1
|
Yang Q, Mao Z, Hao Y, Zheng S, Zhao J, Li Y, Yang Y, Xie B, Ling J, Li Y. Genome-wide transcriptome profiling reveals molecular response pathways of Trichoderma harzianum in response to salt stress. Front Microbiol 2024; 15:1342584. [PMID: 38362502 PMCID: PMC10867199 DOI: 10.3389/fmicb.2024.1342584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Trichoderma harzianum exhibits a strong biological control effect on many important plant pathogens, such as Fusarium oxysporum, Botrytis cinerea, and Meloidogyne. However, its biocontrol effectiveness is weakened or reduced under salt stress. The aim of this study was to investigate the molecular response of T. harzianum to salt stress at the whole-genome level. Here, we present a 44.47 Mb near-complete genome assembly of the T. harzianum qt40003 strain for the first time, which was assembled de novo with 7.59 Gb Nanopore sequencing long reads (~170-fold) and 5.2 Gb Illumina short reads (~116-fold). The assembled qt40003 genome contains 12 contigs, with a contig N50 of 4.81 Mb, in which four of the 12 contigs were entirely reconstructed in a single chromosome from telomere to telomere. The qt40003 genome contains 4.27 Mb of repeat sequences and 12,238 protein-coding genes with a BUSCO completeness of 97.5%, indicating the high accuracy and completeness of our gene annotations. Genome-wide transcriptomic analysis was used to investigate gene expression changes related to salt stress in qt40003 at 0, 2% (T2), and 4% (T4) sodium chloride concentrations. A total of 2,937 and 3,527 differentially expressed genes (DEGs) were obtained under T2 and T4 conditions, respectively. GO enrichment analysis showed that the T2-treatment DEGs were highly enriched in detoxification (p < 0.001), while the T4 DEGs were mainly enriched in cell components, mostly in cellular detoxification, cell surface, and cell wall. KEGG metabolic pathway analysis showed that 91 and 173 DEGs were significantly enriched in the T2 and T4 treatments, respectively (p < 0.01), mainly in the glutathione metabolism pathway. We further experimentally analyzed the differentially expressed glutathione transferase genes in the glutathione metabolic pathway, most of which were downregulated (13/15). In addition, we screened 13 genes related to active oxygen clearance, including six upregulated and seven downregulated genes, alongside five fungal hydrophobic proteins, of which two genes were highly expressed. Our study provides high-quality genome information for the use of T. harzianum for biological control and offers significant insights into the molecular responses of T. harzianum under salt-stress conditions.
Collapse
Affiliation(s)
- Qihong Yang
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Hao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijie Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanlin Li
- College of Horticulture, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding (Ministry of Education), Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Hunan Agricultural University, Changsha, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
3
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
4
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Intragenomic variation in nuclear ribosomal markers and its implication in species delimitation, identification and barcoding in fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, Fu Z, Xu P, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet 2021; 17:e1009924. [PMID: 34788288 PMCID: PMC8635391 DOI: 10.1371/journal.pgen.1009924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/01/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Zhifei Fu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (QS); (ISD)
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S. Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- * E-mail: (QS); (ISD)
| |
Collapse
|
7
|
Li Y, Sun T, Guo D, Gao J, Zhang J, Cai F, Fischer R, Shen Q, Yu Z. Comprehensive analysis of the regulatory network of blue-light-regulated conidiation and hydrophobin production in Trichoderma guizhouense. Environ Microbiol 2021; 23:6241-6256. [PMID: 34472181 DOI: 10.1111/1462-2920.15748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
Conidia of Trichoderma guizhouense (Hypocreales, Ascomycota) are frequently applied to the production of biofertilizers and biocontrol agents. Conidiation of some Trichoderma species depends on blue light and the action of different blue light receptors. However, the interplay between different blue-light receptors in light signalling remained elusive. Here, we studied the functions of the blue light receptors BLR1 and ENV1, and the MAP kinase HOG1 in blue light signalling in T. guizhouense. We found that the BLR1 dominates light responses and ENV1 is responsible for photoadaptation. Genome-wide gene expression analyses revealed that 1615 genes, accounting for ~13.4% of the genes annotated in the genome, are blue-light regulated in T. guizhouense, and remarkably, these differentially expressed genes (DEGs) including 61 transcription factors. BLR1 and HOG1 are the core components of the light signalling network, which control 79.9% and 73.9% of the DEGs respectively. In addition, the strict regulation of hydrophobin production by the blue light signalling network is impressive. Our study unravels the regulatory network based on the blue light receptors and the MAPK HOG pathway for conidiation, hydrophobin production and other processes in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Sun
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Degang Guo
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Gao
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Jian Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhong Yu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Li X, Wang F, Liu M, Dong C. Hydrophobin CmHYD1 Is Involved in Conidiation, Infection and Primordium Formation, and Regulated by GATA Transcription Factor CmAreA in Edible Fungus, Cordyceps militaris. J Fungi (Basel) 2021; 7:jof7080674. [PMID: 34436213 PMCID: PMC8400498 DOI: 10.3390/jof7080674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrophobins are a family of small proteins exclusively secreted by fungi, and play a variety of roles in the life cycle. Cmhyd1, one of the hydrophobin class II members in Cordyceps militaris, has been shown to have a high transcript level during fruiting body development. Here, deletion of Cmhyd1 results in reduction in aerial mycelia, conidiation, hydrophobicity and infection ability, and complete inhibition of pigmentation and primordium differentiation. Cmhyd1 plays roles in conidiation and cuticle-bypassing infection by regulating the transcripts of frequency clock protein, Cmfrq, and velvet protein, Cmvosa, as well as primordium formation via the mitogen-activated protein kinase signaling pathway. Cmhyd1 also participates in stress response, including tolerance of mycelia to osmotic and oxidative stresses, and conidia to high or low temperatures. CmAreA, a transcription factor of nitrogen regulatory, is recruited to the promoter of Cmhyd1 and activates the transcription of Cmhyd1 with coactivator CmOTam using electrophoretic mobility shift assays and transient luciferase expression in tobacco. Furthermore, CmHYD1 is proved to regulate the transcription of Cmarea at different developmental stages via a positive feedback loop. These results reveal the diverse roles and regulation of Cmhyd1 in C. militaris, and provide insights into the developmental regulatory mechanism of mushrooms.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (M.L.)
- Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
- Correspondence:
| |
Collapse
|
9
|
Zhao Z, Cai F, Gao R, Ding M, Jiang S, Chen P, Pang G, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. At least three families of hyphosphere small secreted cysteine-rich proteins can optimize surface properties to a moderately hydrophilic state suitable for fungal attachment. Environ Microbiol 2021; 23:5750-5768. [PMID: 33538393 PMCID: PMC8596622 DOI: 10.1111/1462-2920.15413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The secretomes of filamentous fungi contain a diversity of small secreted cysteine‐rich proteins (SSCPs) that have a variety of properties ranging from toxicity to surface activity. Some SSCPs are recognized by other organisms as indicators of fungal presence, but their function in fungi is not fully understood. We detected a new family of fungal surface‐active SSCPs (saSSCPs), here named hyphosphere proteins (HFSs). An evolutionary analysis of the HFSs in Pezizomycotina revealed a unique pattern of eight single cysteine residues (C‐CXXXC‐C‐C‐C‐C‐C) and a long evolutionary history of multiple gene duplications and ancient interfungal lateral gene transfers, suggesting their functional significance for fungi with different lifestyles. Interestingly, recombinantly produced saSSCPs from three families (HFSs, hydrophobins and cerato‐platanins) showed convergent surface‐modulating activity on glass and on poly(ethylene‐terephthalate), transforming their surfaces to a moderately hydrophilic state, which significantly favoured subsequent hyphal attachment. The addition of purified saSSCPs to the tomato rhizosphere had mixed effects on hyphal attachment to roots, while all tested saSSCPs had an adverse effect on plant growth in vitro. We propose that the exceptionally high diversity of saSSCPs in Trichoderma and other fungi evolved to efficiently condition various surfaces in the hyphosphere to a fungal‐beneficial state.
