1
|
Garric S, Ratin M, Marie D, Foulon V, Probert I, Rodriguez F, Six C. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis. Curr Biol 2024; 34:3064-3076.e5. [PMID: 38936366 DOI: 10.1016/j.cub.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.
Collapse
Affiliation(s)
- Sarah Garric
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Valentin Foulon
- Centre National de la Recherche Scientifique, UMR 6285 Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance (Lab-STICC), Technopole Brest-Iroise, Brest 29238, France
| | - Ian Probert
- Sorbonne Université, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Francisco Rodriguez
- Centro oceanográfico de Vigo (IEO-CSIC), Subida a Radio Faro 50, Vigo 36390, Spain
| | - Christophe Six
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France.
| |
Collapse
|
2
|
Cooney EC, Holt CC, Hehenberger E, Adams JA, Leander BS, Keeling PJ. Investigation of heterotrophs reveals new insights in dinoflagellate evolution. Mol Phylogenet Evol 2024; 196:108086. [PMID: 38677354 DOI: 10.1016/j.ympev.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Elizabeth C Cooney
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Corey C Holt
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Elisabeth Hehenberger
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Jayd A Adams
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Brian S Leander
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200 - 6270, University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Lin S, Wu S, He J, Wang X, Grossman AR. Shining light on dinoflagellate photosystem I. Nat Commun 2024; 15:3337. [PMID: 38637576 PMCID: PMC11026431 DOI: 10.1038/s41467-024-47797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| | - Shuaishuai Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiamin He
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyu Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Palo Alta, CA, 94305, USA
- Department of Biology, Stanford University, Palo Alta, CA, 94305, USA
| |
Collapse
|
4
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
5
|
Yamada N, Lepetit B, Mann DG, Sprecher BN, Buck JM, Bergmann P, Kroth PG, Bolton JJ, Dąbek P, Witkowski A, Kim SY, Trobajo R. Prey preference in a kleptoplastic dinoflagellate is linked to photosynthetic performance. THE ISME JOURNAL 2023; 17:1578-1588. [PMID: 37391621 PMCID: PMC10504301 DOI: 10.1038/s41396-023-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Dinoflagellates of the family Kryptoperidiniaceae, known as "dinotoms", possess diatom-derived endosymbionts and contain individuals at three successive evolutionary stages: a transiently maintained kleptoplastic stage; a stage containing multiple permanently maintained diatom endosymbionts; and a further permanent stage containing a single diatom endosymbiont. Kleptoplastic dinotoms were discovered only recently, in Durinskia capensis; until now it has not been investigated kleptoplastic behavior and the metabolic and genetic integration of host and prey. Here, we show D. capensis is able to use various diatom species as kleptoplastids and exhibits different photosynthetic capacities depending on the diatom species. This is in contrast with the prey diatoms in their free-living stage, as there are no differences in their photosynthetic capacities. Complete photosynthesis including both the light reactions and the Calvin cycle remain active only when D. capensis feeds on its habitual associate, the "essential" diatom Nitzschia captiva. The organelles of another edible diatom, N. inconspicua, are preserved intact after ingestion by D. capensis and expresses the psbC gene of the photosynthetic light reaction, while RuBisCO gene expression is lost. Our results indicate that edible but non-essential, "supplemental" diatoms are used by D. capensis for producing ATP and NADPH, but not for carbon fixation. D. capensis has established a species-specifically designed metabolic system allowing carbon fixation to be performed only by its essential diatoms. The ability of D. capensis to ingest supplemental diatoms as kleptoplastids may be a flexible ecological strategy, to use these diatoms as "emergency supplies" while no essential diatoms are available.
Collapse
Affiliation(s)
- Norico Yamada
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Bernard Lepetit
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David G Mann
- Marine and Continental Waters Program, Institute for Food and Agricultural Research and Technology, La Ràpita, Spain
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Jochen M Buck
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, University of Konstanz, Konstanz, Germany
| | - Peter G Kroth
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - So-Yeon Kim
- Department of Oceanography, Kunsan National University, Gunsan, Republic of Korea
| | - Rosa Trobajo
- Marine and Continental Waters Program, Institute for Food and Agricultural Research and Technology, La Ràpita, Spain
| |
Collapse
|
6
|
Maruyama M, Kagamoto T, Matsumoto Y, Onuma R, Miyagishima SY, Tanifuji G, Nakazawa M, Kashiyama Y. Horizontally Acquired Nitrate Reductase Realized Kleptoplastic Photoautotrophy of Rapaza viridis. PLANT & CELL PHYSIOLOGY 2023; 64:1082-1090. [PMID: 37217185 DOI: 10.1093/pcp/pcad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
While photoautotrophic organisms utilize inorganic nitrogen as the nitrogen source, heterotrophic organisms utilize organic nitrogen and thus do not generally have an inorganic nitrogen assimilation pathway. Here, we focused on the nitrogen metabolism of Rapaza viridis, a unicellular eukaryote exhibiting kleptoplasty. Although belonging to the lineage of essentially heterotrophic flagellates, R. viridis exploits the photosynthetic products of the kleptoplasts and was therefore suspected to potentially utilize inorganic nitrogen. From the transcriptome data of R. viridis, we identified gene RvNaRL, which had sequence similarity to genes encoding nitrate reductases in plants. Phylogenetic analysis revealed that RvNaRL was acquired by a horizontal gene transfer event. To verify the function of the protein product RvNaRL, we established RNAi-mediated knock-down and CRISPR-Cas9-mediated knock-out experiments for the first time in R. viridis and applied them to this gene. The RvNaRL knock-down and knock-out cells exhibited significant growth only when ammonium was supplied. However, in contrast to the wild-type cells, no substantial growth was observed when nitrate was supplied. Such arrested growth in the absence of ammonium was attributed to impaired amino acid synthesis due to the deficiency of nitrogen supply from the nitrate assimilation pathway; this in turn resulted in the accumulation of excess photosynthetic products in the form of cytosolic polysaccharide grains, as observed. These results indicate that RvNaRL is certainly involved in nitrate assimilation by R. viridis. Thus, we inferred that R. viridis achieved its advanced kleptoplasty for photoautotrophy, owing to the acquisition of nitrate assimilation via horizontal gene transfer.
Collapse
Affiliation(s)
- Moe Maruyama
- Graduate School of Engineering, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
- Department of Applied Chemistry and Food Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
| | - Tsuyoshi Kagamoto
- Graduate School of Engineering, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
- Department of Applied Chemistry and Food Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
| | - Yuga Matsumoto
- Department of Applied Chemistry and Food Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetic, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Kobe University Research Center for Inland Seas, 2746 Iwaya, Awaji, Hyogo, 656-2401 Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetic, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Goro Tanifuji
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005 Japan
| | - Masami Nakazawa
- Department of Applied Biochemistry, Faculty of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
- Department of Applied Chemistry and Food Science, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505 Japan
| |
Collapse
|
7
|
Sørensen MES, Zlatogursky VV, Onuţ-Brännström I, Walraven A, Foster RA, Burki F. A novel kleptoplastidic symbiosis revealed in the marine centrohelid Meringosphaera with evidence of genetic integration. Curr Biol 2023; 33:3571-3584.e6. [PMID: 37536342 PMCID: PMC7615077 DOI: 10.1016/j.cub.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Plastid symbioses between heterotrophic hosts and algae are widespread and abundant in surface oceans. They are critically important both for extant ecological systems and for understanding the evolution of plastids. Kleptoplastidy, where the plastids of prey are temporarily retained and continuously re-acquired, provides opportunities to study the transitional states of plastid establishment. Here, we investigated the poorly studied marine centrohelid Meringosphaera and its previously unidentified symbionts using culture-independent methods from environmental samples. Investigations of the 18S rDNA from single-cell assembled genomes (SAGs) revealed uncharacterized genetic diversity within Meringosphaera that likely represents multiple species. We found that Meringosphaera harbors plastids of Dictyochophyceae origin (stramenopiles), for which we recovered six full plastid genomes and found evidence of two distinct subgroups that are congruent with host identity. Environmental monitoring by qPCR and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) revealed seasonal dynamics of both host and plastid. In particular, we did not detect the plastids for 6 months of the year, which, combined with the lack of plastids in some SAGs, suggests that the plastids are temporary and the relationship is kleptoplastidic. Importantly, we found evidence of genetic integration of the kleptoplasts as we identified host-encoded plastid-associated genes, with evolutionary origins likely from the plastid source as well as from other alga sources. This is only the second case where host-encoded kleptoplast-targeted genes have been predicted in an ancestrally plastid-lacking group. Our results provide evidence for gene transfers and protein re-targeting as relatively early events in the evolution of plastid symbioses.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Vasily V Zlatogursky
- Department of Botany, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada; Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ioana Onuţ-Brännström
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden; Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden; Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - Anne Walraven
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden.
