1
|
Wu X, Zhang Z, Li Y, Zhao Y, Ren Y, Tian Y, Hou M, Guo Y, Li Q, Tian W, Jiang R, Zhang Y, Gong Y, Li H, Li G, Liu X, Kang X, Li D, Tian Y. Estrogen promotes gonadotropin-releasing hormone expression by regulating tachykinin 3 and prodynorphin systems in chicken. Poult Sci 2024; 103:103820. [PMID: 38759565 PMCID: PMC11127269 DOI: 10.1016/j.psj.2024.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qi Li
- Henan zhumadian agricultural school, zhumadian, 463000, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Uehara SK, Nishiike Y, Maeda K, Karigo T, Kuraku S, Okubo K, Kanda S. Identification of the FSH-RH as the other gonadotropin-releasing hormone. Nat Commun 2024; 15:5342. [PMID: 38937445 PMCID: PMC11211334 DOI: 10.1038/s41467-024-49564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.
Collapse
Affiliation(s)
- Shun Kenny Uehara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Tomomi Karigo
- Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
3
|
Chen X, Feng Y, Dai S, Guo B, Yan L, Liu J, Zhu H. Advances in research on spexin-mediated regulation of reproductive function in vertebrates. Front Endocrinol (Lausanne) 2024; 15:1422711. [PMID: 38915898 PMCID: PMC11194384 DOI: 10.3389/fendo.2024.1422711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Spexin (SPX, NPQ) is a 14-amino acid neuroactive peptide identified using bioinformatics. This amino acid sequence of the mature spexin peptide has been highly conserved during species evolution and is widely distributed in the central nervous system and peripheral tissues and organs. Therefore, spexin may play a role in various biological functions. Spexin, the cognate ligand for GALR2/3, acting as a neuromodulator or endocrine signaling factor, can inhibit reproductive performance. However, controversies and gaps in knowledge persist regarding spexin-mediated regulation of animal reproductive functions. This review focuses on the hypothalamic-pituitary-gonadal axis and provides a comprehensive overview of the impact of spexin on reproduction. Through this review, we aim to enhance understanding and obtain in-depth insights into the regulation of reproduction by spexin peptides, thereby providing a scientific basis for future investigations into the molecular mechanisms underlying the influence of spexin on reproductive function. Such investigations hold potential benefits for optimizing farming practices in livestock, poultry, and fish industries.
Collapse
Affiliation(s)
- Xiaojing Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuyan Feng
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shudi Dai
- School of Life Science, Jiangsu University, Zhenjiang, China
| | - Binbin Guo
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| | - Leyan Yan
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| | - Jie Liu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| | - Huanxi Zhu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| |
Collapse
|
4
|
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, Scrivens JH, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol 2022; 20:187. [PMID: 36002813 PMCID: PMC9400282 DOI: 10.1186/s12915-022-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.
Collapse
Affiliation(s)
- Nayeli Escudero Castelán
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Dean C Semmens
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present address: Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Luis Alfonso Yañez Guerra
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mario Dos Reis
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - James H Scrivens
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: School of Science, Engineering & Design, Stephenson Street, Teesside University, Middlesbrough, TS1 3BX, TS1 3BA, Tees Valley, UK
| | | | - Alexandra M Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK.
