1
|
İbiş O, Selçuk AY, Teber S, Baran M, Koepfli K, Kefelioğlu H, Tez C. Mitogenomic Analysis of Glirids (Gliridae) and Squirrels (Sciuridae) From Türkiye: Evolutionary and Taxonomic Implications Within the Suborder Sciuromorpha. Ecol Evol 2025; 15:e70956. [PMID: 39949887 PMCID: PMC11821457 DOI: 10.1002/ece3.70956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Gliridae and Sciuridae, the most impressive mammalian radiations within the suborder Sciuromorpha, encompass a total of 327 extant species. This study aimed to: (i) characterize the mitogenomes of three sciurid (Spermophilus citellus, Spermophilus taurensis, and Spermophilus xanthoprymnus) and three glirid (Glis glis, Dryomys nitedula, and Dryomys laniger) species from Türkiye; (ii) elucidate the phylogeographic relationships within D. laniger and D. nitedula using both mitogenomes and mitochondrial cytochrome b (CYTB) sequences; and (iii) reconstruct the phylogenetic relationships among extant members of the suborder Sciuromorpha. Sixteen new mitogenomes were sequenced from Turkish samples, containing 37 genes (2 ribosomal RNAs, 13 protein-coding genes, 22 transfer RNAs), exhibiting similarity to those of other Gliridae and Sciuridae species. Based on mitogenomic data, Bayesian Inference and Maximum Likelihood phylogenetic analyses revealed two major phylogroups corresponding to the two families, Gliridae and Sciuridae, which were both monophyletic. Analyses of mitogenomic and CYTB sequences revealed at least two major lineages (i: Anatolia and ii: Lesser Caucasus and Alborz) of D. nitedula in the Anatolian region of Türkiye. The mitochondrial CYTB data indicated that D. laniger exhibited at least two major lineages (Eastern and Western), whereas D. nitedula comprised multiple lineages and sublineages. The mean genetic distance between the two mitogenomic lineages of D. nitedula was 7.69%. Based on the CYTB data, the mean genetic distance between the Eastern and Western lineages of D. laniger was 7%, whereas the mean genetic distances among the lineages of D. nitedula ranged from 6% to 13%. Major lineages of both D. laniger and D. nitedula might be considered distinct species throughout the species' range. This study demonstrates that complete mitogenomes for reconstructing the Gliridae phylogeny provides important information for revealing phylogenetic and phylogeographic relationships.
Collapse
Affiliation(s)
- Osman İbiş
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
- Vectors and Vector‐Born Diseases Research and Implementation CenterErciyes UniversityKayseriTürkiye
| | - Ahmet Yesari Selçuk
- Department of Forestry, Artvin Vocational SchoolArtvin Çoruh UniversityArtvinTürkiye
| | - Saffet Teber
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
| | - Mehmet Baran
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
| | - Klaus‐Peter Koepfli
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Haluk Kefelioğlu
- Department of Biology, Faculty of Science and LettersOndokuz Mayıs UniversitySamsunTürkiye
| | - Coşkun Tez
- Genome and Stem Cell Center, GENKOKErciyes UniversityKayseriTürkiye
- Department of Biology, Faculty of SciencesErciyes UniversityKayseriTürkiye
| |
Collapse
|
2
|
Puppione DL. Two rodent suborders have evolved missing amino acids in the lipid-binding region of apolipoprotein E. Lipids 2025. [PMID: 39805706 DOI: 10.1002/lipd.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
The order Rodentia comprises nearly 45% of all extant taxa, currently organized into 31 living families, some 450 genera, and roughly 2010 species (Kelt & Patton, 2020). Considering that rodents began evolving at least 66 million years ago, it is not surprising that they have diversified into five distinct suborders. With the advent of molecular biology, this difference can often be seen at the molecular level as well. Previous studies have indicated that the apolipoprotein E (APOE) of guinea pigs, belonging to the suborder Hystricomorpha, have fewer amino acids than have been reported for other suborders of Rodentia. Searching the genomic database for hystricomorph APOE genes, it was found that hystricomorphs were missing residues both in the vicinity of the hinge region and in the lipid-binding region of the apolipoprotein. In the hinge region, missing residues varied between 5 and 3, and in the latter region, seven residues were missing. The search also revealed that castorimorphs, although lacking the smaller of the two deletions, were also missing the same seven residue deletion as found in APOE of the hystricomorphs.
Collapse
Affiliation(s)
- Don L Puppione
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Carter AM. Genomics, the diversification of mammals, and the evolution of placentation. Dev Biol 2024; 516:167-182. [PMID: 39173812 DOI: 10.1016/j.ydbio.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
When and why did variations in placental structure and function evolve? Such questions cannot be addressed without a reliable version of mammalian phylogeny. Twenty-five years ago, the mammalian tree was reshaped by molecular phylogenetics. Soon it was shown, in contrast to prevailing theories, that the common ancestor of placental mammals had invasive placentation. Subsequently, evolution of many other features of extraembryonic membranes was addressed. This endeavour stimulated research to fill gaps in our knowledge of placental morphology. Last year the mammalian tree was again revised based on a large set of genomic data. With that in mind, this review provides an update on placentation in the nineteen orders of placental mammals, incorporating much recent data. The principal features such as shape, interdigitation, the interhaemal barrier and the yolk sac are summarized in synoptic tables. The evolution of placental traits and its timing is then explored by reference to the revised mammalian tree. Examples are the early appearance of epitheliochorial placentation in the common ancestor of artiodactyls, perissodactyls, pangolins and carnivores (with reversion to invasive forms in the latter) and later refinements such as the binucleate trophoblast cells and placentomes of ruminants. In primates, the intervillous space gradually evolved from the more basic labyrinth whereas trophoblast invasion of the decidua was a late development in humans and great apes. Only seldom can we glimpse the "why" of placental evolution. The best examples concern placental hormones, including some striking examples of convergent evolution such as the chorionic gonadotropins of primates and equids. In concluding, I review current ideas about what drives placental evolution and identify significant gaps in our knowledge of placentation, including several relevant to the evolution of placentation in primates.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
López-Antoñanzas R, Simões TR, Condamine FL, Dirnberger M, Peláez-Campomanes P. Bayesian tip-dated timeline for diversification and major biogeographic events in Muroidea (Rodentia), the largest mammalian radiation. BMC Biol 2024; 22:270. [PMID: 39587561 PMCID: PMC11590369 DOI: 10.1186/s12915-024-02053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extinct organisms provide vital information about the time of origination and biogeography of extant groups. The development of phylogenetic methods to study evolutionary processes through time has revolutionized the field of evolutionary biology and led to an unprecedented expansion of our knowledge of the tree of life. Recent developments applying Bayesian approaches, using fossil taxa as tips to be included alongside their living relatives, have revitalized the use of morphological data in evolutionary tree inferences. Eumuroida rodents represent the largest group of mammals including more than a quarter of all extant mammals and have a rich fossil record spanning the last ~ 45 million years. Despite this wealth of data, our current understanding of the classification, major biogeographic patterns, and divergence times for this group comes from molecular phylogenies that use fossils only as a source of node calibrations. However, node calibrations impose several constraints on tree topology and must necessarily make a priori assumptions about the placement of fossil taxa without testing their placement in the tree. RESULTS We present the first morphological dataset with extensive fossil sampling for Muroidea. By applying Bayesian morphological clocks with tip dating and process-based biogeographic models, we provide a novel hypothesis for muroid relationships and revised divergence times for the clade that incorporates uncertainty in the placement of all fossil species. Even under strong violation of the clock model, we found strong congruence between results for divergence times, providing a robust timeline for muroid diversification. This new timeline was used for biogeographic analyses, which revealed a dynamic scenario mostly explained by dispersal events between and within the Palearctic and North African regions. CONCLUSIONS Our results provide important insights into the evolution of Muroidea rodents and clarify the evolutionary pathways of their main lineages. We exploited the advantage of tip dating Bayesian approaches in morphology-based datasets and provided a classification of the largest superfamily of mammals resulting from robust phylogenetic inference, inferring the biogeographical history, diversification, and divergence times of its major lineages.
Collapse
Affiliation(s)
- Raquel López-Antoñanzas
- Institut Des Sciences de L'Évolution de Montpellier (CNRS/UM/IRD/EPHE), Université de Montpellier, 34095, Montpellier, France.
