular MedicineJichi Medical UniversityShimotsuke, TochigiJapan
| | - Sadahiko Iwamoto
- Division of Human GeneticsCenter for Molecular MedicineJichi Medical UniversityShimotsuke, TochigiJapan
| |
Collapse
|
4
|
Lau CK, O’Reilly FJ, Santhanam B, Lacey SE, Rappsilber J, Carter AP. Cryo-EM reveals the complex architecture of dynactin's shoulder region and pointed end. EMBO J 2021; 40:e106164. [PMID: 33734450 PMCID: PMC8047447 DOI: 10.15252/embj.2020106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Dynactin is a 1.1 MDa complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In order to do this, it forms a tripartite complex with dynein and a coiled-coil adaptor. Dynactin consists of an actin-related filament whose length is defined by its flexible shoulder domain. Despite previous cryo-EM structures, the molecular architecture of the shoulder and pointed end of the filament is still poorly understood due to the lack of high-resolution information in these regions. Here we combine multiple cryo-EM datasets and define precise masking strategies for particle signal subtraction and 3D classification. This overcomes domain flexibility and results in high-resolution maps into which we can build the shoulder and pointed end. The unique architecture of the shoulder securely houses the p150 subunit and positions the four identical p50 subunits in different conformations to bind dynactin's filament. The pointed end map allows us to build the first structure of p62 and reveals the molecular basis for cargo adaptor binding to different sites at the pointed end.
Collapse
Affiliation(s)
- Clinton K Lau
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Francis J O’Reilly
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Balaji Santhanam
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Samuel E Lacey
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Juri Rappsilber
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Andrew P Carter
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
5
|
Schroeder CM, Valenzuela JR, Mejia Natividad I, Hocky GM, Malik HS. A Burst of Genetic Innovation in Drosophila Actin-Related Proteins for Testis-Specific Function. Mol Biol Evol 2020; 37:757-772. [PMID: 31697328 PMCID: PMC7038667 DOI: 10.1093/molbev/msz262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many cytoskeletal proteins perform fundamental biological processes and are evolutionarily ancient. For example, the superfamily of actin-related proteins (Arps) specialized early in eukaryotic evolution for diverse cellular roles in the cytoplasm and the nucleus. Despite its strict conservation across eukaryotes, we find that the Arp superfamily has undergone dramatic lineage-specific diversification in Drosophila. Our phylogenomic analyses reveal four independent Arp gene duplications that occurred in the common ancestor of the obscura group of Drosophila and have been mostly preserved in this lineage. All four obscura-specific Arp paralogs are predominantly expressed in the male germline and have evolved under positive selection. We focus our analyses on the divergent Arp2D paralog, which arose via a retroduplication event from Arp2, a component of the Arp2/3 complex that polymerizes branched actin networks. Computational modeling analyses suggest that Arp2D can replace Arp2 in the Arp2/3 complex and bind actin monomers. Together with the signature of positive selection, our findings suggest that Arp2D may augment Arp2's functions in the male germline. Indeed, we find that Arp2D is expressed during and following male meiosis, where it localizes to distinct locations such as actin cones-specialized cytoskeletal structures that separate bundled spermatids into individual mature sperm. We hypothesize that this unprecedented burst of genetic innovation in cytoskeletal proteins may have been driven by the evolution of sperm heteromorphism in the obscura group of Drosophila.
Collapse
Affiliation(s)
| | - John R Valenzuela
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.,University of Puget Sound, Tacoma, WA
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
6
|
Tseng KF, Mickolajczyk KJ, Feng G, Feng Q, Kwok ES, Howe J, Barbar EJ, Dawson SC, Hancock WO, Qiu W. The Tail of Kinesin-14a in Giardia Is a Dual Regulator of Motility. Curr Biol 2020; 30:3664-3671.e4. [PMID: 32735815 DOI: 10.1016/j.cub.2020.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Kinesin-14s are microtubule-based motor proteins that play important roles in mitotic spindle assembly [1]. Ncd-type kinesin-14s are a subset of kinesin-14 motors that exist as homodimers with an N-terminal microtubule-binding tail, a coiled-coil central stalk (central stalk), a neck, and two identical C-terminal motor domains. To date, no Ncd-type kinesin-14 has been found to naturally exhibit long-distance minus-end-directed processive motility on single microtubules as individual homodimers. Here, we show that GiKIN14a from Giardia intestinalis [2] is an unconventional Ncd-type kinesin-14 that uses its N-terminal microtubule-binding tail to achieve minus-end-directed processivity on single microtubules over micrometer distances as a homodimer. We further find that although truncation of the N-terminal tail greatly reduces GiKIN14a processivity, the resulting tailless construct GiKIN14a-Δtail is still a minimally processive motor and moves its center of mass via discrete 8-nm steps on the microtubule. In addition, full-length GiKIN14a has significantly higher stepping and ATP hydrolysis rates than does GiKIN14a-Δtail. Inserting a flexible polypeptide linker into the central stalk of full-length GiKIN14a nearly reduces its ATP hydrolysis rate to that of GiKIN14a-Δtail. Collectively, our results reveal that the N-terminal tail of GiKIN14a is a de facto dual regulator of motility and reinforce the notion of the central stalk as a key mechanical determinant of kinesin-14 motility [3].
