1
|
Negueruela J, Vandenbempt V, Talamantes S, Ribeiro-Costa F, Nunes M, Dias A, Bansal M, Gurzov EN. Protocol for CRISPR-Cas12a genome editing of protein tyrosine phosphatases in human pluripotent stem cells and functional β-like cell generation. STAR Protoc 2024; 5:103297. [PMID: 39243376 PMCID: PMC11409021 DOI: 10.1016/j.xpro.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Gene editing of human pluripotent stem cells is a promising approach for developing targeted gene therapies for metabolic diseases. Here, we present a protocol for generating a CRISPR-Cas12a gene knockout of protein tyrosine phosphatases in human embryonic stem cells. We describe steps for differentiating the edited clones into pancreatic islet-like spheroids rich in β-like cells. We then detail procedures for implanting these spheroids under the murine kidney capsule for in vivo maturation.
Collapse
Affiliation(s)
- Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Francisco Ribeiro-Costa
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Mariana Nunes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - André Dias
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Anderlecht, 1070 Brussels-Capital Region, Belgium.
| |
Collapse
|
2
|
Jawad M, Adnan A, Rehman RA, Nazir S, Adeyemo OA, Amer SAM, Hadi S, Liu F, Wang CC, Rakha A. Evaluation of facial hair-associated SNPs: a pilot study on male Pakistani Punjabi population. Forensic Sci Med Pathol 2023; 19:293-302. [PMID: 35994154 DOI: 10.1007/s12024-022-00515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Variation in facial hair is one of the most conspicuous features of facial appearance, particularly in South Asia and Middle East countries. A genome-wide association study in Latin Americans has identified multiple genetic variants at distinct loci being associated with facial hair traits including eyebrow thickness, beard thickness, and monobrow. In this pilot study, we have evaluated 16 SNPs associated with facial hair traits in 58 male individuals from the Punjabi population of Pakistan. In our sample, rs365060 in EDAR and rs12597422 in FTO showed significant association with monobrow, rs6684877 in MACF1 showed significant association with eyebrow thickness, and two SNPs in LOC105379031 (rs9654415 and rs7702331) showed significant association with beard thickness. Our results also suggest that genetic association may vary between ethnic groups and geographic regions. Although more data are needed to validate our results, our findings are of value in forensic molecular photofitting research in Pakistan.
Collapse
Affiliation(s)
- Muhammad Jawad
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Atif Adnan
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia.
| | - Rahat Abdul Rehman
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Shahid Nazir
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Oyenike A Adeyemo
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, AkokaLagos, Yaba, Nigeria
| | - S A M Amer
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Fan Liu
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China.
| | - Allah Rakha
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
3
|
Son KH, Aldonza MBD, Nam AR, Lee KH, Lee JW, Shin KJ, Kang K, Cho JY. Integrative mapping of the dog epigenome: Reference annotation for comparative intertissue and cross-species studies. SCIENCE ADVANCES 2023; 9:eade3399. [PMID: 37406108 DOI: 10.1126/sciadv.ade3399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Dogs have become a valuable model in exploring multifaceted diseases and biology relevant to human health. Despite large-scale dog genome projects producing high-quality draft references, a comprehensive annotation of functional elements is still lacking. We addressed this through integrative next-generation sequencing of transcriptomes paired with five histone marks and DNA methylome profiling across 11 tissue types, deciphering the dog's epigenetic code by defining distinct chromatin states, super-enhancer, and methylome landscapes, and thus showed that these regions are associated with a wide range of biological functions and cell/tissue identity. In addition, we confirmed that the phenotype-associated variants are enriched in tissue-specific regulatory regions and, therefore, the tissue of origin of the variants can be traced. Ultimately, we delineated conserved and dynamic epigenomic changes at the tissue- and species-specific resolutions. Our study provides an epigenomic blueprint of the dog that can be used for comparative biology and medical research.