| |
Collapse
|
5
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Xu S, Wang M, Li Y, Tang N, Zhang X, Chen H, Zhang S, Liu Y, Wang J, Chen D, Li Z. Cloning and expression of kiss genes and regulation of feeding in Siberian sturgeon (Acipenser baerii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:419-436. [PMID: 35184249 DOI: 10.1007/s10695-022-01055-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
In 1996, kiss was reported to regulate feeding in mammals, but studies are limited in fish. Our study aimed to explore the possible role of kiss in the regulation of feeding in Siberian sturgeon (Acipenser baerii). kiss1 and kiss2 were cloned, and the expression patterns were analyzed in Siberian sturgeon. The complete coding regions of kiss1 and kiss2 genes were 393 and 471 bp. Both kiss1 and kiss2 showed the highest expression level in the hypothalamus. During the periprandial and fasting experiments, the expression of kiss1 and kiss2 highly significantly increased in the hypothalamus after feeding (P < 0.01). Compared with the feeding group, in hypothalamus, kiss1 expression in the fasting group highly significantly decreased (P < 0.01). In contrast, kiss2 expression had no significant difference on days 1 and 7 (P > 0.05) but highly significantly increased on day 14 (P < 0.01). Subsequently, the feeding function was verified by intraperitoneal (i.p.) injection of Kp1(10) and Kp1(10) into fish. The results showed that i.p. injection of 1 µg/g BW Kp1(10) or 0.01 µg/g BW Kp2(10) could significantly reduce 0-1 h food intake (P < 0.05) and affected the expression levels of apelin, ghrelin, leptin, nmu, etc. in the hypothalamus. These results suggested that kiss1 plays an anorexic role in both short- and long-term feeding regulation, while kiss2 plays a short-term anorexic and long-term orexigenic role. This study described kiss as a novel regulator of appetite in fish and laid the groundwork for further studies focused on physiological function. HIGHLIGHTS: • The kiss1 and kiss2 of Siberian sturgeon were cloned. • The expression levels of kiss1 and kiss2 mRNA were the highest in the hypothalamus. • Postprandial hypothalamic kiss1 and kiss2 expression levels increased in the periprandial experiment. • In the fasting test, the expression of hypothalamic kiss1 decreased after fasting, while the expression of kiss2 increased after fasting on the 14th day. • Siberian sturgeon food intake was reduced, and appetite factors expression levels in the hypothalamus were altered after intraperitoneal injection of Kp1(10) and Kp2(10).
Collapse
Affiliation(s)
- Shaoqi Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mei Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ni Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanling Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Characterization and Distribution of Kisspeptins, Kisspeptin Receptors, GnIH, and GnRH1 in the Brain of the Protogynous Bluehead Wrasse (Thalassoma bifasciatum). J Chem Neuroanat 2022; 121:102087. [DOI: 10.1016/j.jchemneu.2022.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
|
8
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Expression of Kisspeptin 1 in the Brain of the Adult Sea Lamprey Petromyzon marinus. Life (Basel) 2021; 11:life11111174. [PMID: 34833049 PMCID: PMC8624340 DOI: 10.3390/life11111174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Kisspeptin peptides play major roles in the regulation of reproduction and puberty onset in mammals. While most mammals only have one kisspeptin gene, other jawed vertebrates present two or three genes. Recent data also revealed the presence of two genes in lampreys (jawless vertebrates). However, apart from gene sequence data, there is almost no information on the kisspeptinergic system of lampreys. Here, we report phylogenetic and cluster-based analyses showing that the duplication of the ancestral kisspeptin gene occurred before the separation of jawless and jawed vertebrates. We also studied the expression of the kisspeptin transcripts in the brain of post-metamorphic juveniles and upstream migrating adult sea lampreys. Our in situ hybridization results revealed expression of kisspeptin 1 in hypothalamic neurons, which indicates that the hypothalamic expression of kisspeptins is an ancestral character in vertebrates. We also observed the presence of kisspeptin 1 expressing neurons in the paratubercular (posterior tubercle) nucleus of the diencephalon. This is the first description of the presence of kisspeptin 1 expressing neurons in this brain region in any vertebrate. We did not detect expression of kisspeptin 2 in the juvenile or adult sea lamprey brain with in situ hybridization. Our data provides an anatomical basis to study the role of kisspeptin 1 in the hypothalamic-pituitary system of lampreys and the contribution of diencephalic kisspeptinergic neurons to different circuits of the lamprey brain.
Collapse
|
10
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
11
|
Zhang R, Nie H, Duan S, Yan P, Izaz A, Wang R, Zhou Y, Wu X. Cloning, characterisation and expression profile of kisspeptin1 and the kisspeptin1 receptor in the hypothalamic–pituitary–ovarian axis of Chinese alligator Alligator sinensis during the reproductive cycle. Reprod Fertil Dev 2020; 32:792-804. [DOI: 10.1071/rd19332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin1 (Kiss1), a product of the Kiss1 gene, plays an important role in the regulation of reproduction in vertebrates by activating the Kiss1 receptor (Kiss1R) and its coexpression with gonadotrophin-releasing hormone (GnRH) in GnRH neurons. The purpose of this study was to clone the Kiss1 and Kiss1R genes found in the brain of Alligator sinensis and to explore their relationship with reproduction. The full-length cDNA of Kiss1 is 816bp, the open reading frame (ORF) is 417bp and the gene encodes a 138-amino acid precursor protein. The full-length cDNA of Kiss1R is 2348bp, the ORF is 1086bp and the gene encodes a 361-amino acid protein. Quantitative polymerase chain reaction showed that, except for Kiss1R expression in the hypothalamus, the expression of Kiss1 and Kiss1Rduring the reproductive period of A. sinensis was higher than that in the hypothalamus, pituitary gland and ovary during the hibernation period. The changes in GnRH2 mRNA in the hypothalamus were similar to those of GnRH1 and peaked during the reproductive period. This study confirms the existence of Kiss1 and Kiss1R in A. sinensis and the findings strongly suggest that Kiss1 and Kiss1R may participate in the regulation of GnRH secretion in the hypothalamus of alligators during the reproductive period. Furthermore, this is the first report of the full-length cDNA sequences of Kiss1 and Kiss1R in reptiles.