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain.
| | - Tiago R Simões
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Fabien L Condamine
- Institut Des Sciences de L'Évolution de Montpellier (CNRS/UM/IRD/EPHE), Université de Montpellier, 34095, Montpellier, France
| | - Moritz Dirnberger
- Institut Des Sciences de L'Évolution de Montpellier (CNRS/UM/IRD/EPHE), Université de Montpellier, 34095, Montpellier, France
| | | |
Collapse
|
5
|
Németh A, Mizsei E, Laczkó L, Czabán D, Hegyeli Z, Lengyel S, Csorba G, Sramkó G. Evolutionary history and systematics of European blind mole rats (Rodentia: Spalacidae: Nannospalax): Multilocus phylogeny and species delimitation in a puzzling group. Mol Phylogenet Evol 2024; 190:107958. [PMID: 37914032 DOI: 10.1016/j.ympev.2023.107958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Species delimitation is a powerful approach to assist taxonomic decisions in challenging taxa where species boundaries are hard to establish. European taxa of the blind mole rats (genus Nannospalax) display small morphological differences and complex chromosomal evolution at a shallow evolutionary divergence level. Previous analyses led to the recognition of 25 'forms' in their distribution area. We provide a comprehensive framework to improve knowledge on the evolutionary history and revise the taxonomy of European blind mole rats based on samples from all but three of the 25 forms. We sequenced two nuclear-encoded genetic regions and the whole mitochondrial cytochrome b gene for phylogenetic tree reconstructions using concatenation and coalescence-based species-tree estimations. The phylogenetic analyses confirmed that Aegean N. insularis belongs to N. superspecies xanthodon, and that it represents the second known species of this superspecies in Europe. Mainland taxa reached Europe from Asia Minor in two colonisation events corresponding to two superspecies-level taxa: N. superspecies monticola (taxon established herewith) reached Europe c. 2.1 million years ago (Mya) and was followed by N. superspecies leucodon (re-defined herewith) c. 1.5 Mya. Species delimitation allowed the clarification of the taxonomic contents of the above superspecies. N. superspecies monticola contains three species geographically confined to the western periphery of the distribution of blind mole rats, whereas N. superspecies leucodon is more speciose with six species and several additional subspecies. The observed geographic pattern hints at a robust peripatric speciation process and rapid chromosomal evolution. The present treatment is thus regarded as the minimum taxonomic content of each lineage, which can be further refined based on other sources of information such as karyological traits, crossbreeding experiments, etc. The species delimitation models also allowed the recognition of a hitherto unnamed blind mole rat taxon from Albania, described here as a new subspecies.
Collapse
Affiliation(s)
- Attila Németh
- Department of Nature Conservation, Zoology and Game Management, University of Debrecen, Böszörményi u. 138, H-4032 Debrecen, Hungary; BirdLife Hungary - Hungarian Ornithological and Nature Conservation Society, Költő u. 21, H-1121 Budapest, Hungary
| | - Edvárd Mizsei
- Department of Ecology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; DRI Conservation Ecology Research Group, Centre for Ecological Research, Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen, Hungary
| | - Levente Laczkó
- Evolutionary Genomics Research Group, Department of Botany, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | | | - Zsolt Hegyeli
- Milvus Group Bird and Nature Protection Association, Crinului St. 22, 540343 Târgu Mureş, Romania
| | - Szabolcs Lengyel
- DRI Conservation Ecology Research Group, Centre for Ecological Research, Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen, Hungary
| | - Gábor Csorba
- Hungarian Natural History Museum, Baross u. 13, H-1088 Budapest, Hungary.
| | - Gábor Sramkó
- Evolutionary Genomics Research Group, Department of Botany, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Liu GM, Pan Q, Du J, Zhu PF, Liu WQ, Li ZH, Wang L, Hu CY, Dai YC, Zhang XX, Zhang Z, Yu Y, Li M, Wang PC, Wang X, Li M, Zhou XM. Improved mammalian family phylogeny using gap-rare multiple sequence alignment: A timetree of extant placentals and marsupials. Zool Res 2023; 44:1064-1079. [PMID: 37914522 PMCID: PMC10802097 DOI: 10.24272/j.issn.2095-8137.2023.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The timing of mammalian diversification in relation to the Cretaceous-Paleogene (KPg) mass extinction continues to be a subject of substantial debate. Previous studies have either focused on limited taxonomic samples with available whole-genome data or relied on short sequence alignments coupled with extensive species samples. In the present study, we improved an existing dataset from the landmark study of Meredith et al. (2011) by filling in missing fragments and further generated another dataset containing 120 taxa and 98 exonic markers. Using these two datasets, we then constructed phylogenies for extant mammalian families, providing improved resolution of many conflicting relationships. Moreover, the timetrees generated, which were calibrated using appropriate molecular clock models and multiple fossil records, indicated that the interordinal diversification of placental mammals initiated before the Late Cretaceous period. Additionally, intraordinal diversification of both extant placental and marsupial lineages accelerated after the KPg boundary, supporting the hypothesis that the availability of numerous vacant ecological niches subsequent to the mass extinction event facilitated rapid diversification. Thus, our results support a scenario of placental radiation characterized by both basal cladogenesis and active interordinal divergences spanning from the Late Cretaceous into the Paleogene.
Collapse
Affiliation(s)
- Gao-Ming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping-Fen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Yan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Chen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Xiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Cheng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
7
|
Li X, Li H, Yang Z, Wu Y, Zhang M. Exploring objective feature sets in constructing the evolution relationship of animal genome sequences. BMC Genomics 2023; 24:634. [PMID: 37872534 PMCID: PMC10594854 DOI: 10.1186/s12864-023-09747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Exploring evolution regularities of genome sequences and constructing more objective species evolution relationships at the genomic level are high-profile topics. Based on the evolution mechanism of genome sequences proposed in our previous research, we found that only the 8-mers containing CG or TA dinucleotides correlate directly with the evolution of genome sequences, and the relative frequency rather than the actual frequency of these 8-mers is more suitable to characterize the evolution of genome sequences. RESULT Therefore, two types of feature sets were obtained, they are the relative frequency sets of CG1 + CG2 8-mers and TA1 + TA2 8-mers. The evolution relationships of mammals and reptiles were constructed by the relative frequency set of CG1 + CG2 8-mers, and two types of evolution relationships of insects were constructed by the relative frequency sets of CG1 + CG2 8-mers and TA1 + TA2 8-mers respectively. Through comparison and analysis, we found that evolution relationships are consistent with the known conclusions. According to the evolution mechanism, we considered that the evolution relationship constructed by CG1 + CG2 8-mers reflects the evolution state of genome sequences in current time, and the evolution relationship constructed by TA1 + TA2 8-mers reflects the evolution state in the early stage. CONCLUSION Our study provides objective feature sets in constructing evolution relationships at the genomic level.
Collapse
Affiliation(s)
- Xiaolong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Zhenhua Yang
- School of Economics and Management, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yuan Wu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Mengchuan Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
8
|
Bangs MR, Steppan SJ. A rodent anchored hybrid enrichment probe set for a range of phylogenetic utility: From order to species. Mol Ecol Resour 2021; 22:1521-1528. [PMID: 34800355 DOI: 10.1111/1755-0998.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Rodents are the largest order of mammals and contain several model organisms important to scientific research in a variety of fields, yet no large set of genomic markers have been designed for this group to date, hindering evolutionary studies into relationships of the group as a whole. Here we present a genomic probe set designed and optimized for rodents with a protocol that is easy to replicate with little laboratory investment. This design utilizes an anchored hybrid enrichment approach specifically targeting rodents to generate longer loci with a higher substitution rate than existing vertebrate probes to provide utility at various taxonomic levels. Using a test set of rodents from all five suborders, we successfully obtained alignments for 416 of the 418 target loci with an average of 1379 bp per locus and a total alignment of more than half a million base pairs. This genomic data set performed well in all phylogenetic analyses, especially in recent phylogenetic splits, with ample parsimony-informative sites within genera and even within species, showing more than four times as many single nucleotide polymorphisms per locus than a recent vertebrate ultraconserved elements study. Additional support is provided in resolving deeper clades in Rodentia. By providing this probe design, we hope that more laboratories can easily generate data for answering questions in rodents from species delimitation to understanding relationships among families in rapid radiations.