| |
Collapse
|
8
|
Díaz PA, Reguera B. North American Dinophysis, late-comers to the harmful algae world. JOURNAL OF PHYCOLOGY 2023; 59:653-657. [PMID: 37561020 DOI: 10.1111/jpy.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Affiliation(s)
- Patricio A Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Puerto Montt, Casilla 557, Chile
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Vigo, Spain
| |
Collapse
|
9
|
Johnson MD, Moeller HV, Paight C, Kellogg RM, McIlvin MR, Saito MA, Lasek-Nesselquist E. Functional control and metabolic integration of stolen organelles in a photosynthetic ciliate. Curr Biol 2023; 33:973-980.e5. [PMID: 36773606 DOI: 10.1016/j.cub.2023.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
Stealing prey plastids for metabolic gain is a common phenomenon among protists within aquatic ecosystems.1 Ciliates of the Mesodinium rubrum species complex are unique in that they also steal a transcriptionally active but non-dividing prey nucleus, the kleptokaryon, from certain cryptophytes.2 The kleptokaryon enables full control and replication of kleptoplastids but has a half-life of about 10 days.2 Once the kleptokaryon is lost, the ciliate experiences a slow loss of photosynthetic metabolism and eventually death.2,3,4 This transient ability to function phototrophically allows M. rubrum to form productive blooms in coastal waters.5,6,7,8 Here, we show, using multi-omics approaches, that an Antarctic strain of the ciliate not only depends on stolen Geminigera cryophila organelles for photosynthesis but also for anabolic synthesis of fatty acids, amino acids, and other essential macromolecules. Transcription of diverse pathways was higher in the kleptokaryon than that in G. cryophila, and many increased in higher light. Proteins of major biosynthetic pathways were found in greater numbers in the kleptokaryon relative to M. rubrum, implying anabolic dependency on foreign metabolism. We show that despite losing transcriptional control of the kleptokaryon, M. rubrum regulates kleptoplastid pigments with changing light, implying an important role for post-transcriptional control. These findings demonstrate that the integration of foreign organelles and their gene and protein expression, energy metabolism, and anabolism occur in the absence of a stable endosymbiotic association. Our results shed light on potential events early in the process of complex plastid acquisition and broaden our understanding of symbiogenesis.
Collapse
Affiliation(s)
- Matthew D Johnson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Christopher Paight
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Riss M Kellogg
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Matthew R McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mak A Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | |
Collapse
|
10
|
Jadhav DB, Sriramkumar Y, Roy S. The enigmatic clock of dinoflagellates, is it unique? Front Microbiol 2022; 13:1004074. [PMID: 36338102 PMCID: PMC9627503 DOI: 10.3389/fmicb.2022.1004074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022] Open
Abstract
Dinoflagellate clocks are unique as they show no resemblance to any known model eukaryotic or prokaryotic clock architecture. Dinoflagellates are unicellular, photosynthetic, primarily marine eukaryotes are known for their unique biology and rhythmic physiology. Their physiological rhythms are driven by an internal oscillator whose molecular underpinnings are yet unknown. One of the primary reasons that slowed the progression of their molecular studies is their extremely large and repetitive genomes. Dinoflagellates are primary contributors to the global carbon cycle and oxygen levels, therefore, comprehending their internal clock architecture and its interaction with their physiology becomes a subject of utmost importance. The advent of high throughput Omics technology provided the momentum to understand the molecular architecture and functioning of the dinoflagellate clocks. We use these extensive databases to perform meta-analysis to reveal the status of clock components in dinoflagellates. In this article, we will delve deep into the various “Omics” studies that catered to various breakthroughs in the field of circadian biology in these organisms that were not possible earlier. The overall inference from these omics studies points toward an uncommon eukaryotic clock model, which can provide promising leads to understand the evolution of molecular clocks.
Collapse
|
11
|
Chen T, Liu Y, Song S, Bai J, Li C. Full-length transcriptome analysis of the bloom-forming dinoflagellate Akashiwo sanguinea by single-molecule real-time sequencing. Front Microbiol 2022; 13:993914. [PMID: 36325025 PMCID: PMC9618608 DOI: 10.3389/fmicb.2022.993914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The dinoflagellate Akashiwo sanguinea is a harmful algal species and commonly observed in estuarine and coastal waters around the world. Harmful algal blooms (HABs) caused by this species lead to serious environmental impacts in the coastal waters of China since 1998 followed by huge economic losses. However, the full-length transcriptome information of A. sanguinea is still not fully explored, which hampers basic genetic and functional studies. Herein, single-molecule real-time (SMRT) sequencing technology was performed to characterize the full-length transcript in A. sanguinea. Totally, 83.03 Gb SMRT sequencing clean reads were generated, 983,960 circular consensus sequences (CCS) with average lengths of 3,061 bp were obtained, and 81.71% (804,016) of CCS were full-length non-chimeric reads (FLNC). Furthermore, 26,461 contigs were obtained after being corrected with Illumina library sequencing, with 20,037 (75.72%) successfully annotated in the five public databases. A total of 13,441 long non-coding RNA (lncRNA) transcripts, 3,137 alternative splicing (AS) events, 514 putative transcription factors (TFs) members from 23 TF families, and 4,397 simple sequence repeats (SSRs) were predicted, respectively. Our findings provided a sizable insights into gene sequence characteristics of A. sanguinea, which can be used as a reference sequence resource for A. sanguinea draft genome annotation, and will contribute to further molecular biology research on this harmful bloom algae.
Collapse
Affiliation(s)
- Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China
| | - Yun Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuqun Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China
| | - Caiwen Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Alacid E, Richards TA. A cell-cell atlas approach for understanding symbiotic interactions between microbes. Curr Opin Microbiol 2021; 64:47-59. [PMID: 34655935 DOI: 10.1016/j.mib.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Natural environments are composed of a huge diversity of microorganisms interacting with each other to form complex functional networks. Our understanding of the operative nature of host-symbiont associations is limited because propagating such associations in a laboratory is challenging. The advent of single-cell technologies applied to, for example, animal cells and apicomplexan parasites has revolutionized our understanding of development and disease. Such cell atlas approaches generate maps of cell-specific processes and variations within cellular populations. These methods can now be combined with cellular-imaging so that interaction stage versus transcriptome state can be quantized for microbe-microbe interactions. We predict that the combination of these methods applied to the study of symbioses will transform our understanding of many ecological interactions, including those sampled directly from natural environments.
Collapse
Affiliation(s)
- Elisabet Alacid
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Thomas A Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
13
|
Jeong HJ, Kang HC, Lim AS, Jang SH, Lee K, Lee SY, Ok JH, You JH, Kim JH, Lee KH, Park SA, Eom SH, Yoo YD, Kim KY. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. SCIENCE ADVANCES 2021; 7:7/2/eabe4214. [PMID: 33523999 PMCID: PMC7793574 DOI: 10.1126/sciadv.abe4214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Microalgae fuel food webs and biogeochemical cycles of key elements in the ocean. What determines microalgal dominance in the ocean is a long-standing question. Red tide distribution data (spanning 1990 to 2019) show that mixotrophic dinoflagellates, capable of photosynthesis and predation together, were responsible for ~40% of the species forming red tides globally. Counterintuitively, the species with low or moderate growth rates but diverse prey including diatoms caused red tides globally. The ability of these dinoflagellates to trade off growth for prey diversity is another genetic factor critical to formation of red tides across diverse ocean conditions. This finding has profound implications for explaining the global dominance of particular microalgae, their key eco-evolutionary strategy, and prediction of harmful red tide outbreaks.