Collapse
Affiliation(s)
- Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802, USA
| | - Guangxi Feng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Qingzhou Feng
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Ethiene S Kwok
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Scott C Dawson
- Department of Microbiology, University of California, Davis, Davis, CA 95616, USA
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802, USA
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
7
|
Osuna-Cruz CM, Bilcke G, Vancaester E, De Decker S, Bones AM, Winge P, Poulsen N, Bulankova P, Verhelst B, Audoor S, Belisova D, Pargana A, Russo M, Stock F, Cirri E, Brembu T, Pohnert G, Piganeau G, Ferrante MI, Mock T, Sterck L, Sabbe K, De Veylder L, Vyverman W, Vandepoele K. The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nat Commun 2020; 11:3320. [PMID: 32620776 PMCID: PMC7335047 DOI: 10.1038/s41467-020-17191-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Benthic diatoms are the main primary producers in shallow freshwater and coastal environments, fulfilling important ecological functions such as nutrient cycling and sediment stabilization. However, little is known about their evolutionary adaptations to these highly structured but heterogeneous environments. Here, we report a reference genome for the marine biofilm-forming diatom Seminavis robusta, showing that gene family expansions are responsible for a quarter of all 36,254 protein-coding genes. Tandem duplications play a key role in extending the repertoire of specific gene functions, including light and oxygen sensing, which are probably central for its adaptation to benthic habitats. Genes differentially expressed during interactions with bacteria are strongly conserved in other benthic diatoms while many species-specific genes are strongly upregulated during sexual reproduction. Combined with re-sequencing data from 48 strains, our results offer insights into the genetic diversity and gene functions in benthic diatoms.
Collapse
Affiliation(s)
- Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
| | - Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Sam De Decker
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per Winge
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Bram Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Sien Audoor
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Darja Belisova
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Aikaterini Pargana
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Monia Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Frederike Stock
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Emilio Cirri
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstrasse 8, 07745, Jena, Germany
| | - Tore Brembu
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Georg Pohnert
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstrasse 8, 07745, Jena, Germany
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | | | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
8
|
A Novel Cosegregating DCTN1 Splice Site Variant in a Family with Bipolar Disorder May Hold the Key to Understanding the Etiology. Genes (Basel) 2020; 11:genes11040446. [PMID: 32325768 PMCID: PMC7231292 DOI: 10.3390/genes11040446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
A novel cosegregating splice site variant in the Dynactin-1 (DCTN1) gene was discovered by Next Generation Sequencing (NGS) in a family with a history of bipolar disorder (BD) and major depressive diagnosis (MDD). Psychiatric illness in this family follows an autosomal dominant pattern. DCTN1 codes for the largest dynactin subunit, namely p150Glued, which plays an essential role in retrograde axonal transport and in neuronal autophagy. A GT→TT transversion in the DCTN1 gene, uncovered in the present work, is predicted to disrupt the invariant canonical splice donor site IVS22 + 1G > T and result in intron retention and a premature termination codon (PTC). Thus, this splice site variant is predicted to trigger RNA nonsense-mediated decay (NMD) and/or result in a C-terminal truncated p150Glued protein (ct-p150Glued), thereby negatively impacting retrograde axonal transport and neuronal autophagy. BD prophylactic medications, and most antipsychotics and antidepressants, are known to enhance neuronal autophagy. This variant is analogous to the dominant-negative GLUED Gl1 mutation in Drosophila, which is responsible for a neurodegenerative phenotype. The newly identified variant may reflect an autosomal dominant cause of psychiatric pathology in this affected family. Factors that affect alternative splicing of the DCTN1 gene, leading to NMD and/or ct-p150Glued, may be of fundamental importance in contributing to our understanding of the etiology of BD as well as MDD.