Collapse
Affiliation(s)
- Max R Bangs
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, USA
| | - Scott J Steppan
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
9
|
Barnes S, Grove JCR, McHugh CF, Hirano AA, Brecha NC. Horizontal Cell Feedback to Cone Photoreceptors in Mammalian Retina: Novel Insights From the GABA-pH Hybrid Model. Front Cell Neurosci 2020; 14:595064. [PMID: 33328894 PMCID: PMC7672006 DOI: 10.3389/fncel.2020.595064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to patterns of light appears to be mediated by one or more unconventional mechanisms. Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance key aspects of temporal and spatial center-surround receptive field antagonism. After the transduction of light energy into an electrical signal in photoreceptors, the next key task in visual processing is the transmission of an optimized signal to the follower neurons in the retina. For this to happen, the release of the excitatory neurotransmitter glutamate from photoreceptors is carefully regulated via horizontal cell feedback, which acts as a thermostat to keep the synaptic transmission in an optimal range during changes to light patterns and intensities. Novel findings of a recently described model that casts a classical neurotransmitter system together with ion transport mechanisms to adjust the alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging system carries feedback signals using two separate, but interwoven regulated systems. The complex interplay between these two signaling modalities, creating synaptic modulation-at-a-distance, has obscured it’s being defined. The foundations of our understanding of the feedback mechanism from horizontal cells to photoreceptors have been long established: Horizontal cells have broad receptive fields, suitable for providing surround inhibition, their membrane potential, a function of stimulus intensity and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong artificial pH buffering eliminates this action. This review compares and contrasts models of how these foundations are linked, focusing on a recent report in mammals that shows tonic horizontal cell release of GABA activating Cl− and HCO3− permeable GABA autoreceptors. The membrane potential of horizontal cells provides the driving force for GABAR-mediated HCO3− efflux, alkalinizing the cleft when horizontal cells are hyperpolarized by light or adding to their depolarization in darkness and contributing to cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of earlier studies that were considered to rule out a role for GABA in feedback to cones.
Collapse
Affiliation(s)
- Steven Barnes
- Doheny Eye Institute, Los Angeles, CA, United States.,Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James C R Grove
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Babarinde IA, Saitou N. The Dynamics, Causes, and Impacts of Mammalian Evolutionary Rates Revealed by the Analyses of Capybara Draft Genome Sequences. Genome Biol Evol 2020; 12:1444-1458. [PMID: 32835375 DOI: 10.1093/gbe/evaa157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Capybara (Hydrochoerus hydrochaeri) is the largest species among the extant rodents. The draft genome of capybara was sequenced with the estimated genome size of 2.6 Gb. Although capybara is about 60 times larger than guinea pig, comparative analyses revealed that the neutral evolutionary rates of the two species were not substantially different. However, analyses of 39 mammalian genomes revealed very heterogeneous evolutionary rates. The highest evolutionary rate, 8.5 times higher than the human rate, was found in the Cricetidae-Muridae common ancestor after the divergence of Spalacidae. Muridae, the family with the highest number of species among mammals, emerged after the rate acceleration. Factors responsible for the evolutionary rate heterogeneity were investigated through correlations between the evolutionary rate and longevity, gestation length, litter frequency, litter size, body weight, generation interval, age at maturity, and taxonomic order. The regression analysis of these factors showed that the model with three factors (taxonomic order, generation interval, and litter size) had the highest predictive power (R2 = 0.74). These three factors determine the number of meiosis per unit time. We also conducted transcriptome analysis and found that the evolutionary rate dynamics affects the evolution of gene expression patterns.
Collapse
Affiliation(s)
- Isaac Adeyemi Babarinde
- Department of Biological Sciences, Southern University of Science and Technology, Shenzhen, China.,Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,School of Medicine, University of the Ryukyus, Okinawa, Japan.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
11
|
Swanson MT, Oliveros CH, Esselstyn JA. A phylogenomic rodent tree reveals the repeated evolution of masseter architectures. Proc Biol Sci 2020; 286:20190672. [PMID: 31064307 DOI: 10.1098/rspb.2019.0672] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Understanding the number of times a trait has evolved is a necessary foundation for comprehending its potential relationships with selective regimes, developmental constraints and evolutionary diversification. Rodents make up over 40% of extant mammalian species, and their ecological and evolutionary success has been partially attributed to the increase in biting efficiency that resulted from a forward shift of one or two portions of the masseter muscle from the zygomatic arch onto the rostrum. This forward shift has occurred in three discrete ways, but the number of times it has occurred has never been explicitly quantified. We estimated an ultrametric phylogeny, the first to include all rodent families, using thousands of ultraconserved elements. We examined support for evolutionary relationships among the five rodent suborders and then incorporated relevant fossils, fitted models of character evolution, and used stochastic character mapping to determine that a portion of the masseter muscle has moved forward onto the rostrum at least seven times (with one reversal) during the approximately 70 Myr history of rodents. Combined, the repeated evolution of this key innovation, its increasing prevalence through time, and the species diversity of clades with this character underscores the adaptive value of improved biting efficiency and the relative ease with which some advantageous traits arise.
Collapse
Affiliation(s)
- Mark T Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University , Baton Rouge, LA , USA
| | - Carl H Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University , Baton Rouge, LA , USA
| | - Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University , Baton Rouge, LA , USA
| |
Collapse
|
12
|
Moutinho AF, Serén N, Paupério J, Silva TL, Martínez-Freiría F, Sotelo G, Faria R, Mappes T, Alves PC, Brito JC, Boratyński Z. Evolutionary history of two cryptic species of northern African jerboas. BMC Evol Biol 2020; 20:26. [PMID: 32054437 PMCID: PMC7020373 DOI: 10.1186/s12862-020-1592-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Climatic variation and geologic change both play significant roles in shaping species distributions, thus affecting their evolutionary history. In Sahara-Sahel, climatic oscillations shifted the desert extent during the Pliocene-Pleistocene interval, triggering the diversification of several species. Here, we investigated how these biogeographical and ecological events have shaped patterns of genetic diversity and divergence in African Jerboas, desert specialist rodents. We focused on two sister and cryptic species, Jaculus jaculus and J. hirtipes, where we (1) evaluated their genetic differentiation, (2) reconstructed their evolutionary and demographic history; (3) tested the level of gene flow between them, and (4) assessed their ecological niche divergence. RESULTS The analyses based on 231 individuals sampled throughout North Africa, 8 sequence fragments (one mitochondrial and seven single copy nuclear DNA, including two candidate genes for fur coloration: MC1R and Agouti), 6 microsatellite markers and ecological modelling revealed: (1) two distinct genetic lineages with overlapping distributions, in agreement with their classification as different species, J. jaculus and J. hirtipes, with (2) low levels of gene flow and strong species divergence, (3) high haplotypic diversity without evident geographic structure within species, and (4) a low level of large-scale ecological divergence between the two taxa, suggesting species micro-habitat specialization. CONCLUSIONS Overall, our results suggest a speciation event that occurred during the Pliocene-Pleistocene transition. The contemporary distribution of genetic variation suggests ongoing population expansions. Despite the largely overlapping distributions at a macrogeographic scale, our genetic results suggest that the two species remain reproductively isolated, as only negligible levels of gene flow were observed. The overlapping ecological preferences at a macro-geographic scale and the ecological divergence at the micro-habitat scale suggest that local adaptation may have played a crucial role in the speciation process of these species.
Collapse
Affiliation(s)
- Ana Filipa Moutinho
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal.