Collapse
Affiliation(s)
- Keun Hong Son
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Mark Borris D Aldonza
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - A-Reum Nam
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jeong-Woon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyung-Ju Shin
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Song B, Sang Q, Wang H, Pei H, Gan X, Wang F. Complement Genome Annotation Lift Over Using a Weighted Sequence Alignment Strategy. Front Genet 2019; 10:1046. [PMID: 31850053 PMCID: PMC6902276 DOI: 10.3389/fgene.2019.01046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
With the broad application of high-throughput sequencing, more whole-genome resequencing data and de novo assemblies of natural populations are becoming available. For a particular species, in general, only the reference genome is well established and annotated. Computational tools based on sequence alignment have been developed to investigate the gene models of individuals belonging to the same or closely related species. During this process, inconsistent alignment often obscures genome annotation lift over and leads to improper functional impact prediction for a genomic variant, especially in plant species. Here, we proposed the zebraic striped dynamic programming algorithm, which provides different weights to genetic features to refine genome annotation lift over. Testing of our zebraic striped dynamic programming algorithm on both plant and animal genomic data showed complementation to standard sequence approach for highly diverse individuals. Using the lift over genome annotation as anchors, a base-pair resolution genome-wide sequence alignment and variant calling pipeline for de novo assembly has been implemented in the GEAN software. GEAN could be used to compare haplotype diversity, refine the genetic variant functional annotation, annotate de novo assembly genome sequence, detect homologous syntenic blocks, improve the quantification of gene expression levels using RNA-seq data, and unify genomic variants for population genetic analysis. We expect that GEAN will be a standard tool for the coming of age of de novo assembly population genetics.
Collapse
Affiliation(s)
- Baoxing Song
- The Department of Life Science, Qiannan Normal College for Nationalities, Duyun, China
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, United States
| | - Qing Sang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Pei
- The Department of Life Science, Qiannan Normal College for Nationalities, Duyun, China
| | - XiangChao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Fen Wang
- The Department of Life Science, Qiannan Normal College for Nationalities, Duyun, China
| |
Collapse
|
5
|
Huh I, Mendizabal I, Park T, Yi SV. Functional conservation of sequence determinants at rapidly evolving regulatory regions across mammals. PLoS Comput Biol 2018; 14:e1006451. [PMID: 30289877 PMCID: PMC6192654 DOI: 10.1371/journal.pcbi.1006451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/17/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in epigenomics have made it possible to map genome-wide regulatory regions using empirical methods. Subsequent comparative epigenomic studies have revealed that regulatory regions diverge rapidly between genome of different species, and that the divergence is more pronounced in enhancers than in promoters. To understand genomic changes underlying these patterns, we investigated if we can identify specific sequence fragments that are over-enriched in regulatory regions, thus potentially contributing to regulatory functions of such regions. Here we report numerous sequence fragments that are statistically over-enriched in enhancers and promoters of different mammals (which we refer to as ‘sequence determinants’). Interestingly, the degree of statistical enrichment, which presumably is associated with the degree of regulatory impacts of the specific sequence determinant, was significantly higher for promoter sequence determinants than enhancer sequence determinants. We further used a machine learning method to construct prediction models using sequence determinants. Remarkably, prediction models constructed from one species could be used to predict regulatory regions of other species with high accuracy. This observation indicates that even though the precise locations of regulatory regions diverge rapidly during evolution, the functional potential of sequence determinants underlying regulatory sequences may be conserved between species. Regions of the genome that do not encode genes but affect expression of other genes, such as enhancers and promoters, are referred to as regulatory regions. Because of their regulatory functions, it was thought that enhancers and promoters should be evolutionarily conserved. Regulatory regions can be now epigenomically identified because they are marked by specific modifications of histone tails at the chromatin level. Interestingly, when we compare epigenomically identified regulatory regions from different mammals, the specific positions of regulatory regions are often divergent between species. Enhancers in particular are highly divergent between species. In this study, we show that we can find sequence fragments that are statistically enriched in enhancers and promoters of different species, and that the degree of statistical enrichment can explain different levels of evolutionary sequence conservation between enhancers and promoters. We further constructed predictive models of enhancers and promoters using the enriched sequence fragments, and show that these models can not only accurately predict enhancers and promoters of the same species, but works comparably well when applied to other species. These results indicate that even though the specific positions of regulatory regions have diverged between species, the functions of sequence fragments that comprise those regions may be conserved.