Collapse
Affiliation(s)
- Zheng Zhao
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China.,Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Renwei Gao
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Guan Pang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Günseli Bayram Akcapinar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S Druzhinina
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China.,Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| |
Collapse
|
10
|
Valette N, Renou J, Boutilliat A, Fernández-González AJ, Gautier V, Silar P, Guyeux C, Charr JC, Cuenot S, Rose C, Gelhaye E, Morel-Rouhier M. OSIP1 is a self-assembling DUF3129 protein required to protect fungal cells from toxins and stressors. Environ Microbiol 2021; 23:1594-1607. [PMID: 33393164 DOI: 10.1111/1462-2920.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
Secreted proteins are key players in fungal physiology and cell protection against external stressing agents and antifungals. Oak stress-induced protein 1 (OSIP1) is a fungal-specific protein with unknown function. By using Podospora anserina and Phanerochaete chrysosporium as models, we combined both in vivo functional approaches and biophysical characterization of OSIP1 recombinant protein. The P. anserina OSIP1Δ mutant showed an increased sensitivity to the antifungal caspofungin compared to the wild type. This correlated with the production of a weakened extracellular exopolysaccharide/protein matrix (ECM). Since the recombinant OSIP1 from P. chrysosporium self-assembled as fibers and was capable of gelation, it is likely that OSIP1 is linked to ECM formation that acts as a physical barrier preventing drug toxicity. Moreover, compared to the wild type, the OSIP1Δ mutant was more sensitive to oak extractives including chaotropic phenols and benzenes. It exhibited a strongly modified secretome pattern and an increased production of proteins associated to the cell-wall integrity signalling pathway, when grown on oak sawdust. This demonstrates that OSIP1 has also an important role in fungal resistance to extractive-induced stress.
Collapse
Affiliation(s)
- Nicolas Valette
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Julien Renou
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Alexis Boutilliat
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | | | - Valérie Gautier
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, 75205, France
| | - Philippe Silar
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, 75205, France
| | - Christophe Guyeux
- Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25030, France
| | - Jean-Claude Charr
- Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25030, France
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, Nantes Cedex 3, 44322, France
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, 54000, France
| | - Eric Gelhaye
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Mélanie Morel-Rouhier
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| |
Collapse
|
11
|
Li X, Wang F, Xu Y, Liu G, Dong C. Cysteine-Rich Hydrophobin Gene Family: Genome Wide Analysis, Phylogeny and Transcript Profiling in Cordyceps militaris. Int J Mol Sci 2021; 22:ijms22020643. [PMID: 33440688 PMCID: PMC7827705 DOI: 10.3390/ijms22020643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
| | - Yanyan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
| | - Guijun Liu
- Beijing Radiation Center, Beijing 100101, China;
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
- Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
- Correspondence:
| |
Collapse
|
12
|
Cai F, Gao R, Zhao Z, Ding M, Jiang S, Yagtu C, Zhu H, Zhang J, Ebner T, Mayrhofer-Reinhartshuber M, Kainz P, Chenthamara K, Akcapinar GB, Shen Q, Druzhinina IS. Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival. THE ISME JOURNAL 2020; 14:2610-2624. [PMID: 32632264 PMCID: PMC7490268 DOI: 10.1038/s41396-020-0709-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Fungal evolutionary biology is impeded by the scarcity of fossils, irregular life cycles, immortality, and frequent asexual reproduction. Simple and diminutive bodies of fungi develop inside a substrate and have exceptional metabolic and ecological plasticity, which hinders species delimitation. However, the unique fungal traits can shed light on evolutionary forces that shape the environmental adaptations of these taxa. Higher filamentous fungi that disperse through aerial spores produce amphiphilic and highly surface-active proteins called hydrophobins (HFBs), which coat spores and mediate environmental interactions. We exploited a library of HFB-deficient mutants for two cryptic species of mycoparasitic and saprotrophic fungi from the genus Trichoderma (Hypocreales) and estimated fungal development, reproductive potential, and stress resistance. HFB4 and HFB10 were found to be relevant for Trichoderma fitness because they could impact the spore-mediated dispersal processes and control other fitness traits. An analysis in silico revealed purifying selection for all cases except for HFB4 from T. harzianum, which evolved under strong positive selection pressure. Interestingly, the deletion of the hfb4 gene in T. harzianum considerably increased its fitness-related traits. Conversely, the deletion of hfb4 in T. guizhouense led to the characteristic phenotypes associated with relatively low fitness. The net contribution of the hfb4 gene to fitness was found to result from evolutionary tradeoffs between individual traits. Our analysis of HFB-dependent fitness traits has provided an evolutionary snapshot of the selective pressures and speciation process in closely related fungal species.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Civan Yagtu
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Hong Zhu
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jian Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | | | | | | | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Irina S Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China.
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria.
| |
Collapse
|
13
|
The Evolutionary and Functional Paradox of Cerato-platanins in Fungi. Appl Environ Microbiol 2020; 86:AEM.00696-20. [PMID: 32332135 DOI: 10.1128/aem.00696-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/11/2023] Open
Abstract
Cerato-platanins (CPs) form a family of fungal small secreted cysteine-rich proteins (SSCPs) and are of particular interest not only because of their surface activity but also their abundant secretion by fungi. We performed an evolutionary analysis of 283 CPs from 157 fungal genomes with the focus on the environmental opportunistic plant-beneficial and mycoparasitic fungus Trichoderma Our results revealed a long evolutionary history of CPs in Dikarya fungi that have undergone several events of lateral gene transfer and gene duplication. Three genes were maintained in the core genome of Trichoderma, while some species have up to four CP-encoding genes. All Trichoderma CPs evolve under stabilizing natural selection pressure. The functional genomic analysis of CPs in Trichoderma guizhouense and Trichoderma harzianum revealed that only epl1 is active at all stages of development but that it plays a minor role in interactions with other fungi and bacteria. The deletion of this gene results in increased colonization of tomato roots by Trichoderma spp. Similarly, biochemical tests of EPL1 heterologously produced by Pichia pastoris support the claims described above. Based on the results obtained, we conclude that the function of CPs is probably linked to their surfactant properties and the ability to modify the hyphosphere of submerged mycelia and, thus, facilitate the nutritional versatility of fungi. The effector-like functions do not sufficiently describe the diversity and evolution of these proteins in fungi, as they are also maintained, duplicated, or laterally transferred in the genomes of nonherbivore fungi.IMPORTANCE Cerato-platanins (CPs) are surface-active small proteins abundantly secreted by filamentous fungi. Consequently, immune systems of plants and other organisms recognize CPs and activate defense mechanisms. Some CPs are toxic to plants and act as virulence factors in plant-pathogenic fungi. Our analysis, however, demonstrates that the interactions with plants do not explain the origin and evolution of CPs in the fungal kingdom. We revealed a long evolutionary history of CPs with multiple cases of gene duplication and events of interfungal lateral gene transfers. In the mycoparasitic Trichoderma spp., CPs evolve under stabilizing natural selection and hamper the colonization of roots. We propose that the ability to modify the hydrophobicity of the fungal hyphosphere is a key to unlock the evolutionary and functional paradox of these proteins.