- Department of Biology, Faculty of Science, University of Porto, Porto, Portugal.
| | - Nina Serén
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Science, University of Porto, Porto, Portugal
- Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Joana Paupério
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
| | - Teresa Luísa Silva
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Fernando Martínez-Freiría
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
| | - Graciela Sotelo
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
| | - Rui Faria
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
| | - Tapio Mappes
- Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Paulo Célio Alves
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Science, University of Porto, Porto, Portugal
| | - José Carlos Brito
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Science, University of Porto, Porto, Portugal
| | - Zbyszek Boratyński
- CIBIO-InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
13
|
Marivaux L, Boivin M. Emergence of hystricognathous rodents: Palaeogene fossil record, phylogeny, dental evolution and historical biogeography. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractAlthough phylogenetic trees imply Asia as the ancestral homeland of the Hystricognathi clade (Rodentia: Ctenohystrica), curiously the oldest known fossil occurrences of hystricognathous rodents are not from Asia, but from Africa and South America, where they appear suddenly in the fossil record of both landmasses by the Late Middle Eocene. Here we performed cladistic and Bayesian (standard and tip-dating analyses) assessments of the dental evidence documenting early ctenohystricans, including several Asian ‘ctenodactyloids’, virtually all Palaeogene Asian and African hystricognaths known thus far and two representatives of the earliest known South American hystricognaths. Our results provide a phylogenetic context of early hystricognaths (with implications on systematics) and suggest that some Eocene Asian ‘ctenodactyloids’ could be considered as stem hystricognaths and pre-hystricognaths, although they were not recognized as such originally. However, this view does not fill the gap of the Eocene Asian hystricognath record, as the proposed results imply many ghost lineages extending back to the Middle Eocene for several Asian and African taxa. They also imply a complex early historical biogeography of the group, involving multiple dispersal events from Asia to Africa (and possibly from Africa back to Asia) and then to South America sometime during the Middle Eocene. Based on these phylogenetic considerations, we discuss the emergence of hystricognathous rodents from a morpho-anatomical perspective by analysing the differentiation of their masticatory apparatus and chewing movements, notably through the evolution of their dental patterns.
Collapse
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), c.c. 064, Université de Montpellier, place Eugène Bataillon, France
| | - Myriam Boivin
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), c.c. 064, Université de Montpellier, place Eugène Bataillon, France
- Laboratoire de Planétologie et Géodynamique (LPG, UMR 6112 CNRS, Université de Nantes), France
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, Argentina
| |
Collapse
|
14
|
Ghafari SM, Ebadatgar V, Mohammadi S, Ebrahimi S, Bordbar A, Parvizi P. Morphologic, Morphometric and Molecular Comparison of Two Sister Species of Rodents as Potential Reservoir Hosts of Zoonotic Cutaneous Leishmaniasis in the Southwest of Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.3.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
15
|
D’Elía G, Fabre PH, Lessa EP. Rodent systematics in an age of discovery: recent advances and prospects. J Mammal 2019. [DOI: 10.1093/jmammal/gyy179] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pierre-Henri Fabre
- Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-UM2-IRD), Université Montpellier, Montpellier Cedex 5, France
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Grove JCR, Hirano AA, de los Santos J, McHugh CF, Purohit S, Field GD, Brecha NC, Barnes S. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. PLoS Biol 2019; 17:e3000200. [PMID: 30933967 PMCID: PMC6459543 DOI: 10.1371/journal.pbio.3000200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
The stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.
Collapse
Affiliation(s)
- James C. R. Grove
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of California, San Francisco, California, United States of America
| | - Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Janira de los Santos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Cyrus F. McHugh
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
| | - Shashvat Purohit
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Greg D. Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Doheny Eye Institute, University of California, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Lipka A, Paukszto L, Majewska M, Jastrzebski JP, Panasiewicz G, Szafranska B. De novo characterization of placental transcriptome in the Eurasian beaver (Castor fiber L.). Funct Integr Genomics 2019; 19:421-435. [PMID: 30778795 PMCID: PMC6456477 DOI: 10.1007/s10142-019-00663-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/17/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Our pioneering data provide the first comprehensive view of placental transcriptome of the beaver during single and multiple gestation. RNA-Seq and a de novo approach allowed global pattern identification of C. fiber placental transcriptome. Non-redundant beaver transcriptome comprised 211,802,336 nt of placental transcripts, grouped into 128,459 contigs and clustered into 83,951 unigenes. An Ensembl database search revealed 14,487, 14,994, 15,004, 15,267 and 15,892 non-redundant homologs for Ictidomys tridecemlineatus, Rattus norvegicus, Mus musculus, Homo sapiens and Castor canadensis, respectively. Due to expression levels, the identified transcripts were divided into two sets: non-redundant and highly expressed (FPKM > 2 in at least three examined samples), analysed simultaneously. Among 17,009 highly expressed transcripts, 12,147 had BLASTx hits. GO annotations (175,882) were found for 4301 transcripts that were assigned to biological process (16,386), cellular component (9149) and molecular function (8338) categories; 666 unigenes were also classified into 122 KEGG pathways. Comprehensive analyses were performed for 411 and 3078 highly expressed transcripts annotated with a list of processes linked to ‘placenta’ (31 GO terms) or ‘embryo’ (324 GO terms), respectively. Among transcripts with entire CDS annotation, 281 (placenta) and 34 (embryo) alternative splicing events were identified. A total of 8499 putative SNVs (~ 6.2 SNV/transcript and 1.7 SNV/1 kb) were predicted with 0.1 minimum frequency and maximum variant quality (p value 10e−9). Our results provide a broad-based characterization of the global expression pattern of the beaver placental transcriptome. Enhancement of transcriptomic resources for C. fiber should improve understanding of crucial pathways relevant to proper placenta development and successful reproduction.
Collapse
Affiliation(s)
- Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodległości Str 44, 10-045, Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082, Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| | - Bozena Szafranska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
18
|
Lamont BB, He T, Yan Z. Evolutionary history of fire‐stimulated resprouting, flowering, seed release and germination. Biol Rev Camb Philos Soc 2018; 94:903-928. [DOI: 10.1111/brv.12483] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Byron B. Lamont
- School of Molecular and Life Sciences Curtin University PO Box U1987, Perth, WA 6845 Australia
| | - Tianhua He
- School of Molecular and Life Sciences Curtin University PO Box U1987, Perth, WA 6845 Australia
| | - Zhaogui Yan
- College of Horticulture and Forestry Sciences Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
19
|
Casanovas-Vilar I, Garcia-Porta J, Fortuny J, Sanisidro Ó, Prieto J, Querejeta M, Llácer S, Robles JM, Bernardini F, Alba DM. Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group. eLife 2018; 7:39270. [PMID: 30296996 PMCID: PMC6177260 DOI: 10.7554/elife.39270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022] Open
Abstract
Flying squirrels are the only group of gliding mammals with a remarkable diversity and wide geographical range. However, their evolutionary story is not well known. Thus far, identification of extinct flying squirrels has been exclusively based on dental features, which, contrary to certain postcranial characters, are not unique to them. Therefore, fossils attributed to this clade may indeed belong to other squirrel groups. Here we report the oldest fossil skeleton of a flying squirrel (11.6 Ma) that displays the gliding-related diagnostic features shared by extant forms and allows for a recalibration of the divergence time between tree and flying squirrels. Our phylogenetic analyses combining morphological and molecular data generally support older dates than previous molecular estimates (~23 Ma), being congruent with the inclusion of some of the earliest fossils (~36 Ma) into this clade. They also show that flying squirrels experienced little morphological change for almost 12 million years. Mammals can walk, hop, swim and fly; a few, like marsupial sugar gliders or colugos, can even glide. With 52 species scattered across the Northern hemisphere, flying squirrels are by far the most successful group that adopted this way of going airborne. To drift from tree to tree, these small animals pack their own ‘parachute’: a membrane draping between their lower limbs and the long cartilage rods that extend from their wrists. Tiny specialized wrist bones, which are unique to flying squirrels, help to support the cartilaginous extensions. The origin of flying squirrels is a point of contention: while most genetic studies point towards the group splitting from tree squirrels about 23 million years ago, the oldest remains – mostly cheek teeth – suggest the animals were already soaring through forests 36 million years ago. However, recent studies show that the dental features used to distinguish between gliding and non-gliding squirrels may actually be shared by the two groups. In 2002, the digging of a dump site in Barcelona unearthed a peculiar skeleton: first a tail and two thigh bones, big enough that the researchers thought it could be the fossil of a small primate. In fact, and much to the disappointment of paleoprimatologists, further excavating revealed that it was a rodent. As the specimen – nearly an entire skeleton – was being prepared, paleontologists insisted that all the ‘dirt’ attached to the bones had to be carefully screen-washed. From the mud emerged the minuscule specialized wrist bones: the primate-turned-rodent was in fact Miopetaurista neogrivensis, an extinct flying squirrel. Here, Casanovas-Vilar et al. describe the 11.6 million years old fossil, the oldest ever found. The wrist bones reveal that the animal belongs to the group of flying squirrels that have large sizes. Evolutionary analyses that combined molecular and paleontological data demonstrated that flying squirrels evolved from tree squirrels as far back as 31 to 25 million years ago, and possibly even earlier. In addition, the results show that Miopetaurista is closely related to Petaurista, a modern group of giant flying squirrels. In fact, their skeletons are so similar that the large species that currently inhabit the tropical and subtropical forests of Asia could be considered living fossils. Molecular and paleontological data are often at odds, but this fossil shows that they can be reconciled and combined to retrace history. Discovering older fossils, or even transitional forms, could help to retrace how flying squirrels took a leap from the rest of their evolutionary tree.