Collapse
Affiliation(s)
- Hae Jin Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hee Chang Kang
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea.
| | - An Suk Lim
- Division of Life Science and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Se Hyeon Jang
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sung Yeon Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin Hee Ok
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hyun You
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hye Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyung Ha Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Ah Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Se Hee Eom
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeong Du Yoo
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Korea
| | - Kwang Young Kim
- Department of Oceanography, Chonnam National University, Gwangju, Korea
| |
Collapse
|
14
|
Yamada N, Sakai H, Onuma R, Kroth PG, Horiguchi T. Five Non-motile Dinotom Dinoflagellates of the Genus Dinothrix. FRONTIERS IN PLANT SCIENCE 2020; 11:591050. [PMID: 33329655 PMCID: PMC7710806 DOI: 10.3389/fpls.2020.591050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Dinothrix paradoxa and Gymnodinium quadrilobatum are benthic dinoflagellates possessing diatom-derived tertiary plastids, so-called dinotoms. Due to the lack of available genetic information, their phylogenetic relationship remains unknown. In this study, sequencing of 18S ribosomal DNA (rDNA) and the rbcL gene from temporary cultures isolated from natural samples revealed that they are close relatives of another dinotom, Galeidinium rugatum. The morphologies of these three dinotoms differ significantly from each other; however, they share a distinctive life cycle, in which the non-motile cells without flagella are their dominant phase. Cell division occurs in this non-motile phase, while swimming cells only appear for several hours after being released from each daughter cell. Furthermore, we succeeded in isolating and establishing two novel dinotom strains, HG180 and HG204, which show a similar life cycle and are phylogenetically closely related to the aforementioned three species. The non-motile cells of strain HG180 are characterized by the possession of a hemispheroidal cell covered with numerous nodes, while those of the strain HG204 form aggregations consisting of spherical smooth-surface cells. Based on the similarity in life cycles and phylogenetic closeness, we conclude that all five species should belong to a single genus, Dinothrix, the oldest genus within this clade. We transferred Ga. rugatum and Gy. quadrilobatum to Dinothrix, and described strains HG180 and HG204 as Dinothrix phymatodea sp. nov. and Dinothrix pseudoparadoxa sp. nov.
Collapse
Affiliation(s)
- Norico Yamada
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hiroto Sakai
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Ryo Onuma
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Peter G. Kroth
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Takeo Horiguchi
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Díaz PA, Fernández-Pena C, Pérez-Santos I, Baldrich Á, Díaz M, Rodríguez F. Dinophysis Ehrenberg (Dinophyceae) in Southern Chile harbours red cryptophyte plastids from Rhodomonas/Storeatula clade. HARMFUL ALGAE 2020; 99:101907. [PMID: 33218433 DOI: 10.1016/j.hal.2020.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic species of the dinoflagellate genus Dinophysis are known to retain temporary cryptophyte plastids of the Teleaulax/Plagioselmis/Geminigera clade after feeding the ciliate Mesodinium rubrum. In the present study, partial plastid 23S rDNA sequences were retrieved in Southern Chilean waters from oceanic (Los Lagos region), and fjord systems (Aysén region), in single cells of Dinophysis and accompanying organisms (the heliozoan Actinophrys cf. sol and tintinnid ciliates), identified by means of morphological discrimination under the light microscope. All plastid 23S rDNA sequences (n = 23) from Dinophysis spp. (Dinophysis acuta, D. caudata, D. tripos and D. subcircularis) belonged to cryptophytes from clade V (Rhinomonas, Rhodomonas and Storeatula), although they could not be identified at genus level. Moreover, five plastid sequences obtained from heliozoans (Actinophryida, tentatively identified as Actinophrys cf. sol), and tintinnid ciliates, grouped together with those cryptophyte sequences. In contrast, two additional sequences from tintinnids belonged to other taxa (chlorophytes and cyanobacteria). Overall, the present study represents the first time that red cryptophyte plastids outside of the Teleaulax/Plagioselmis/Geminigera clade dominate in wild photosynthetic Dinophysis spp. These findings suggest that either Dinophysis spp. are able to feed on other ciliate prey than Mesodinium and/or that cryptophyte plastids from clade V prevail in members of the M. rubrum species complex in the studied area.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Concepción Fernández-Pena
- Centro Oceanográfico de A Coruña, (IEO), Paseo Marítimo Alcalde Francisco Vázquez, 10, Coruña 15001, Spain
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Campus Concepción, Universidad de Concepción, Concepción 4030000, Chile
| | - Ángela Baldrich
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Programa de Doctorado en Ciencias, mención Manejo y Conservación de Recursos Naturales, Universidad de Los Lagos, Puerto Montt, Chile
| | - Manuel Díaz
- Programa de Investigación Pesquera & Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Francisco Rodríguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, Vigo 36390, Spain
| |
Collapse
|
16
|
Gaillard S, Charrier A, Malo F, Carpentier L, Bougaran G, Hégaret H, Réveillon D, Hess P, Séchet V. Combined Effects of Temperature, Irradiance, and pH on Teleaulax amphioxeia (Cryptophyceae) Physiology and Feeding Ratio For Its Predator Mesodinium rubrum (Ciliophora) 1. JOURNAL OF PHYCOLOGY 2020; 56:775-783. [PMID: 32052865 DOI: 10.1111/jpy.12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
The cryptophyte Teleaulax amphioxeia is a source of plastids for the ciliate Mesodinium rubrum and both organisms are members of the trophic chain of several species of Dinophysis. It is important to better understand the ecology of organisms at the first trophic levels before assessing the impact of principal factors of global change on Dinophysis spp. Therefore, combined effects of temperature, irradiance, and pH on growth rate, photosynthetic activity, and pigment content of a temperate strain of T. amphioxeia were studied using a full factorial design (central composite design 23 *) in 17 individually controlled bioreactors. The derived model predicted an optimal growth rate of T. amphioxeia at a light intensity of 400 μmol photons · m-2 · s-1 , more acidic pH (7.6) than the current average and a temperature of 17.6°C. An interaction between temperature and irradiance on growth was also found, while pH did not have any significant effect. Subsequently, to investigate potential impacts of prey quality and quantity on the physiology of the predator, M. rubrum was fed two separate prey: predator ratios with cultures of T. amphioxeia previously acclimated at two different light intensities (100 and 400 μmol photons · m-2 s-1 ). M. rubrum growth appeared to be significantly dependent on prey quantity while effect of prey quality was not observed. This multi-parametric study indicated a high potential for a significant increase of T. amphioxeia in future climate conditions but to what extent this would lead to increased occurrences of Mesodinium spp. and Dinophysis spp. should be further investigated.