Collapse
Affiliation(s)
- Iksoo Huh
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
- College of Nursing, The Research Institute of Nursing Science, Seoul National University, Seoul, Korea
| | - Isabel Mendizabal
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Taesung Park
- Department of Statistics, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Soojin V. Yi
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Exp Cell Res 2018; 369:1-10. [PMID: 29758187 DOI: 10.1016/j.yexcr.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 01/13/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is anticipated to be increasingly implemented in the context of cancer treatment after two current FDA approval of anti-CD19 CAR-T cells (Kymriah™ & Yescarta™). The success of CD19 is mainly attributable to the proper selection of the antigen, CD19, as the target of the disease, highlighting the importance of target selection for other CAR therapies. Therefore, here we performed a global analysis of targets that are the prime focus for various CAR T cell therapies in human clinical trials.
Collapse
|
7
|
MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant. PLoS One 2016; 11:e0152067. [PMID: 27003708 PMCID: PMC4803341 DOI: 10.1371/journal.pone.0152067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
MaxQuant is a proteomic software widely used for large-scale tandem mass spectrometry data. We have designed and developed an enhanced result reporting tool for MaxQuant, named as MaxReport. This tool can optimize the results of MaxQuant and provide additional functions for result interpretation. MaxReport can generate report tables for protein N-terminal modifications. It also supports isobaric labelling based relative quantification at the protein, peptide or site level. To obtain an overview of the results, MaxReport performs general descriptive statistical analyses for both identification and quantification results. The output results of MaxReport are well organized and therefore helpful for proteomic users to better understand and share their data. The script of MaxReport, which is freely available at http://websdoor.net/bioinfo/maxreport/, is developed using Python code and is compatible across multiple systems including Windows and Linux.
Collapse
|
8
|
|
9
|
Cha EY, Jeong HE, Kim WY, Shin HJ, Kim HS, Shin JG. Brief introduction to current pharmacogenomics research tools. Transl Clin Pharmacol 2016. [DOI: 10.12793/tcp.2016.24.1.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Eun-Young Cha
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Hye-Eun Jeong
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Woo-Young Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Ho Jung Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
| |
Collapse
|
10
|
|
11
|
Wang L, Huang H, Dougherty G, Zhao Y, Hossain A, Kocher JPA. Epidaurus: aggregation and integration analysis of prostate cancer epigenome. Nucleic Acids Res 2015; 43:e7. [PMID: 25378314 PMCID: PMC4333365 DOI: 10.1093/nar/gku1079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/27/2023] Open
Abstract
Integrative analyses of epigenetic data promise a deeper understanding of the epigenome. Epidaurus is a bioinformatics tool used to effectively reveal inter-dataset relevance and differences through data aggregation, integration and visualization. In this study, we demonstrated the utility of Epidaurus in validating hypotheses and generating novel biological insights. In particular, we described the use of Epidaurus to (i) integrate epigenetic data from prostate cancer cell lines to validate the activation function of EZH2 in castration-resistant prostate cancer and to (ii) study the mechanism of androgen receptor (AR) binding deregulation induced by the knockdown of FOXA1. We found that EZH2's noncanonical activation function was reaffirmed by its association with active histone markers and the lack of association with repressive markers. More importantly, we revealed that the binding of AR was selectively reprogramed to promoter regions, leading to the up-regulation of hundreds of cancer-associated genes including EGFR. The prebuilt epigenetic dataset from commonly used cell lines (LNCaP, VCaP, LNCaP-Abl, MCF7, GM12878, K562, HeLa-S3, A549, HePG2) makes Epidaurus a useful online resource for epigenetic research. As standalone software, Epidaurus is specifically designed to process user customized datasets with both efficiency and convenience.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Gregory Dougherty
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Asif Hossain