Collapse
|
14
|
Pachauri S, Sherkhane PD, Kumar V, Mukherjee PK. Whole Genome Sequencing Reveals Major Deletions in the Genome of M7, a Gamma Ray-Induced Mutant of Trichoderma virens That Is Repressed in Conidiation, Secondary Metabolism, and Mycoparasitism. Front Microbiol 2020; 11:1030. [PMID: 32595612 PMCID: PMC7303927 DOI: 10.3389/fmicb.2020.01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Trichoderma virens is a commercial biofungicide used in agriculture. We have earlier isolated a mutant of T. virens using gamma ray-induced mutagenesis. This mutant, designated as M7, is defective in morphogenesis, secondary metabolism, and mycoparasitism. The mutant does not produce conidia, and the colony is hydrophilic. M7 cannot utilize cellulose and chitin as a sole carbon source and is unable to parasitize the plant pathogens Rhizoctonia solani and Pythium aphanidermatum in confrontation assay. Several volatile (germacrenes, beta-caryophyllene, alloaromadendrene, gamma-muurolene) and non-volatile (viridin, viridiol, gliovirin, heptelidic acid) metabolites are not detected in M7. In transcriptome analysis, many genes related to secondary metabolism, carbohydrate metabolism, hydrophobicity, and transportation, among others, were found to be downregulated in the mutant. Using whole genome sequencing, we identified five deletions in the mutant genome, totaling about 250 kb (encompassing 71 predicted ORFs), which was confirmed by PCR. This study provides novel insight into genetics of morphogenesis, secondary metabolism, and mycoparasitism and eventually could lead to the identification of novel regulators of beneficial traits in plant beneficial fungi Trichoderma spp. We also suggest that this mutant can be developed as a microbial cell factory for the production of secondary metabolites and proteins.
Collapse
Affiliation(s)
- Shikha Pachauri
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Pramod D Sherkhane
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vinay Kumar
- Homi Bhabha National Institute, Mumbai, India.,Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
15
|
Pérez-Llano Y, Rodríguez-Pupo EC, Druzhinina IS, Chenthamara K, Cai F, Gunde-Cimerman N, Zalar P, Gostinčar C, Kostanjšek R, Folch-Mallol JL, Batista-García RA, Sánchez-Carbente MDR. Stress Reshapes the Physiological Response of Halophile Fungi to Salinity. Cells 2020; 9:E525. [PMID: 32106416 PMCID: PMC7140475 DOI: 10.3390/cells9030525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains and few studies in basidiomycete fungi. These studies have been conducted in settings where cells are subjected to stress, either hypo- or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. (2) Methods: We have studied transcriptomic changes in Aspergillussydowii, a halophilic species, when growing in three different salinity conditions (No NaCl, 0.5 M, and 2.0 M NaCl). (3) Results: In this fungus, major physiological modifications occur under high salinity (2.0 M NaCl) and not when cultured under optimal conditions (0.5 M NaCl), suggesting that most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions. Cell wall modifications occur exclusively at extreme salinity, with an increase in cell wall thickness and lamellar structure, which seem to involve a decrease in chitin content and an augmented content of alfa and beta-glucans. Additionally, three hydrophobin genes were differentially expressed under hypo- or hyperosmotic stress but not when the fungus grows optimally. Regarding compatible solutes, glycerol is the main compound accumulated in salt stress conditions, whereas trehalose is accumulated in the absence of salt. (4) Conclusions: Physiological responses to salinity vary greatly between optimal and high salt concentrations and are not a simple graded effect as the salt concentration increases. Our results highlight the influence of stress in reshaping the response of extremophiles to environmental challenges.
Collapse
Affiliation(s)
- Yordanis Pérez-Llano
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - Eya Caridad Rodríguez-Pupo
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - Irina S. Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
- Fungal Genomics Group, Nanjing Agricultural University, Nanjing 210095, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
| | - Feng Cai
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
- Fungal Genomics Group, Nanjing Agricultural University, Nanjing 210095, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Jorge Luis Folch-Mallol
- Laboratory of Molecular Biology of Fungi, Center for Research on Biotechnology, Autonomous University of the State of Morelos, Morelos 62210, Mexico;
| | - Ramón Alberto Batista-García
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - María del Rayo Sánchez-Carbente
- Laboratory of Molecular Biology of Fungi, Center for Research on Biotechnology, Autonomous University of the State of Morelos, Morelos 62210, Mexico;
| |
Collapse
|
16
|
MIP diversity from Trichoderma: Structural considerations and transcriptional modulation during mycoparasitic association with Fusarium solani olive trees. PLoS One 2018; 13:e0193760. [PMID: 29543834 PMCID: PMC5854309 DOI: 10.1371/journal.pone.0193760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/17/2018] [Indexed: 11/19/2022] Open
Abstract
Major intrinsic proteins (MIP) are characterized by a transmembrane pore-type architecture that facilitates transport across biomembranes of water and a variety of low molecular weight solutes. They are found in all parts of life, with remarkable protein diversity. Very little is known about MIP from fungi. And yet, it can legitimately be stated that MIP are pivotal molecular components in the privileged relationships fungi enjoy with plants or soil fauna in various environments. To date, MIP have never been studied in a mycoparasitism situation. In this study, the diversity, expression and functional prediction of MIP from the genus Trichoderma were investigated. Trichoderma spp. genomes have at least seven aquaporin genes. Based on a phylogenetic analysis of the translated sequences, members were assigned to the AQP, AQGP and XIP subfamilies. In in vitro and in planta assays with T. harzianum strain Ths97, expression analyses showed that four genes were constitutively expressed. In a mycoparasitic context with Fusarium solani, the causative agent of fusarium dieback on olive tree roots, these genes were up-regulated. This response is of particular interest in analyzing the MIP promoter cis-regulatory motifs, most of which are involved in various carbon and nitrogen metabolisms. Structural analyses provide new insights into the possible role of structural checkpoints by which these members transport water, H2O2, glycerol and, more generally, linear polyols across the membranes. Taken together, these results provide the first evidence that MIP may play a key role in Trichoderma mycoparasitism lifestyle.
Collapse
|
17
|
Abstract
Mycoparasitism is a lifestyle where one fungus establishes parasitic interactions with other fungi. Species of the genus Trichoderma together with Clonostachys rosea are among the most studied fungal mycoparasites. They have wide host ranges comprising several plant pathogens and are used for biological control of plant diseases. Trichoderma as well as C. rosea mycoparasites efficiently overgrow and kill their fungal prey by using infection structures and by applying lytic enzymes and toxic metabolites. Most of our knowledge on the putative signals and signaling pathways involved in prey recognition and activation of the mycoparasitic response is derived from studies with Trichoderma. These fungi rely on G-protein signaling, the cAMP pathway, and mitogen-activated protein kinase cascades during growth and development as well as during mycoparasitism. The signals being recognized by the mycoparasite may include surface molecules and surface properties as well as secondary metabolites and other small molecules released from the prey. Their exact nature, however, remains elusive so far. Recent genomics-based studies of mycoparasitic fungi of the order Hypocreales, i.e., Trichoderma species, C. rosea, Tolypocladium ophioglossoides, and Escovopsis weberi, revealed not only several gene families with a mycoparasitism-related expansion of gene paralogue numbers, but also distinct differences between the different mycoparasites. We use this information to illustrate the biological principles and molecular basis of necrotrophic mycoparasitism and compare the mycoparasitic strategies of Trichoderma as a "model" mycoparasite with the behavior and special features of C. rosea, T. ophioglossoides, and E. weberi.