Collapse
Affiliation(s)
- Isaac Casanovas-Vilar
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Garcia-Porta
- Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centre de Recherches sur les Paléoenvironnements et la Paléobiodiversité, Muséum national d'Histoire naturelle, Paris, France
| | - Óscar Sanisidro
- Biodiversity Institute, University of Kansas, Lawrence, United States
| | - Jérôme Prieto
- Department für Geo- und Umweltwissenschaften, Paläontologie, Ludwig-Maximilians-Universität München, Munich, Germany.,Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | | | - Sergio Llácer
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep M Robles
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Federico Bernardini
- Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy.,Multidisciplinary Laboratory, The 'Abdus Salam' International Centre for Theoretical Physics, Trieste, Italy
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Baskevich MI, Bogdanov AS, Khlyap LA. Taxonomy and Phylogeny of Sibling-Species Sicista of the Group Caucasica and Their Position in the Genus Sicista (Rodentia, Dipodoidea) according to Sequencing of the IRBP Gene Fragment of Nuclear DNA. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018050047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Aghová T, Kimura Y, Bryja J, Dobigny G, Granjon L, Kergoat GJ. Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae). Mol Phylogenet Evol 2018; 128:98-111. [PMID: 30030180 DOI: 10.1016/j.ympev.2018.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022]
Abstract
Murid rodents (Rodentia: Muridae) represent the most diverse and abundant mammalian family. In this study, we provide a refined set of fossil calibrations which is used to reconstruct a dated phylogeny of the family using a multilocus dataset (six nuclear and nine mitochondrial gene fragments) encompassing 161 species representing 82 murid genera from four extant subfamilies (Deomyinae, Gerbillinae, Lophiomyinae and Murinae). In comparison with previous studies on murid or muroid rodents, our work stands out for the implementation of nine robust fossil constraints within the Muridae thanks to a thorough review of the fossil record. Before being assigned to specific nodes of the phylogeny, all potential fossil constraints were carefully assessed; they were also subjected to several cross-validation analyses. The resulting phylogeny is consistent with previous phylogenetic studies on murids, and recovers the monophyly of all sampled murid subfamilies and tribes. Based on nine controlled fossil calibrations, our inferred temporal timeframe indicates that the murid family likely originated in the course of the Early Miocene, 22.0-17.0 million years ago (Ma), and that most major lineages (i.e. tribes) started diversifying ca. 10 Ma. Historical biogeography analyses support the tropical origin for the family, with an initial internal split (vicariance event) between Afrotropical and Oriental (Indomalaya and Philippines) lineages. During the course of their diversification, the biogeographic pattern of murids is marked by several dispersal events toward the Australasian and the Palearctic regions. The Afrotropical region was also secondarily colonized at least three times from the Indomalaya, indicating that the latter region has acted as a major centre of diversification for the family.
Collapse
Affiliation(s)
- Tatiana Aghová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Department of Zoology, National Museum, Václavské náměstí 68, 115 79 Prague, Czech Republic.
| | - Yuri Kimura
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Ibaraki, Japan
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Gauthier Dobigny
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, Montpellier, France; Ecole Polytechnique d'Abomey-Calavi, Abomey-Calavi University, 01BP2009 Cotonou, Benin
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Gael J Kergoat
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
22
|
Fabre PH, Tilak MK, Denys C, Gaubert P, Nicolas V, Douzery EJP, Marivaux L. Flightless scaly-tailed squirrels never learned how to fly: A reappraisal of Anomaluridae phylogeny. ZOOL SCR 2018. [DOI: 10.1111/zsc.12286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pierre-Henri Fabre
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
- National Museum of Natural History; Smithsonian Institution; Washington DC USA
| | - Marie-Ka Tilak
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
| | - Christiane Denys
- Institut de Systématique, Évolution, Biodiversité; ISYEB - UMR 7205, CNRS, MNHN, UPMC, EPHE; Muséum National d’Histoire Naturelle; Sorbonne Universités; Paris France
| | - Philippe Gaubert
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
- Laboratoire Evolution et Diversité Biologique (EDB) - UPS-CNRS- IRD; Université Paul Sabatier; Toulouse France
| | - Violaine Nicolas
- Institut de Systématique, Évolution, Biodiversité; ISYEB - UMR 7205, CNRS, MNHN, UPMC, EPHE; Muséum National d’Histoire Naturelle; Sorbonne Universités; Paris France
| | - Emmanuel J. P. Douzery
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
| | - Laurent Marivaux
- Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE); c.c. 064; Université de Montpellier; Montpellier France
| |
Collapse
|
23
|
Identification of Placental Aspartic Proteinase in the Eurasian Beaver ( Castor fiber L.). Int J Mol Sci 2018; 19:ijms19041229. [PMID: 29670018 PMCID: PMC5979379 DOI: 10.3390/ijms19041229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 11/18/2022] Open
Abstract
Aspartic proteinases (AP) form a multigenic group widely distributed in various organisms and includes pepsins (pep), cathepsins D and E, pregnancy associated glycoproteins (PAGs) as well as plant, fungal, and retroviral proteinases. This study describes the transcript identification and expression localization of the AP within the discoid placenta of the Castor fiber. We identified 1257 bp of the AP cDNA sequence, encoding 391 amino acids (aa) of the polypeptide precursor composed of 16 aa signal peptide, 46 aa pro-piece, and 329 aa of the mature protein. Within the AP precursor, one site of potential N-glycosylation (NPS119–121) and two Asp residues (D) specific for the catalytic cleft of AP were identified (VLFDTGSSNLWV91–102 and GIVDTGTSLLTV277–288). The highest homology of the identified placental AP nucleotide and aa sequence was to mouse pepsinogen C (75.8% and 70.1%, respectively). Identified AP also shared high homology with other superfamily members: PAGs, cathepsins, and napsins. The AP identified in this study was named as pepsinogen/PAG-Like (pep/PAG-L). Diversified pep/PAG-L protein profiles with a dominant 58 kDa isoform were identified. Immune reactive signals of the pep/PAG-L were localized within the trophectodermal cells of the beaver placenta. This is the first report describing the placental AP (pep/PAG-L) in the C. fiber.
Collapse
|
24
|
Capilla L, Sánchez-Guillén RA, Farré M, Paytuví-Gallart A, Malinverni R, Ventura J, Larkin DM, Ruiz-Herrera A. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia. Genome Biol Evol 2018; 8:3703-3717. [PMID: 28175287 PMCID: PMC5521730 DOI: 10.1093/gbe/evw276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.
Collapse
Affiliation(s)
- Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rosa Ana Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Marta Farré
- Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Andreu Paytuví-Gallart
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.,Sequentia Biotech S.L. Calle Comte d'Urgell, Barcelona, Spain
| | - Roberto Malinverni
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Denis M Larkin
- Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Apartado, Mexico
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Sequentia Biotech S.L. Calle Comte d'Urgell, Barcelona, Spain
| |
Collapse
|
25
|
Leopardo NP, Vitullo AD. Early embryonic development and spatiotemporal localization of mammalian primordial germ cell-associated proteins in the basal rodent Lagostomus maximus. Sci Rep 2017; 7:594. [PMID: 28377629 PMCID: PMC5429608 DOI: 10.1038/s41598-017-00723-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/09/2017] [Indexed: 11/22/2022] Open
Abstract
The gene network controlling primordial germ cell (PGC) specification in eutherian mammals has been exhaustively investigated in mice. The egg-cylinder morphology of the mouse embryo is the key event enabling inductive signals from the extra-embryonic ectoderm (ExE) to specify epiblast cells as PGCs early on. We investigated the embryonic development and the spatiotemporal localization of PGC-associated proteins in the basal Hystricognathi rodent Lagostomus maximus. L. maximus develops through a flat-disc epiblast far apart from the ExE. In the primitive streak stage, OCT4-positive cells are detected in the posterior pole of the embryo disc in the mesoderm of the proximal epiblast. In the neural plate stage, a reduced 8 to 12 OCT4-positive cell population transiently expresses FRAGILIS, STELLA and SOX17 in the posterior streak. Soon after translocation to the hindgut, pluripotent OCT4 cells start expressing VASA, and then, STELLA and FRAGILIS are turned on during migration toward the genital ridge. L. maximus shows a spatiotemporal pattern of PGC-associated markers divergent from the early PGC restriction model seen in mice. This pattern conforms to alternative models that are based on a pluripotent population in the embryonic axis, where PGCs are specified later during development.