Collapse
|
12
|
Kanda S. Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in vertebrates-hypothesis from a comparative view. Gen Comp Endocrinol 2019; 284:113075. [PMID: 30500374 DOI: 10.1016/j.ygcen.2018.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. In addition to wealth of knowledge in mammals, recent studies in non-mammalian species, especially teleosts, have provided evidence that some of the components in the HPG axis are conserved in bony vertebrates. On the other hand, from the comparisons of the recent accumulating knowledge between mammals and teleosts, unique characteristics of the regulatory system in each group have been unveiled. A hypophysiotropic neurotransmitter/hormone, gonadotropin releasing hormone (GnRH), pituitary gonadotropins, follicle stimulating hormone (FSH), and luteinizing hormone (LH) were proven to be common important elements of the HPG axis in teleosts and mammals, although the roles of each vary. Conversely, there are some modulators of GnRH or gonadotropins that are not common to all vertebrates. In this review, I will introduce the mechanism for HPG axis regulation in mammals and teleosts, and describe their evolution from a hypothetical common ancestor.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
14
|
Beauclair L, Ramé C, Arensburger P, Piégu B, Guillou F, Dupont J, Bigot Y. Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies. BMC Genomics 2019; 20:734. [PMID: 31610792 PMCID: PMC6792250 DOI: 10.1186/s12864-019-6131-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Background More and more eukaryotic genomes are sequenced and assembled, most of them presented as a complete model in which missing chromosomal regions are filled by Ns and where a few chromosomes may be lacking. Avian genomes often contain sequences with high GC content, which has been hypothesized to be at the origin of many missing sequences in these genomes. We investigated features of these missing sequences to discover why some may not have been integrated into genomic libraries and/or sequenced. Results The sequences of five red jungle fowl cDNA models with high GC content were used as queries to search publicly available datasets of Illumina and Pacbio sequencing reads. These were used to reconstruct the leptin, TNFα, MRPL52, PCP2 and PET100 genes, all of which are absent from the red jungle fowl genome model. These gene sequences displayed elevated GC contents, had intron sizes that were sometimes larger than non-avian orthologues, and had non-coding regions that contained numerous tandem and inverted repeat sequences with motifs able to assemble into stable G-quadruplexes and intrastrand dyadic structures. Our results suggest that Illumina technology was unable to sequence the non-coding regions of these genes. On the other hand, PacBio technology was able to sequence these regions, but with dramatically lower efficiency than would typically be expected. Conclusions High GC content was not the principal reason why numerous GC-rich regions of avian genomes are missing from genome assembly models. Instead, it is the presence of tandem repeats containing motifs capable of assembling into very stable secondary structures that is likely responsible.