Collapse
|
18
|
Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing. mSphere 2017; 2:mSphere00089-17. [PMID: 28497120 PMCID: PMC5425790 DOI: 10.1128/msphere.00089-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement. In fungi, most metabolic processes are subject to regulation by light. Trichoderma reesei is adapted to degradation of plant cell walls and regulates production of the required enzymes in a manner dependent on the nutrient source and the light status. Here we investigated the interrelated relevance of two regulation levels of the transcriptome of T. reesei: light regulation and carbon source-dependent control. We show that the carbon source (cellulose, lactose, sophorose, glucose, or glycerol) is the major source of variation, with light having a modulating effect on transcript regulation. A total of 907 genes were regulated under cellulase-inducing conditions in light, and 947 genes were regulated in darkness, with 530 genes overlapping (1,324 in total). Only 218 of the 1,324 induction-specific genes were independent of light and not regulated by the BLR1, BLR2, and ENV1 photoreceptors. Analysis of the genomic distribution of genes regulated by light upon growth on cellulose revealed considerable overlap of light-regulated clusters with induction-specific clusters and carbohydrate-active enzyme (CAZyme) clusters. Further, we found evidence for the operation of a sensing mechanism for solid cellulosic substrates, with regulation of genes such as swo1, cip1, and cip2 or of genes encoding hydrophobins which is related to the cyclic AMP (cAMP)-dependent regulatory output of ENV1. We identified class XIII G-protein-coupled receptors (GPCRs) CSG1 and CSG2 in T. reesei as putative cellulose/glucose-sensing GPCRs. Our data indicate that the cellulase regulation pathway is bipartite, comprising a section corresponding to transcriptional regulation and one corresponding to posttranscriptional regulation, with the two connected by the function of CSG1. IMPORTANCE In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement.
Collapse
|
19
|
Deng CH, Plummer KM, Jones DAB, Mesarich CH, Shiller J, Taranto AP, Robinson AJ, Kastner P, Hall NE, Templeton MD, Bowen JK. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genomics 2017; 18:339. [PMID: 28464870 PMCID: PMC5412055 DOI: 10.1186/s12864-017-3699-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.
Collapse
Affiliation(s)
- Cecilia H. Deng
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Biosecurity Cooperative Research Centre, Bruce, ACT Australia
| | - Darcy A. B. Jones
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: The Centre for Crop and Disease Management, Curtin University, Bentley, Australia
| | - Carl H. Mesarich
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Present Address: Institute of Agriculture & Environment, Massey University, Palmerston North, New Zealand
| | - Jason Shiller
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Present Address: INRA-Angers, Beaucouzé, Cedex, France
| | - Adam P. Taranto
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Andrew J. Robinson
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Patrick Kastner
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
| | - Nathan E. Hall
- Animal, Plant & Soil Sciences Department, AgriBio Centre for AgriBioscience, La Trobe University, Melbourne, Victoria Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Victoria, Australia
| | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna K. Bowen
- The New Zealand Institute for Plant & Food Research Limited (PFR), Auckland, New Zealand
| |
Collapse
|
20
|
Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 2017; 18:16. [PMID: 28201981 PMCID: PMC5310080 DOI: 10.1186/s12863-017-0481-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. RESULTS We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. CONCLUSIONS Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Mario Iván Alemán-Duarte
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Luis Delaye
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Vianey Olmedo-Monfil
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
21
|
Przylucka A, Akcapinar GB, Chenthamara K, Cai F, Grujic M, Karpenko J, Livoi M, Shen Q, Kubicek CP, Druzhinina IS. HFB7 - A novel orphan hydrophobin of the Harzianum and Virens clades of Trichoderma, is involved in response to biotic and abiotic stresses. Fungal Genet Biol 2017; 102:63-76. [PMID: 28089933 DOI: 10.1016/j.fgb.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 11/15/2022]
Abstract
Hydrophobins are small secreted cysteine-rich proteins exclusively found in fungi. They are able to self-assemble in single molecular layers at hydrophobic-hydrophilic interfaces and can therefore be directly involved in establishment of fungi in their habitat. The genomes of filamentous mycotrophic fungi Trichoderma encode a rich diversity of hydrophobins, which are divided in several groups based on their structure and evolution. Here we describe a new member of class II hydrophobins, HFB7, that has a taxonomically restricted occurrence in Harzianum and Virens clades of Trichoderma. Evolutionary analysis reveals that HFB7 proteins form a separate clade distinct from other Trichoderma class II hydrophobins and that genes encoding them evolve under positive selection pressure. Homology modelling of HFB7 structure in comparison to T. reesei HFB2 reveals that the two large hydrophobic patches on the surface of the protein are remarkably conserved between the two hydrophobins despite significant difference in their primary structures. Expression of hfb7 gene in T. virens increases at interactions with other fungi and a plant and in response to a diversity of abiotic stress conditions, and is also upregulated during formation of aerial mycelium in a standing liquid culture. This upregulation significantly exceeds that of expression of hfb7 under a strong constitutive promoter, and T. virens strains overexpressing hfb7 thus display only changes in traits characterized by low hfb7 expression, i.e. faster growth in submerged liquid culture. The hfb7 gene is not expressed in conidia. Our data allow to conclude that this protein is involved in defence of Trichoderma against a diversity of stress factors related to the oxidative stress. Moreover, HFB7 likely helps in the establishment of the fungus in wetlands or other conditions related to high humidity.
Collapse
Affiliation(s)
- Agnes Przylucka
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria; Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Gunseli Bayram Akcapinar
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Komal Chenthamara
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Feng Cai
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Marica Grujic
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Juriy Karpenko
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Miriam Livoi
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria; Austrian Center of Industrial Biotechnology, Graz, Austria
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Christian P Kubicek
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria
| | - Irina S Druzhinina
- Microbiology Group, Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Vienna, Austria; Austrian Center of Industrial Biotechnology, Graz, Austria.
| |
Collapse
|
22
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
23
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
24
|
Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi. PLoS Pathog 2015; 11:e1005228. [PMID: 26506000 PMCID: PMC4624222 DOI: 10.1371/journal.ppat.1005228] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023] Open
Abstract
Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (MagnaportheAvrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. Fungal plant pathogens are of outstanding economic and ecological importance and cause destructive diseases on many cultivated and wild plants. Effector proteins that are secreted during infection to manipulate the host and to promote disease are a key element in fungal virulence. Phytopathogenic fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular functions of this most important class of fungal effectors and the evolutionary mechanisms that generate this tremendous numbers of apparently unrelated proteins are largely unknown. By investigating the 3-dimensional structures of effectors from the rice blast fungus M. oryzae, we discovered an effector family comprising structurally conserved but sequence-unrelated effectors from M. oryzae and the phylogenetically distant wheat pathogen Pyrenophora tritici-repentis that we named MAX-effectors (M. oryzaeAvrs and ToxB). Structure-informed searches of whole genome sequence databases suggest that MAX-effectors are present at low frequencies and with a patchy phylogenetic distribution in many ascomycete phytopathogens. They underwent strong lineage-specific expansion in fungi of the Pyriculariae family that contains M. oryzae where they seem particularly important during biotrophic plant colonization and account for 50% of the cloned Avr effectors and 5–10% of the effector repertoire. Based on our results on the MAX-effectors and the widely accepted concept that fungal effectors evolve according to a birth-and-death model we propose the hypothesis that the majority of the immense numbers of different ascomycete effectors could in fact belong to a limited set of structurally defined families whose members are phylogenetically related.