Collapse
Affiliation(s)
- Noelia P Leopardo
- Departamento de Ciencias Biomédicas y Biotecnológicas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico -CEBBAD-, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Departamento de Ciencias Biomédicas y Biotecnológicas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico -CEBBAD-, Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Gene structure of the pregnancy-associated glycoprotein-like (PAG-L) in the Eurasian beaver (Castor fiber L.). Funct Integr Genomics 2017; 17:599-605. [PMID: 28353203 PMCID: PMC5561160 DOI: 10.1007/s10142-017-0557-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/01/2022]
Abstract
The pregnancy-associated glycoprotein-like family (PAG-L) is a large group of chorionic products, expressed in the pre-placental trophoblast and later in the post-implantational chorionic epithelium, and are involved in proper placenta development and embryo-maternal interaction in eutherians. This study describes identification of the PAG-L family in the genome of the Eurasian beaver (Castor fiber L.), named CfPAG-L. We identified 7657 bp of the CfPAG-L gDNA sequence (Acc. No. KX377932), encompassing nine exons (1-9) and eight introns (A-H). The length of the CfPAG-L exons (59-200 bp) was equivalently similar to the only known counterparts of bPAG1, bPAG2, and pPAG2. The length of the CfPAG-L introns ranged 288-1937 bp and was completely different from previously known PAG introns. The exonic CfPAG-L regions revealed 50.3-72.9% homology with equivalent segments of bPAG1 and pPAG2 structure. The intronic CfPAG-L regions alignments revealed a lack of homology. Within the entire CfPAG-L gene, 31 potential single nucleotide variants (SNV: 7 transversions and 24 transitions) were predicted. The identified exonic polymorphic loci did not affect the amino acid sequence of the CfPAG-L polypeptide precursor. This is the first report describing the CfPAG-L gene sequence, structural organization, and SNVs in the Eurasian beaver, one of the largest rodents.
Collapse
|
27
|
Doronina L, Matzke A, Churakov G, Stoll M, Huge A, Schmitz J. The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads. Sci Rep 2017; 7:43562. [PMID: 28256552 PMCID: PMC5335264 DOI: 10.1038/srep43562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022] Open
Abstract
Solving problematic phylogenetic relationships often requires high quality genome data. However, for many organisms such data are still not available. Among rodents, the phylogenetic position of the beaver has always attracted special interest. The arrangement of the beaver's masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy-free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data).
Collapse
Affiliation(s)
- Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Andreas Matzke
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Monika Stoll
- Core Facility Genomics, Medical Faculty, University of Münster, Münster, Germany
| | - Andreas Huge
- Core Facility Genomics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
28
|
Ding L, Luo G, Li W, Liao J. Characterization and phylogenetic analysis of the complete mitogenome of Allactaga sibirica (Rodentia: Dipodidae). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Pfaff C, Martin T, Ruf I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc Biol Sci 2016; 282:20150744. [PMID: 26019162 DOI: 10.1098/rspb.2015.0744] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, Geozentrum, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Thomas Martin
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn 53115, Germany
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Paläoanthropologie und Messelforschung, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| |
Collapse
|
30
|
Cserkész T, Rusin M, Sramkó G. An integrative systematic revision of the European southern birch mice (Rodentia: Sminthidae, S
icista subtilis
group). Mamm Rev 2015. [DOI: 10.1111/mam.12058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tamás Cserkész
- Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány 1/c. H-1117 Budapest Hungary
| | - Mikhail Rusin
- Department of Evolutional and Genetical Systematics; Schmalhausen Institute of Zoology; Vul. B. Khmelnytskogo 15. 01601 Kiev Ukraine
| | - Gábor Sramkó
- Department of Botany; University of Debrecen; Egyetem tér 1. H-4032 Debrecen Hungary
- MTA-ELTE-MTM Ecology Research Group; Pázmány Péter sétány 1/c. H-1117 Budapest Hungary
| |
Collapse
|
31
|
Shao Y, Li JX, Ge RL, Zhong L, Irwin DM, Murphy RW, Zhang YP. Genetic adaptations of the plateau zokor in high-elevation burrows. Sci Rep 2015; 5:17262. [PMID: 26602147 PMCID: PMC4658562 DOI: 10.1038/srep17262] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) spends its entire life underground in sealed burrows. Confronting limited oxygen and high carbon dioxide concentrations, and complete darkness, they epitomize a successful physiological adaptation. Here, we employ transcriptome sequencing to explore the genetic underpinnings of their adaptations to this unique habitat. Compared to Rattus norvegicus, genes belonging to GO categories related to energy metabolism (e.g. mitochondrion and fatty acid beta-oxidation) underwent accelerated evolution in the plateau zokor. Furthermore, the numbers of positively selected genes were significantly enriched in the gene categories involved in ATPase activity, blood vessel development and respiratory gaseous exchange, functional categories that are relevant to adaptation to high altitudes. Among the 787 genes with evidence of parallel evolution, and thus identified as candidate genes, several GO categories (e.g. response to hypoxia, oxygen homeostasis and erythrocyte homeostasis) are significantly enriched, are two genes, EPAS1 and AJUBA, involved in the response to hypoxia, where the parallel evolved sites are at positions that are highly conserved in sequence alignments from multiple species. Thus, accelerated evolution of GO categories, positive selection and parallel evolution at the molecular level provide evidences to parse the genetic adaptations of the plateau zokor for living in high-elevation burrows.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Jin-Xiu Li
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | - Ri-Li Ge
- Key Laboratory for High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Li Zhong
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.,Banting and Best Diabetes Centre, University of Toronto, Ontario, M5S 1A8, Canada
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ont., M5S 2C6, Canada
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.,Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
32
|
Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Patterson BD, Upham NS. A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica). Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12201] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bruce D. Patterson
- Integrative Research Center; Field Museum of Natural History; 1400 S. Lake Shore Drive Chicago 60605 IL USA
| | - Nathan S. Upham
- Committee on Evolutionary Biology; University of Chicago; 5734 S. Ellis Ave Chicago 60637 IL USA
- Department of Biology; McMaster University; 1280 Main Street West Hamilton L8S4L8 ON Canada
| |
Collapse
|
34
|
Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the Rodentia squirrel-related clade. J Virol 2014; 88:7915-28. [PMID: 24789792 DOI: 10.1128/jvi.00141-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Syncytin genes are fusogenic envelope protein (env) genes of retroviral origin that have been captured for a function in placentation. Within rodents, two such genes have previously been identified in the mouse-related clade, allowing a demonstration of their essential role via knockout mice. Here, we searched for similar genes in a second major clade of the Rodentia order, the squirrel-related clade, taking advantage of the complete sequencing of the ground squirrel Ictidomys tridecemlineatus genome. In silico search for env genes with full coding capacity identified several candidate genes with one displaying placenta-specific expression, as revealed by quantitative reverse transcription-PCR analysis of a large panel of tissues. This gene belongs to a degenerate endogenous retroviral element, with recognizable hallmarks of an integrated provirus. Cloning of the gene in an expression vector for ex vivo cell-cell fusion and pseudotype assays demonstrated fusogenicity on a large panel of mammalian cells. In situ hybridization on placenta sections showed specific expression in domains where trophoblast cells fuse into a syncytiotrophoblast at the fetomaternal interface, consistent with a role in syncytium formation. Finally, we show that the gene is conserved among the tribe Marmotini, thus dating its capture back to about at least 25 million years ago, with evidence for purifying selection and conservation of fusogenic activity. This gene that we named syncytin-Mar1 is distinct from all seven Syncytin genes identified to date in eutherian mammals and is likely to be a major effector of placentation in its related clade. Importance: Syncytin genes are fusogenic envelope genes of retroviral origin, ancestrally captured for a function in placentation. Within rodents, two such genes had been previously identified in the mouse-related clade. Here, in the squirrel-related rodent clade, we identified the envelope gene of an endogenous retrovirus with all the features of a Syncytin: it is specifically expressed in the placenta of the woodchuck Marmota monax, at the level of cells fusing into a syncytium; it can trigger cell-cell and virus-cell fusion ex vivo; and it has been conserved for >25 million years of evolution, suggesting an essential role in its host physiology. Remarkably, syncytin-Mar1 is unrelated to all other Syncytin genes identified thus far in mammals (primates, muroids, carnivores, and ruminants). These results extend the range of retroviral envelope gene "domestication" in mammals and show that these events occurred independently, on multiple occasions during evolution to improve placental development in a process of convergent evolution.