Collapse
Affiliation(s)
- Linda Beauclair
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Christelle Ramé
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Benoît Piégu
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Florian Guillou
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Joëlle Dupont
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Yves Bigot
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
15
|
Kayo D, Zempo B, Tomihara S, Oka Y, Kanda S. Gene knockout analysis reveals essentiality of estrogen receptor β1 (Esr2a) for female reproduction in medaka. Sci Rep 2019; 9:8868. [PMID: 31222039 PMCID: PMC6586646 DOI: 10.1038/s41598-019-45373-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
In vertebrates, sex steroids play crucial roles in multiple systems related to reproduction. In females, estrogens and their receptor estrogen receptor (ER or Esr) play indispensable roles in the negative sex steroid feedback regulation of pituitary gonadotropin secretion, which prevents excessive development of ovarian follicles. However, the mechanism of this feedback regulation of a gonadotropin, follicle stimulating hormone (FSH), which is essential for folliculogenesis throughout vertebrates, is poorly understood. In the present study, we generated knockouts of all subtypes of nuclear estrogen receptors in a model teleost medaka, which is suitable for the study of endocrine control and behavioral assays, and analyzed fertility, behavior and functionality of estrogen feedback in each knockout line. Among the estrogen receptors, we revealed that an estrogen receptor Esr2a plays an essential role in this feedback regulation. In addition to this, we also found that esr2a-/- females showed oviduct atresia, which causes complete infertility. Interestingly, esr2a-/- females showed apparently normal sexual behavior but without oviposition in response to male courtship. This phenotype indicates that physical readiness and motivation of sexual behavior is independently controlled.
Collapse
Affiliation(s)
- Daichi Kayo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Buntaro Zempo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.,Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Soma Tomihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan. .,Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
16
|
Yue HM, Ye H, Ruan R, Du H, Li CJ, Wei Q. Feedback regulation of 17β-estradiol on two kisspeptin genes in the Dabry's sturgeon (Acipenser dabryanus). Comp Biochem Physiol B Biochem Mol Biol 2019; 230:1-9. [PMID: 30665026 DOI: 10.1016/j.cbpb.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
In tetrapods, kisspeptins are a group of peptides that play essential roles in the regulation of the Gonadotropin-releasing hormone secretion, and may participate in the feedback regulation of sex steroids as well. In this study, two kiss paralogs, designated as dskiss1 and dskiss2 were identified in Acipenser dabryanus. The full-length cDNA sequences of dskiss1 and dskiss2 are 1265 and 744 base pairs (bp), encoding 130 and 146 amino acids, respectively. Multiple sequence alignment indicated that both Kiss1 and Kiss2 decapeptides were highly conserved among vertebrates. Besides, Kiss1 of Dabry's sturgeon shared closer evolutionary relationship with the holostean species spotted gar (Lepisosteus oculatus), while Kiss2 of Acipenser dabryanus was conservatively grouped with the early sarcopterygian coelacanth (Latimeria chalumnae) in the phylogenetic analysis. Tissue distribution analysis showed that dskiss1 transcribed exclusively in the brain, whereas dskiss2 exhibited wider tissue distribution including brain, testis and ovary. Furthermore, male Dabry's sturgeons were intraperitoneally injected with 17β-estradiol (E2) and the effect of E2 on hypothalamus kiss and its receptors kissr mRNA levels was evaluated by relative real-time PCR. The transcription levels of dskiss2 and dskissr1 were significantly increased by E2 injection (P < .05). However, the mRNA levels of dskiss1 and dskissr2 were not changed in E2-treated group compared to the control group. These results indicate that E2 exerts positive feedback effects through dskiss2/dskissr1 in male Dabry's sturgeon.
Collapse
Affiliation(s)
- Hua-Mei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chuang-Ju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
17
|
Tsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol 2018; 264:48-57. [PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Takayoshi Ubuka
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
18
|
Williams CT, Klaassen M, Barnes BM, Buck CL, Arnold W, Giroud S, Vetter SG, Ruf T. Seasonal reproductive tactics: annual timing and the capital-to-income breeder continuum. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0250. [PMID: 28993494 DOI: 10.1098/rstb.2016.0250] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Tactics of resource use for reproduction are an important feature of life-history strategies. A distinction is made between 'capital' breeders, which finance reproduction using stored energy, and 'income' breeders, which pay for reproduction using concurrent energy intake. In reality, vertebrates use a continuum of capital-to-income tactics, and, for many species, the allocation of capital towards reproduction is a plastic trait. Here, we review how trophic interactions and the timing of life-history events are influenced by tactics of resource use in birds and mammals. We first examine how plasticity in the allocation of capital towards reproduction is linked to phenological flexibility via interactions between endocrine/neuroendocrine control systems and the sensory circuits that detect changes in endogenous state, and environmental cues. We then describe the ecological drivers of reproductive timing in species that vary in the degree to which they finance reproduction using capital. Capital can be used either as a mechanism to facilitate temporal synchrony between energy supply and demand or as a means of lessening the need for synchrony. Within many species, an individual's ability to cope with environmental change may be more tightly linked to plasticity in resource allocation than to absolute position on the capital-to-income breeder continuum.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, Victoria 3216, Australia
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Center for Bioengineering Innovation & Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter Arnold
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Sebastian G Vetter
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
19
|
Mello CV, Lovell PV. Avian genomics lends insights into endocrine function in birds. Gen Comp Endocrinol 2018; 256:123-129. [PMID: 28596079 PMCID: PMC5749246 DOI: 10.1016/j.ygcen.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023]
Abstract
The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders.