Collapse
|
25
|
Zhang X, Harvey PR, Stummer BE, Warren RA, Zhang G, Guo K, Li J, Yang H. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium. Funct Integr Genomics 2015; 15:599-610. [PMID: 26231513 DOI: 10.1007/s10142-015-0456-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/03/2015] [Accepted: 07/17/2015] [Indexed: 01/23/2023]
Abstract
Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research is providing information to elucidate the antibiosis mechanisms and disease suppressive activities of T. afroharzianum and T. gamsii against soilborne fungal and oomycete plant pathogens.
Collapse
Affiliation(s)
- Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Biotechnology Center, Shandong Academy of Sciences, Jinan, 250014, Shandong Province, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M. Multiple roles and effects of a novel Trichoderma hydrophobin. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:167-79. [PMID: 25317667 DOI: 10.1094/mpmi-07-14-0194-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.
Collapse
|
27
|
Huang Y, Mijiti G, Wang Z, Yu W, Fan H, Zhang R, Liu Z. Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 2015; 171:8-20. [DOI: 10.1016/j.micres.2014.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/13/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022]
|
28
|
Frascella A, Bettini PP, Kolařík M, Comparini C, Pazzagli L, Luti S, Scala F, Scala A. Interspecific variability of class II hydrophobin GEO1 in the genus Geosmithia. Fungal Biol 2014; 118:862-71. [PMID: 25442290 DOI: 10.1016/j.funbio.2014.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022]
Abstract
The genus Geosmithia Pitt (Ascomycota: Hypocreales) comprises cosmopolite fungi living in the galleries built by phloeophagous insects. Following the characterization in Geosmithia species 5 of the class II hydrophobin GEO1 and of the corresponding gene, the presence of the geo1 gene was investigated in 26 strains derived from different host plants and geographic locations and representing the whole phylogenetic diversity of the genus. The geo1 gene was detected in all the species tested where it maintained the general organization shown in Geosmithia species 5, comprising three exons and two introns. Size variations were found in both introns and in the first exon, the latter being due to the presence of an intragenic tandem repeat sequence corresponding to a stretch of glycine residues in the deduced proteins. At the amino acid level the deduced proteins had 44.6 % identity and no major differences in the biochemical parameters (pI, GRAVY index, hydropathy plots) were found. GEO1 release in the fungal culture medium was also assessed by turbidimetric assay and SDS-PAGE, and showed high variability between species. The phylogeny based on the geo1 sequences did not correspond to that generated from a neutral marker (ITS rDNA), suggesting that sequence similarities could be influenced by other factors than phylogenetic relatedness, such as the intimacy of the symbiosis with insect vectors. The hypothesis of a strong selection pressure on the geo1 gene was sustained by the low values (<1) of non synonymous to synonymous nucleotide substitutions ratios (Ka/Ks), which suggest that purifying selection might act on this gene. These results are compatible with either a birth-and-death evolution scenario or horizontal transfer of the gene between Geosmithia species.
Collapse
Affiliation(s)
- Arcangela Frascella
- Dipartimento di Biologia, Università di Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy; Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Università di Firenze, via della Lastruccia 10, 50019 Sesto Fiorentino, FI, Italy.
| | - Priscilla P Bettini
- Dipartimento di Biologia, Università di Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy.
| | - Miroslav Kolařík
- Institute of Microbiology of the ASCR, v.v.i, Videnská 1083, 142 20 Praha 4, Czech Republic.
| | - Cecilia Comparini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Università di Firenze, via della Lastruccia 10, 50019 Sesto Fiorentino, FI, Italy.
| | - Luigia Pazzagli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università di Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Simone Luti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università di Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Felice Scala
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Sezione di Patologia Vegetale, Università di Napoli "Federico II", via Università 100, 80055 Portici, NA, Italy.
| | - Aniello Scala
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Università di Firenze, via della Lastruccia 10, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
29
|
Steindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ, Ulhoa CJ, Noronha EF. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics 2014; 15:204. [PMID: 24635846 PMCID: PMC4004048 DOI: 10.1186/1471-2164-15-204] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/06/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum. RESULTS Data obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. To validate the expression profile, RT-qPCR was performed using 20 randomly chosen genes. RT-qPCR expression profiles were in complete agreement with the RNA-Seq data for 17 of the genes evaluated. The other three showed differences at one or two growth times. During the confrontation assay, some genes were up-regulated during and after contact, as shown in the presence of SSCW which is commonly used as a model to mimic this interaction. CONCLUSIONS The present study is the first initiative to use RNA-seq for identification of differentially expressed genes in T. harzianum strain TR274, in response to the phytopathogenic fungus S. sclerotiorum. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against S.sclerotiorum. The RNA-seq data presented will facilitate improvement of the annotation of gene models in the draft T. harzianum genome and provide important information regarding the transcriptome during this interaction.
Collapse
Affiliation(s)
- Andrei Stecca Steindorff
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, CEP 70.910-900 Brasília, DF, Brazil
| | | | - Alexandre Siqueira Guedes Coelho
- Escola de Agronomia e Engenharia de Alimentos, Universidade Federal de Goiás, Campus Samambaia, P.O. Box 131CEP 74001-970 Goiânia, GO, Brasil
| | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, CEP 70.910-900 Brasília, DF, Brazil
| | - Georgios Joannis Pappas
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, CEP 70.910-900 Brasília, DF, Brazil
| | - Cirano José Ulhoa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás, Campus Samambaia, Instituto de Ciências Biológicas, CEP 74.090-900 Goiânia, GO, Brazil
| | - Eliane Ferreira Noronha
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, CEP 70.910-900 Brasília, DF, Brazil
| |
Collapse
|
30
|
Dubey MK, Jensen DF, Karlsson M. Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol 2014; 14:18. [PMID: 24483277 PMCID: PMC3922079 DOI: 10.1186/1471-2180-14-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Filamentous fungi produce small cysteine rich surface active amphiphilic hydrophobins on the outer surface of cell walls that mediate interactions between the fungus and the environment. The role of hydrophobins in surface hydrophobicity, sporulation, fruit body formation, recognition and adhesion to host surface and virulence have been reported. The aim of the present study was to characterize the biological function of hydrophobins in the fungal biocontrol agent Clonostachys rosea in order to understand their potential roles in biocontrol mechanisms. RESULTS Based on the presence of hydrophobin domains, cysteine spacing patterns and hydropathy plots, we identified three class II hydrophobin genes in C. rosea. Gene expression analysis showed basal expression of Hyd1, Hyd2 and Hyd3 in all conditions tested with the exception of induced Hyd1 expression in conidiating mycelium. Interestingly, up-regulation of Hyd1, Hyd2 and Hyd3 was found during C. rosea self interaction compared to interactions with the fungal plant pathogens Botrytis cinerea or Fusarium graminearum in dual culture assays. Phenotypic analysis of C. rosea deletion and complementation strains showed that Hyd1 and Hyd3 are jointly required for conidial hydrophobicity, although no difference in mycelia hydrophobicity was found between wild type (WT) and mutant strains. Interestingly, mutant strains showed increased growth rates, conidiation and enhanced tolerances of conidia to abiotic stresses. Antagonism tests using in vitro dual culture and detached leaf assays showed that the mutant strains were more aggressive towards B. cinerea, F. graminearum or Rhizoctonia solani, and that aggression was partly related to earlier conidial germination and enhanced tolerance of mutant strains to secreted fungal metabolites. Furthermore, in vitro Arabidopsis thaliana root colonization assays revealed reduced root colonization ability of the ΔHyd3 strain, but not for the ΔHyd1 strain. Furthermore, enhanced root colonization ability for the ΔHyd1ΔHyd3 strain was found in comparison to WT. CONCLUSIONS These results show a role for hydrophobins in conidial hydrophobicity, control of conidial germination under stress conditions, and in root colonization in C. rosea. However, functional studies of Hyd2 remains to be performed in order to fully assess the role of hydrophobins in C. rosea.