Collapse
|
9
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
10
|
Structural Glycoprotein E2 of Classical Swine Fever Virus Interacts with Host Protein Dynactin Subunit 6 (DCTN6) during the Virus Infectious Cycle. J Virol 2019; 94:JVI.01642-19. [PMID: 31597779 DOI: 10.1128/jvi.01642-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
The E2 protein in classical swine fever (CSF) virus (CSFV) is the major virus structural glycoprotein and is an essential component of the viral particle. E2 has been shown to be involved in several functions, including virus adsorption, induction of protective immunity, and virulence in swine. Using the yeast two-hybrid system, we previously identified a swine host protein, dynactin subunit 6 (DCTN6) (a component of the cell dynactin complex), as a specific binding partner for E2. We confirmed the interaction between DCTN6 and E2 proteins in CSFV-infected swine cells by using two additional independent methodologies, i.e., coimmunoprecipitation and proximity ligation assays. E2 residues critical for mediating the protein-protein interaction with DCTN6 were mapped by a reverse yeast two-hybrid approach using a randomly mutated E2 library. A recombinant CSFV mutant, E2ΔDCTN6v, harboring specific substitutions in those critical residues was developed to assess the importance of the E2-DCTN6 protein-protein interaction for virus replication and virulence in swine. CSFV E2ΔDCTN6v showed reduced replication, compared with the parental virus, in an established swine cell line (SK6) and in primary swine macrophage cultures. Remarkably, animals infected with CSFV E2ΔDCTN6v remained clinically normal during the 21-day observation period, which suggests that the ability of CSFV E2 to bind host DCTN6 protein efficiently during infection may play a role in viral virulence.IMPORTANCE Structural glycoprotein E2 is an important component of CSFV due to its involvement in many virus activities, particularly virus-host interactions. Here, we present the description and characterization of the protein-protein interaction between E2 and the swine host protein DCTN6 during virus infection. The E2 amino acid residues mediating the interaction with DCTN6 were also identified. A recombinant CSFV harboring mutations disrupting the E2-DCTN6 interaction was created. The effect of disrupting the E2-DCTN6 protein-protein interaction was studied using reverse genetics. It was shown that the same amino acid substitutions that abrogated the E2-DCTN6 interaction in vitro constituted a critical factor in viral virulence in the natural host, domestic swine. This highlights the potential importance of the E2-DCTN6 protein-protein interaction in CSFV virulence and provides possible mechanisms of virus attenuation for the development of improved CSF vaccines.
Collapse
|
11
|
Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V, Soukal P, Barlow LD, Herman EK, Pipaliya SV, Pánek T, Žihala D, Petrželková R, Butenko A, Eme L, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Hampl V. The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion. Mol Biol Evol 2019; 36:2292-2312. [PMID: 31387118 PMCID: PMC6759080 DOI: 10.1093/molbev/msz147] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sebastian C Treitli
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ondřej Brzoň
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lukáš Novák
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Vojtěch Vacek
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Petr Soukal
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Shweta V Pipaliya
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vladimír Hampl
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| |
Collapse
|
12
|
Ansar M, Ullah F, Paracha SA, Adams DJ, Lai A, Pais L, Iwaszkiewicz J, Millan F, Sarwar MT, Agha Z, Shah SF, Qaisar AA, Falconnet E, Zoete V, Ranza E, Makrythanasis P, Santoni FA, Ahmed J, Katsanis N, Walsh C, Davis EE, Antonarakis SE. Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features. Am J Hum Genet 2019; 104:1073-1087. [PMID: 31079899 PMCID: PMC6556908 DOI: 10.1016/j.ajhg.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022] Open
Abstract
Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland
| | - Farid Ullah
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, 45650 Islamabad, Pakistan
| | - Sohail A Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Darius J Adams
- Atlantic Health System, Goryeb Children's Hospital, Morristown, NJ 07960, USA
| | - Abbe Lai
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Neurology and Pediatrics, Harvard Medical School, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA
| | - Lynn Pais
- Medical and Population Genetics Program, Broad Institute of MIT, Cambridge, MA 02142, USA; Center for Mendelian Genomics, Harvard University, Cambridge, MA 02142, USA
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, 1015 Lausanne, Switzerland
| | | | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Zehra Agha
- Department of Biosciences, COMSATS University, 45500 Islamabad, Pakistan
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, 26000 Kohat, Pakistan
| | - Azhar Ali Qaisar
- Radiology Department, Lady Reading Hospital, 25000 Peshawar, Pakistan
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, 1066 Epalinges, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher Walsh
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Neurology and Pediatrics, Harvard Medical School, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA; Medical and Population Genetics Program, Broad Institute of MIT, Cambridge, MA 02142, USA; Center for Mendelian Genomics, Harvard University, Cambridge, MA 02142, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
Hatje K, Rahman RU, Vidal RO, Simm D, Hammesfahr B, Bansal V, Rajput A, Mickael ME, Sun T, Bonn S, Kollmar M. The landscape of human mutually exclusive splicing. Mol Syst Biol 2017; 13:959. [PMID: 29242366 PMCID: PMC5740500 DOI: 10.15252/msb.20177728] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA‐Seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than fivefold. The data provide strong evidence for the existence of large and multi‐cluster MXEs in higher vertebrates and offer new insights into MXE evolution. More than 82% of the MXE clusters are conserved in mammals, and five clusters have homologous clusters in Drosophila. Finally, MXEs are significantly enriched in pathogenic mutations and their spatio‐temporal expression might predict human disease pathology.