Collapse
|
35
|
Smorkatcheva AV, Lukhtanov VA. Evolutionary association between subterranean lifestyle and female sociality in rodents. Mamm Biol 2014. [DOI: 10.1016/j.mambio.2013.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Abstract
Summary
In this study we report on the evolution of micro-cursoriality, a unique case of cursoriality in mammals smaller than 1 kg. We obtained new running speed and limb morphology data for two species of elephant-shrews (Elephantulus spp., Macroscelidae) from Namaqualand, South Africa, which we compared with published data for other mammals. Elephantulus maximum running speeds were higher than most mammals smaller than 1 kg. Elephantulus also possess exceptionally high metatarsal:femur ratios (1.07) that are typically associated with fast unguligrade cursors. Cursoriality evolved in the Artiodactyla, Perissodactyla, and Carnivora coincident with global cooling and the replacement of forests with open landscapes in the Oligocene and Miocene. The majority of mammal species, though, remained non-cursorial, plantigrade, and small (< 1 kg). The extraordinary running speed and digitigrady of elephant-shrews was established in the Early Eocene in the earliest macroscelid Prodiacodon, but was probably inherited from Paleocene, Holarctic stem macroscelids. Micro-cursoriality in macroscelids evolved from the plesiomorphic plantigrade foot of the possum-like ancestral mammal earlier than in other mammalian crown groups. Micro-cursoriality evolved first in forests, presumably in response to selection for rapid running speeds facilitated by local knowledge, in order to avoid predators. During the Miocene, micro-cursoriality was pre-adaptive to open, arid habitats, and became more derived in the newly-evolved Elephantulus and Macroscelides elephant-shrews with trail running.
Collapse
|
37
|
Breed WG, Leigh CM, Aplin KP, Shahin AAB, Avenant NL. Morphological diversity and evolution of the spermatozoon in the mouse-related clade of rodents. J Morphol 2013; 275:540-7. [PMID: 24338943 DOI: 10.1002/jmor.20236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 11/07/2022]
Abstract
Most species in the three highly speciose families of the mouse-related clade of rodents, the Muridae, Cricetidae, and Nesomyidae (superfamily Muroidea), have a highly complex sperm head in which there is an apical hook but there are few data available for the other related families of these rodents. In the current study, using light and electron microscopies, we investigated the structure of the spermatozoon in representative species of four other families within the mouse-related clade, the Dipodidae, Spalacidae, Pedetidae, and Heteromyidae, that diverged at or near the base of the muroid lineage. Our results indicate that a diverse array of sperm head shapes and tail lengths occurs but none of the species in the families Spalacidae, Dipodidae, or Pedetidae has a sperm head with an apical hook. By contrast, a rostrally extending apical hook is present in spermatozoa of members of the Family Heteromyidae which also invariably have comparatively long sperm tails. These findings suggest that the hook-shaped sperm head in the murid, cricetid, and nesomyid rodents evolved after divergence of this lineage from its common ancestor with the other families of the mouse-related clade, and that separate, and independent, convergent evolution of a similar sperm head form, and long sperm tail, occurred in the Heteromyidae.
Collapse
Affiliation(s)
- William G Breed
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, South Australia, 5005, Australia
| | | | | | | | | |
Collapse
|
38
|
Fabre PH, Jønsson KA, Douzery EJP. Jumping and gliding rodents: mitogenomic affinities of Pedetidae and Anomaluridae deduced from an RNA-Seq approach. Gene 2013; 531:388-97. [PMID: 23973722 DOI: 10.1016/j.gene.2013.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
An RNA-Seq strategy was used to obtain the complete set of protein-coding mitochondrial genes from two rodent taxa. Thanks to the next generation sequencing (NGS) 454 approach, we determined the complete mitochondrial DNA genome from Graphiurus kelleni (Mammalia: Rodentia: Gliridae) and partial mitogenome from Pedetes capensis (Pedetidae), and compared them with published rodent and outgroup mitogenomes. We finished the mitogenome sequencing by a series of amplicons using conserved PCR primers to fill the gaps corresponding to tRNA, rRNA and control regions. Phylogenetic analyses of the mitogenomes suggest a well-supported rodent phylogeny in agreement with nuclear gene trees. Pedetes groups with Anomalurus into the clade Anomaluromorpha, while Graphiurus branches within the squirrel-related clade. Moreover, Pedetes+Anomalurus branch with Castor into the mouse-related clade. Our study demonstrates the utility of NGS for obtaining new mitochondrial genomes as well as the importance of choosing adequate models of sequence evolution to infer the phylogeny of rodents.
Collapse
Affiliation(s)
- Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 UM2-CNRS-IRD), Université Montpellier II, Place Eugène Bataillon - CC 064 - 34095 Montpellier Cedex 5, France; Center for Macroecology Evolution and Climate at the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, 15, DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
39
|
Lahiri DK, Maloney B, Rogers JT, Ge YW. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE). BMC Genomics 2013; 14:68. [PMID: 23368879 PMCID: PMC3582491 DOI: 10.1186/1471-2164-14-68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/10/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is intimately tied to amyloid-β (Aβ) peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP) account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP) may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or "proximal regulatory element" (PRE), at -76/-47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA) and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. RESULTS EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2), nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF), and specificity protein 1 (SP1). These sites crossed a known single nucleotide polymorphism (SNP). EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. CONCLUSIONS We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also interacts with the integrins. These proteins are connected to vital cellular and neurological functions. In addition, the transcription factor PuF is a known inhibitor of metastasis and regulates cell growth during development. Given that APP is a known cell adhesion protein and ferroxidase, this suggests biochemical links among cell signaling, the cell cycle, iron metabolism in cancer, and AD in the context of overall aging.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| | - Jack T Rogers
- Neurochemistry lab, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charleston, MA, 02129, USA
| | - Yuan-Wen Ge
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
40
|
Lebedev VS, Bannikova AA, Pagès M, Pisano J, Michaux JR, Shenbrot GI. Molecular phylogeny and systematics of Dipodoidea: a test of morphology-based hypotheses. ZOOL SCR 2012. [DOI: 10.1111/zsc.12002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Sciuromorpha, Sciuridae) and revision of rodent phylogeny. Mol Biol Rep 2012; 40:1917-26. [PMID: 23114915 DOI: 10.1007/s11033-012-2248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
In this study, the complete mitochondrial genome of the Eurasian flying squirrel Pteromys volans (Rodentia, Sciuromorpha, Sciuridae) was sequenced and characterized in detail. The entire mitochondrial genome of P. volans consisted of 16,513 bp and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. Its gene arrangement pattern was consistent with the mammalian ground pattern. The overall base composition and AT contents were similar to those of other rodent mitochondrial genomes. The light-strand origin generally identified between tRNA ( Asn ) and tRNA ( Cys ) consisted of a secondary structure with an 11-bp stem and an 11-bp loop. The large control region was constructed of three characteristic domains, ETAS, CD, and CSB without any repeat sequences. Each domain contained ETAS1, subsequences A, B, and C, and CSB1, respectively. In order to examine phylogenetic contentious issues of the monophyly of rodents and phylogenetic relationships among five rodent suborders, here, phylogenetic analyses based on nucleotide sequence data of the 35 rodent and 3 lagomorph mitochondrial genomes were performed using the Bayesian inference and maximum likelihood method. The result strongly supported the rodent monophyly with high node confidence values (BP 100 % in ML and BPP 1.00 in BI) and also monophylies of four rodent suborders (BP 85-100 % in ML and BPP 1.00 in BI), except for Anomalumorpha in which only one species was examined here. Also, phylogenetic relationships among the five rodent suborders were suggested and discussed in detail.
Collapse
|
42
|
Pérez ME, Pol D. Major radiations in the evolution of Caviid rodents: reconciling fossils, ghost lineages, and relaxed molecular clocks. PLoS One 2012; 7:e48380. [PMID: 23144757 PMCID: PMC3483234 DOI: 10.1371/journal.pone.0048380] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/25/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America ("eocardiids"). RESULTS A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (referred here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates. CONCLUSIONS The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone.