Collapse
Affiliation(s)
- Mukesh K Dubey
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| |
Collapse
|
31
|
Mgbeahuruike AC, Kovalchuk A, Chen H, Ubhayasekera W, Asiegbu FO. Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. BMC Evol Biol 2013; 13:240. [PMID: 24188142 PMCID: PMC3879219 DOI: 10.1186/1471-2148-13-240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022] Open
Abstract
Background Hydrophobins are small secreted cysteine-rich proteins that play diverse roles during different phases of fungal life cycle. In basidiomycetes, hydrophobin-encoding genes often form large multigene families with up to 40 members. The evolutionary forces driving hydrophobin gene expansion and diversification in basidiomycetes are poorly understood. The functional roles of individual genes within such gene families also remain unclear. The relationship between the hydrophobin gene number, the genome size and the lifestyle of respective fungal species has not yet been thoroughly investigated. Here, we present results of our survey of hydrophobin gene families in two species of wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. We have also investigated the regulatory pattern of hydrophobin-encoding genes from H. annosum s.s. during saprotrophic growth on pine wood as well as on culture filtrate from Phlebiopsis gigantea using micro-arrays. These data are supplemented by results of the protein structure modeling for a representative set of hydrophobins. Results We have identified hydrophobin genes from the genomes of two wood-degrading species of basidiomycetes, Heterobasidion irregulare, representing one of the microspecies within the aggregate H. annosum s.l., and Phlebia brevispora. Although a high number of hydrophobin-encoding genes were observed in H. irregulare (16 copies), a remarkable expansion of these genes was recorded in P. brevispora (26 copies). A significant expansion of hydrophobin-encoding genes in other analyzed basidiomycetes was also documented (1–40 copies), whereas contraction through gene loss was observed among the analyzed ascomycetes (1–11 copies). Our phylogenetic analysis confirmed the important role of gene duplication events in the evolution of hydrophobins in basidiomycetes. Increased number of hydrophobin-encoding genes appears to have been linked to the species’ ecological strategy, with the non-pathogenic fungi having increased numbers of hydrophobins compared with their pathogenic counterparts. However, there was no significant relationship between the number of hydrophobin-encoding genes and genome size. Furthermore, our results revealed significant differences in the expression levels of the 16 H. annosum s.s. hydrophobin-encoding genes which suggest possible differences in their regulatory patterns. Conclusions A considerable expansion of the hydrophobin-encoding genes in basidiomycetes has been observed. The distribution and number of hydrophobin-encoding genes in the analyzed species may be connected to their ecological preferences. Results of our analysis also have shown that H. annosum s.l. hydrophobin-encoding genes may be under positive selection. Our gene expression analysis revealed differential expression of H. annosum s.s. hydrophobin genes under different growth conditions, indicating their possible functional diversification.
Collapse
|
32
|
Mgbeahuruike AC, Kovalchuk A, Asiegbu FO. Comparative genomics and evolutionary analysis of hydrophobins from three species of wood-degrading fungi. Mycologia 2013; 105:1471-8. [PMID: 23928416 DOI: 10.3852/13-077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hydrophobins are small, secreted proteins playing important roles at different stages of fungal life cycles. Their characteristic feature is the presence of eight highly conserved cysteine residues. Here we present an inventory and evolutionary analysis of hydrophobin genes from three wood-degrading basidiomycetes, Phlebia brevispora, Ganoderma sp. and Bjerkandera adusta. The genomes of the three analyzed species are characterized by the presence of high copy numbers of hydrophobin genes. Results of the phylogenetic analysis of the identified proteins revealed that many of them share a high degree of sequence similarity and probably originated from a series of duplication events. The presence of several clusters of adjacent copies of the hydrophobin gene in a particular location in the genome further supports the interpretation that gene duplication has played a role in the evolution of hydrophobins in the analyzed species.
Collapse
Affiliation(s)
- Anthony C Mgbeahuruike
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
33
|
Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 2013; 79:4230-8. [PMID: 23645195 DOI: 10.1128/aem.01132-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET.
Collapse
|
34
|
Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM. Trichoderma research in the genome era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:105-29. [PMID: 23915132 DOI: 10.1146/annurev-phyto-082712-102353] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.
Collapse
Affiliation(s)
- Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Druzhinina IS, Shelest E, Kubicek CP. Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 2012; 337:1-9. [PMID: 22924408 PMCID: PMC3533174 DOI: 10.1111/j.1574-6968.2012.02665.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 01/05/2023] Open
Abstract
Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together with occurrence on a variety of less common substrata (marine invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei, has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the complete genomes of the three species (T. reesei, T. virens, and T. atroviride) has led to a deepened understanding of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma, and – in addition to the unique features of carbohydrate active enzymes – demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | | |
Collapse
|
37
|
Bettini PP, Frascella A, Comparini C, Carresi L, Pepori AL, Pazzagli L, Cappugi G, Scala F, Scala A. Identification and characterization of GEO1, a new class II hydrophobin from Geosmithia spp. Can J Microbiol 2012; 58:965-72. [DOI: 10.1139/w2012-069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present paper we describe a new noncatalytic protein belonging to the hydrophobin family, designated GEO1, purified from the culture filtrate of Geosmithia pallida (Ascomycota: Hypocreales), and the corresponding gene sequence. In the fungal genome, GEO1 was encoded by a single-copy gene with a 450 bp open reading frame interrupted by 2 small introns whose primary translation product was 109 amino acids long and included a 23 amino acids signal peptide. The mature protein had a molecular mass of 8111.75 Da and a theoretical pI of 4.33. The deduced amino acid sequence showed similarity to class II hydrophobins and contained 8 conserved cysteine residues, present in all hydrophobins isolated so far. Biochemical properties, such as foam-forming ability and trapezoid-like shape of a GEO1 drop, also resembled the typical features of the class II hydrophobins. Expression of the geo1 gene was assessed after 2, 4, 7, 9, and 11 days of culture and showed that the geo1 transcript appeared after 7 days and increased up to 11 days.