Collapse
Affiliation(s)
- C V Mello
- Dept. Behavioral Neuroscience, Oregon Health & Science University, L470, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| | - P V Lovell
- Dept. Behavioral Neuroscience, Oregon Health & Science University, L470, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| |
Collapse
|
20
|
Neuman-Lee L, Greives T, Hopkins GR, French SS. The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana). Horm Behav 2017; 89:48-54. [PMID: 28017596 DOI: 10.1016/j.yhbeh.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022]
Abstract
The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors.
Collapse
Affiliation(s)
- Lorin Neuman-Lee
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58106, USA
| | - Gareth R Hopkins
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Susannah S French
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA; The Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, USA.
| |
Collapse
|
21
|
Friocourt F, Lafont AG, Kress C, Pain B, Manceau M, Dufour S, Chédotal A. Recurrent DCC gene losses during bird evolution. Sci Rep 2017; 7:37569. [PMID: 28240285 PMCID: PMC5327424 DOI: 10.1038/srep37569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
During development, midline crossing by axons brings into play highly conserved families of receptors and ligands. The interaction between the secreted ligand Netrin-1 and its receptor Deleted in Colorectal Carcinoma (DCC) is thought to control midline attraction of crossing axons. Here, we studied the evolution of this ligand/receptor couple in birds taking advantage of a wealth of newly sequenced genomes. From phylogeny and synteny analyses we can infer that the DCC gene has been conserved in most extant bird species, while two independent events have led to its loss in two avian groups, passeriformes and galliformes. These convergent accidental gene loss events are likely related to chromosome Z rearrangement. We show, using whole-mount immunostaining and 3Disco clearing, that in the nervous system of all birds that have a DCC gene, DCC protein expression pattern is similar to other vertebrates. Surprisingly, we show that the early developmental pattern of commissural tracts is comparable in all birds, whether or not they have a DCC receptor. Interestingly, only 4 of the 5 genes encoding secreted netrins, the DCC ligands in vertebrates, were found in birds, but Netrin-5 was absent. Together, these results support a remarkable plasticity of commissural axon guidance mechanisms in birds.
Collapse
Affiliation(s)
- François Friocourt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Anne-Gaelle Lafont
- Muséum National d’Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, Paris, France
| | - Clémence Kress
- Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, 69500 Bron, France
| | - Bertrand Pain
- Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, 69500 Bron, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, Collège de France, 75005 Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| |
Collapse
|
22
|
Marques CL, Fernández I, Viegas MN, Cox CJ, Martel P, Rosa J, Cancela ML, Laizé V. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci 2016; 73:841-57. [PMID: 26341094 PMCID: PMC11108344 DOI: 10.1007/s00018-015-2024-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as pleiotropic growth factors during development and as bone inducers during osteogenesis. BMP16 is the most recent member of this subfamily and basic data regarding protein structure and function, and spatio-temporal gene expression is still scarce. In this work, insights on BMP16 were provided through the comparative analysis of structural and functional data for zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-dimensional models, patterns of gene expression during development and in adult tissues, regulation by retinoic acid and capacity to activate BMP-signaling pathway. Structures of Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar; with residues involved in receptor binding being highly conserved. All proteins could activate the BMP-signaling pathway, suggesting that they share a common function. On the contrary, stage- and tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be differentially regulated (e.g. different transcription factors, enhancers and/or regulatory modules) but also that they are involved in distinct physiological processes, although with the same function. Retinoic acid, a morphogen known to interact with BMP-signaling during bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, and that it probably arose from a whole genomic duplication event that occurred early in vertebrate evolution and disappeared in various tetrapod lineages through independent events.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Michael N Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo Martel
- Centre for Molecular and Structural Biomedicine (CBME/IBB-LA), University of Algarve, Faro, Portugal
| | - Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal.