Collapse
Affiliation(s)
- Klas Hatje
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Raza-Ur Rahman
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ramon O Vidal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science Georg-August-University, Göttingen, Germany
| | - Björn Hammesfahr
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vikas Bansal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ashish Rajput
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Michel Edwar Mickael
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany .,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
14
|
Hayashi S, Uehara DT, Tanimoto K, Mizuno S, Chinen Y, Fukumura S, Takanashi JI, Osaka H, Okamoto N, Inazawa J. Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH). PLoS One 2017; 12:e0181791. [PMID: 28783747 PMCID: PMC5546575 DOI: 10.1371/journal.pone.0181791] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/09/2017] [Indexed: 01/10/2023] Open
Abstract
The CASK gene (Xp11.4) is highly expressed in the mammalian nervous system and plays several roles in neural development and synaptic function. Loss-of-function mutations of CASK are associated with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH), especially in females. Here, we present a comprehensive investigation of 41 MICPCH patients, analyzed by mutational search of CASK and screening of candidate genes using an SNP array, targeted resequencing and whole-exome sequencing (WES). In total, we identified causative or candidate genomic aberrations in 37 of the 41 cases (90.2%). CASK aberrations including a rare mosaic mutation in a male patient, were found in 32 cases, and a mutation in ITPR1, another known gene in which mutations are causative for MICPCH, was found in one case. We also found aberrations involving genes other than CASK, such as HDAC2, MARCKS, and possibly HS3ST5, which may be associated with MICPCH. Moreover, the targeted resequencing screening detected heterozygous variants in RELN in two cases, of uncertain pathogenicity, and WES analysis suggested that concurrent mutations of both DYNC1H1 and DCTN1 in one case could lead to MICPCH. Our results not only identified the etiology of MICPCH in nearly all the investigated patients but also suggest that MICPCH is a genetically heterogeneous condition, in which CASK inactivating mutations appear to account for the majority of cases.
Collapse
Affiliation(s)
- Shin Hayashi
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail: (SH); (JI)
| | - Daniela Tiaki Uehara
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Genome Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Yasutsugu Chinen
- Department of Pediatrics, University of the Ryukyus School of Medicine, Nishihara, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jun-ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical School, Tochigi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (SH); (JI)
| |
Collapse
|
15
|
Zheng W. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling. Biochemistry 2016; 56:313-323. [PMID: 27976861 DOI: 10.1021/acs.biochem.6b01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo , Buffalo, New York 14260, United States
| |
Collapse
|
16
|
Kollmar M. Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution. Mol Biol Evol 2016; 33:3249-3267. [PMID: 27880711 PMCID: PMC5100056 DOI: 10.1093/molbev/msw213] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data. To shed light on the evolution of the axoneme I performed an exhaustive analysis of dyneins using the available sequenced genome data. Evidence from motor domain phylogeny allowed expanding the current set of nine dynein subtypes by eight additional isoforms with, however, restricted taxonomic distributions. I confirmed the presence of the nine dyneins in all eukaryotic super-groups indicating their origin predating the last eukaryotic common ancestor. The comparison of the N-terminal tail domains revealed a most likely axonemal dynein origin of the new classes, a group of chimeric dyneins in plants/algae and Stramenopiles, and the unique domain architecture and origin of the outermost OADs present in green algae and ciliates but not animals. The correlation of sequence and structural data suggests the single-headed class-8 and class-9 dyneins to localize to the distal end of the axonemal repeat and the class-7 dyneins filling the region up to the proximal heterodimeric IAD. Tracing dynein gene duplications across the eukaryotes indicated ongoing diversification and fine-tuning of flagellar functions in extant taxa and species.