Collapse
Affiliation(s)
- Priscilla P. Bettini
- Dipartimento di Biologia Evoluzionistica “Leo Pardi”, University of Florence, via Romana 17-19, 50125 Florence, Italy
| | - Arcangela Frascella
- Dipartimento di Biologia Evoluzionistica “Leo Pardi”, University of Florence, via Romana 17-19, 50125 Florence, Italy
- Dipartimento di Biotecnologie Agrarie, Sezione di Protezione delle Piante, University of Florence, via della Lastruccia 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Comparini
- Dipartimento di Biotecnologie Agrarie, Sezione di Protezione delle Piante, University of Florence, via della Lastruccia 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Lara Carresi
- Dipartimento di Biotecnologie Agrarie, Sezione di Protezione delle Piante, University of Florence, via della Lastruccia 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessia L. Pepori
- Istituto per la Protezione delle Piante, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Luigia Pazzagli
- Dipartimento di Scienze Biochimiche, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Gianni Cappugi
- Dipartimento di Scienze Biochimiche, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Felice Scala
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Sezione di Patologia Vegetale, University of Naples “Federico II” via Università 100, 80055 Portici, Naples, Italy
| | - Aniello Scala
- Dipartimento di Biotecnologie Agrarie, Sezione di Protezione delle Piante, University of Florence, via della Lastruccia 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
38
|
Liu X, Shi F, Gong J. Variations and evolution of polyubiquitin genes from ciliates. Eur J Protistol 2012; 49:40-9. [PMID: 22683065 DOI: 10.1016/j.ejop.2012.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 05/02/2012] [Accepted: 05/05/2012] [Indexed: 11/16/2022]
Abstract
Polyubiquitin genes from seven ciliate species were amplified, cloned and sequenced. It is estimated that Strombidium sulcatum, Euplotes vannus, E. rariseta and Anteholosticha manca have a polyubiquitin gene of 3 repeats, and A. parawarreni, Paramecium caudatum and Pseudokeronopsis flava 4 repeats. The newly obtained ubiquitins mostly differ from that of humans by 1-5 residues in amino acid sequences. A neighbor-joining tree constructed based on monomeric ubiquitin genes supports the monophyly of an assemblage comprising the litostomateans and some oligohymenophoreans, but not the class Spirotrichea. The monomers from the same species are generally placed together and highly supported for the class Litostomatea, the genera Paramecium and Ichthyophthirius, but not for other species. The non-synonymous/synonymous rate ratio (dN/dS) at the protein level are less than 1, and the synonymous nucleotide differences per synonymous site (p(S)) from intraspecific comparisons are fairly high (0.02-0.72). These results indicate that ciliates have not only the conserved, but also some quite divergent, polyubiquitin genes and confirm that the polyubiquitin genes in ciliates evolve according to the birth-and-death mode of evolution under strong purifying selection.
Collapse
Affiliation(s)
- Xihan Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | | | | |
Collapse
|
39
|
Littlejohn KA, Hooley P, Cox PW. Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr Genet 2012; 58:165-77. [PMID: 22481122 DOI: 10.1007/s00294-012-0374-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.
Collapse
|
41
|
Mgbeahuruike AC, Karlsson M, Asiegbu FO. Differential expression of two hydrophobin genes (Pgh1 and Pgh2) from the biological control agent Phlebiopsis gigantea. Fungal Biol 2012; 116:620-9. [PMID: 22559922 DOI: 10.1016/j.funbio.2012.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/28/2012] [Accepted: 03/03/2012] [Indexed: 11/16/2022]
Abstract
Phlebiopsis gigantea has been widely used as the biocontrol fungus against the root and butt rot disease of conifers caused by Heterobasidion annosum. We investigated the regulation of two hydrophobin genes (Pgh1 and Pgh2) in strong and weak antagonistic isolates of the biological control agent P. gigantea under diverse substrate conditions. Transcript abundance of Pgh1 was higher in single cultures of strong performing isolates than in the weak performing isolates at the early and late stages of the fungal growth (P =0.05). Higher fold transcript changes of Pgh1 and Pgh2 were observed in the strong performing isolates at the early stage of the antagonistic interaction on modified Norkrans sawdust agar medium compared to the weak performing isolates. Higher transcript abundance of the two genes was also observed during growth in submerged compared to surface agar cultures (P<0.003 and P=0.0001 for Pgh1 and Pgh2, respectively). No correlation between antagonistic ability and sequence characteristics of either gene was found but a significant correlation was found between some strong performing isolates and the expression of Pgh1. Regulatory patterns of both Pgh1 and Pgh2 suggest a role during early stages of interaction between the two fungi and their potential roles in the biological control process is discussed.
Collapse
Affiliation(s)
- Anthony C Mgbeahuruike
- Uppsala BioCenter, Department of Forest Mycology & Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | | | | |
Collapse
|
42
|
Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology (Reading) 2012; 158:46-57. [DOI: 10.1099/mic.0.053132-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Markku Saloheimo
- VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland
| | - Tiina M. Pakula
- VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland
| |
Collapse
|
43
|
Gruber S, Seidl-Seiboth V. Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology (Reading) 2012; 158:26-34. [DOI: 10.1099/mic.0.052613-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sabine Gruber
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Verena Seidl-Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|
44
|
Tisch D, Kubicek CP, Schmoll M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 2011; 12:613. [PMID: 22182583 PMCID: PMC3267782 DOI: 10.1186/1471-2164-12-613] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. RESULTS As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. CONCLUSIONS The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.