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. ACTA ACUST UNITED AC 2013; 30:1006-7. [PMID: 24351709 DOI: 10.1093/bioinformatics/btt730] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Reference genome assemblies are subject to change and refinement from time to time. Generally, researchers need to convert the results that have been analyzed according to old assemblies to newer versions, or vice versa, to facilitate meta-analysis, direct comparison, data integration and visualization. Several useful conversion tools can convert genome interval files in browser extensible data or general feature format, but none have the functionality to convert files in sequence alignment map or BigWig format. This is a significant gap in computational genomics tools, as these formats are the ones most widely used for representing high-throughput sequencing data, such as RNA-seq, chromatin immunoprecipitation sequencing, DNA-seq, etc. RESULTS Here we developed CrossMap, a versatile and efficient tool for converting genome coordinates between assemblies. CrossMap supports most of the commonly used file formats, including BAM, sequence alignment map, Wiggle, BigWig, browser extensible data, general feature format, gene transfer format and variant call format. AVAILABILITY AND IMPLEMENTATION CrossMap is written in Python and C. Source code and a comprehensive user's manual are freely available at: http://crossmap.sourceforge.net/.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA, Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
13
|
Karnik R, Meissner A. Browsing (Epi)genomes: a guide to data resources and epigenome browsers for stem cell researchers. Cell Stem Cell 2013; 13:14-21. [PMID: 23827707 PMCID: PMC3750740 DOI: 10.1016/j.stem.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past years we have witnessed an explosion in the generation of freely available genome-wide data sets, including maps of various histone modifications, transcription factor binding, DNase hypersensitivity, and DNA methylation, which provide valuable resources for data validation, exploration, and hypothesis generation. The goal of this review is to provide the reader with information on where to find many of the data sets and how to utilize the various (epi)genome browsers for display and initial analysis. We provide selected examples to highlight key features and demonstrate the application of these browsers to stem cell biology.
Collapse
Affiliation(s)
- Rahul Karnik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
14
|
Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 2013; 15:256-78. [PMID: 23341494 PMCID: PMC3956068 DOI: 10.1093/bib/bbs086] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers.
Collapse
Affiliation(s)
- Stephan Pabinger
- Division for Bioinformatics, Innsbruck Medical University, Innrain 80, 6020 Innsbruck, Austria. Tel.: +43-512-9003-71401; Fax: +43-512-9003-73100;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.
Collapse
Affiliation(s)
- Sylvain Brohée
- Machine Learning Group, Computer Science Department, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
16
|
Abstract
The cAMP response element-binding protein (CREB) is a nuclear transcription factor that is critical for normal and neoplastic hematopoiesis. Previous studies have demonstrated that CREB is a proto-oncogene whose overexpression promotes cellular proliferation in hematopoietic cells. Transgenic mice that overexpress CREB in myeloid cells develop a myeloproliferative disease with splenomegaly and aberrant myelopoiesis. However, CREB overexpressing mice do not spontaneously develop acute myeloid leukemia. In this study, we used retroviral insertional mutagenesis to identify genes that accelerate leukemia in CREB transgenic mice. Our mutagenesis screen identified several integration sites, including oncogenes Gfi1, Myb, and Ras. The Sox4 transcription factor was identified by our screen as a gene that cooperates with CREB in myeloid leukemogenesis. We show that the transduction of CREB transgenic mouse bone marrow cells with a Sox4 retrovirus increases survival and self-renewal of cells in vitro. Furthermore, leukemic blasts from the majority of acute myeloid leukemia patients have higher CREB, phosphorylated CREB, and Sox 4 protein expression. Sox4 transduction of mouse bone marrow cells results in increased expression of CREB target genes. We also demonstrate that CREB is a direct target of Sox4 by chromatin immunoprecipitation assays. These results indicate that Sox4 and CREB cooperate and contribute to increased proliferation of hematopoietic progenitor cells.