| |
Collapse
|
23
|
Bédécarrats GY, Baxter M, Sparling B. An updated model to describe the neuroendocrine control of reproduction in chickens. Gen Comp Endocrinol 2016; 227:58-63. [PMID: 26414126 DOI: 10.1016/j.ygcen.2015.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Since its first identification in quail 15 years ago, gonadotropin inhibitory hormone (GnIH) has become a central regulator of reproduction in avian species. In this review, we have revisited our original model published in 2009 to incorporate recent experimental evidence suggesting that GnIH acts as a molecular switch during the integration of multiple external and internal cues that allow sexual maturation to proceed in chickens. Furthermore, we discuss the regulation of a dual inhibitory/stimulatory control of the hypothalamo-pituitary-gonadal axis involving the interaction between GnIH and gonadotropin releasing hormone (GnRH). Finally, beyond seasonality, we also propose that GnIH along with this dual control may be responsible for the circadian control of ovulation in chickens, allowing eggs to be laid in a synchronized manner.
Collapse
Affiliation(s)
- Grégoy Y Bédécarrats
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| | - Mikayla Baxter
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| | - Brandi Sparling
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| |
Collapse
|
24
|
Boswell T, Dunn IC. Regulation of the avian central melanocortin system and the role of leptin. Gen Comp Endocrinol 2015; 221:278-83. [PMID: 25583584 DOI: 10.1016/j.ygcen.2014.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023]
Abstract
The avian central melanocortin system is well conserved between birds and mammals in terms of the component genes, the localisation of their expression in the hypothalamic arcuate nucleus, the effects on feeding behaviour of their encoded peptides and the sensitivity of agouti-related protein (AGRP) and pro-opiomelanocortin (POMC) gene expression to changes in energy status. Our recent research has demonstrated that AGRP gene expression precisely differentiates between broiler breeder hens with different histories of chronic food restriction and refeeding. We have also shown that the sensitivity of AGRP gene expression to loss of energy stores is maintained even when food intake has been voluntarily reduced in chickens during incubation and in response to a stressor. However, the similarity between birds and mammals does not appear to extend to the way AGRP and POMC gene expression are regulated. In particular, the preliminary evidence from the discovery of the first avian leptin (LEP) genes suggests that LEP is more pleiotropic in birds and may not even be involved in regulating energy balance. Similarly, ghrelin exerts inhibitory, rather than stimulatory, effects on food intake. The fact that the importance of these prominent long-term regulators of AGRP and POMC expression in mammals appears diminished in birds suggests that the balance of regulatory inputs in birds may have shifted to more short-term influences such as the tone of cholecystokinin (CCK) signalling. This is likely to be related to the different metabolic fuelling required to support flight.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Institute of Neuroscience, Centre for Behaviour and Evolution, Newcastle University, England, United Kingdom.
| | - Ian C Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, Scotland, United Kingdom
| |
Collapse
|
25
|
Maugars G, Dufour S. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians. PLoS One 2015; 10:e0135184. [PMID: 26271038 PMCID: PMC4536197 DOI: 10.1371/journal.pone.0135184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
Pituitary gonadotropins, FSH and LH, control gonad activity in vertebrates, via binding to their respective receptors, FSHR and LHR, members of GPCR superfamily. Until recently, it was accepted that gnathostomes possess a single FSHR and a single LHR, encoded by fshr and lhcgr genes. We reinvestigated this question, focusing on vertebrate species of key-phylogenetical positions. Genome analyses supported the presence of a single fshr and a single lhcgr in chondrichthyans, and in sarcopterygians including mammals, birds, amphibians and coelacanth. In contrast, we identified a single fshr but two lhgcr in basal teleosts, the eels. We further showed the coexistence of duplicated lhgcr in other actinopterygians, including a non-teleost, the gar, and other teleosts, e.g. Mexican tetra, platyfish, or tilapia. Phylogeny and synteny analyses supported the existence in actinopterygians of two lhgcr paralogs (lhgcr1/ lhgcr2), which do not result from the teleost-specific whole-genome duplication (3R), but likely from a local gene duplication that occurred early in the actinopterygian lineage. Due to gene losses, there was no impact of 3R on the number of gonadotropin receptors in extant teleosts. Additional gene losses during teleost radiation, led to a single lhgcr (lhgcr1 or lhgcr2) in some species, e.g. medaka and zebrafish. Sequence comparison highlighted divergences in the extracellular and intracellular domains of the duplicated lhgcr, suggesting differential properties such as ligand binding and activation mechanisms. Comparison of tissue distribution in the European eel, revealed that fshr and both lhgcr transcripts are expressed in the ovary and testis, but are differentially expressed in non-gonadal tissues such as brain or eye. Differences in structure-activity relationships and tissue expression may have contributed as selective drives in the conservation of the duplicated lhgcr. This study revises the evolutionary scenario and nomenclature of gonadotropin receptors, and opens new research avenues on the roles of duplicated LHR in actinopterygians.