Collapse
Affiliation(s)
- Martin Kollmar
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
17
|
McInerney J, Pisani D, O'Connell MJ. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140323. [PMID: 26323755 DOI: 10.1098/rstb.2014.0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The literature is replete with manuscripts describing the origin of eukaryotic cells. Most of the models for eukaryogenesis are either autogenous (sometimes called slow-drip), or symbiogenic (sometimes called big-bang). In this article, we use large and diverse suites of 'Omics' and other data to make the inference that autogeneous hypotheses are a very poor fit to the data and the origin of eukaryotic cells occurred in a single symbiosis.
Collapse
Affiliation(s)
- James McInerney
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TG, UK
| | - Mary J O'Connell
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Republic of Ireland
| |
Collapse
|
18
|
Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins. Sci Rep 2015; 5:10652. [PMID: 26024016 PMCID: PMC4448529 DOI: 10.1038/srep10652] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.
Collapse
|
19
|
Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA, Yu M, Patel NA, Robinson CV, Carter AP. The structure of the dynactin complex and its interaction with dynein. Science 2015; 347:1441-1446. [PMID: 25814576 DOI: 10.1126/science.aaa4080] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dynactin is an essential cofactor for the microtubule motor cytoplasmic dynein-1. We report the structure of the 23-subunit dynactin complex by cryo-electron microscopy to 4.0 angstroms. Our reconstruction reveals how dynactin is built around a filament containing eight copies of the actin-related protein Arp1 and one of β-actin. The filament is capped at each end by distinct protein complexes, and its length is defined by elongated peptides that emerge from the α-helical shoulder domain. A further 8.2 angstrom structure of the complex between dynein, dynactin, and the motility-inducing cargo adaptor Bicaudal-D2 shows how the translational symmetry of the dynein tail matches that of the dynactin filament. The Bicaudal-D2 coiled coil runs between dynein and dynactin to stabilize the mutually dependent interactions between all three components.
Collapse
Affiliation(s)
- Linas Urnavicius
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kai Zhang
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aristides G Diamant
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Carina Motz
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Max A Schlager
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Minmin Yu
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nisha A Patel
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
20
|
Fan Y, Zhao HC, Liu J, Tan T, Ding T, Li R, Zhao Y, Yan J, Sun X, Yu Y, Qiao J. Aberrant expression of maternal Plk1 and Dctn3 results in the developmental failure of human in-vivo- and in-vitro-matured oocytes. Sci Rep 2015; 5:8192. [PMID: 25645239 PMCID: PMC4314639 DOI: 10.1038/srep08192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022] Open
Abstract
Fertilisation is the first step in embryonic development, and dynamic changes of key genes may potentially improve assisted reproduction techniques efficiency during this process. Here, we analysed genes that were differentially expressed between oocytes and zygotes and focused on cytokinesis-related genes. Plk1 and Dctn3 were identified as showing dramatic changes in expression during fertilisation and were suggested to play a key role in inducing aneuploidy in zygotes and 8-cell embryos. Moreover, we found that maternal Plk1 and Dctn3 were expressed at lower levels in in vitro matured oocytes, which may have contributed to the high ratio of resulting embryos with abnormal Plk1 and Dctn3 expression levels, thereby reducing the developmental competence of the resulting embryos. Furthermore, the overexpression of Dctn3 can silence Plk1 expression, which suggests a potential regulation mechanism. In conclusion, our present study showed that aberrant expression of Plk1 and Dctn3 increases embryo aneuploidy and developmental failure, particularly in in vitro matured oocytes. Our results facilitate a better understanding of the effects of oocyte maternal gene expression on embryonic development and can be used to improve the outcome of assisted reproduction techniques.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hong-Cui Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jianqiao Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research and Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming, 650500, China
| | - Ting Ding
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Rong Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yue Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Yan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| |
Collapse
|
21
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
22
|
Ayloo S, Lazarus JE, Dodda A, Tokito M, Ostap EM, Holzbaur ELF. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nat Commun 2014; 5:4807. [PMID: 25185702 DOI: 10.1038/ncomms5807] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/24/2014] [Indexed: 01/27/2023] Open
Abstract
Dynactin is an essential cofactor for most cellular functions of the microtubule motor cytoplasmic dynein, but the mechanism by which dynactin activates dynein remains unclear. Here we use single molecule approaches to investigate dynein regulation by the dynactin subunit p150(Glued). We investigate the formation and motility of a dynein-p150(Glued) co-complex using dual-colour total internal reflection fluorescence microscopy. p150(Glued) recruits and tethers dynein to the microtubule in a concentration-dependent manner. Single molecule imaging of motility in cell extracts demonstrates that the CAP-Gly domain of p150(Glued) decreases the detachment rate of the dynein-dynactin complex from the microtubule and also acts as a brake to slow the dynein motor. Consistent with this important role, two neurodegenerative disease-causing mutations in the CAP-Gly domain abrogate these functions in our assays. Together, these observations support a model in which dynactin enhances the initial recruitment of dynein onto microtubules and promotes the sustained engagement of dynein with its cytoskeletal track.