Collapse
|
17
|
Ghosh D, Sinha S, Chatterjee A, Nandagopal K. Discerning non-disjunction in Down syndrome patients by means of GluK1-(AGAT)(n) and D21S2055-(GATA)(n) microsatellites on chromosome 21. INDIAN JOURNAL OF HUMAN GENETICS 2012; 18:204-16. [PMID: 23162297 PMCID: PMC3491295 DOI: 10.4103/0971-6866.100769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Down syndrome (DS), the leading genetic cause of mental retardation, stems from non-disjunction of chromosome 21. AIM Our aim was to discern non-disjunction in DS patients by genotyping GluK1-(AGAT)(n) and D21S2055-(GATA)(n) microsatellites on chromosome 21 using a family-based study design. MATERIALS AND METHODS We have used a PCR and automated DNA sequencing followed by appropriate statistical analysis of genotype data for the present study RESULTS AND DISCUSSION We show that a high power of discrimination and a low probability of matching indicate that both markers may be used to distinguish between two unrelated individuals. That the D21S2055-(GATA)(n) allele distribution is evenly balanced, is indicated by a high power of exclusion [PE=0.280]. The estimated values of observed heterozygosity and polymorphism information content reveal that relative to GluK1-(AGAT)(n)[H(obs)=0.286], the D21S2055- (GATA)(n)[H(obs)=0.791] marker, is more informative. Though allele frequencies for both polymorphisms do not conform to Hardy-Weinberg equilibrium proportions, we were able to discern the parental origin of non-disjunction and also garnered evidence for triallelic (1:1:1) inheritance. The estimated proportion of meiosis-I to meiosis-II errors is 2:1 in maternal and 4:1 in paternal cases for GluK1-(AGAT)(n), whereas for D21S2055-(GATA)(n), the ratio is 2:1 in both maternal and paternal cases. Results underscore a need to systematically evaluate additional chromosome 21-specific markers in the context of non-disjunction DS.
Collapse
Affiliation(s)
- Debarati Ghosh
- Manovikas Biomedical Research & Diagnostic Centre, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
- Manovikas Kendra Rehabilitation & Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
| | - Swagata Sinha
- Manovikas Biomedical Research & Diagnostic Centre, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
- Manovikas Kendra Rehabilitation & Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
| | - Anindita Chatterjee
- Manovikas Kendra Rehabilitation & Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
| | - Krishnadas Nandagopal
- Manovikas Biomedical Research & Diagnostic Centre, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
- Manovikas Kendra Rehabilitation & Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector-J, Eastern Metropolitan Bypass, Kolkata, India
| |
Collapse
|
18
|
Nätt D, Rubin CJ, Wright D, Johnsson M, Beltéky J, Andersson L, Jensen P. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 2012; 13:59. [PMID: 22305654 PMCID: PMC3297523 DOI: 10.1186/1471-2164-13-59] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/04/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation. RESULTS In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences were tissue-specific, and the differential methylation at specific loci were little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication. CONCLUSIONS Our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.
Collapse
Affiliation(s)
- Daniel Nätt
- IFM Biology, Division of Zoology, Avian Behavioural Genomics and Physiology Group, Linköping University, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Park YK, Bang OS, Cha MH, Kim J, Cole JW, Lee D, Kim YJ. SigCS base: an integrated genetic information resource for human cerebral stroke. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 2:S10. [PMID: 22784567 PMCID: PMC3287476 DOI: 10.1186/1752-0509-5-s2-s10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background To understand how stroke risk factors mechanistically contribute to stroke, the genetic components regulating each risk factor need to be integrated and evaluated with respect to biological function and through pathway-based algorithms. This resource will provide information to researchers studying the molecular and genetic causes of stroke in terms of genomic variants, genes, and pathways. Methods Reported genetic variants, gene structure, phenotypes, and literature information regarding stroke were collected and extracted from publicly available databases describing variants, genome, proteome, functional annotation, and disease subtypes. Stroke related candidate pathways and etiologic genes that participate significantly in risk were analyzed in terms of canonical pathways in public biological pathway databases. These efforts resulted in a relational database of genetic signals of cerebral stroke, SigCS base, which implements an effective web retrieval system. Results The current version of SigCS base documents 1943 non-redundant genes with 11472 genetic variants and 165 non-redundant pathways. The web retrieval system of SigCS base consists of two principal search flows, including: 1) a gene-based variant search using gene table browsing or a keyword search, and, 2) a pathway-based variant search using pathway table browsing. SigCS base is freely accessible at http://sysbio.kribb.re.kr/sigcs. Conclusions SigCS base is an effective tool that can assist researchers in the identification of the genetic factors associated with stroke by utilizing existing literature information, selecting candidate genes and variants for experimental studies, and examining the pathways that contribute to the pathophysiological mechanisms of stroke.