Collapse
Affiliation(s)
- Sylvain Gaillard
- Laboratoire Phycotoxines, IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Aurélie Charrier
- Laboratoire Physiologie et Biotechnologie des Algues (PBA), IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Florent Malo
- Laboratoire Phycotoxines, IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Liliane Carpentier
- Laboratoire Phycotoxines, IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Gaël Bougaran
- Laboratoire Physiologie et Biotechnologie des Algues (PBA), IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Hélène Hégaret
- Laboratoire des sciences de l'environnement marin (LEMAR), IUEM-UBO, Technopôle Brest Iroise, 29280, Plouzané, France
| | - Damien Réveillon
- Laboratoire Phycotoxines, IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Philipp Hess
- Laboratoire Phycotoxines, IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| | - Véronique Séchet
- Laboratoire Phycotoxines, IFREMER, rue de l'Ile d'Yeu, Nantes 03, F-44311, France
| |
Collapse
|
17
|
García-Portela M, Reguera B, Gago J, Le Gac M, Rodríguez F. Uptake of Inorganic and Organic Nitrogen Sources by Dinophysis acuminata and D. acuta. Microorganisms 2020; 8:microorganisms8020187. [PMID: 32013096 PMCID: PMC7074736 DOI: 10.3390/microorganisms8020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 01/31/2023] Open
Abstract
Dinoflagellate species of Dinophysis are obligate mixotrophs that require light, nutrients, and prey for sustained growth. Information about their nitrogenous nutrient preferences and their uptake kinetics are scarce. This study aimed to determine the preferred nitrogen sources in cultures of D. acuminata and D. acuta strains from the Galician Rías Baixas (NW Spain) and to compare their uptake kinetics. Well-fed versus starved cultures of D. acuminata and D. acuta were supplied with N15 labeled inorganic (nitrate, ammonium) and organic (urea) nutrients. Both species showed a preference for ammonium and urea whereas uptake of nitrate was negligible. Uptake rates by well-fed cells of D. acuminata and D. acuta were 200% and 50% higher, respectively, than by starved cells. Uptake of urea by D. acuminata was significantly higher than that of ammonium in both nutritional conditions. In contrast, similar uptake rates of both compounds were observed in D. acuta. The apparent inability of Dinophysis to take up nitrate suggests the existence of incomplete nitrate-reducing and assimilatory pathways, in line with the paucity of nitrate transporter homologs in the D. acuminata reference transcriptome. Results derived from this study will contribute to understand Harmful Algal Blooms succession and differences in the spatio-temporal distribution of the two Dinophysis species when they co-occur in stratified scenarios.
Collapse
Affiliation(s)
- María García-Portela
- Spanish Institute of Oceanography (IEO), Oceanographic Center of Vigo, Subida a Radio Faro 50, Cabo Estay, Canido, 36390 Vigo, Spain; (B.R.); (J.G.); (F.R.)
- Correspondence: ; Tel.: +34-637381507
| | - Beatriz Reguera
- Spanish Institute of Oceanography (IEO), Oceanographic Center of Vigo, Subida a Radio Faro 50, Cabo Estay, Canido, 36390 Vigo, Spain; (B.R.); (J.G.); (F.R.)
| | - Jesús Gago
- Spanish Institute of Oceanography (IEO), Oceanographic Center of Vigo, Subida a Radio Faro 50, Cabo Estay, Canido, 36390 Vigo, Spain; (B.R.); (J.G.); (F.R.)
| | | | - Francisco Rodríguez
- Spanish Institute of Oceanography (IEO), Oceanographic Center of Vigo, Subida a Radio Faro 50, Cabo Estay, Canido, 36390 Vigo, Spain; (B.R.); (J.G.); (F.R.)
| |
Collapse
|
18
|
Fajardo C, Amil-Ruiz F, Fuentes-Almagro C, De Donato M, Martinez-Rodriguez G, Escobar-Niño A, Carrasco R, Mancera JM, Fernandez-Acero FJ. An “omic” approach to Pyrocystis lunula: New insights related with this bioluminescent dinoflagellate. J Proteomics 2019; 209:103502. [DOI: 10.1016/j.jprot.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
19
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|
20
|
Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes. Sci Rep 2019; 9:9009. [PMID: 31227737 PMCID: PMC6588620 DOI: 10.1038/s41598-019-45326-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/05/2019] [Indexed: 11/29/2022] Open
Abstract
Toxic dinoflagellates belonging to the genus Dinophysis acquire plastids indirectly from cryptophytes through the consumption of the ciliate Mesodinium rubrum. Dinophysis acuminata harbours three genes encoding plastid-related proteins, which are thought to have originated from fucoxanthin dinoflagellates, haptophytes and cryptophytes via lateral gene transfer (LGT). Here, we investigate the origin of these plastid proteins via RNA sequencing of species related to D. fortii. We identified 58 gene products involved in porphyrin, chlorophyll, isoprenoid and carotenoid biosyntheses as well as in photosynthesis. Phylogenetic analysis revealed that the genes associated with chlorophyll and carotenoid biosyntheses and photosynthesis originated from fucoxanthin dinoflagellates, haptophytes, chlorarachniophytes, cyanobacteria and cryptophytes. Furthermore, nine genes were laterally transferred from fucoxanthin dinoflagellates, whose plastids were derived from haptophytes. Notably, transcription levels of different plastid protein isoforms varied significantly. Based on these findings, we put forth a novel hypothesis regarding the evolution of Dinophysis plastids that ancestral Dinophysis species acquired plastids from haptophytes or fucoxanthin dinoflagellates, whereas LGT from cryptophytes occurred more recently. Therefore, the evolutionary convergence of genes following LGT may be unlikely in most cases.
Collapse
|
21
|
García-Portela M, Riobó P, Reguera B, Garrido JL, Blanco J, Rodríguez F. Comparative ecophysiology of Dinophysis acuminata and D. acuta (DINOPHYCEAE, DINOPHYSIALES): effect of light intensity and quality on growth, cellular toxin content, and photosynthesis. JOURNAL OF PHYCOLOGY 2018; 54:899-917. [PMID: 30298602 DOI: 10.1111/jpy.12794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Dinoflagellates of the genus Dinophysis are the most persistent producers of lipophilic shellfish toxins in Western Europe. Their mixotrophic nutrition requires a food chain of cryptophytes and plastid-bearing ciliates for sustained growth and photosynthesis. In this study, cultures of D. acuminata and D. acuta, their ciliate prey Mesodinium rubrum and the cryptophyte, Teleaulax amphioxeia, were subject to three experimental settings to study their physiological response to different combinations of light intensity and quality. Growth rates, pigment analyses (HPLC), photosynthetic parameters (PAM-fluorometry), and cellular toxin content (LC-MS) were determined. Specific differences in photosynthetic parameters were observed in Dinophysis exposed to different photon fluxes (10-650 μmol photons · m-2 · s-1 ), light quality (white, blue and green), and shifts in light regime. Dinophysis acuta was more susceptible to photodamage under high light intensities (370-650 μmol photons · m-2 · s-1 ) than D. acuminata but survived better with low light (10 μmol photons · m-2 · s-1 ) and to a prolonged period (28 d) of darkness. Mesodinium rubrum and T. amphioxeia showed their maximal growth rate and yield under white and high light whereas Dinophysis seemed better adapted to grow under green and blue light. Toxin analyses in Dinophysis showed maximal toxin per cell under high light after prey depletion at the late exponential-plateau phase. Changes observed in photosynthetic light curves of D. acuminata cultures after shifting light conditions from low intensity-blue light to high intensity-white light seemed compatible with photoacclimation in this species. Results obtained here are discussed in relation to different spatiotemporal distributions observed in field populations of D. acuminata and D. acuta in northwestern Iberia.