Collapse
Affiliation(s)
| | - Diego Pol
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Chubut Province, Argentina
| |
Collapse
|
43
|
Small mammal investigation in spotted fever focus with DNA-barcoding and taxonomic implications on rodents species from Hainan of China. PLoS One 2012. [PMID: 22952689 DOI: 10.1371/journal.pone.0043479.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although mammals are a well-studied group of animals, making accurate field identification of small mammals is still complex because of morphological variation across developmental stages, color variation of pelages, and often damaged osteological and dental characteristics. In 2008, small mammals were collected for an epidemiological study of a spotted fever outbreak in Hainan, China. Ten species of small mammals were identified by morphological characters in the field, most using pelage color characters only. The study is extended here, in order to assess whether DNA barcoding would be suitable as an identification tool in these small mammals. Barcode clusters showed some incongruence with morphospecies, especially for some species of Rattus and Niviventer, so molecular delineation was carried out with an expanded dataset of combined cytochrome b (Cyt-b) and cytochrome c oxidase subunit I (COI) sequences. COI sequences were successfully amplified from 83% of collected mammals, but failed in all specimens of Suncus murinus, which were thus excluded in DNA barcoding analysis. Of note, ten molecular taxonomic units were found from samples of nine morphologically identified species. Accordingly, 11 species of small mammals were present in the investigated areas, including four Rattus species, three Niviventer species, Callosciurus erythraeus, Neohylomys hainanensis, Tupaia belangeri, and Suncus murinus. Based on the results of the phylogenetic and molecular delineation analyses, the systematic status of some rodent species should be redefined. R. rattus hainanicus and R. rattus sladeni are synonyms of R. andamanensis. R. losea from China and Southeast Asia comprises two independent species: R. losea and R. sakeratensis. Finally, the taxonomic status of three putative species of Niviventer should be further confirmed according to morphological, molecular and ecological characters.
Collapse
|
44
|
Lu L, Chesters D, Zhang W, Li G, Ma Y, Ma H, Song X, Wu H, Meng F, Zhu C, Liu Q. Small mammal investigation in spotted fever focus with DNA-barcoding and taxonomic implications on rodents species from Hainan of China. PLoS One 2012; 7:e43479. [PMID: 22952689 PMCID: PMC3430698 DOI: 10.1371/journal.pone.0043479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/20/2012] [Indexed: 11/21/2022] Open
Abstract
Although mammals are a well-studied group of animals, making accurate field identification of small mammals is still complex because of morphological variation across developmental stages, color variation of pelages, and often damaged osteological and dental characteristics. In 2008, small mammals were collected for an epidemiological study of a spotted fever outbreak in Hainan, China. Ten species of small mammals were identified by morphological characters in the field, most using pelage color characters only. The study is extended here, in order to assess whether DNA barcoding would be suitable as an identification tool in these small mammals. Barcode clusters showed some incongruence with morphospecies, especially for some species of Rattus and Niviventer, so molecular delineation was carried out with an expanded dataset of combined cytochrome b (Cyt-b) and cytochrome c oxidase subunit I (COI) sequences. COI sequences were successfully amplified from 83% of collected mammals, but failed in all specimens of Suncus murinus, which were thus excluded in DNA barcoding analysis. Of note, ten molecular taxonomic units were found from samples of nine morphologically identified species. Accordingly, 11 species of small mammals were present in the investigated areas, including four Rattus species, three Niviventer species, Callosciurus erythraeus, Neohylomys hainanensis, Tupaia belangeri, and Suncus murinus. Based on the results of the phylogenetic and molecular delineation analyses, the systematic status of some rodent species should be redefined. R. rattus hainanicus and R. rattus sladeni are synonyms of R. andamanensis. R. losea from China and Southeast Asia comprises two independent species: R. losea and R. sakeratensis. Finally, the taxonomic status of three putative species of Niviventer should be further confirmed according to morphological, molecular and ecological characters.
Collapse
Affiliation(s)
- Liang Lu
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Douglas Chesters
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen Zhang
- Department of Bioinformatics, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Guichang Li
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Ying Ma
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
- QingHai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, China
| | - Huailei Ma
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Xiuping Song
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Haixia Wu
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Fengxia Meng
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
| | - Chaodong Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiyong Liu
- Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Diseases Prevention and Control, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Richard F, Dutrillaux B. Low, complex and probably reticulated chromosome evolution of Sciuromorpha (Rodentia) and Lagomorpha. Cytogenet Genome Res 2012; 137:218-32. [PMID: 22846378 DOI: 10.1159/000341379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lagomorpha (rabbits and pikas) and Sciuromorpha (squirrels) are grouped in the Glires superorder. Their chromosome diversification, since their separation from the eutherian mammalian common ancestor, was characterized by a low rate of chromosome rearrangements. Consequently, the structure of some chromosomes was either conserved or only slightly modified, making their comparison easy at the genus, family and even order level. Interspecific in situ hybridization (Zoo-FISH) largely corroborates classical cytogenetic data but provides much more reliability in comparisons, especially for distant species. We reconstructed common ancestral karyotypes for Glires, Lagomorpha, Sciuromorpha, and Sciuridae species, and then, determined the chromosome changes separating these ancestors from their common eutherian ancestor. We propose that reticulated evolution occurred during the diversification of Glires, which implies that several pericentric inversions and Robertsonian translocations were conserved in the heterozygous status for an extensive period. Finally, among Lagomorpha and Sciuromorpha, we focused on Leporidae and Sciuridae chromosome evolution. In the various attempts to establish dichotomic evolutionary schemes, it was necessary to admit that multiple homoplasies (convergent and reverse rearrangements) occurred in Sciuridae and in a lesser degree, in Leporidae. In Leporidae, additional rearrangements were sufficient to propose a resolved phylogeny. However, a resolved phylogeny was not possible for Sciuridae because most of the rearrangements occurred in terminal branches. We conclude that a reticulated evolution took place early during the evolution of both families and lasted longer in Sciuridae than in Leporidae. In Sciuridae, most chromosome rearrangements were pericentric inversions involving short fragments. Such rearrangements have only mild meiotic consequences, which may explain the long persistence of the heterozygous status characterizing reticulated evolution.
Collapse
Affiliation(s)
- F Richard
- Muséum National d'Histoire Naturelle, Département de Systématique et Evolution, Origine Structure et Evolution de Biodiversité, Paris, France.
| | | |
Collapse
|
46
|
Hautier L, Lebrun R, Cox PG. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J Morphol 2012; 273:1319-37. [DOI: 10.1002/jmor.20061] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/07/2022]
|
47
|
Montgelard C, Matthee CA. Tempo of genetic diversification in southern African rodents: The role of Plio-Pleistocene climatic oscillations as drivers for speciation. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1016/j.actao.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Fabre PH, Hautier L, Dimitrov D, Douzery EJP. A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 2012; 12:88. [PMID: 22697210 PMCID: PMC3532383 DOI: 10.1186/1471-2148-12-88] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/14/2012] [Indexed: 11/17/2022] Open
Abstract
Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Collapse
Affiliation(s)
- Pierre-Henri Fabre
- Center for Macroecology, Evolution and Climate (CMEC, Department of Biology), Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
49
|
Zhang Q, Xia L, Kimura Y, Shenbrot G, Zhang Z, Ge D, Yang Q. Tracing the Origin and Diversification of Dipodoidea (Order: Rodentia): Evidence from Fossil Record and Molecular Phylogeny. Evol Biol 2012. [DOI: 10.1007/s11692-012-9167-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS. Chromosomal evolution in Rodentia. Heredity (Edinb) 2012; 108:4-16. [PMID: 22086076 PMCID: PMC3238120 DOI: 10.1038/hdy.2011.110] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/08/2022] Open
Abstract
Rodentia is the most species-rich mammalian order and includes several important laboratory model species. The amount of new information on karyotypic and phylogenetic relations within and among rodent taxa is rapidly increasing, but a synthesis of these data is currently lacking. Here, we have integrated information drawn from conventional banding studies, recent comparative painting investigations and molecular phylogenetic reconstructions of different rodent taxa. This permitted a revision of several ancestral karyotypic reconstructions, and a more accurate depiction of rodent chromosomal evolution.
Collapse
Affiliation(s)
- S A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
| | | | | | | |
Collapse
|