Collapse
Affiliation(s)
- Swathi Ayloo
- 1] Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA [2] Department of Biology Graduate Group, School of Arts and Sciences at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | - Jacob E Lazarus
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | - Aditya Dodda
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01008, USA
| | - Mariko Tokito
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | - E Michael Ostap
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | - Erika L F Holzbaur
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| |
Collapse
|
23
|
Jékely G. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harb Perspect Biol 2014; 6:a016030. [PMID: 25183829 DOI: 10.1101/cshperspect.a016030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Mühlhausen S, Kollmar M. Molecular phylogeny of sequenced Saccharomycetes reveals polyphyly of the alternative yeast codon usage. Genome Biol Evol 2014; 6:3222-37. [PMID: 25646540 PMCID: PMC4986446 DOI: 10.1093/gbe/evu152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The universal genetic code defines the translation of nucleotide triplets, called
codons, into amino acids. In many Saccharomycetes a unique alteration of this code
affects the translation of the CUG codon, which is normally translated as leucine.
Most of the species encoding CUG alternatively as serine belong to the
Candida genus and were grouped into a so-called CTG clade.
However, the “Candida genus” is not a monophyletic group
and several Candida species are known to use the standard CUG
translation. The codon identity could have been changed in a single branch, the
ancestor of the Candida, or to several branches independently
leading to a polyphyletic alternative yeast codon usage (AYCU). In order to resolve
the monophyly or polyphyly of the AYCU, we performed a phylogenomics analysis of 26
motor and cytoskeletal proteins from 60 sequenced yeast species. By investigating the
CUG codon positions with respect to sequence conservation at the respective alignment
positions, we were able to unambiguously assign the standard code or AYCU.
Quantitative analysis of the highly conserved leucine and serine alignment positions
showed that 61.1% and 17% of the CUG codons coding for leucine and
serine, respectively, are at highly conserved positions, whereas only 0.6% and
2.3% of the CUG codons, respectively, are at positions conserved in the
respective other amino acid. Plotting the codon usage onto the phylogenetic tree
revealed the polyphyly of the AYCU with Pachysolen tannophilus and
the CTG clade branching independently within a time span of 30–100 Ma.
Collapse
|
25
|
Raaijmakers JA, Medema RH. Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 2014; 123:407-22. [PMID: 24871939 DOI: 10.1007/s00412-014-0468-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022]
Abstract
Cytoplasmic dynein is a large minus-end-directed microtubule motor complex, involved in many different cellular processes including intracellular trafficking, organelle positioning, and microtubule organization. Furthermore, dynein plays essential roles during cell division where it is implicated in multiple processes including centrosome separation, chromosome movements, spindle organization, spindle positioning, and mitotic checkpoint silencing. How is a single motor able to fulfill this large array of functions and how are these activities temporally and spatially regulated? The answer lies in the unique composition of the dynein motor and in the interactions it makes with multiple regulatory proteins that define the time and place where dynein becomes active. Here, we will focus on the different mitotic processes that dynein is involved in, and how its regulatory proteins act to support dynein. Although dynein is highly conserved amongst eukaryotes (with the exception of plants), there is significant variability in the cellular processes that depend on dynein in different species. In this review, we concentrate on the functions of cytoplasmic dynein in mammals but will also refer to data obtained in other model organisms that have contributed to our understanding of dynein function in higher eukaryotes.