Collapse
Affiliation(s)
- María García-Portela
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, 36390 Vigo, Pontevedra, Spain
| | - Pilar Riobó
- Marine Research Institute (IIM-CSIC), 36208 Vigo, Pontevedra, Spain
| | - Beatriz Reguera
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, 36390 Vigo, Pontevedra, Spain
| | | | - Juan Blanco
- Marine Research Centre (CIMA), 36620 Vilanova de Arousa, Pontevedra, Spain
| | - Francisco Rodríguez
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Vigo, 36390 Vigo, Pontevedra, Spain
| |
Collapse
|
22
|
Diel Variations in Cell Abundance and Trophic Transfer of Diarrheic Toxins during a Massive Dinophysis Bloom in Southern Brazil. Toxins (Basel) 2018; 10:toxins10060232. [PMID: 29882830 PMCID: PMC6024776 DOI: 10.3390/toxins10060232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Dinophysis spp. are a major source of diarrheic toxins to marine food webs, especially during blooms. This study documented the occurrence, in late May 2016, of a massive toxic bloom of the Dinophysis acuminata complex along the southern coast of Brazil, associated with an episode of marked salinity stratification. The study tracked the daily vertical distribution of Dinophysis spp. cells and their ciliate prey, Mesodinium cf. rubrum, and quantified the amount of lipophilic toxins present in seston and accumulated by various marine organisms in the food web. The abundance of the D. acuminata complex reached 43 × 10⁴ cells·L−1 at 1.0 m depth at the peak of the bloom. Maximum cell densities of cryptophyceans and M. cf. rubrum (>500 × 10⁴ and 18 × 10⁴ cell·L−1, respectively) were recorded on the first day of sampling, one week before the peak in abundance of the D. acuminata complex. The diarrheic toxin okadaic acid (OA) was the only toxin detected during the bloom, attaining unprecedented, high concentrations of up to 829 µg·L−1 in seston, and 143 ± 93 pg·cell−1 in individually picked cells of the D. acuminata complex. Suspension-feeders such as the mussel, Perna perna, and barnacle, Megabalanus tintinnabulum, accumulated maximum OA levels (up to 578.4 and 21.9 µg total OA·Kg−1, respectively) during early bloom stages, whereas predators and detritivores such as Caprellidae amphipods (154.6 µg·Kg−1), Stramonita haemastoma gastropods (111.6 µg·Kg−1), Pilumnus spinosissimus crabs (33.4 µg·Kg−1) and a commercially important species of shrimp, Xiphopenaeus kroyeri (7.2 µg·Kg−1), only incorporated OA from mid- to late bloom stages. Conjugated forms of OA were dominant (>70%) in most organisms, except in blenny fish, Hypleurochilus fissicornis, and polychaetes, Pseudonereis palpata (up to 59.3 and 164.6 µg total OA·Kg−1, respectively), which contained mostly free-OA throughout the bloom. Although algal toxins are only regulated in bivalves during toxic blooms in most countries, including Brazil, this study indicates that human seafood consumers might be exposed to moderate toxin levels from a variety of other vectors during intense toxic outbreaks.
Collapse
|
23
|
García-Portela M, Reguera B, Sibat M, Altenburger A, Rodríguez F, Hess P. Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry: Effect of Nutritional Status and Prey. Mar Drugs 2018; 16:E143. [PMID: 29701702 PMCID: PMC5982093 DOI: 10.3390/md16050143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022] Open
Abstract
Photosynthetic species of the genus Dinophysis are obligate mixotrophs with temporary plastids (kleptoplastids) that are acquired from the ciliate Mesodinium rubrum, which feeds on cryptophytes of the Teleaulax-Plagioselmis-Geminigera clade. A metabolomic study of the three-species food chain Dinophysis-Mesodinium-Teleaulax was carried out using mass spectrometric analysis of extracts of batch-cultured cells of each level of that food chain. The main goal was to compare the metabolomic expression of Galician strains of Dinophysis acuminata and D. acuta that were subjected to different feeding regimes (well-fed and prey-limited) and feeding on two Mesodinium (Spanish and Danish) strains. Both Dinophysis species were able to grow while feeding on both Mesodinium strains, although differences in growth rates were observed. Toxin and metabolomic profiles of the two Dinophysis species were significantly different, and also varied between different feeding regimes and different prey organisms. Furthermore, significantly different metabolomes were expressed by a strain of D. acuminata that was feeding on different strains of the ciliate Mesodinium rubrum. Both species-specific metabolites and those common to D. acuminata and D. acuta were tentatively identified by screening of METLIN and Marine Natural Products Dictionary databases. This first metabolomic study applied to Dinophysis acuminata and D.acuta in culture establishes a basis for the chemical inventory of these species.
Collapse
Affiliation(s)
| | - Beatriz Reguera
- IEO, Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Manoella Sibat
- IFREMER, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Andreas Altenburger
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Francisco Rodríguez
- IEO, Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Philipp Hess
- IFREMER, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
24
|
Current Knowledge and Recent Advances in Marine Dinoflagellate Transcriptomic Research. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse6010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 2018; 8:1523. [PMID: 29367699 PMCID: PMC5784168 DOI: 10.1038/s41598-017-18805-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Secondary plastids derived from green algae occur in chlorarachniophytes, photosynthetic euglenophytes, and the dinoflagellate genus Lepidodinium. Recent advances in understanding the origin of these plastids have been made, but analyses suffer from relatively sparse taxon sampling within the green algal groups to which they are related. In this study we aim to derive new insights into the identity of the plastid donors, and when in geological time the independent endosymbiosis events occurred. We use newly sequenced green algal chloroplast genomes from carefully chosen lineages potentially related to chlorarachniophyte and Lepidodinium plastids, combined with recently published chloroplast genomes, to present taxon-rich phylogenetic analyses to further pinpoint plastid origins. We integrate phylogenies with fossil information and relaxed molecular clock analyses. Our results indicate that the chlorarachniophyte plastid may originate from a precusor of siphonous green algae or a closely related lineage, whereas the Lepidodinium plastid originated from a pedinophyte. The euglenophyte plastid putatively originated from a lineage of prasinophytes within the order Pyramimonadales. Our molecular clock analyses narrow in on the likely timing of the secondary endosymbiosis events, suggesting that the event leading to Lepidodinium likely occurred more recently than those leading to the chlorarachniophyte and photosynthetic euglenophyte lineages.
Collapse
Affiliation(s)
- Christopher Jackson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
26
|
Deng Y, Hu Z, Shang L, Peng Q, Tang YZ. Transcriptomic Analyses of Scrippsiella trochoidea Reveals Processes Regulating Encystment and Dormancy in the Life Cycle of a Dinoflagellate, with a Particular Attention to the Role of Abscisic Acid. Front Microbiol 2017; 8:2450. [PMID: 29312167 PMCID: PMC5732363 DOI: 10.3389/fmicb.2017.02450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Due to the vital importance of resting cysts in the biology and ecology of many dinoflagellates, a transcriptomic investigation on Scrippsiella trochoidea was conducted with the aim to reveal the molecular processes and relevant functional genes regulating encystment and dormancy in dinoflagellates. We identified via RNA-seq 3,874 (out of 166,575) differentially expressed genes (DEGs) between resting cysts and vegetative cells; a pause of photosynthesis (confirmed via direct measurement of photosynthetic efficiency); an active catabolism including β-oxidation, glycolysis, glyoxylate pathway, and TCA in resting cysts (tested via measurements of respiration rate); 12 DEGs encoding meiotic recombination proteins and members of MEI2-like family potentially involved in sexual reproduction and encystment; elevated expressions in genes encoding enzymes responding to pathogens (chitin deacetylase) and ROS stress in cysts; and 134 unigenes specifically expressed in cysts. We paid particular attention to genes pertaining to phytohormone signaling and identified 4 key genes regulating abscisic acid (ABA) biosynthesis and catabolism, with further characterization based on their full-length cDNA obtained via RACE-PCR. The qPCR results demonstrated elevated biosynthesis and repressed catabolism of ABA during the courses of encystment and cyst dormancy, which was significantly enhanced by lower temperature (4 ± 1°C) and darkness. Direct measurements of ABA using UHPLC-MS/MS and ELISA in vegetative cells and cysts both fully supported qPCR results. These results collectively suggest a vital role of ABA in regulating encystment and maintenance of dormancy, akin to its function in seed dormancy of higher plants. Our results provided a critical advancement in understanding molecular processes in resting cysts of dinoflagellates.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Quancai Peng