Collapse
Affiliation(s)
- Doris Tisch
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Christian P Kubicek
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| |
Collapse
|
45
|
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 2011; 9:749-59. [PMID: 21921934 DOI: 10.1038/nrmicro2637] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011; 12:R40. [PMID: 21501500 PMCID: PMC3218866 DOI: 10.1186/gb-2011-12-4-r40] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/28/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. RESULTS Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. CONCLUSIONS The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
Collapse
Affiliation(s)
- Christian P Kubicek
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Mexico
| | - Verena Seidl-Seiboth
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Diego A Martinez
- Broad Institute of MIT and Harvard, 301 Binney St, Cambridge, MA 02142, USA
| | - Irina S Druzhinina
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Michael Thon
- Centro Hispanoluso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Calle Del Duero, 12, Villamayor 37185, Spain
| | - Susanne Zeilinger
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Sergio Casas-Flores
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, No. 2055, Colonia Lomas 4a Sección, San Luis Potosí, SLP., 78216, México
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Technion City, Haifa, 32000, Israel
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mala Mukherjee
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Technion City, Haifa, 32000, Israel
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Luis D Alcaraz
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Mexico
| | - Andrea Aerts
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Zsuzsanna Antal
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Lea Atanasova
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Mayte G Cervantes-Badillo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, No. 2055, Colonia Lomas 4a Sección, San Luis Potosí, SLP., 78216, México
| | - Jean Challacombe
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Olga Chertkov
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Kevin McCluskey
- School of Biological Sciences, University of Missouri- Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Fanny Coulpier
- Institut de Biologie de l'École normale supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 46, rue d'Ulm, Paris 75005, France
| | - Nandan Deshpande
- Chemistry and Biomolecular Sciences, Macquarie University, Research Park Drive Building F7B, North Ryde, Sydney, NSW 2109, Australia
| | - Hans von Döhren
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie OE2, Franklinstr. 29, 10587 Berlin, Germany
| | - Daniel J Ebbole
- Department of Plant Pathology and Microbiology Building 0444, Nagle Street, Texas A&M University College Station, TX 77843, USA
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Mexico
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
| | - Michel Flipphi
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos 73, Burjassot (Valencia) E-46100, Spain
| | - Fabian Glaser
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Technion City, Haifa, 32000, Israel
| | - Elida Y Gómez-Rodríguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, No. 2055, Colonia Lomas 4a Sección, San Luis Potosí, SLP., 78216, México
| | - Sabine Gruber
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Cliff Han
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Université de la Méditerranée, Case 932, 163 Avenue de Luminy, 13288 Marseille 13288, France
| | - Rosa Hermosa
- Centro Hispanoluso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Calle Del Duero, 12, Villamayor 37185, Spain
| | - Miguel Hernández-Oñate
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Mexico
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4010, Hungary
| | - Idit Kosti
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Technion City, Haifa, 32000, Israel
| | - Stéphane Le Crom
- Institut de Biologie de l'École normale supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 46, rue d'Ulm, Paris 75005, France
| | - Erika Lindquist
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Susan Lucas
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Mette Lübeck
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Lautrupvang 15, DK-2750 Ballerup, Denmark
| | - Peter S Lübeck
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Lautrupvang 15, DK-2750 Ballerup, Denmark
| | - Antoine Margeot
- Biotechnology Department, IFP Energies nouvelles, 1-4 avenue de Bois Préau, Rueil-Malmaison, 92852, France
| | - Benjamin Metz
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Monica Misra
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Helena Nevalainen
- Chemistry and Biomolecular Sciences, Macquarie University, Research Park Drive Building F7B, North Ryde, Sydney, NSW 2109, Australia
| | - Markus Omann
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Nicolle Packer
- Chemistry and Biomolecular Sciences, Macquarie University, Research Park Drive Building F7B, North Ryde, Sydney, NSW 2109, Australia
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Edith E Uresti-Rivera
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, No. 2055, Colonia Lomas 4a Sección, San Luis Potosí, SLP., 78216, México
| | - Asaf Salamov
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Monika Schmoll
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Bernhard Seiboth
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Harris Shapiro
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Serenella Sukno
- Centro Hispanoluso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Calle Del Duero, 12, Villamayor 37185, Spain
| | - Juan Antonio Tamayo-Ramos
- Wageningen University, Systems and Synthetic Biology, Fungal Systems Biology Group, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Doris Tisch
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Aric Wiest
- School of Biological Sciences, University of Missouri- Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Heather H Wilkinson
- Department of Plant Pathology and Microbiology Building 0444, Nagle Street, Texas A&M University College Station, TX 77843, USA
| | - Michael Zhang
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Université de la Méditerranée, Case 932, 163 Avenue de Luminy, 13288 Marseille 13288, France
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology Building 0444, Nagle Street, Texas A&M University College Station, TX 77843, USA
| | - Enrique Monte
- Centro Hispanoluso de Investigaciones Agrarias (CIALE), Department of Microbiology and Genetics, University of Salamanca, Calle Del Duero, 12, Villamayor 37185, Spain
| | - Scott E Baker
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Igor V Grigoriev
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
47
|
Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 2011; 72:339-51. [PMID: 21424760 DOI: 10.1007/s00239-011-9438-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.
Collapse
|
48
|
Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O. Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 2010; 102:944-66. [PMID: 20648760 DOI: 10.3852/09-243] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Analysis of a worldwide collection of strains of Trichoderma asperellum sensu lato using multilocus genealogies of four genomic regions (tef1, rpb2, act, ITS1, 2 and 5.8s rRNA), sequence polymorphism-derived (SPD) markers, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) of the proteome and classical mycological techniques revealed two morphologically cryptic sister species within T. asperellum, T. asperellum, T. asperelloides sp. nov. and a third closely related but morphologically distinct species. T. yunnanense. Trichoderma asperellum and T. asperelloides have wide sympatric distribution on multiple continents; T. yunnanense is represented by a single strain from China. Several strains reported in the literature or represented in GenBank as T. asperellum are re-identified as T. asperelloides. Four molecular SPD typing patterns (I-IV) were found over a large geographic range. Patterns I-III were produced only by T. asperellum and pattern IV by T. asperelloides and T. yunnanense. Pattern I was found in North America, South America, Africa and Europe and Asia (Saudi Arabia). Pattern III was found in Africa, North America, South America and Asia, not in Europe. Pattern II was found only in Cameroon (central Africa) and Peru. Pattern IV was found in all continents. All SPD II pattern strains formed a strongly supported subclade within the T. asperellum clade in the phylogenetic tree based on rpb2 and MLS (combined multilocus sequence). The diversity of DNA sequences, SPD markers and polypeptides in T. asperellum suggests that further speciation is under way within T. asperellum. MALDI-TOF MS distinguished T. yunnanense from related taxa by UPGMA clustering, but separation between T. asperellum and T. asperelloides was less clear.
Collapse
Affiliation(s)
- Gary J Samuels
- United States Department of Agriculture, Agriculture Research Service, Systematic Mycology & Microbiology Laboratory, Room 304, B-0lla, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA.
| | | | | | | | | |
Collapse
|
49
|
Recombinant production of an Aspergillus nidulans class I hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Appl Microbiol Biotechnol 2010; 88:95-103. [PMID: 20567818 DOI: 10.1007/s00253-010-2710-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/26/2010] [Accepted: 05/29/2010] [Indexed: 10/19/2022]
Abstract
Fungal hydrophobins have potential for several applications because of their abilities to change the hydrophobicity of different surfaces. Yet because of their tendency for aggregation and attachment to interfacial areas only few production processes have so far been reported. Towards the development of a heterologous production system, we report here the expression of a class I hydrophobin DewA of Aspergillus nidulans in Hypocrea jecorina (Trichoderma reesei). Using the H. jecorina hfb2 (class II hydrophobin-encoding) promoter and lactose as a carbon source, only a minor fraction of the DewA remained cell-wall-bound and the majority of it secreted into the medium with up to 15% of the total secreted protein. N-terminal amino acid sequencing showed that it was correctly processed. In contrast, no DewA was produced under the cel7A (cellobiohydrolase I) promoter, although its mRNA was abundantly detected in the cells. This lack of secretion is not due to trapping in the cell wall or to its degradation because of the unfolded protein response. Recombinant DewA could be conveniently precipitated from the culture filtrate, and its bioactivity proven by its ability to stably bind to hydrophilic and hydrophobic surfaces (glass and Teflon, respectively). We thus consider H. jecorina as a promising host for further optimization of DewA production.
Collapse
|
50
|
Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from 'omics to the field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:395-417. [PMID: 20455700 DOI: 10.1146/annurev-phyto-073009-114314] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Structural and functional genomics investigations are making an important impact on the current understanding and application of microbial agents used for plant disease control. Here, we review the case of Trichoderma spp., the most widely applied biocontrol fungi, which have been extensively studied using a variety of research approaches, including genomics, transcriptomics, proteomics, metabolomics, etc. Known for almost a century for their beneficial effects on plants and the soil, these fungi are the subject of investigations that represent a successful case of translational research, in which 'omics-generated novel understanding is directly translated in to new or improved crop treatments and management methods. We present an overview of the latest discoveries on the Trichoderma expressome and metabolome, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.
Collapse
Affiliation(s)
- Matteo Lorito
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale (ArBoPaVe), Università di Napoli Federico II, Portici, Napoli, Italy 80138.
| | | | | | | |
Collapse
|