Collapse
Affiliation(s)
- J A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands
| | | |
Collapse
|
26
|
Mühlhausen S, Kollmar M. Predicting the fungal CUG codon translation with Bagheera. BMC Genomics 2014; 15:411. [PMID: 24885275 PMCID: PMC4050208 DOI: 10.1186/1471-2164-15-411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/21/2014] [Indexed: 12/03/2022] Open
Abstract
Background Many eukaryotes have been shown to use alternative schemes to the universal genetic code. While most Saccharomycetes, including Saccharomyces cerevisiae, use the standard genetic code translating the CUG codon as leucine, some yeasts, including many but not all of the “Candida”, translate the same codon as serine. It has been proposed that the change in codon identity was accomplished by an almost complete loss of the original CUG codons, making the CUG positions within the extant species highly discriminative for the one or other translation scheme. Results In order to improve the prediction of genes in yeast species by providing the correct CUG decoding scheme we implemented a web server, called Bagheera, that allows determining the most probable CUG codon translation for a given transcriptome or genome assembly based on extensive reference data. As reference data we use 2071 manually assembled and annotated sequences from 38 cytoskeletal and motor proteins belonging to 79 yeast species. The web service includes a pipeline, which starts with predicting and aligning homologous genes to the reference data. CUG codon positions within the predicted genes are analysed with respect to amino acid similarity and CUG codon conservation in related species. In addition, the tRNACAG gene is predicted in genomic data and compared to known leu-tRNACAG and ser-tRNACAG genes. Bagheera can also be used to evaluate any mRNA and protein sequence data with the codon usage of the respective species. The usage of the system has been demonstrated by analysing six genomes not included in the reference data. Conclusions Gene prediction and consecutive comparison with reference data from other Saccharomycetes are sufficient to predict the most probable decoding scheme for CUG codons. This approach has been implemented into Bagheera (http://www.motorprotein.de/bagheera). Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-411) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
27
|
Rochette NC, Brochier-Armanet C, Gouy M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 2014; 31:832-45. [PMID: 24398320 PMCID: PMC3969559 DOI: 10.1093/molbev/mst272] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The evolutionary origin of eukaryotes is a question of great interest for which many different hypotheses have been proposed. These hypotheses predict distinct patterns of evolutionary relationships for individual genes of the ancestral eukaryotic genome. The availability of numerous completely sequenced genomes covering the three domains of life makes it possible to contrast these predictions with empirical data. We performed a systematic analysis of the phylogenetic relationships of ancestral eukaryotic genes with archaeal and bacterial genes. In contrast with previous studies, we emphasize the critical importance of methods accounting for statistical support, horizontal gene transfer, and gene loss, and we disentangle the processes underlying the phylogenomic pattern we observe. We first recover a clear signal indicating that a fraction of the bacteria-like eukaryotic genes are of alphaproteobacterial origin. Then, we show that the majority of bacteria-related eukaryotic genes actually do not point to a relationship with a specific bacterial taxonomic group. We also provide evidence that eukaryotes branch close to the last archaeal common ancestor. Our results demonstrate that there is no phylogenetic support for hypotheses involving a fusion with a bacterium other than the ancestor of mitochondria. Overall, they leave only two possible interpretations, respectively, based on the early-mitochondria hypotheses, which suppose an early endosymbiosis of an alphaproteobacterium in an archaeal host and on the slow-drip autogenous hypothesis, in which early eukaryotic ancestors were particularly prone to horizontal gene transfers.