- Research Center of Analysis and Measurement, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Rockwell NC, Lagarias JC. Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity. JOURNAL OF PLANT PHYSIOLOGY 2017; 217. [PMID: 28641882 PMCID: PMC5603387 DOI: 10.1016/j.jplph.2017.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Linear tetrapyrroles (bilins) are produced from heme by heme oxygenase, usually forming biliverdin IXα (BV). Fungi and bacteria use BV as chromophore for phytochrome photoreceptors. Oxygenic photosynthetic organisms use BV as a substrate for ferredoxin-dependent bilin reductases (FDBRs), enzymes that produce diverse reduced bilins used as light-harvesting pigments in phycobiliproteins and as photoactive photoreceptor chromophores. Bilin biosynthesis is essential for phototrophic growth in Chlamydomonas reinhardtii despite the absence of phytochromes or phycobiliproteins in this organism, raising the possibility that bilins are more generally required for phototrophic growth by algae. We here leverage the recent expansion in available algal transcriptomes, cyanobacterial genomes, and environmental metagenomes to analyze the distribution and diversification of FDBRs. With the possible exception of euglenids, FDBRs are present in all photosynthetic eukaryotic lineages. Phylogenetic analysis demonstrates that algal FDBRs belong to the three previously recognized FDBR lineages. Our studies provide new insights into FDBR evolution and diversification.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
28
|
Drumm K, Liebst-Olsen M, Daugbjerg N, Moestrup Ø, Hansen PJ. Effects of irradiance and prey deprivation on growth, cell carbon and photosynthetic activity of the freshwater kleptoplastidic dinoflagellate Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae). PLoS One 2017; 12:e0181751. [PMID: 28763480 PMCID: PMC5538715 DOI: 10.1371/journal.pone.0181751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/06/2017] [Indexed: 12/03/2022] Open
Abstract
The freshwater dinoflagellate Nusuttodinium aeruginosum lacks permanent chloroplasts. Rather it sequesters chloroplasts as well as other cell organelles, like mitochondria and nuclei, from ingested cryptophyte prey. In the present study, growth rates, cell production and photosynthesis were measured at seven irradiances, ranging from 10 to 140 μmol photons m-2s-1, when fed the cryptophyte Chroomonas sp. Growth rates were positively influenced by irradiance and increased from 0.025 d-1 at 10 μmol photons m-2s-1 to maximum growth rates of ~0.3 d-1 at irradiances ≥ 40 μmol photons m-2s-1. Similarly, photosynthesis ranged from 1.84 to 36.9 pg C cell-1 h-1 at 10 and 140 μmol photons m-2s-1, respectively. The highest rates of photosynthesis in N. aeruginosum only corresponded to ~25% of its own cell carbon content and estimated biomass production. The measured rates of photosynthesis could not explain the observed growth rates at high irradiances. Cultures of N. aeruginosum subjected to prey starvation were able to survive for at least 27 days in the light. The sequestered chloroplasts maintained their photosynthetic activity during the entire period of starvation, during which the population underwent 4 cell divisions. This indicates that N. aeruginosum has some control of the chloroplasts, which may be able to replicate. In conclusion, N. aeruginosum seems to be in an early stage of chloroplast acquisition with some control of its ingested chloroplasts.
Collapse
Affiliation(s)
- Kirstine Drumm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Mette Liebst-Olsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Daugbjerg
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Øjvind Moestrup
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
30
|
Rusterholz PM, Hansen PJ, Daugbjerg N. Evolutionary transition towards permanent chloroplasts? - Division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae). PLoS One 2017; 12:e0177512. [PMID: 28493958 PMCID: PMC5426790 DOI: 10.1371/journal.pone.0177512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/29/2017] [Indexed: 12/04/2022] Open
Abstract
Species within the marine toxic dinoflagellate genus Dinophysis are phagotrophic organisms that exploit chloroplasts (kleptochloroplasts) from other protists to perform photosynthesis. Dinophysis spp. acquire the kleptochloroplasts from the ciliate Mesodinium rubrum, which in turn acquires the chloroplasts from a unique clade of cryptophytes. Dinophysis spp. digest the prey nuclei and all other cell organelles upon ingestion (except the kleptochloroplasts) and they are therefore believed to constantly acquire new chloroplasts as the populations grow. Previous studies have, however, indicated that Dinophysis can keep the kleptochloroplasts active during long term starvation and are able to produce photosynthetic pigments when exposed to prey starvation. This indicates a considerable control over the kleptochloroplasts and the ability of Dinophysis to replicate its kleptochloroplasts was therefore re-investigated in detail in this study. The kleptochloroplasts of Dinophysis acuta and Dinophysis acuminata were analyzed using confocal microscopy and 3D bioimaging software during long term starvation experiments. The cell concentrations were monitored to confirm cell divisions and samples were withdrawn each time a doubling had occurred. The results show direct evidence of kleptochloroplastidic division and that the decreases in total kleptochloroplast volume, number of kleptochloroplasts and number of kleptochloroplast centers were not caused by dilution due to cell divisions. This is the first report of division of kleptochloroplasts in any protist without the associated prey nuclei. This indicates that Dinophysis spp. may be in a transitional phase towards possessing permanent chloroplasts, which thereby potentially makes it a key organism to understand the evolution of phototrophic protists.
Collapse
Affiliation(s)
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Daugbjerg
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Abstract
Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.
Collapse
Affiliation(s)
- Diane K Stoecker
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613;
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark;
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371;
| | - Aditee Mitra
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom;
| |
Collapse
|
32
|
Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 2016; 114:E171-E180. [PMID: 28028238 DOI: 10.1073/pnas.1614842114] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an early-branching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group's cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins.
Collapse
|
33
|
The Mechanism of Diarrhetic Shellfish Poisoning Toxin Production in Prorocentrum spp.: Physiological and Molecular Perspectives. Toxins (Basel) 2016; 8:toxins8100272. [PMID: 27669302 PMCID: PMC5086633 DOI: 10.3390/toxins8100272] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Diarrhetic shellfish poisoning (DSP) is a gastrointestinal disorder caused by the consumption of seafood contaminated with okadaic acid (OA) and dinophysistoxins (DTXs). OA and DTXs are potent inhibitors of protein phosphatases 2A, 1B, and 2B, which may promote cancer in the human digestive system. Their expression in dinoflagellates is strongly affected by nutritional and environmental factors. Studies have indicated that the level of these biotoxins is inversely associated with the growth of dinoflagellates at low concentrations of nitrogen or phosphorus, or at extreme temperature. However, the presence of leucine or glycerophosphate enhances both growth and cellular toxin level. Moreover, the presence of ammonia and incubation in continuous darkness do not favor the toxin production. Currently, studies on the mechanism of this biotoxin production are scant. Full genome sequencing of dinoflagellates is challenging because of the massive genomic size; however, current advanced molecular and omics technologies may provide valuable insight into the biotoxin production mechanism and novel research perspectives on microalgae. This review presents a comprehensive analysis on the effects of various nutritional and physical factors on the OA and DTX production in the DSP toxin-producing Prorocentrum spp. Moreover, the applications of the current molecular technologies in the study on the mechanism of DSP toxin production are discussed.
Collapse
|
34
|
Hansen PJ, Ojamäe K, Berge T, Trampe ECL, Nielsen LT, Lips I, Kühl M. Photoregulation in a Kleptochloroplastidic Dinoflagellate, Dinophysis acuta. Front Microbiol 2016; 7:785. [PMID: 27303378 PMCID: PMC4884750 DOI: 10.3389/fmicb.2016.00785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Some phagotrophic organisms can retain chloroplasts of their photosynthetic prey as so-called kleptochloroplasts and maintain their function for shorter or longer periods of time. Here we show for the first time that the dinoflagellate Dinophysis acuta takes control over "third-hand" chloroplasts obtained from its ciliate prey Mesodinium spp. that originally ingested the cryptophyte chloroplasts. With its kleptochloroplasts, D. acuta can synthesize photosynthetic as well as photoprotective pigments under long-term starvation in the light. Variable chlorophyll fluorescence measurements showed that the kleptochloroplasts were fully functional during 1 month of prey starvation, while the chlorophyll a-specific inorganic carbon uptake decreased within days of prey starvation under an irradiance of 100 μmol photons m(-2) s(-1). While D. acuta cells can regulate their pigmentation and function of kleptochloroplasts they apparently lose the ability to maintain high inorganic carbon fixation rates.