Collapse
Affiliation(s)
- Young-Kyu Park
- Medical Genome Research Center, KRIBB, Daejeon 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Marz M, Gruber AR, Höner Zu Siederdissen C, Amman F, Badelt S, Bartschat S, Bernhart SH, Beyer W, Kehr S, Lorenz R, Tanzer A, Yusuf D, Tafer H, Hofacker IL, Stadler PF. Animal snoRNAs and scaRNAs with exceptional structures. RNA Biol 2011; 8:938-46. [PMID: 21955586 DOI: 10.4161/rna.8.6.16603] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The overwhelming majority of small nucleolar RNAs (snoRNAs) fall into two clearly defined classes characterized by distinctive secondary structures and sequence motifs. A small group of diverse ncRNAs, however, shares the hallmarks of one or both classes of snoRNAs but differs substantially from the norm in some respects. Here, we compile the available information on these exceptional cases, conduct a thorough homology search throughout the available metazoan genomes, provide improved and expanded alignments, and investigate the evolutionary histories of these ncRNA families as well as their mutual relationships.
Collapse
Affiliation(s)
- Manja Marz
- RNA Bioinformatik Gruppe, Institut f¨ur Pharmazeutische Chemie, Philipps Universit¨at Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Finckbeiner S, Ko PJ, Carrington B, Sood R, Gross K, Dolnick B, Sufrin J, Liu P. Transient knockdown and overexpression reveal a developmental role for the zebrafish enosf1b gene. Cell Biosci 2011; 1:32. [PMID: 21943404 PMCID: PMC3197473 DOI: 10.1186/2045-3701-1-32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/26/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Despite detailed in vivo knowledge of glycolytic enolases and many bacterial non-enolase members of the superfamily, little is known about the in vivo function of vertebrate non-enolase enolase superfamily members (ENOSF1s). Results of previous studies suggest involvement of the β splice form of ENOSF1 in breast and colon cancers. This study used the zebrafish (Danio rerio) as a vertebrate model of ENOSF1β function. RESULTS Whole mount in situ hybridization (WISH) showed that zebrafish ENOSF1β (enosf1b) is zygotic and expressed ubiquitously through the first 24 hours post fertilization (hpf). After 24 hpf, enosf1b expression is restricted to the notochord. Embryos injected with enosf1b-EGFP mRNA grew slower than EGFP mRNA-injected embryos but caught up to the EGFP-injected embryos by 48 hpf. Embryos injected with ATG or exon 10 enosf1b mRNA-targeting morpholinos had kinked notochords, shortened anterior-posterior axes, and circulatory edema. WISH for ntl or pax2a expression showed that embryos injected with either morpholino have deformed notochord and pronephros. TUNEL staining revealed increased apoptosis in the peri-notochord region. CONCLUSIONS This study is the first report of ENOSF1 function in a vertebrate and shows that ENOSF1 is required for embryonic development. Increased apoptosis following enosf1b knockdown suggests a potential survival advantage for increased ENOSF1β expression in human cancers.