Collapse
Affiliation(s)
- Nicolas C Rochette
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR5558, Université de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
28
|
Lazarus JE, Moughamian AJ, Tokito MK, Holzbaur ELF. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol 2013; 11:e1001611. [PMID: 23874158 PMCID: PMC3712912 DOI: 10.1371/journal.pbio.1001611] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/31/2013] [Indexed: 01/25/2023] Open
Abstract
The dynein partner dynactin not only binds to microtubules, but is found to potently influence microtubule dynamics in neurons. Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon. We have recently shown that the p150Glued subunit of dynactin promotes the initiation of dynein-driven cargo motility from the microtubule plus-end. Because plus end-localized microtubule-associated proteins like p150Glued may also modulate the dynamics of microtubules, we hypothesized that p150Glued might promote cargo initiation by stabilizing the microtubule track. Here, we demonstrate in vitro using assembly assays and TIRF microscopy, and in primary neurons using live-cell imaging, that p150Glued is a potent anti-catastrophe factor for microtubules. p150Glued alters microtubule dynamics by binding both to microtubules and to tubulin dimers; both the N-terminal CAP-Gly and basic domains of p150Glued are required in tandem for this activity. p150Glued is alternatively spliced in vivo, with the full-length isoform including these two domains expressed primarily in neurons. Accordingly, we find that RNAi of p150Glued in nonpolarized cells does not alter microtubule dynamics, while depletion of p150Glued in neurons leads to a dramatic increase in microtubule catastrophe. Strikingly, a mutation in p150Glued causal for the lethal neurodegenerative disorder Perry syndrome abrogates this anti-catastrophe activity. Thus, we find that dynactin has multiple functions in neurons, both activating dynein-mediated retrograde axonal transport and enhancing microtubule stability through a novel anti-catastrophe mechanism regulated by tissue-specific isoform expression; disruption of either or both of these functions may contribute to neurodegenerative disease. Microtubules are polymers of tubulin that undergo successive cycles of growth and shrinkage so that the cell can maintain a stable yet adaptable cytoskeleton. In neurons, the microtubule motor protein dynein and its partner complex dynactin drive retrograde transport along microtubules from the distal axon towards the cell body. In addition to binding to dynein, the p150Glued subunit of dynactin independently binds directly to microtubules. We hypothesized that by binding to microtubules, p150Glued might also alter microtubule dynamics. We demonstrate using biochemistry and microscopy in vitro and in cells that p150Glued stabilizes microtubules by inhibiting the transition from growth to shrinkage. We show that specific domains of p150Glued encoded by neuronally enriched splice-forms are necessary for this activity. Although depletion of p150Glued in nonpolarized cells does not alter microtubule dynamics, depletion of endogenous p150Glued in neurons leads to dramatic microtubule instability. Strikingly, a mutation in p150Glued known to cause the neurodegenerative disorder Perry syndrome abolishes this activity. In summary, we identified a previously unappreciated function of dynactin in direct regulation of the microtubule cytoskeleton. This activity may enhance generic microtubule stability in the cell, but could be especially important in specific areas of the cell where dynactin and dynein are loaded onto microtubules.
Collapse
Affiliation(s)
- Jacob E. Lazarus
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Armen J. Moughamian
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mariko K. Tokito
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erika L. F. Holzbaur
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hatje K, Kollmar M. A phylogenetic analysis of the brassicales clade based on an alignment-free sequence comparison method. FRONTIERS IN PLANT SCIENCE 2012; 3:192. [PMID: 22952468 PMCID: PMC3429886 DOI: 10.3389/fpls.2012.00192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/06/2012] [Indexed: 05/06/2023]
Abstract
Phylogenetic analyses reveal the evolutionary derivation of species. A phylogenetic tree can be inferred from multiple sequence alignments of proteins or genes. The alignment of whole genome sequences of higher eukaryotes is a computational intensive and ambitious task as is the computation of phylogenetic trees based on these alignments. To overcome these limitations, we here used an alignment-free method to compare genomes of the Brassicales clade. For each nucleotide sequence a Chaos Game Representation (CGR) can be computed, which represents each nucleotide of the sequence as a point in a square defined by the four nucleotides as vertices. Each CGR is therefore a unique fingerprint of the underlying sequence. If the CGRs are divided by grid lines each grid square denotes the occurrence of oligonucleotides of a specific length in the sequence (Frequency Chaos Game Representation, FCGR). Here, we used distance measures between FCGRs to infer phylogenetic trees of Brassicales species. Three types of data were analyzed because of their different characteristics: (A) Whole genome assemblies as far as available for species belonging to the Malvidae taxon. (B) EST data of species of the Brassicales clade. (C) Mitochondrial genomes of the Rosids branch, a supergroup of the Malvidae. The trees reconstructed based on the Euclidean distance method are in general agreement with single gene trees. The Fitch-Margoliash and Neighbor joining algorithms resulted in similar to identical trees. Here, for the first time we have applied the bootstrap re-sampling concept to trees based on FCGRs to determine the support of the branchings. FCGRs have the advantage that they are fast to calculate, and can be used as additional information to alignment based data and morphological characteristics to improve the phylogenetic classification of species in ambiguous cases.
Collapse
Affiliation(s)
- Klas Hatje
- Abteilung NMR-Basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische ChemieGöttingen, Germany
| | - Martin Kollmar
- Abteilung NMR-Basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische ChemieGöttingen, Germany
- *Correspondence: Martin Kollmar, Abteilung NMR-Basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany. e-mail:
| |
Collapse
|