Collapse
Affiliation(s)
- Per J Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Karin Ojamäe
- Marine Systems Institute, Tallinn University of Technology Tallinn, Estonia
| | - Terje Berge
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Centre for Ocean Life, DTU Aqua National Institute for Aquatic Resources, Technical University of DenmarkCharlottenlund, Denmark
| | - Erik C L Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Lasse T Nielsen
- Centre for Ocean Life, DTU Aqua National Institute for Aquatic Resources, Technical University of Denmark Charlottenlund, Denmark
| | - Inga Lips
- Marine Systems Institute, Tallinn University of Technology Tallinn, Estonia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Plant Functional Biology and Climate Change Cluster, University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
35
|
Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist 2016; 167:106-20. [PMID: 26927496 DOI: 10.1016/j.protis.2016.01.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
Abstract
Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic "phytoplankton" and phagotrophic "microzooplankton". However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
Collapse
|
36
|
Bentlage B, Rogers TS, Bachvaroff TR, Delwiche CF. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates. J Eukaryot Microbiol 2015; 63:123-37. [PMID: 26291956 DOI: 10.1111/jeu.12261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis.
Collapse
Affiliation(s)
- Bastian Bentlage
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Travis S Rogers
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E Pratt St., Baltimore, Maryland, 21202
| | - Charles F Delwiche
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742.,Maryland Agricultural Experiment Station, AGNR, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
37
|
Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015; 15:16. [PMID: 25887237 PMCID: PMC4337275 DOI: 10.1186/s12862-015-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. Results A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. Conclusions We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Pillet L. The role of horizontal gene transfer in kleptoplastidy and the establishment of photosynthesis in the eukaryotes. Mob Genet Elements 2014; 3:e24773. [PMID: 23914312 DOI: 10.4161/mge.24773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
Found in different eukaryotic lineages, kleptoplastidy is the ability to sequester chloroplasts from algal preys that are ingested and partially digested. While most of the genetic information required for the activity and maintenance of the kleptoplastids disappeared with the digestion of the algal nuclei, the photosynthetic organelles remain active during extended period of time. Many different hypotheses have been proposed to explain the longevity of the kleptoplastids within their host. The most popular one involves Horizontal Gene Transfer (HGT) from the algal genome to the host nucleus. In order to test this hypothesis, transcriptome-based analyses have been performed on different kleptoplastidic organisms during the past few years. However, the variability of the results obtained does not allow drawing a convincing conclusion regarding the precise role of HGT in kleptoplastidy. Understanding the mechanism that allow persistence of the plastids is crucial, not only for the characterization of kleptoplastidy, but also for important evolutionary questions surrounding endosymbiotic events and the emergence and spread of photosynthesis in the eukaryotes. Here, I discuss alternative theories that could explain the longevity of sequestered plastids in their host, with special focus on the simplest chloroplast stability hypothesis.
Collapse
Affiliation(s)
- Loïc Pillet
- Department of Genetics and Evolution; University of Geneva; Geneva, Switzerland
| |
Collapse
|
39
|
Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2014; 5:2368-81. [PMID: 24259313 PMCID: PMC3879968 DOI: 10.1093/gbe/evt179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.
Collapse
|
40
|
Santoferrara LF, Guida S, Zhang H, McManus GB. De novo transcriptomes of a mixotrophic and a heterotrophic ciliate from marine plankton. PLoS One 2014; 9:e101418. [PMID: 24983246 PMCID: PMC4077812 DOI: 10.1371/journal.pone.0101418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
Studying non-model organisms is crucial in the context of the current development of genomics and transcriptomics for both physiological experimentation and environmental characterization. We investigated the transcriptomes of two marine planktonic ciliates, the mixotrophic oligotrich Strombidium rassoulzadegani and the heterotrophic choreotrich Strombidinopsis sp., and their respective algal food using Illumina RNAseq. Our aim was to characterize the transcriptomes of these contrasting ciliates and to identify genes potentially involved in mixotrophy. We detected approximately 10,000 and 7,600 amino acid sequences for S. rassoulzadegani and Strombidinopsis sp., respectively. About half of these transcripts had significant BLASTP hits (E-value <10−6) against previously-characterized sequences, mostly from the model ciliate Oxytricha trifallax. Transcriptomes from both the mixotroph and the heterotroph species provided similar annotations for GO terms and KEGG pathways. Most of the identified genes were related to housekeeping activity and pathways such as the metabolism of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Although S. rassoulzadegani can keep and use chloroplasts from its prey, we did not find genes clearly linked to chloroplast maintenance and functioning in the transcriptome of this ciliate. While chloroplasts are known sources of reactive oxygen species (ROS), we found the same complement of antioxidant pathways in both ciliates, except for one enzyme possibly linked to ascorbic acid recycling found exclusively in the mixotroph. Contrary to our expectations, we did not find qualitative differences in genes potentially related to mixotrophy. However, these transcriptomes will help to establish a basis for the evaluation of differential gene expression in oligotrichs and choreotrichs and experimental investigation of the costs and benefits of mixotrophy.
Collapse
Affiliation(s)
- Luciana F. Santoferrara
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
- * E-mail:
| | - Stephanie Guida
- The National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - George B. McManus
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| |
Collapse
|
41
|
Identification of sequestered chloroplasts in photosynthetic and non-photosynthetic sacoglossan sea slugs (Mollusca, Gastropoda). Front Zool 2014; 11:15. [PMID: 24555467 PMCID: PMC3941943 DOI: 10.1186/1742-9994-11-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/06/2014] [Indexed: 11/24/2022] Open
Abstract
Background Sacoglossan sea slugs are well known for their unique ability among metazoans to incorporate functional chloroplasts (kleptoplasty) in digestive glandular cells, enabling the slugs to use these as energy source when starved for weeks and months. However, members assigned to the shelled Oxynoacea and Limapontioidea (often with dorsal processes) are in general not able to keep the incorporated chloroplasts functional. Since obviously no algal genes are present within three (out of six known) species with chloroplast retention of several months, other factors enabling functional kleptoplasty have to be considered. Certainly, the origin of the chloroplasts is important, however, food source of most of the about 300 described species is not known so far. Therefore, a deduction of specific algal food source as a factor to perform functional kleptoplasty was still missing. Results We investigated the food sources of 26 sacoglossan species, freshly collected from the field, by applying the chloroplast marker genes tufA and rbcL and compared our results with literature data of species known for their retention capability. For the majority of the investigated species, especially for the genus Thuridilla, we were able to identify food sources for the first time. Furthermore, published data based on feeding observations were confirmed and enlarged by the molecular methods. We also found that certain chloroplasts are most likely essential for establishing functional kleptoplasty. Conclusions Applying DNA-Barcoding appeared to be very efficient and allowed a detailed insight into sacoglossan food sources. We favor rbcL for future analyses, but tufA might be used additionally in ambiguous cases. We narrowed down the algal species that seem to be essential for long-term-functional photosynthesis: Halimeda, Caulerpa, Penicillus, Avrainvillea, Acetabularia and Vaucheria. None of these were found in Thuridilla, the only plakobranchoidean genus without long-term retention forms. The chloroplast type, however, does not solely determine functional kleptoplasty; members of no-retention genera, such as Cylindrobulla or Volvatella, feed on the same algae as e.g., the long-term-retention forms Plakobranchus ocellatus or Elysia crispata, respectively. Evolutionary benefits of functional kleptoplasty are still questionable, since a polyphagous life style would render slugs more independent of specific food sources and their abundance.
Collapse
|
42
|
The impact of automated filtering of BLAST-determined homologs in the phylogenetic detection of horizontal gene transfer from a transcriptome assembly. Mol Phylogenet Evol 2014; 71:184-92. [DOI: 10.1016/j.ympev.2013.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 10/09/2013] [Accepted: 11/25/2013] [Indexed: 12/24/2022]
|
43
|
Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. EUKARYOTIC CELL 2013; 13:246-55. [PMID: 24297445 DOI: 10.1128/ec.00299-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet the extent of this genetic relocation remains debated, largely because the long period that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. In this study, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome data sets for the "dinotoms," which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.