Collapse
Affiliation(s)
- Gersende Maugars
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| |
Collapse
|
26
|
Felip A, Espigares F, Zanuy S, Gómez A. Differential activation of kiss receptors by Kiss1 and Kiss2 peptides in the sea bass. Reproduction 2015; 150:227-43. [PMID: 26047834 DOI: 10.1530/rep-15-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Abstract
Two forms of kiss gene (kiss1 and kiss2) have been described in the teleost sea bass. This study assesses the cloning and characterization of two Kiss receptor genes, namely kissr2 and kissr3 (known as gpr54-1b and gpr54-2b, respectively), and their signal transduction pathways in response to Kiss1 and Kiss2 peptides. Phylogenetic and synteny analyses indicate that these paralogs originated by duplication of an ancestral gene before teleost specific duplication. The kissr2 and kissr3 mRNAs encode proteins of 368 and 378 amino acids, respectively, and share 53.1% similarity in amino acid sequences. In silico analysis of the putative promoter regions of the sea bass Kiss receptor genes revealed conserved flanking regulatory sequences among teleosts. Both kissr2 and kissr3 are predominantly expressed in brain and gonads of sea bass, medaka and zebrafish. In the testis, the expression levels of sea bass kisspeptins and Kiss receptors point to a significant variation during the reproductive cycle. In vitro functional analyses revealed that sea bass Kiss receptor signals are transduced both via the protein kinase C and protein kinase A pathway. Synthetic sea bass Kiss1-15 and Kiss2-12 peptides activated Kiss receptors with different potencies, indicating a differential ligand selectivity. Our data suggest that Kissr2 and Kissr3 have a preference for Kiss1 and Kiss2 peptides, respectively, thus providing the basis for future studies aimed at establishing their physiologic roles in sea bass.
Collapse
Affiliation(s)
- Alicia Felip
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Felipe Espigares
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Silvia Zanuy
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Ana Gómez
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| |
Collapse
|
27
|
Bédécarrats GY. Control of the reproductive axis: Balancing act between stimulatory and inhibitory input. Poult Sci 2015; 94:810-5. [DOI: 10.3382/ps/peu042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Tang H, Liu Y, Luo D, Ogawa S, Yin Y, Li S, Zhang Y, Hu W, Parhar IS, Lin H, Liu X, Cheng CHK. The kiss/kissr systems are dispensable for zebrafish reproduction: evidence from gene knockout studies. Endocrinology 2015; 156:589-99. [PMID: 25406015 PMCID: PMC4298318 DOI: 10.1210/en.2014-1204] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1(-/-), kiss2(-/-), and kiss1(-/-);kiss2(-/-) mutant lines as well as the kissr1(-/-), kissr2(-/-), and kissr1(-/-);kissr2(-/-) mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol (H.T., Y.Y., S.L., Y.Z., H.L., X.L.), Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Biomedical Sciences (Y.L., Y.Z., C.H.K.C.), The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Freshwater Ecology and Biotechnology (D.L., W.H.), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China; Department of Genetics (D.L.), School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China; School of Biomedical Sciences Core Laboratory (Y.L., C.H.K.C.), The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and Brain Research Institute (S.O., I.S.P.), School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pasquier J, Kamech N, Lafont AG, Vaudry H, Rousseau K, Dufour S. Molecular evolution of GPCRs: Kisspeptin/kisspeptin receptors. J Mol Endocrinol 2014; 52:T101-17. [PMID: 24577719 DOI: 10.1530/jme-13-0224] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Following the discovery of kisspeptin (Kiss) and its receptor (GPR54 or KissR) in mammals, phylogenetic studies revealed up to three Kiss and four KissR paralogous genes in other vertebrates. The multiplicity of Kiss and KissR types in vertebrates probably originated from the two rounds of whole-genome duplication (1R and 2R) that occurred in early vertebrates. This review examines compelling recent advances on molecular diversity and phylogenetic evolution of vertebrate Kiss and KissR. It also addresses, from an evolutionary point of view, the issues of the structure-activity relationships and interaction of Kiss with KissR and of their signaling pathways. Independent gene losses, during vertebrate evolution, have shaped the repertoire of Kiss and KissR in the extant vertebrate species. In particular, there is no conserved combination of a given Kiss type with a KissR type, across vertebrate evolution. The striking conservation of the biologically active ten-amino-acid C-terminal sequence of all vertebrate kisspeptins, probably allowed this evolutionary flexibility of Kiss/KissR pairs. KissR mutations, responsible for hypogonadotropic hypogonadism in humans, mostly occurred at highly conserved amino acid positions among vertebrate KissR. This further highlights the key role of these amino acids in KissR function. In contrast, less conserved KissR regions, notably in the intracellular C-terminal domain, may account for differential intracellular signaling pathways between vertebrate KissR. Cross talk between evolutionary and biomedical studies should contribute to further understanding of the Kiss/KissR structure-activity relationships and biological functions.