Collapse
Affiliation(s)
- Steve Finckbeiner
- Oncogenesis and Development Section, National Human Genome Research Institute, 49 Convent Drive, Bethesda MD, 20892, USA
- Program of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Graduate Division, State University of New York at Buffalo, Elm and Carlton Streets, Buffalo NY, 14263, USA
| | - Pin-Joe Ko
- Oncogenesis and Development Section, National Human Genome Research Institute, 49 Convent Drive, Bethesda MD, 20892, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, 49 Convent Drive, Bethesda MD, 20892, USA
| | - Raman Sood
- Oncogenesis and Development Section, National Human Genome Research Institute, 49 Convent Drive, Bethesda MD, 20892, USA
- Zebrafish Core, National Human Genome Research Institute, 49 Convent Drive, Bethesda MD, 20892, USA
| | - Kenneth Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo NY, 14263, USA
| | - Bruce Dolnick
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo NY, 14263, USA
| | - Janice Sufrin
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo NY, 14263, USA
| | - Paul Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, 49 Convent Drive, Bethesda MD, 20892, USA
| |
Collapse
|
22
|
Dèrozier S, Samson F, Tamby JP, Guichard C, Brunaud V, Grevet P, Gagnot S, Label P, Leplé JC, Lecharny A, Aubourg S. Exploration of plant genomes in the FLAGdb++ environment. PLANT METHODS 2011; 7:8. [PMID: 21447150 PMCID: PMC3073958 DOI: 10.1186/1746-4811-7-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/29/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the contexts of genomics, post-genomics and systems biology approaches, data integration presents a major concern. Databases provide crucial solutions: they store, organize and allow information to be queried, they enhance the visibility of newly produced data by comparing them with previously published results, and facilitate the exploration and development of both existing hypotheses and new ideas. RESULTS The FLAGdb++ information system was developed with the aim of using whole plant genomes as physical references in order to gather and merge available genomic data from in silico or experimental approaches. Available through a JAVA application, original interfaces and tools assist the functional study of plant genes by considering them in their specific context: chromosome, gene family, orthology group, co-expression cluster and functional network. FLAGdb++ is mainly dedicated to the exploration of large gene groups in order to decipher functional connections, to highlight shared or specific structural or functional features, and to facilitate translational tasks between plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera). CONCLUSION Combining original data with the output of experts and graphical displays that differ from classical plant genome browsers, FLAGdb++ presents a powerful complementary tool for exploring plant genomes and exploiting structural and functional resources, without the need for computer programming knowledge. First launched in 2002, a 15th version of FLAGdb++ is now available and comprises four model plant genomes and over eight million genomic features.
Collapse
Affiliation(s)
- Sandra Dèrozier
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
- Unité Mathématique Informatique et Génome (MIG), UR INRA 1077, Domaine de Vilvert, F-78352 Jouy-en-Josas Cedex, France
| | - Franck Samson
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
- Unité Mathématique Informatique et Génome (MIG), UR INRA 1077, Domaine de Vilvert, F-78352 Jouy-en-Josas Cedex, France
| | - Jean-Philippe Tamby
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Cécile Guichard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Véronique Brunaud
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Philippe Grevet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Séverine Gagnot
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
- Laboratoire de Chimie Bactérienne (LCB), UPR CNRS 9043 - IFR 88, 31 Chemin Joseph Aiguier, F-13009 Marseille, France
| | - Philippe Label
- Unité Amélioration, Génétique et Physiologie Forestières (UAGPF), UR INRA 588, 2163 avenue de la Pomme de Pin, CS 4001 Ardon, F-45075 Orléans, France
| | - Jean-Charles Leplé
- Unité Amélioration, Génétique et Physiologie Forestières (UAGPF), UR INRA 588, 2163 avenue de la Pomme de Pin, CS 4001 Ardon, F-45075 Orléans, France
| | - Alain Lecharny
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Sébastien Aubourg
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 Rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France
| |
Collapse
|
23
|
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Herrero J, Hubbard TJP, Parker A, Proctor G, Vogel J, Searle SMJ. Ensembl 2011. Nucleic Acids Res 2011; 39:D800-6. [PMID: 21045057 PMCID: PMC3013672 DOI: 10.1093/nar/gkq1064] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/13/2010] [Indexed: 11/13/2022] Open
Abstract
The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.
Collapse
Affiliation(s)
- Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|