Collapse
|
44
|
Flynn KJ, Hansen PJ. Cutting the canopy to defeat the "selfish gene"; conflicting selection pressures for the integration of phototrophy in mixotrophic protists. Protist 2013; 164:811-23. [PMID: 24189043 DOI: 10.1016/j.protis.2013.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 11/25/2022]
Abstract
In strict photoautotrophs, and in many mixotrophic protists, growth at low light stimulates the increased content of photopigment. This photoacclimation further elevates cellular Chl:C content through positive feedback (self-shading), until cellular Chl:C attains a maximum (ChlC(max)). This process, driven by the "selfish gene", enhances the fitness of the individual but decreases total population growth potential through community self-shading. However, some mixotrophic protists (generalist non-constitutives; GNC-mixotrophs) acquire their photosystems ready-made from phototrophic prey but they have no regulatory control on the acquired photosystems. When light is limiting, such organisms cannot photoacclimate; their total Chl:C ratio falls as their acquired photosystems are divided amongst daughter cells and also as the photosystems fail. We show that during that process, and with the removal (consumption) of their individually more efficient phototrophic prey, there is potential for populations of GNC-mixotrophs to become more efficient at light harvesting. Through this process these organisms may retain a critical additional period of photosynthetic capacity. Together with the fact that the acquired photosystem biomass can be potentially almost entirely converted into mixotroph biomass (while chloroplasts must remain an important component of biomass in constitutive mixotrophs, with an associated investment), this may help explain the success of GNC-mixotrophs.
Collapse
Affiliation(s)
- Kevin J Flynn
- Centre of Sustainable Aquatic Research (CSAR), Swansea University, Swansea SA2 8PP, United Kingdom.
| | - Per Juel Hansen
- Centre for Ocean Life, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
45
|
Abstract
The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA; Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
46
|
Kim GH, Jeong HJ, Yoo YD, Kim S, Han JH, Han JW, Zuccarello GC. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata). PLoS One 2013; 8:e68232. [PMID: 23874554 PMCID: PMC3712967 DOI: 10.1371/journal.pone.0068232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/02/2013] [Indexed: 11/19/2022] Open
Abstract
The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as “kleptoplastids” multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value <e−30) with proteins associated with plastid and photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to “capture” new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.
Collapse
Affiliation(s)
- Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, Korea
- * E-mail: (GHK); (HJJ)
| | - Hae Jin Jeong
- School of Earth and Environmental Science, Seoul National University, Seoul, Korea
- * E-mail: (GHK); (HJJ)
| | - Yeong Du Yoo
- School of Earth and Environmental Science, Seoul National University, Seoul, Korea
| | - Sunju Kim
- Department of Biology, Kongju National University, Kongju, Korea
| | - Ji Hee Han
- Department of Biology, Kongju National University, Kongju, Korea
| | - Jong Won Han
- Department of Biology, Kongju National University, Kongju, Korea
| | - Giuseppe C. Zuccarello
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
47
|
Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME. Genome analysis of Elysia chlorotica Egg DNA provides no evidence for horizontal gene transfer into the germ line of this Kleptoplastic Mollusc. Mol Biol Evol 2013; 30:1843-52. [PMID: 23645554 PMCID: PMC3708498 DOI: 10.1093/molbev/mst084] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The “stolen” plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis of long-term maintenance of photosynthesis in this sea slug was thought to be explained by extensive horizontal gene transfer (HGT) from the nucleus of the alga to the animal nucleus, followed by expression of algal genes in the gut to provide essential plastid-destined proteins. Early studies of target genes and proteins supported the HGT hypothesis, but more recent genome-wide data provide conflicting results. Here, we generated significant genome data from the E. chlorotica germ line (egg DNA) and from V. litorea to test the HGT hypothesis. Our comprehensive analyses fail to provide evidence for alga-derived HGT into the germ line of the sea slug. Polymerase chain reaction analyses of genomic DNA and cDNA from different individual E. chlorotica suggest, however, that algal nuclear genes (or gene fragments) are present in the adult slug. We suggest that these nucleic acids may derive from and/or reside in extrachromosomal DNAs that are made available to the animal through contact with the alga. These data resolve a long-standing issue and suggest that HGT is not the primary reason underlying long-term maintenance of photosynthesis in E. chlorotica. Therefore, sea slug photosynthesis is sustained in as yet unexplained ways that do not appear to endanger the animal germ line through the introduction of dozens of foreign genes.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University
| | | | | | | | | |
Collapse
|
48
|
Xia S, Zhang Q, Zhu H, Cheng Y, Liu G, Hu Z. Systematics of a kleptoplastidal dinoflagellate, Gymnodinium eucyaneum Hu (Dinophyceae), and its cryptomonad endosymbiont. PLoS One 2013; 8:e53820. [PMID: 23308288 PMCID: PMC3538685 DOI: 10.1371/journal.pone.0053820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/03/2012] [Indexed: 11/17/2022] Open
Abstract
New specimens of the kleptoplastidal dinoflagellate Gymnodinium eucyaneum Hu were collected in China. We investigated the systematics of the dinoflagellate and the origin of its endosymbiont based on light morphology and phylogenetic analyses using multiple DNA sequences. Cells were dorsoventrally flattened with a sharply acute hypocone and a hemispherical epicone. The confusion between G. eucyaneum and G. acidotum Nygaard still needs to be resolved. We found that the hypocone was conspicuously larger than the epicone in most G. eucyaneum cells, which differed from G. acidotum, but there were a few cells whose hypocone and epicone were of nearly the same size. In addition, there was only one site difference in the partial nuclear LSU rDNA sequences of a sample from Japan given the name G. acidotum and G. eucyaneum in the present study, which suggest that G. eucyaneum may be a synonym of G. acidotum. Spectroscopic analyses and phylogenetic analyses based on nucleomorph SSU rDNA sequences and chloroplast 23 s rDNA sequences suggested that the endosymbiont of G. eucyaneum was derived from Chroomonas (Cryptophyta), and that it was most closely related to C. coerulea Skuja. Moreover, the newly reported kleptoplastidal dinoflagellates G. myriopyrenoides and G. eucyaneum in our study were very similar, and the taxonomy of kleptoplastidal dinoflagellates was discussed.
Collapse
Affiliation(s)
- Shuang Xia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Molnár I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genomics 2012; 13:576. [PMID: 23110428 PMCID: PMC3533583 DOI: 10.1186/1471-2164-13-576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2022] Open
Abstract
Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts.
Collapse
Affiliation(s)
- István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, Tucson, 85739, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Pillet L, Pawlowski J. Transcriptome analysis of foraminiferan Elphidium margaritaceum questions the role of gene transfer in kleptoplastidy. Mol Biol Evol 2012; 30:66-9. [PMID: 22993235 DOI: 10.1093/molbev/mss226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Foraminifera from the genus Elphidium are heterotrophic protists that graze on diatoms and sequester chloroplasts from their algal preys, while digesting the rest of the diatom cell. During that process, known as kleptoplastidy, the acquired plastids remain active inside the foraminiferan cell for several months. As most of the genes required to sustain the activity of the chloroplasts are encoded in the diatom nucleus, it is unknown how the host cell can maintain the photosynthetic activity without this information. It has been proposed that maintenance of kleptoplastids could be explained by horizontal gene transfer (HGT). To test this hypothesis we obtained 17,125 EST sequences of Elphidium margaritaceum, and we screened this data set for diatom nuclear-encoded proteins having a function in photosynthetic activity or plastid maintenance. Our analyses show no evidence for the presence of such transcriptionally active genes and suggest that HGT hypothesis alone cannot explain the chloroplast's longevity in Elphidium.
Collapse
Affiliation(s)
- Loïc Pillet
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland.
| | | |
Collapse
|