Collapse
Affiliation(s)
- Jérémy Pasquier
- Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA)UMR CNRS 7208, IRD207, Université Pierre and Marie Curie - Paris 6, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP32, 75231 Paris Cedex 05, FranceLaboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Nédia Kamech
- Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA)UMR CNRS 7208, IRD207, Université Pierre and Marie Curie - Paris 6, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP32, 75231 Paris Cedex 05, FranceLaboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Anne-Gaëlle Lafont
- Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA)UMR CNRS 7208, IRD207, Université Pierre and Marie Curie - Paris 6, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP32, 75231 Paris Cedex 05, FranceLaboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA)UMR CNRS 7208, IRD207, Université Pierre and Marie Curie - Paris 6, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP32, 75231 Paris Cedex 05, FranceLaboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Karine Rousseau
- Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA)UMR CNRS 7208, IRD207, Université Pierre and Marie Curie - Paris 6, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP32, 75231 Paris Cedex 05, FranceLaboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Sylvie Dufour
- Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA)UMR CNRS 7208, IRD207, Université Pierre and Marie Curie - Paris 6, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP32, 75231 Paris Cedex 05, FranceLaboratory of Neuronal and Neuroendocrine Differentiation and CommunicationINSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
30
|
Elphick MR, Mirabeau O. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates. Front Endocrinol (Lausanne) 2014; 5:93. [PMID: 24994999 PMCID: PMC4062910 DOI: 10.3389/fendo.2014.00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022] Open
Abstract
Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide-receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates - urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom.
Collapse
Affiliation(s)
- Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- *Correspondence: Maurice R. Elphick, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK e-mail:
| | - Olivier Mirabeau
- Institut Curie, Cancer Genetics Unit, Inserm U830, Paris, France
| |
Collapse
|
31
|
Sandvik GK, Hodne K, Haug TM, Okubo K, Weltzien FA. RFamide Peptides in Early Vertebrate Development. Front Endocrinol (Lausanne) 2014; 5:203. [PMID: 25538682 PMCID: PMC4255600 DOI: 10.3389/fendo.2014.00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/16/2014] [Indexed: 12/17/2022] Open
Abstract
RFamides (RFa) are neuropeptides involved in many different physiological processes in vertebrates, such as reproductive behavior, pubertal activation of the reproductive endocrine axis, control of feeding behavior, and pain modulation. As research has focused mostly on their role in adult vertebrates, the possible roles of these peptides during development are poorly understood. However, the few studies that exist show that RFa are expressed early in development in different vertebrate classes, perhaps mostly associated with the central nervous system. Interestingly, the related peptide family of FMRFa has been shown to be important for brain development in invertebrates. In a teleost, the Japanese medaka, knockdown of genes in the Kiss system indicates that Kiss ligands and receptors are vital for brain development, but few other functional studies exist. Here, we review the literature of RFa in early vertebrate development, including the possible functional roles these peptides may play.
Collapse
Affiliation(s)
- Guro Katrine Sandvik
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kjetil Hodne
- Institute for Experimental Medical Research, Oslo University Hospital , Oslo , Norway
| | | | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo , Japan
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|